
DEVELOPING SAFETY-CRITICAL SOFTWARE REQUIREMENTS FOR

COMMERCIAL REUSABLE LAUNCH VEHICLES

Daniel P. Murray
(1)
 and Terry L. Hardy

(2)

(1)Federal Aviation Administration, Office of Commercial Space Transportation, 800 Independence Avenue, S.W.,

Room 331, Washington, DC, 20591, USA, Daniel.Murray@faa.gov
(2)
National Aeronautics and Space Administration Goddard Space Flight Center, Mail Code 302, Greenbelt, MD

20771, USA, Terry.L.Hardy@nasa.gov

ABSTRACT

A number of inventors and entrepreneurs are currently

attempting to develop and commercially operate

reusable launch vehicles to carry voluntary participants

into space. To reduce the risk to the public in the

operation of these vehicles, a launch vehicle operator

typically performs analyses to identify safety measures

and develop safety requirements. The focus of these

safety efforts has historically been to develop and

implement safety requirements for hardware systems

and subsystems. However, software and computing

systems are increasingly being used in launch vehicles

to control or monitor safety-critical systems, compute or

transmit safety-critical data, and detect and mitigate

faults. Therefore, identifying the hazards, assessing the

risks, and implementing valid safety requirements for

these software elements are becoming critical to public

safety. This paper presents lessons learned from the

failure of space vehicle systems that can be applied to

the development of safety-critical software

requirements for commercial reusable launch vehicles.

The paper also describes a software system safety

process recommended by the Federal Aviation

Administration (FAA) for developing safety

requirements to reduce the risks from the use of

software in reusable launch vehicle operations.

1. INTRODUCTION

Software and computing systems are becoming

increasingly important in assuring the safe operation of

reusable launch vehicles. Software and its associated

computing systems (computer system hardware and

firmware) are used in on-board and ground systems to

support safety-critical functions such as guidance,

navigation, and health monitoring. Software is also used

to produce safety-critical data and to assist in mitigating

system risks. The launch vehicle operator must

therefore identify, characterize, and analyze the hazards

and mitigate the risks associated with the use of

software and computing systems on commercial space

launch vehicles to reduce the risk to the public.

Although software safety is part of the launch vehicle

system safety effort that includes hardware and other

factors, key differences exist between hardware and

software. Hardware, including computer system

hardware and associated equipment, fails most often

because of such factors as deficiencies and variability in

design, production, and maintenance. However,

software does not fail in the conventional sense –

software does not break, wear out, or fall out of

tolerance like hardware. Software faults are primarily

systematic, not random, and are primarily caused by

design faults, particularly in defining and interpreting

requirements. Deficient requirements are the single

largest factor in software and computing system project

failure. Deficient software requirements have

contributed to a number of space vehicle failures, as

described in the following section.

2. SPACE VEHICLE FAILURES

An inadequate requirements development process has

been identified as a contributing cause to a number of

high-profile space vehicle failures. Examples of some

of those failures are described below. Although not all

failures were of spacecraft, the lessons learned from

such failures are instructive to those building and

operating launch vehicles.

2.1 Ariane 5 launch vehicle

On June 4, 1996, the Ariane 5 launch vehicle veered off

course and broke up approximately 40 seconds into

launch. The vehicle started to disintegrate because of

high aerodynamic loads due to an angle of attack

greater than 20 degrees. This condition led to separation

of the boosters from the main stage, in turn triggering

the self-destruct system of the launcher. This improper

angle of attack was caused by full nozzle deflections of

the solid rocket boosters and the Vulcain main engine.

The on-board computer software commanded these

nozzle deflections based on data received from the

active Inertial Reference System. Ultimately, these

improper deflections were found to have been the result

of specification and design errors in the Inertial

Reference System software, including improper error

handling (an unexpected horizontal velocity component

led to an overflow condition which was not handled

properly by the software). Contributing to the failure

was the fact that this software was reused from the

Ariane 4 program, including the exception handling

code used in the Inertial Reference System. The source

of the fault occurred in a function that was not required

for Ariane 5, but rather was a function carried over from

the Ariane 4 software. There was a belief by the

development team that faults would be due to a random

hardware failure, handled by redundancy in the

hardware. However, because the problem was a

requirements problem and not due to random failure,

both the primary and backup Inertial Reference Systems

shut down nearly simultaneously from the same cause.

In addition, no end-to-end tests were conducted to

verify that the Inertial Reference System and its

software would behave correctly when being subjected

to the countdown sequence, flight time sequence, and

the trajectory of Ariane 5 [1].

2.2 Phobos 1 spacecraft

The Phobos 1 spacecraft was launched on July 7, 1988,

on a mission to conduct surface and atmospheric studies

of Mars. The spacecraft operated normally until routine

attempts to communicate with the spacecraft failed on

September 2, 1988, and the mission was lost.

Examination of the failure showed that a ground control

operator had omitted a single letter in a series of digital

commands sent to the spacecraft. The on-board

computer mistranslated this command and started a

ground checkout test sequence, deactivating the attitude

control thrusters. As a result the spacecraft lost its lock

on the sun. Because the solar panels were pointed away

from the sun, the on-board batteries were eventually

drained until all power was lost. A significant

contributor to the failure was a lack of requirements

regarding the human and software interface [2].

2.3 Mars Polar Lander

The Mars Polar Lander (MPL) was launched on January

3, 1999. Upon arrival at Mars, communications ended

according to plan as the vehicle prepared to enter the

Martian atmosphere. Communications were scheduled

to resume after the lander and the probes were on the

surface. However, repeated efforts to contact the vehicle

failed. The cause of the MPL loss was never fully

identified, but the most likely scenario was that the

problem occurred during deployment of the three

landing legs during the landing sequence. Each leg was

fitted with a Hall Effect magnetic sensor that generates

a voltage when the leg contacts the surface of Mars. The

descent engines were to be shut down by a command

from the flight software when touchdown was detected.

It is believed that the software interpreted spurious

signals generated at leg deployment as valid touchdown

events, leading to premature shutdown of the engines at

40 meters above the surface of Mars, resulting in the

vehicle crashing into the surface. Although it was

known that a possible failure mode existed whereby the

sensors would falsely detect that the vehicle had

touched down, the software requirements did not

account for this failure mode and the software was not

programmed to avoid such an occurrence [3].

2.4 Failure Trends and Lessons Learned

In addition to these specific failures, recent analyses of

launch vehicle failure trends have shown that software

and computing systems have become a much more

frequent cause of failures recently than has occurred in

the past. Despite only one failure during the 1950s to

1980s, five software and computing system failures

have occurred in both the 1990s and 2000s. The trends

are shown in Tab. 1.

Table 1. Worldwide Subsystem Failures by Decade [4]

Subsystem 1980s 1990s 2000s

Propulsion 42% 38% 54%

Guidance and

navigation

6% 16% 4%

Electrical 6% 8% 8%

Operational ordnance 2% 8% 0%

Structures 4% 6% 0%

Software and

computing

0% 8% 21%

Pneumatics and

hydraulics

4% 2% 0%

All other subsystems 0% 0% 0%

Unknown 37% 16% 13%

One lesson learned from specific software and

computing system failures and anomalies and from the

trend data is that strong launch vehicle safety processes

are necessary to prevent future accidents, especially in

the development of valid, verified software safety

requirements. One such approach that can be applied to

the development of reusable launch vehicle software

requirements is a software system safety process. Such

a software system safety process can help assure the

following:

• The software and computing system hazards are

identified, described, and characterized

• The software and computing system risk is

analyzed and assessed

• Unacceptable risk is mitigated

• The effectiveness of risk mitigation strategies is

assessed and monitored

• Changes are monitored throughout the project or

program lifecycle

This process is described in detail in [5]. The following

summarizes that process.

3. SOFTWARE SYSTEM SAFETY PROCESS

An RLV operator uses a three-pronged approach to

ensure that public health and safety and the safety of

property would not be jeopardized by the conduct of an

RLV mission. The three safety-related elements

reflected in this strategy for RLV mission and vehicle

operations are as follows:

• Using a logical, disciplined system safety process

to identify hazards and to mitigate or eliminate risk.

• Establishing limitations of acceptable public risk as

determined through a calculation of the individual

and collective risk, including the expected number

of casualties (Ec).

• Imposing mandatory and derived operating

requirements.

A launch vehicle is a complex and integrated system

comprised of hardware, software, human interactions,

environmental interactions, and so on. Therefore, a

software and computing system safety process should

be considered as one part of the larger integrated system

safety process.

Fig. 1 shows a software system safety process

recommended for launch vehicles. Each of these steps is

described below. Note that although this process is

presented in a linear, one-pass fashion for ease of

discussion, the software system safety process is in fact

iterative over the life of the project. Analyses and

processes are updated and additional information is

obtained as the launch operator discovers new hazards,

finds that certain hazards are no longer applicable,

makes changes to the system, and better defines the

system.

3.1 Software safety planning

The purpose of software safety planning is to define the

approach that will aid in producing software that will

satisfy launch vehicle system safety requirements.

Planning helps ensure that safety is designed and

incorporated in from the beginning of the life cycle.

Early hazard identification and risk reduction will

typically provide the most effective and lowest cost

approach to addressing safety concerns. Software safety

plans include a System Safety Program Plan, which

describes the software and hardware safety tasks and

activities, and the Software Development Plan. A

Software Development Plan includes management

elements of safe software development (organization

and responsibilities, policies and procedures, schedule

and tasks, etc.) and engineering elements (hazard

analyses, verification approaches, configuration

management, quality assurance, etc.). Additional

information about software safety planning can be

found in [5] and [6].

Figure 1. Software system safety process

3.2 Safety-critical computer system function

identification

When software is integrated as part of a system to

command, control, or monitor safety-critical launch

vehicle functions, special measures are required to

understand and mitigate safety risks. Therefore, it is

important first to identify those launch vehicle functions

that are essential to safe performance or operation.

Identifying these vehicle functions helps prioritize the

safety effort to focus the resources and activities on the

most important safety concerns. Some examples of

potentially safety-critical launch vehicle functions

include the following:

• Operation of a flight safety system to safely abort

the flight if the vehicle poses a risk to the public

• Propulsion system control, including rocket engine

start or shutdown operations

• Propulsion system health monitoring sensing and

display (e.g., pressure and temperature)

Once an operator has identified its safety-critical launch

vehicle functions, the operator should then identify the

safety-critical computer system functions. Safety-

critical computer system functions are essentially those

software features that are used to monitor, control, or

provide data for the safety-critical functions.

At this stage the operator should also define top-level,

or generic, requirements. These requirements are in

general not tied to a specific hazard but rather are

derived from knowledge of the safety-critical functions,

design standards, safety standards, mishap reports,

experience on similar software, and lessons learned

from other programs. Some examples of generic

requirements include the following:

• Upon detecting an anomaly or failures, the software

should remain in or revert to a safe state

• Override commands should require multiple

operator actions

• The software should notify crew, ground, or the

controlling executive during or immediately after

execution of an automated hazardous process

Further examples of generic requirements are provided

in [5].

3.3 Software and computing system hazard analyses

Once the safety-critical computer system functions have

been identified, an operator should perform analyses to

identify the hazards, assess the risks, and identify risk

mitigation approaches associated with those functions.

In software-intensive systems, mishaps often occur

because of a combination of factors, including

component failure and faults, human error,

environmental conditions, procedural deficiencies,

design inadequacies, and software and computing

system errors. In such systems software often cannot be

divorced from the system where it resides. The launch

vehicle operator should therefore first perform a

preliminary analysis that considers software hazards on

a system or subsystem level as part of a larger system

safety effort. An example of such a system would be a

flight display, which might include both hardware and

software components. An operator can perform these

system-level hazard analysis and risk assessments in a

manner similar to that used for systems consisting only

of hardware. Typical approaches include Preliminary

Hazard Analyses and Failure Modes, Effects, and

Criticality Analysis. The analysis will result in

mitigation measures to reduce risk and system-level

requirements to implement those mitigation measures.

For example, a mitigation measure for the loss of the

flight control display might be to use redundant displays

or abort the mission and shut down the propulsion

system; a resulting safety requirement would be to

develop detailed procedures that specify the abort and

shutdown conditions.

In addition to the system or subsystem hazard analysis,

the operator should perform software-specific hazard

analyses. Software-specific hazard analyses identify

what can go wrong, what are the potential effects, and

what mitigation measures can be used to reduce the

risk. Note however that because of the difficulties in

assigning probabilities to newly developed software, the

software-specific hazard analysis does not usually

include an assessment of the likelihood of a software

fault. Typical software-specific hazard analysis

techniques include Software Failure Modes and Effects

Analysis and Software Fault Tree Analysis. Examples

of these analysis approaches are provided in [5] and [7].

An operator’s software-specific hazard analyses should

consider multiple error conditions. Some of the error

conditions to consider are as follows:

• Calculation or computation errors (incorrect

algorithms, calculation overflow, etc.)

• Data errors (out of range data, incorrect inputs,

large data rates, etc.)

• Logic errors (improper or unexpected commands,

failure to issue a command, etc.)

• Interface errors (incorrect messaging, poor

interface layout and design, etc.)

• Environment-related errors (improper use of tools,

changes in operating system, etc.)

• Hardware-related errors (unexpected computer

shutdown, memory overwriting, etc.)

The software-specific analysis should provide specific

mitigation approaches for each potential hazard

identified. The recommended order of precedence for

eliminating or reducing risk in the use of software and

computing systems is the same as that for hardware, as

follows:

1. Design for minimum risk

2. Incorporate safety devices

3. Provide warning devices

4. Develop and implement procedures and training

Mitigation measures can include, but are not limited to,

approaches such as the following [5, 8]:

• Software fault detection (for example, built-in tests,

incremental auditing, etc.)

• Software fault isolation (for example, isolating

safety-critical functions from non-safety-critical

functions, etc.)

• Software fault tolerance (for example, recovery

blocks that use multiple software versions of

progressively more reliable construction should

faults occur, etc.)

• Hardware and software fault recovery (for

example, incremental reboots, exception handling,

etc.)

Software Failure Modes and Effects Analysis and

Software Fault Tree Analysis can be performed on

requirements, design, or code. Analyses at lower levels,

such as at the code level, provide the most information

but also require the most resources. The scope of the

analysis will depend on the particular software and

development program.

Software and computing system safety analyses should

consider safety aspects of the following items:

• Computer system hardware, which includes

physical devices that assist in the transfer of data

and perform logic operations. Examples include

central processing units (CPU), busses, display

screens, memory cards, and peripherals.

• Computer system firmware, which is resident

software that controls the CPU’s basic functioning.

• Computer system software, including operating

system software and applications programs.

In addition, because software safety is a systems issue,

software and computing systems must be considered

with respect to other aspects of the system, such as the

following:

• Physical entities whose function and operation are

being monitored or controlled, often called the

application.

• Sensors (thermocouples, pressure transducers).

• Effectors that take an instruction from the

computing system and impart an action on the

system (valves, actuators).

• Data communication to other computers.

• Humans who will interact with the system.

Safety is enhanced through the use of layers of

protection that include both software- and hardware-

specific safety measures.

The output from the software-specific hazard analysis

process includes design-level safety requirements based

on safety measures developed to mitigate hazards.

These design-level requirements could include specific

hardware mitigation measures (such as redundant

functionality using hardware) or coding requirements

that must be implemented. Design-level requirements

are statements that can be translated into code without

interpretation, or specific mitigations that must be

implemented. Examples of design-level requirements

include the following:

• Time must not be less than 0

• Oxidizer tank pressurization time must not exceed

30 seconds

• A software function must be developed and used to

detect out of range temperature and pressure

conditions

The launch vehicle operator should obtain input to the

software requirements from environmental

requirements, program specifications, facility

requirements, tailored generic requirements, and system

functionality.

3.4 Software and computing system validation and

verification

Software safety is based upon (1) developing valid

requirements as a result of efforts to identify,

characterize, and reduce the hazards and risks and (2)

assuring the integrity of the software and proper

implementation of the safety requirements. The

validation and verification process is used to manage

the set of safety requirements to help ensure the

integrity of the software.

Validation determines that the correct requirements are

implemented. To do this, the validation effort ensures

that each requirement is unambiguous, correct,

complete, consistent, testable, and operationally and

technically feasible. In addition, the validation process

demonstrates that those implementing the requirements

(designers, programmers, etc.) understand them.

Verification determines that safety requirements are

effective and have been properly implemented.

Acceptable methods of verification include the

following:

• Analyses: logic analysis, data analysis, interface

analysis, etc.

• Inspections: structured technical reviews of

software documentation

• Testing: unit tests, interface tests, system tests, etc.

These methods are often used in combination. The

acceptability of one method over another depends on

the feasibility of the method and the maturity of the

vehicle and operations. Further information on

validation and verification is found in [5] and [9].

Other significant factors in software and computing

system integrity include the following:

Development standards

The launch vehicle operator should identify software

development standards that define the rules and

constraints for the software development process. These

standards should enable uniformly designed and

implemented software components and prevent the use

of methods that are incompatible with safety

requirements. Software development standards include

requirements, design, coding, and safety standards

Configuration management and control

Changes to the software, especially on safety-critical

systems, can have significant impacts on public safety.

The launch vehicle operator should implement a

software configuration management and control process

that will at a minimum:

• Identify components, subsystems, and systems.

• Establish baselines and traceability.

• Track changes to the software configuration and

system safety documentation.

Quality assurance

Quality assurance is used to verify that objectives and

requirements of the software system safety program are

being satisfied and to confirm that deficiencies are

detected, evaluated, tracked, and resolved. This function

is usually performed through audits and inspections of

elements and processes, such as plans, standards, and

problem tracking and configuration management

systems. In addition, the software quality assurance

personnel can evaluate the validity of system safety

data. The launch vehicle operator should perform

quality assurance activities suitable to the objectives of

the program.

Anomaly reporting and tracking

Software anomaly reports (also known as problem

reports) are a means to identify and record:

• Software product anomalous behavior and its

resolution, including failure to respond properly to

nominal and off-nominal conditions.

• Process non-compliance with software,

requirements, plans, and standards, including

improperly implemented safety measures.

• Deficiencies in documentation and safety data,

including invalid requirements.

To help prevent recurrence of software safety-related

anomalies, the launch vehicle operator should develop a

standardized process to document anomalies, analyze

the root cause, and determine corrective actions.

4. CONCLUDING REMARKS

Lessons learned from space vehicle failures have shown

the importance of developing valid software

requirements and verifying that those requirements are

effective and have been implemented properly.

Software and computing systems are becoming critical

to safe launch vehicle operations. Therefore, systematic

approaches are needed to define hazards and safety

risks, determine appropriate measures to reduce the

risks, and then develop safety requirements based on

those risk reduction measures. This paper describes an

approach recommended by the FAA to develop

software safety requirements to reduce the risk to the

public during the operation of reusable launch vehicles.

However, this approach is not limited to launch

vehicles, and should be considered wherever safety-

critical software is used.

5. REFERENCES

1. O’Halloran, C., “Ariane 5: Learning from Failure,”

23
rd
 International System Safety Conference, San

Diego, CA, August 2005.

2. Perminov, V.G., “The Difficult Road to Mars,”

National Aeronautics and Space Administration

Monographs in Aerospace History, Number 15, July

1999.

3. JPL Special Review Board, “Report on the Loss of

the Mars Polar Lander and Deep Space 2 Missions,”

NASA’s Jet Propulsion Laboratory, March 22, 2000.

4. “Analysis of Launch Vehicle Failure Trends,” Futron

Corporation, August 7, 2006.

5. FAA/AST Guide to Reusable Launch and Reentry

Vehicle Software and Computing System Safety,

version 1.0, July 2006.

6. IEEE STD 1228-1994, IEEE Standard for Software

Safety Plans, 1994.

7. Dunn, W., Practical Design of Safety-Critical

Computer Systems, Reliability Press, 2002.

8. Storey, N., Safety Critical Computer Systems,

Addison-Wesley, 1996.

9. Kit, E., Software Testing in the Real World, Addison-

Wesley, 1995.

