
 

Web Services Description Language 
(WSDL) Version 2.0 Part 1: Core Language 

W3C Recommendation 26 June 2007 

This version:  
http://www.w3.org/TR/2007/REC-wsdl20-20070626  

Latest version:  
http://www.w3.org/TR/wsdl20  

Previous version:  
http://www.w3.org/TR/2007/PR-wsdl20-20070523  

Editors:  
Roberto Chinnici, Sun Microsystems  
Jean-Jacques Moreau, Canon  
Arthur Ryman, IBM  
Sanjiva Weerawarana, WSO2  

Please refer to the errata for this document, which may include some normative 
corrections. 

This document is also available in these non-normative formats: XHTML with Z 
Notation, PDF, PostScript, XML, and plain text. 

See also translations. 

Copyright © 2007 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, 
trademark and document use rules apply. 

 

Abstract 

This document describes the Web Services Description Language Version 2.0 
(WSDL 2.0), an XML language for describing Web services. This specification 
defines the core language which can be used to describe Web services based on 
an abstract model of what the service offers. It also defines the conformance 
criteria for documents in this language. 

Status of this Document 

This section describes the status of this document at the time of its publication. 
Other documents may supersede this document. A list of current W3C 



publications and the latest revision of this technical report can be found in the 
W3C technical reports index at http://www.w3.org/TR/. 

This is the W3C Recommendation of Web Services Description Language 
(WSDL) Version 2.0 Part 1: Core Language for review by W3C Members and 
other interested parties. It has been produced by the Web Services Description 
Working Group, which is part of the W3C Web Services Activity. 

Please send comments about this document to the public public-ws-desc-
comments@w3.org mailing list (public archive). 

The Working Group released a test suite along with an implementation report. A 
diff-marked version against the previous version of this document is available. 

This document has been reviewed by W3C Members, by software developers, 
and by other W3C groups and interested parties, and is endorsed by the Director 
as a W3C Recommendation. It is a stable document and may be used as 
reference material or cited from another document. W3C's role in making the 
Recommendation is to draw attention to the specification and to promote its 
widespread deployment. This enhances the functionality and interoperability of 
the Web. 

This document is governed by the 24 January 2002 CPP as amended by the 
W3C Patent Policy Transition Procedure. W3C maintains a public list of any 
patent disclosures made in connection with the deliverables of the group; that 
page also includes instructions for disclosing a patent. An individual who has 
actual knowledge of a patent which the individual believes contains Essential 
Claim(s) must disclose the information in accordance with section 6 of the W3C 
Patent Policy. 

Table of Contents 

1. Introduction  
    1.1 Service Description  
    1.2 The Meaning of a Service Description  
    1.3 Document Conformance  
    1.4 Notational Conventions  
        1.4.1 RFC 2119 Keywords  
        1.4.2 RFC 3986 Namespaces  
        1.4.3 XML Schema anyURI  
        1.4.4 Prefixes and Namespaces Used in This Specification  
        1.4.5 Terms Used in This Specification  
        1.4.6 XML Information Set Properties  
        1.4.7 WSDL 2.0 Component Model Properties  
        1.4.8 Z Notation  
        1.4.9 BNF Pseudo-Schemas  
        1.4.10 Assertions  
2. Component Model  
    2.1 Description  
        2.1.1 The Description Component  



        2.1.2 XML Representation of Description Component  
            2.1.2.1 targetNamespace attribute information item  
        2.1.3 Mapping Description's XML Representation to Component Properties  
    2.2 Interface  
        2.2.1 The Interface Component  
        2.2.2 XML Representation of Interface Component  
            2.2.2.1 name attribute information item with interface [owner element]  
            2.2.2.2 extends attribute information item  
            2.2.2.3 styleDefault attribute information item  
        2.2.3 Mapping Interface's XML Representation to Component Properties  
    2.3 Interface Fault  
        2.3.1 The Interface Fault Component  
        2.3.2 XML Representation of Interface Fault Component  
            2.3.2.1 name attribute information item with fault [owner element]  
            2.3.2.2 element attribute information item with fault [owner element]  
        2.3.3 Mapping Interface Fault's XML Representation to Component 
Properties  
    2.4 Interface Operation  
        2.4.1 The Interface Operation Component  
            2.4.1.1 Message Exchange Pattern  
            2.4.1.2 Operation Style  
        2.4.2 XML Representation of Interface Operation Component  
            2.4.2.1 name attribute information item with operation [owner element]  
            2.4.2.2 pattern attribute information item with operation [owner element]  
            2.4.2.3 style attribute information item with operation [owner element]  
        2.4.3 Mapping Interface Operation's XML Representation to Component 
Properties  
    2.5 Interface Message Reference  
        2.5.1 The Interface Message Reference Component  
        2.5.2 XML Representation of Interface Message Reference Component  
            2.5.2.1 messageLabel attribute information item with input or output 
[owner element]  
            2.5.2.2 element attribute information item with input or output [owner 
element]  
        2.5.3 Mapping Interface Message Reference's XML Representation to 
Component Properties  
    2.6 Interface Fault Reference  
        2.6.1 The Interface Fault Reference Component  
        2.6.2 XML Representation of Interface Fault Reference  
            2.6.2.1 ref attribute information item with infault, or outfault [owner 
element]  
            2.6.2.2 messageLabel attribute information item with infault, or outfault 
[owner element]  
        2.6.3 Mapping Interface Fault Reference's XML Representation to 
Component Properties  
    2.7 Binding  



        2.7.1 The Binding Component  
        2.7.2 XML Representation of Binding Component  
            2.7.2.1 name attribute information item with binding [owner element]  
            2.7.2.2 interface attribute information item with binding [owner element]  
            2.7.2.3 type attribute information item with binding [owner element]  
            2.7.2.4 Binding extension elements  
        2.7.3 Mapping Binding's XML Representation to Component Properties  
    2.8 Binding Fault  
        2.8.1 The Binding Fault Component  
        2.8.2 XML Representation of Binding Fault Component  
            2.8.2.1 ref attribute information item with fault [owner element]  
            2.8.2.2 Binding Fault extension elements  
        2.8.3 Mapping Binding Fault's XML Representation to Component 
Properties  
    2.9 Binding Operation  
        2.9.1 The Binding Operation Component  
        2.9.2 XML Representation of Binding Operation Component  
            2.9.2.1 ref attribute information item with operation [owner element]  
            2.9.2.2 Binding Operation extension elements  
        2.9.3 Mapping Binding Operation's XML Representation to Component 
Properties  
    2.10 Binding Message Reference  
        2.10.1 The Binding Message Reference Component  
        2.10.2 XML Representation of Binding Message Reference Component  
            2.10.2.1 messageLabel attribute information item with input or output 
[owner element]  
            2.10.2.2 Binding Message Reference extension elements  
        2.10.3 Mapping Binding Message Reference's XML Representation to 
Component Properties  
    2.11 Binding Fault Reference  
        2.11.1 The Binding Fault Reference Component  
        2.11.2 XML Representation of Binding Fault Reference Component  
            2.11.2.1 ref attribute information item with infault or outfault [owner 
element]  
            2.11.2.2 messageLabel attribute information item with infault or outfault 
[owner element]  
            2.11.2.3 Binding Fault Reference extension elements  
        2.11.3 Mapping Binding Fault Reference's XML Representation to 
Component Properties  
    2.12 Service  
        2.12.1 The Service Component  
        2.12.2 XML Representation of Service Component  
            2.12.2.1 name attribute information item with service [owner element]  
            2.12.2.2 interface attribute information item with service [owner element]  
        2.12.3 Mapping Service's XML Representation to Component Properties  
    2.13 Endpoint  



        2.13.1 The Endpoint Component  
        2.13.2 XML Representation of Endpoint Component  
            2.13.2.1 name attribute information item with endpoint [owner element]  
            2.13.2.2 binding attribute information item with endpoint [owner element]  
            2.13.2.3 address attribute information item with endpoint [owner element]  
            2.13.2.4 Endpoint extension elements  
        2.13.3 Mapping Endpoint's XML Representation to Component Properties  
    2.14 XML Schema 1.0 Simple Types Used in the Component Model  
    2.15 Equivalence of Components  
    2.16 Symbol Spaces  
    2.17 QName resolution  
    2.18 Comparing URIs and IRIs  
3. Types  
    3.1 Using W3C XML Schema Definition Language  
        3.1.1 Importing XML Schema  
            3.1.1.1 namespace attribute information item  
            3.1.1.2 schemaLocation attribute information item  
        3.1.2 Inlining XML Schema  
        3.1.3 References to Element Declarations and Type Definitions  
    3.2 Using Other Schema Languages  
    3.3 Describing Messages that Refer to Services and Endpoints  
        3.3.1 wsdlx:interface attribute information item  
        3.3.2 wsdlx:binding attribute information item  
        3.3.3 wsdlx:interface and wsdlx:binding Consistency  
        3.3.4 Use of wsdlx:interface and wsdlx:binding with xs:anyURI  
4. Modularizing WSDL 2.0 descriptions  
    4.1 Including Descriptions  
        4.1.1 location attribute information item with include [owner element]  
    4.2 Importing Descriptions  
        4.2.1 namespace attribute information item  
        4.2.2 location attribute information item with import [owner element]  
    4.3 Extensions  
5. Documentation  
6. Language Extensibility  
    6.1 Element-based Extensibility  
        6.1.1 Mandatory extensions  
        6.1.2 required attribute information item  
    6.2 Attribute-based Extensibility  
    6.3 Extensibility Semantics  
7. Locating WSDL 2.0 Documents  
    7.1 wsdli:wsdlLocation attribute information item  
8. Conformance  
    8.1 XML Information Set Conformance  
9. XML Syntax Summary (Non-Normative)  
10. References  



    10.1 Normative References  
    10.2 Informative References  

Appendices 

A. The application/wsdl+xml Media Type  
    A.1 Registration  
    A.2 Fragment Identifiers  
        A.2.1 The Description Component  
        A.2.2 The Element Declaration Component  
        A.2.3 The Type Definition Component  
        A.2.4 The Interface Component  
        A.2.5 The Interface Fault Component  
        A.2.6 The Interface Operation Component  
        A.2.7 The Interface Message Reference Component  
        A.2.8 The Interface Fault Reference Component  
        A.2.9 The Binding Component  
        A.2.10 The Binding Fault Component  
        A.2.11 The Binding Operation Component  
        A.2.12 The Binding Message Reference Component  
        A.2.13 The Binding Fault Reference Component  
        A.2.14 The Service Component  
        A.2.15 The Endpoint Component  
        A.2.16 Extension Components  
    A.3 Security considerations  
B. Acknowledgements (Non-Normative)  
C. IRI-References for WSDL 2.0 Components (Non-Normative)  
    C.1 WSDL 2.0 IRIs  
    C.2 Canonical Form for WSDL 2.0 Component Designators  
    C.3 Example  
D. Component Summary (Non-Normative)  
E. Assertion Summary (Non-Normative)  

 

1. Introduction 

Web Services Description Language Version 2.0 (WSDL 2.0) provides a model 
and an XML format for describing Web services. WSDL 2.0 enables one to 
separate the description of the abstract functionality offered by a service from 
concrete details of a service description such as “how” and “where” that 
functionality is offered. 

This specification defines a language for describing the abstract functionality of a 
service as well as a framework for describing the concrete details of a service 
description. It also defines the conformance criteria for documents in this 
language. 



The companion specification, Web Services Description Language (WSDL) 
Version 2.0 Part 2: Adjuncts [WSDL 2.0 Adjuncts] describes extensions for 
message exchange patterns, operation safety, operation styles and binding 
extensions (for SOAP [SOAP 1.2 Part 1: Messaging Framework (Second 
Edition)] and HTTP [IETF RFC 2616]). 

1.1 Service Description 

WSDL 2.0 describes a Web service in two fundamental stages: one abstract and 
one concrete. Within each stage, the description uses a number of constructs to 
promote reusability of the description and to separate independent design 
concerns. 

At an abstract level, WSDL 2.0 describes a Web service in terms of the 
messages it sends and receives; messages are described independent of a 
specific wire format using a type system, typically XML Schema. 

An operation associates a message exchange pattern with one or more 
messages. A message exchange pattern identifies the sequence and cardinality 
of messages sent and/or received as well as who they are logically sent to and/or 
received from. An interface groups together operations without any commitment 
to transport or wire format. 

At a concrete level, a binding specifies transport and wire format details for one 
or more interfaces. An endpoint associates a network address with a binding. 
And finally, a service groups together endpoints that implement a common 
interface. 

1.2 The Meaning of a Service Description 

A WSDL 2.0 service description indicates how potential clients are intended to 
interact with the described service. It represents an assertion that the described 
service fully implements and conforms to what the WSDL 2.0 document 
describes. For example, as further explained in section 6.1.1 Mandatory 
extensions, if the WSDL 2.0 document specifies a particular optional extension, 
the functionality implied by that extension is only optional to the client. It must be 
supported by the Web service. 

A WSDL 2.0 interface describes potential interactions with a Web service, not 
required interactions. The declaration of an operation in a WSDL 2.0 interface is 
not an assertion that the interaction described by the operation must occur. 
Rather it is an assertion that if such an interaction is (somehow) initiated, then 
the declared operation describes how that interaction is intended to occur. 

1.3 Document Conformance 

An element information item (as defined in [XML Information Set]) whose 
namespace name is "http://www.w3.org/ns/wsdl" and whose local part is 
description conforms to this specification if it is valid according to the XML 



Schema for that element as defined by this specification 
(http://www.w3.org/2007/06/wsdl/wsdl20.xsd) and additionally adheres to all the 
constraints contained in this specification and conforms to the specifications of 
any extensions contained in it. Such a conformant element information item 
constitutes a WSDL 2.0 document. 

The definition of the WSDL 2.0 language is based on the XML Information Set 
[XML Information Set] but also imposes many semantic constraints over and 
above structural conformance to this XML Infoset. In order to precisely describe 
these constraints, and as an aid in precisely defining the meaning of each WSDL 
2.0 document, the WSDL 2.0 specification defines a component model 2. 
Component Model as an additional layer of abstraction above the XML Infoset. 
Constraints and meaning are defined in terms of this component model, and the 
definition of each component includes a mapping that specifies how values in the 
component model are derived from corresponding items in the XML Infoset. 

An XML 1.0 document that is valid with respect to the WSDL 2.0 XML Schema 
and that maps to a valid WSDL 2.0 Component Model is conformant to the 
WSDL 2.0 specification. 

1.4 Notational Conventions 

All parts of this specification are normative, with the EXCEPTION of notes, 
pseudo-schemas, examples, and sections explicitly marked as “Non-Normative”. 

1.4.1 RFC 2119 Keywords 

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in 
this document are to be interpreted as described in RFC 2119 [IETF RFC 2119]. 

1.4.2 RFC 3986 Namespaces 

Namespace names of the general form: 

 "http://example.org/..." and 

 "http://example.com/..." 

represent application or context-dependent URIs [IETF RFC 3986]. 

1.4.3 XML Schema anyURI 

This specification uses the XML Schema type xs:anyURI (see [XML Schema: 
Datatypes]). It is defined so that xs:anyURI values are essentially IRIs (see [IETF 
RFC 3987]). The conversion from xs:anyURI values to an actual URI is via an 
escaping procedure defined by (see [XLink 1.0]), which is identical in most 
respects to IRI Section 3.1 (see [IETF RFC 3987]). 



For interoperability, WSDL authors are advised to avoid the US-ASCII 
characters: "<", ">", '"', space, "{", "}", "|", "\", "^", and "`", which are allowed by the 
xs:anyURI type, but disallowed in IRIs. 

1.4.4 Prefixes and Namespaces Used in This Specification 

This specification uses predefined namespace prefixes throughout; they are 
given in the following list. Note that the choice of any namespace prefix is 
arbitrary and not semantically significant (see [XML Namespaces]). 

Table 1-1. Prefixes and Namespaces used in this specification 

Prefix Namespace Notes 

wsdl "http://www.w3.org/ns/wsdl" Defined by this specification. 

wsdli "http://www.w3.org/ns/wsdl-instance" 
Defined by this specification 7.1 
wsdli:wsdlLocation attribute 
information item. 

wsdlx "http://www.w3.org/ns/wsdl-extensions" 

Defined by this specification 3.3 
Describing Messages that 
Refer to Services and 
Endpoints. 

wrpc "http://www.w3.org/ns/wsdl/rpc" 
Defined by WSDL 2.0: Adjuncts 
[WSDL 2.0 Adjuncts]. 

wsoap "http://www.w3.org/ns/wsdl/soap" 
Defined by WSDL 2.0: Adjuncts 
[WSDL 2.0 Adjuncts]. 

whttp "http://www.w3.org/ns/wsdl/http" 
Defined by WSDL 2.0: Adjuncts 
[WSDL 2.0 Adjuncts]. 

xs "http://www.w3.org/2001/XMLSchema" 

Defined in the W3C XML 
Schema specification [XML 
Schema: Structures], [XML 
Schema: Datatypes]. 

xsi 
"http://www.w3.org/2001/XMLSchema-
instance" 

Defined in the W3C XML 
Schema specification [XML 
Schema: Structures], [XML 
Schema: Datatypes]. 

 

1.4.5 Terms Used in This Specification 

This section describes the terms and concepts introduced in Part 1 of the WSDL 
Version 2.0 specification (this document). 

Actual Value  

As in [XML Schema: Structures], the expression "actual value" is used to 
refer to the member of the value space of the simple type definition 



associated with an attribute information item which corresponds to its 
normalized value. This will often be a string, but may also be an integer, a 
boolean, an IRI-reference, etc. 

Inlined Schema  

An XML schema that is defined in the wsdl:types element information 
item of a WSDL 2.0 description. For example, an XML Schema defined in 
an xs:schema element information item 3.1.2 Inlining XML Schema. 

1.4.6 XML Information Set Properties 

This specification refers to properties in the XML Information Set [XML 
Information Set]. Such properties are denoted by square brackets, e.g. [children], 
[attributes]. 

1.4.7 WSDL 2.0 Component Model Properties 

This specification defines and refers to properties in the WSDL 2.0 Component 
Model 2. Component Model. Such properties are denoted by curly brackets, 
e.g. {name}, {interfaces}. 

This specification uses a consistent naming convention for component model 
properties that refer to components. If a property refers to a required or optional 
component, then the property name is the same as the component name. If a 
property refers to a set of components, then the property name is the pluralized 
form of the component name. 

1.4.8 Z Notation 

Z Notation [Z Notation Reference Manual] was used in the development of this 
specification. Z Notation is a formal specification language that is based on 
standard mathematical notation. The Z Notation for this specification has been 
verified using the Fuzz 2000 type-checker [Fuzz 2000]. 

Since Z Notation is not widely known, it is not included the normative version of 
this specification. However, it is included in a non-normative version which allows 
to dynamically hide and show the Z Notation. Browsers correctly display the 
mathematical Unicode characters, provided that the required fonts are installed. 
Mathematical fonts for Mozilla Firefox can be downloaded from the Mozilla Web 
site. 

The Z Notation was used to improve the quality of the normative text that defines 
the Component Model, and to help ensure that the test suite covered all 
important rules implied by the Component Model. However, the Z Notation is 
non-normative, so any conflict between it and the normative text is an error in the 
Z Notation. Readers and implementers may nevertheless find the Z Notation 
useful in cases where the normative text is unclear. 

There are two elements of Z Notation syntax that conflict with the notational 
conventions described in the preceding sections. In Z Notation, square brackets 



are used to introduce basic sets, e.g. [ID], which conflicts with the use of square 
brackets to denote XML Information Set properties 1.4.6 XML Information Set 
Properties. Also, in Z Notation, curly brackets are used to denote set display and 
set comprehension, e.g. {1, 2, 3}, which conflicts with the use of curly brackets to 
denote WSDL 2.0 Component Model properties 1.4.7 WSDL 2.0 Component 
Model Properties. However, the intended meaning of square and curly brackets 
should be clear from their context and this minor notational conflict should not 
cause any confusion. 

1.4.9 BNF Pseudo-Schemas 

Pseudo-schemas are provided for each component, before the description of the 
component. They use BNF-style conventions for attributes and elements: "?" 
denotes optionality (i.e. zero or one occurrences), "*" denotes zero or more 
occurrences, "+" one or more occurrences, "[" and "]" are used to form groups, 
and "|" represents choice. Attributes are conventionally assigned a value which 
corresponds to their type, as defined in the normative schema. Elements with 
simple content are conventionally assigned a value which corresponds to the 
type of their content, as defined in the normative schema. Pseudo schemas do 
not include extension points for brevity. 
<!-- sample pseudo-schema --> 
<defined_element 
      required_attribute_of_type_string="xs:string" 
      optional_attribute_of_type_int="xs:int"? > 
  <required_element /> 
  <optional_element />? 
  <one_or_more_of_these_elements />+ 
  [ <choice_1 /> | <choice_2 /> ]* 
</defined_element> 

1.4.10 Assertions 

Assertions about WSDL 2.0 documents and components that are not enforced by 
the normative XML schema for WSDL 2.0 are marked by a dagger symbol (†) at 
the end of a sentence. Each assertion has been assigned a unique identifier that 
consists of a descriptive textual prefix and a unique numeric suffix. The numeric 
suffixes are assigned sequentially and never reused so there may be gaps in the 
sequence. The assertion identifiers MAY be used by implementations of this 
specification for any purpose, e.g. error reporting. 

The assertions and their identifiers are summarized in section E. Assertion 
Summary. 

2. Component Model 

This section describes the conceptual model of WSDL 2.0 as a set of 
components with attached properties, which collectively describe a Web service. 
This model is called the Component Model of WSDL 2.0. A valid WSDL 2.0 



component model is a set of WSDL 2.0 components and properties that satisfy 
all the requirements given in this specification as indicated by keywords whose 
interpretation is defined by RFC 2119 [IETF RFC 2119]. 

Components are typed collections of properties that correspond to different 
aspects of Web services. Each subsection herein describes a different type of 
component, its defined properties, and its representation as an XML Infoset [XML 
Information Set]. 

Properties are unordered and unique with respect to the component they are 
associated with. Individual properties' definitions may constrain their content 
(e.g., to a typed value, another component, or a set of typed values or 
components), and components may require the presence of a property to be 
considered conformant. Such properties are marked as REQUIRED, whereas 
those that are not required to be present are marked as OPTIONAL. By 
convention, when specifying the mapping rules from the XML Infoset 
representation of a component to the component itself, an optional property that 
is absent in the component in question is described as being “empty”. Unless 
otherwise specified, when a property is identified as being a collection (a set or a 
list), its value may be a 0-element (empty) collection. In order to simplify the 
presentation of the rules that deal with sets of components, for all OPTIONAL 
properties whose type is a set, the absence of such a property from a component 
MUST be treated as semantically equivalent to the presence of a property with 
the same name and whose value is the empty set. In other words, every 
OPTIONAL set-valued property MUST be assumed to have the empty set as its 
default value, to be used in case the property is absent. 

Component definitions are serializable in XML 1.0 format but are independent of 
any particular serialization of the component model. Component definitions use a 
subset (see 2.14 XML Schema 1.0 Simple Types Used in the Component 
Model) of the simple types defined by the XML Schema 1.0 specification [XML 
Schema: Datatypes]. 

In addition to the direct XML Infoset representation described here, the 
component model allows components external to the Infoset through the 
mechanisms described in 4. Modularizing WSDL 2.0 descriptions. 

A component model can be extracted from a given XML Infoset which conforms 
to the XML Schema for WSDL 2.0 by recursively mapping Information Items to 
their identified components, starting with the wsdl:description element 
information item. This includes the application of the mechanisms described in 4. 
Modularizing WSDL 2.0 descriptions. 

This document does not specify a means of producing an XML Infoset 
representation from a component model instance. In particular, there are in 
general many valid ways to modularize a given component model instance into 
one or more XML Infosets. 

2.1 Description 

2.1.1 The Description Component 



At a high level, the Description component is just a container for two categories 
of components: WSDL 2.0 components and type system components. 

WSDL 2.0 components are interfaces, bindings and services. Type system 
components are element declarations and type definitions. 

Type system components describe the constraints on a message's content. By 
default, these constraints are expressed in terms of the [XML Information Set], 
i.e. they define the [local name], [namespace name], [children] and [attributes] 
properties of an element information item. Type systems based upon other data 
models are generally accommodated by extensions to WSDL 2.0; see 6. 
Language Extensibility. In the case where they define information equivalent to 
that of a XML Schema global element declaration, they can be treated as if they 
were such a declaration. 

This specification does not define the behavior of a WSDL 2.0 document that 
uses multiple schema languages for describing type system components 
simultaneously. 

An Element Declaration component defines the name and content model of an 
element information item such as that defined by an XML Schema global element 
declaration. It has a {name} property that is the QName of the element 
information item and a {system} property that is the namespace IRI of the 
extension element information items for the type system, e.g. the namespace of 
XML Schema. 

A Type Definition component defines the content model of an element 
information item such as that defined by an XML Schema global type definition. It 
has a {name} property that is the QName of the type and a {system} property that 
is the namespace IRI of the extension element information items for the type 
system, e.g. the namespace of XML Schema. 

Interface, Binding, Service, Element Declaration, and Type Definition 
components are directly contained in the Description component and are referred 
to as top-level components. The top-level WSDL 2.0 components contain other 
components, e.g. Interface Operation and Endpoint, which are referred to as 
nested components. Nested components may contain other nested components. 
The component that contains a nested component is referred to as the parent of 
the nested component. Nested components have a {parent} property that is a 
reference to their parent component. 

The properties of the Description component are as follows: 

 {interfaces} OPTIONAL. A set of Interface components. 

 {bindings} OPTIONAL. A set of Binding components. 

 {services} OPTIONAL. A set of Service components. 

 {element declarations} OPTIONAL. A set of Element Declaration 
components. 

 {type definitions} REQUIRED. A set of Type Definition components. 

The set of top-level components contained in the Description component 
associated with an initial WSDL 2.0 document consists of the components 



defined in the initial document, plus the components associated with the WSDL 
2.0 documents that the initial document includes, plus the components defined 
by other WSDL 2.0 documents in the namespaces that the initial document 
imports. The component model makes no distinction between the components 
that are defined in the initial document versus those that are defined in the 
included documents or imported namespaces. However, any WSDL 2.0 
document that contains component definitions that refer by QName to WSDL 2.0 
components that belong to a different namespace MUST contain a wsdl:import 
element information item for that namespace (see 4.2 Importing Descriptions ). 
Furthermore, all QName references, whether to the same or to different 
namespaces must resolve to components (see 2.17 QName resolution ). 

When using the XML Schema language to describe type system components, 
the inclusion of Element Declaration components and Type Definition 
components in a Description component is governed by the rules in 3.1 Using 
W3C XML Schema Definition Language. 

In addition to WSDL 2.0 components and type system components, additional 
extension components MAY be added via extensibility 6. Language 
Extensibility. Further, additional properties to WSDL 2.0 and type system 
components MAY also be added via extensibility. 

2.1.2 XML Representation of Description Component 

<description 
      targetNamespace="xs:anyURI" > 
  <documentation />* 
  [ <import /> | <include /> ]* 
  <types />? 
  [ <interface /> | <binding /> | <service /> ]* 
</description> 

WSDL 2.0 descriptions are represented in XML by one or more WSDL 2.0 
Information Sets (Infosets), that is one or more description element information 
items. A WSDL 2.0 Infoset contains representations for a collection of WSDL 2.0 
components that share a common target namespace and zero or more 
wsdl:import element information items 4.2 Importing Descriptions that 
correspond to a collection with components from multiple target namespaces. 

The components directly defined or included within a Description component are 
said to belong to the same target namespace. The target namespace therefore 
groups a set of related component definitions and represents an unambiguous 
name for the intended semantics of the collection of components. The value of 
the targetNamespace attribute information item SHOULD be dereferencable.† It 
SHOULD resolve to a human or machine processable document that directly or 
indirectly defines the intended semantics of those components.† It MAY resolve 
to a WSDL 2.0 document that provides service description information for that 
namespace.† 

If a WSDL 2.0 document is split into multiple WSDL 2.0 documents (which may 
be combined as needed via 4.1 Including Descriptions), then the 



targetNamespace attribute information item SHOULD resolve to a master WSDL 
2.0 document that includes all the WSDL 2.0 documents needed for that service 
description.† This approach enables the WSDL 2.0 component designator 
fragment identifiers to be properly resolved. 

Components that belong to imported namespaces have different target 
namespace values than that of the importing WSDL 2.0 document. Thus 
importing is the mechanism to use components from one namespace in the 
definition of components from another namespace. 

Note that each WSDL 2.0 document or type system component of the same kind 
must be uniquely identified by its qualified name. That is, if two distinct 
components of the same kind (Interface, Binding, etc.) are in the same target 
namespace, then their QNames MUST be unique. However, different kinds of 
components (e.g., an Interface component and a Binding component) MAY have 
the same QName. Thus, QNames of components must be unique within the 
space of those components in a given target namespace. 

The description element information item has the following Infoset properties: 

 A [local name] of description. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED targetNamespace attribute information item as 
described below in 2.1.2.1 targetNamespace attribute 
information item. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information items amongst its [children], in order as 
follows:† 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more element information items from among the following, 
in any order: 

 Zero or more include element information items (see 4.1 
Including Descriptions) 

 Zero or more import element information items (see 4.2 
Importing Descriptions) 

 Zero or more namespace-qualified element information 
items whose [namespace name] is NOT 
"http://www.w3.org/ns/wsdl". 

3. An OPTIONAL types element information item (see 3. Types). 

4. Zero or more element information items from among the following, 
in any order: 

 interface element information items (see 2.2.2 XML 
Representation of Interface Component). 



 binding element information items (see 2.7.2 XML 
Representation of Binding Component). 

 service element information items (see 2.12.2 XML 
Representation of Service Component). 

 Zero or more namespace-qualified element information 
items whose [namespace name] is NOT 
"http://www.w3.org/ns/wsdl". 

2.1.2.1 targetNamespace attribute information item 

The targetNamespace attribute information item defines the namespace affiliation 
of top-level components defined in this description element information item. 
Interface, Binding and Service are top-level components. 

The targetNamespace attribute information item has the following Infoset 
properties: 

 A [local name] of targetNamespace 

 A [namespace name] which has no value 

The type of the targetNamespace attribute information item is xs:anyURI. Its value 
MUST be an absolute IRI (see [IETF RFC 3987]) and should be dereferencable.† 

2.1.3 Mapping Description's XML Representation to Component Properties 

The mapping from the XML Representation of the description element 
information item (see 2.1.2 XML Representation of Description Component) 
to the properties of the Description component is described in Table 2-1. 

Table 2-1. Mapping from XML Representation to Description Component 
Properties 

Property Value 

{interfaces} 

The set of Interface components corresponding to all the 
interface element information items in the [children] of the 
description element information item, if any, plus any included 
(via wsdl:include) or imported (via wsdl:import) Interface 
components (see 4. Modularizing WSDL 2.0 descriptions). 

{bindings} 

The set of Binding components corresponding to all the binding 
element information items in the [children] of the description 
element information item, if any, plus any included (via 
wsdl:include) or imported (via wsdl:import) Binding components 
(see 4. Modularizing WSDL 2.0 descriptions). 

{services} 

The set of Service components corresponding to all the service 
element information items in the [children] of the description 
element information item, if any, plus any included (via 
wsdl:include) or imported (via wsdl:import) Service components 



(see 4. Modularizing WSDL 2.0 descriptions). 

{element 
declarations} 

The set of Element Declaration components corresponding to all 
the element declarations defined as descendants of the types 
element information item, if any, plus any included (via 
xs:include) or imported (via xs:import) Element Declaration 
components. At a minimum this will include all the global element 
declarations defined by XML Schema element element 
information items. It MAY also include any declarations from 
some other type system which describes the [local name], 
[namespace name], [attributes] and [children] properties of an 
element information item. Each XML Schema element declaration 
MUST have a unique QName.† 

{type 
definitions} 

The set of Type Definition components corresponding to all the 
type definitions defined as descendants of the types element 
information item, if any, plus any included (via xs:include) or 
imported (via xs:import) Type Definition components. In addition, 
the built-in datatypes defined by XML Schema Part 2: Datatypes 
Second Edition [XML Schema: Datatypes], namely the nineteen 
primitive datatypes xs:string, xs:boolean, xs:decimal, xs:float, 
xs:double, xs:duration, xs:dateTime, xs:time, xs:date, 
xs:gYearMonth, xs:gYear, xs:gMonthDay, xs:gDay, xs:gMonth, 
xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, 
xs:NOTATION, and the twenty-five derived datatypes 
xs:normalizedString, xs:token, xs:language, xs:NMTOKEN, 
xs:NMTOKENS, xs:Name, xs:NCName, xs:ID, xs:IDREF, xs:IDREFS, 
xs:ENTITY, xs:ENTITIES, xs:integer, xs:nonPositiveInteger, 
xs:negativeInteger, xs:long, xs:int, xs:short, xs:byte, 
xs:nonNegativeInteger, xs:unsignedLong, xs:unsignedInt, 
xs:unsignedShort, xs:unsignedByte, xs:positiveInteger. The 
set MAY also include any definitions from some other type 
system which describes the [attributes] and [children] properties 
of an element information item. Each XML Schema type definition 
MUST have a unique QName.† 

 

2.2 Interface 

2.2.1 The Interface Component 

An Interface component describes sequences of messages that a service sends 
and/or receives. It does this by grouping related messages into operations. An 
operation is a sequence of input and output messages, and an interface is a set 
of operations. 



An interface can optionally extend one or more other interfaces. To avoid circular 
definitions, an interface MUST NOT appear in the set of interfaces it extends, 
either directly or indirectly. † The set of operations available in an interface 
includes all the operations defined by the interfaces it extends directly or 
indirectly, together with any operations it directly defines. The operations directly 
defined on an interface are referred to as the declared operations of the 
interface. In the process, operation components that are equivalent per 2.15 
Equivalence of Components are treated as one single component. The 
interface extension mechanism behaves in a similar way for all other components 
that can be defined inside an interface, namely Interface Fault components. 

Interfaces are named constructs and can be referred to by QName (see 2.17 
QName resolution). For instance, Binding components refer to interfaces in this 
way. 

The properties of the Interface component are as follows: 

 {name} REQUIRED. An xs:QName. 

 {extended interfaces} OPTIONAL. A set of declared Interface components 
which this interface extends. 

 {interface faults} OPTIONAL. The set of declared Interface Fault 
components. Note that the namespace name of the {name} property of 
each Interface Fault in this set is the same as the namespace name of the 
{name} property of this Interface component. 

 {interface operations} OPTIONAL. A set of declared Interface Operation 
components. Note that the namespace name of the {name} property of 
each Interface Operation in this set is the same as the namespace name 
of the {name} property of this Interface component. 

For each Interface component in the {interfaces} property of a Description 
component, the {name} property MUST be unique.† 

2.2.2 XML Representation of Interface Component 

<description> 
  <interface 
        name="xs:NCName"  
        extends="list of xs:QName"? 
        styleDefault="list of xs:anyURI"? > 
    <documentation />* 
    [ <fault /> | <operation /> ]* 
  </interface> 
</description> 

The XML representation for an Interface component is an element information 
item with the following Infoset properties: 

 A [local name] of interface 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 One or more attribute information items amongst its [attributes] as follows: 



o A REQUIRED name attribute information item as described below in 
2.2.2.1 name attribute information item with interface [owner 
element]. 

o An OPTIONAL extends attribute information item as described 
below in 2.2.2.2 extends attribute information item. 

o An OPTIONAL styleDefault attribute information item as 
described below in 2.2.2.3 styleDefault attribute information 
item. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information items amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more element information items from among the following, 
in any order: 

 Zero or more fault element information items 2.3.2 XML 
Representation of Interface Fault Component. 

 Zero or more operation element information items 2.4.2 
XML Representation of Interface Operation Component. 

 Zero or more namespace-qualified element information 
items whose [namespace name] is NOT 
"http://www.w3.org/ns/wsdl". 

2.2.2.1 name attribute information item with interface [owner element] 

The name attribute information item together with the targetNamespace attribute 
information item of the [parent] description element information item forms the 
QName of the interface. 

The name attribute information item has the following Infoset properties: 

 A [local name] of name 

 A [namespace name] which has no value 

The type of the name attribute information item is xs:NCName. 

2.2.2.2 extends attribute information item 

The extends attribute information item lists the interfaces that this interface 
derives from. 

The extends attribute information item has the following Infoset properties: 

 A [local name] of extends 

 A [namespace name] which has no value 



The type of the extends attribute information item is a whitespace-separated list 
of xs:QName. 

The list of xs:QName in an extends attribute information item MUST NOT contain 
duplicates.† 

2.2.2.3 styleDefault attribute information item 

The styleDefault attribute information item indicates the default style (see 
2.4.1.2 Operation Style) used to construct the {element declaration} properties 
of {interface message references} of all operations contained within the [owner 
element] interface. 

The styleDefault attribute information item has the following Infoset properties: 

 A [local name] of styleDefault. 

 A [namespace name] which has no value. 

The type of the styleDefault attribute information item is list of xs:anyURI. Its 
value, if present, MUST contain absolute IRIs (see [IETF RFC 3987]).† 

2.2.3 Mapping Interface's XML Representation to Component Properties 

The mapping from the XML Representation of the interface element information 
item (see 2.2.2 XML Representation of Interface Component) to the properties 
of the Interface component is as described in Table 2-2. 

Table 2-2. Mapping from XML Representation to Interface Component Properties

Property Value 

{name} 

The QName whose local name is actual value of the name attribute 
information item and whose namespace name is the actual value 
of the targetNamespace attribute information item of the [parent] 
description element information item 

{extended 
interfaces} 

The set of Interface components resolved to by the values in the 
extends attribute information item, if any (see 2.17 QName 
resolution). 

{interface 
faults} 

The set of Interface Fault components corresponding to the fault 
element information items in [children], if any. 

{interface 
operations} 

The set of Interface Operation components corresponding to the 
operation element information items in [children], if any. 

 

Recall that, per 2.2.1 The Interface Component, the Interface components in 
the {extended interfaces} property of a given Interface component MUST NOT 
contain that Interface component in any of their {extended interfaces} properties, 
that is to say, recursive extension of interfaces is disallowed. 



2.3 Interface Fault 

2.3.1 The Interface Fault Component 

A fault is an event that occurs during the execution of a message exchange that 
disrupts the normal flow of messages. 

A fault is typically raised when a party is unable to communicate an error 
condition inside the normal message flow, or a party wishes to terminate a 
message exchange. A fault message may be used to communicate out of band 
information such as the reason for the error, the origin of the fault, as well as 
other informal diagnostics such as a program stack trace. 

An Interface Fault component describes a fault that MAY occur during invocation 
of an operation of the interface. The Interface Fault component declares an 
abstract fault by naming it and indicating the contents of the fault message. 
When and how the fault message flows is indicated by the Interface Operation 
component. 

The Interface Fault component provides a clear mechanism to name and 
describe the set of faults an interface may generate. This allows operations to 
easily identify the individual faults they may generate by name. This mechanism 
allows the ready identification of the same fault occurring across multiple 
operations and referenced in multiple bindings as well as reducing duplication of 
description for an individual fault. 

Faults other than the ones described in the Interface component may also be 
generated at run-time, i.e. faults are an open set. The Interface component 
describes faults that have application level semantics, i.e. that the client or 
service is expected to handle, and potentially recover from, as part of the 
application processing logic. For example, an Interface component that accepts a 
credit card number may describe faults that indicate the credit card number is 
invalid, has been reported stolen, or has expired. The Interface component does 
not describe general system faults such as network failures, out of memory 
conditions, out of disk space conditions, invalid message formats, etc., although 
these faults may be generated as part of the message exchange. Such general 
system faults can reasonably be expected to occur in any message exchange 
and explicitly describing them in an Interface component is therefore 
uninformative. 

The properties of the Interface Fault component are as follows: 

 {name} REQUIRED. An xs:QName. 

 {message content model} REQUIRED. An xs:token with one of the values 
#any, #none, #other, or #element.† A value of #any indicates that the fault 
content is any single element. A value of #none indicates there is no fault 
content. A value of #other indicates that the fault content is described by 
some other extension property that references a declaration in a non-XML 
extension type system. A value of #element indicates that the fault 
consists of a single element described by the global element declaration 



referenced by the {element declaration} property. This property is used 
only when the fault is described using an XML-based data model. 

 {element declaration} OPTIONAL. A reference to an Element Declaration 
component in the {element declarations} property of the Description 
component. This element represents the content or “payload” of the fault. 
When the {message content model} property has the value #any or #none 
the {element declaration} property MUST be empty.† 

 {parent} REQUIRED. The Interface component that contains this 
component in its {interface faults} property. 

For each Interface Fault component in the {interface faults} property of an 
Interface component, the {name} property must be unique. Note that this 
constraint is enforced by the normative WSDL 2.0 XML schema. 

Interface Fault components are uniquely identified by the QName of the 
enclosing Interface component and QName of the Interface Fault component 
itself. 

Note: 

Despite having a {name} property, Interface Fault components cannot be 
identified solely by their QName. Indeed, two Interface components whose 
{name} property value has the same namespace name, but different local 
names, can contain Interface Fault components with the same {name} property 
value. Thus, the {name} property of Interface Fault component is not sufficient to 
form the unique identity of an Interface Fault component. A method for uniquely 
identifying components is defined in A.2 Fragment Identifiers. See A.2.5 The 
Interface Fault Component for the definition of the fragment identifier for the 
Interface Fault component. 

In cases where, due to an interface extending one or more other interfaces, two 
or more Interface Fault components have the same value for their {name} 
property, then the component models of those Interface Fault components MUST 
be equivalent (see 2.15 Equivalence of Components). † If the Interface Fault 
components are equivalent then they are considered to collapse into a single 
component. Within the same Interface component, if two Interface Fault 
components are not equivalent then their {name} properties MUST NOT be 
equal. 

Note that, due to the above rules, if two interfaces that have the same value for 
the namespace name of their {name} property also have one or more faults that 
have the same value for their {name} property, then those two interfaces cannot 
both form part of the derivation chain of a derived interface unless those faults 
are the same fault. 

For the above reason, it is considered good practice to ensure, where necessary, 
that the local name of the {name} property of Interface Fault components within a 
namespace SHOULD be unique, thus allowing such derivation to occur without 
inadvertent error.† 

If a type system NOT based on the XML Infoset [XML Information Set] is in use 
(as considered in 3.2 Using Other Schema Languages) then additional 



properties would need to be added to the Interface Fault component (along with 
extension attributes to its XML representation) to allow associating such 
message types with the message reference. 

2.3.2 XML Representation of Interface Fault Component 

<description> 
  <interface> 
    <fault 
          name="xs:NCName"  
          element="union of xs:QName, xs:token"? > 
      <documentation />* 
    </fault> 
  </interface> 
</description> 

The XML representation for an Interface Fault component is an element 
information item with the following Infoset properties: 

 A [local name] of fault 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED name attribute information item as described below in 
2.3.2.1 name attribute information item with fault [owner 
element]. 

o An OPTIONAL element attribute information item as described 
below in 2.3.2.2 element attribute information item with fault 
[owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more namespace-qualified element information item s 
whose [namespace name] is NOT " http://www.w3.org/ns/wsdl " . 

2.3.2.1 name attribute information item with fault [owner element] 

The name attribute information item identifies a given fault element information 
item inside a given interface element information item. 

The name attribute information item has the following Infoset properties: 

 A [local name] of name 

 A [namespace name] which has no value 

The type of the name attribute information item is xs:NCName. 



2.3.2.2 element attribute information item with fault [owner element] 

The element attribute information item refers, by QName, to an Element 
Declaration component. 

The element attribute information item has the following Infoset properties: 

 A [local name] of element. 

 A [namespace name] which has no value. 

The type of the element attribute information item is a union of xs:QName and 
xs:token where the allowed token values are #any, #none, or #other. 

2.3.3 Mapping Interface Fault's XML Representation to Component 
Properties 

The mapping from the XML Representation of the fault element information item 
(see 2.3.2 XML Representation of Interface Fault Component) to the 
properties of the Interface Fault component is as described in Table 2-3. 

Table 2-3. Mapping from XML Representation to Interface Fault Component 
Properties 

Property Value 

{name} 

The QName whose local name is the actual value of the name 
attribute information item. and whose namespace name is the 
actual value of the targetNamespace attribute information item of 
the [parent] description element information item of the [parent] 
interface element information item. 

{message 
content 
model} 

If the element attribute information item is present and its value is 
a QName, then #element; otherwise the actual value of the 
element attribute information item, if any; otherwise #other. 

{element 
declaration} 

If the element attribute information item is present and its value is 
a QName, then the Element Declaration component from the 
{element declarations} property of the Description component 
resolved to by the value of the element attribute information item 
(see 2.17 QName resolution); otherwise empty. If the element 
attribute information item has a value, then it MUST resolve to an 
Element Declaration component from the {element declarations} 
property of the Description component.† 

{parent} 
The Interface component corresponding to the interface element 
information item in [parent]. 

 

2.4 Interface Operation 

2.4.1 The Interface Operation Component 



An Interface Operation component describes an operation that a given interface 
supports. An operation is an interaction with the service consisting of a set of 
(ordinary and fault) messages exchanged between the service and the other 
parties involved in the interaction. The sequencing and cardinality of the 
messages involved in a particular interaction is governed by the message 
exchange pattern used by the operation (see {message exchange pattern} 
property). 

A message exchange pattern defines placeholders for messages, the 
participants in the pattern (i.e., the sources and sinks of the messages), and the 
cardinality and sequencing of messages exchanged by the participants. The 
message placeholders are associated with specific message types by the 
operation that uses the pattern by means of message and fault references (see 
{interface message references} and {interface fault references} properties). The 
service whose operation is using the pattern becomes one of the participants of 
the pattern. This specification does not define a machine understandable 
language for defining message exchange patterns, nor does it define any specific 
patterns. The companion specification, [WSDL 2.0 Adjuncts] defines a set of 
such patterns and defines identifying IRIs any of which MAY be used as the 
value of the {message exchange pattern} property. 

The properties of the Interface Operation component are as follows: 

 {name} REQUIRED. An xs:QName. 

 {message exchange pattern} REQUIRED. An xs:anyURI identifying the 
message exchange pattern used by the operation. This xs:anyURI MUST 
be an absolute IRI (see [IETF RFC 3987]).† 

 {interface message references} OPTIONAL. A set of Interface Message 
Reference components for the ordinary messages the operation accepts 
or sends. 

 {interface fault references} OPTIONAL. A set of Interface Fault Reference 
components for the fault messages the operation accepts or sends. 

 {style} OPTIONAL. A set of xs:anyURIs identifying the rules that were 
used to construct the {element declaration} properties of {interface 
message references}. (See 2.4.1.2 Operation Style.) These xs:anyURIs 
MUST be absolute IRIs (see [IETF RFC 3986]).† 

 {parent} REQUIRED. The Interface component that contains this 
component in its {interface operations} property. 

For each Interface Operation component in the {interface operations} property of 
an Interface component, the {name} property MUST be unique. Note that this 
constraint is enforced by the normative WSDL 2.0 XML schema. 

Interface Operation components are uniquely identified by the QName of the 
enclosing Interface component and QName of the Interface Operation 
component itself. 

Note: 



Despite having a {name} property, Interface Operation components cannot be 
identified solely by their QName. Indeed, two Interface components whose 
{name} property value has the same namespace name, but different local 
names, can contain Interface Operation components with the same {name} 
property value. Thus, the {name} property of Interface Operation components is 
not sufficient to form the unique identity of an Interface Operation component. A 
method for uniquely identifying components is defined in A.2 Fragment 
Identifiers . See A.2.6 The Interface Operation Component for the definition of 
the fragment identifier for the Interface Operation component. 

In cases where, due to an interface extending one or more other interfaces, two 
or more Interface Operation components have the same value for their {name} 
property, then the component models of those Interface Operation components 
MUST be equivalent (see 2.15 Equivalence of Components).† If the Interface 
Operation components are equivalent then they are considered to collapse into a 
single component. Within the same Interface component, if two Interface 
Operation components are not equivalent then their {name} properties MUST 
NOT be equal. 

Note that, due to the above rules, if two interfaces that have the same value for 
the namespace name of their {name} property also have one or more operations 
that have the same value for their {name} property, then those two interfaces 
cannot both form part of the derivation chain of a derived interface unless those 
operations are the same operation. 

For the above reason, it is considered good practice to ensure, where necessary, 
that the {name} property of Interface Operation components within a namespace 
SHOULD be unique, thus allowing such derivation to occur without inadvertent 
error.† 

More than one Interface Fault Reference component in the {interface fault 
references} property of an Interface Operation component may refer to the same 
message label. In that case, the listed fault types define alternative fault 
messages. This allows one to indicate that there is more than one type of fault 
that is related to that message. 

2.4.1.1 Message Exchange Pattern 

This section describes some aspects of message exchange patterns in more 
detail. Refer to the Web Services Description Language (WSDL) Version 2.0 Part 
2: Adjuncts specification [WSDL 2.0 Adjuncts] for a complete discussion of the 
semantics of message exchange patterns in general, as well as the definitions of 
the message exchange patterns that are predefined by WSDL 2.0. 

A placeholder message is a template for an actual message as described by an 
Interface Message Reference component. Although a placeholder message is 
not itself a component, it is useful to regard it as having both a {message label} 
and a {direction} property which define the values of the actual Interface 
Message Reference component that corresponds to it. A placeholder message is 
also associated with some node that exchanges the message with the service. 



Furthermore, a placeholder message may be designated as optional in the 
exchange. 

A fault propagation ruleset specifies the relation between the Interface Fault 
Reference and Interface Message Reference components of an Interface 
Operation component. The Web Services Description Language (WSDL) Version 
2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts] defines three fault 
propagation rulesets which we will refer to as fault-replaces-message, message-
triggers-fault, and no-faults. These three fault propagation rulesets are used by 
the predefined message exchange patterns defined in [WSDL 2.0 Adjuncts]. 
Other message exchange patterns can define additional fault propagation 
rulesets. 

A message exchange pattern is a template for the exchange of one or more 
messages, and their associated faults, between the service and one or more 
other nodes as described by an Interface Operation component. The service and 
the other nodes are referred to as the participants in the exchange. More 
specifically, a message exchange pattern consists of a sequence of one or more 
placeholder messages. Each placeholder message within this sequence is 
uniquely identified by its {message label} property. A message exchange pattern 
is itself uniquely identified by an absolute IRI, which is used as the value of the 
{message exchange pattern} property of the Interface Operation component, and 
which specifies the fault propagation ruleset that its faults obey.† 

2.4.1.2 Operation Style 

An operation style specifies additional information about an operation. For 
example, an operation style may define structural constraints on the element 
declarations of the interface message reference or interface fault components 
used by the operation. This additional information in no way affects the 
messages and faults exchanged with the service and it can therefore be safely 
ignored in that context. However, the additional information can be used for other 
purposes, for example, improved code generation. The {style} property of the 
Interface Operation component contains a set of zero or more IRIs that identify 
operation styles. An Interface Operation component MUST satisfy the 
specification defined by each operation style identified by its {style} property. † If 
no Interface Operation component can simultaneously satisfy all of the styles, the 
document is invalid. 

If the {style} property of an Interface Operation component does have a value, 
then that value (a set of IRIs) specifies the rules that were used to define the 
element declarations (or other properties that define the message and fault 
contents; see 3.2 Using Other Schema Languages) of the Interface Message 
Reference or Interface Fault components used by the operation. Although a 
given operation style has the ability to constrain all input and output messages 
and faults of an operation, it MAY choose to constrain any combination thereof, 
e.g. only the messages, or only the inputs. 



Please refer to the Web Services Description Language (WSDL) Version 2.0 Part 
2: Adjuncts specification [WSDL 2.0 Adjuncts] for particular operation style 
definitions. 

2.4.2 XML Representation of Interface Operation Component 

<description> 
  <interface> 
    <operation 
          name="xs:NCName"  
          pattern="xs:anyURI"? 
          style="list of xs:anyURI"? > 
      <documentation />* 
      [ <input /> | <output /> | <infault /> | <outfault /> ]* 
    </operation> 
  </interface> 
</description> 

The XML representation for an Interface Operation component is an element 
information item with the following Infoset properties: 

 A [local name] of operation 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 Two or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED name attribute information item as described below in 
2.4.2.1 name attribute information item with operation [owner 
element]. 

o An OPTIONAL pattern attribute information item as described 
below in 2.4.2.2 pattern attribute information item with 
operation [owner element]. 

o An OPTIONAL style attribute information item as described below 
in 2.4.2.3 style attribute information item with operation [owner 
element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 One or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. One or more element information items from among the following, 
in any order: 

 One or more element information items from among the 
following, in any order: 

 Zero or more input element information items (see 
2.5.2 XML Representation of Interface Message 
Reference Component). 



 Zero or more output element information items (see 
2.5.2 XML Representation of Interface Message 
Reference Component). 

 Zero or more infault element information items (see 
2.6.2 XML Representation of Interface Fault 
Reference). 

 Zero or more outfault element information items 
(see 2.6.2 XML Representation of Interface Fault 
Reference). 

 Zero or more namespace-qualified element information 
items whose [namespace name] is NOT 
"http://www.w3.org/ns/wsdl". 

2.4.2.1 name attribute information item with operation [owner element] 

The name attribute information item identifies a given operation element 
information item inside a given interface element information item. 

The name attribute information item has the following Infoset properties: 

 A [local name] of name 

 A [namespace name] which has no value 

The type of the name attribute information item is xs:NCName. 

2.4.2.2 pattern attribute information item with operation [owner element] 

The pattern attribute information item identifies the message exchange pattern a 
given operation uses. 

The pattern attribute information item has the following Infoset properties: 

 A [local name] of pattern 

 A [namespace name] which has no value 

The type of the pattern attribute information item is xs:anyURI. Note that its 
value must be an absolute IRI (see [IETF RFC 3987]). 

2.4.2.3 style attribute information item with operation [owner element] 

The style attribute information item indicates the rules that were used to 
construct the {element declaration} properties of the Interface Message 
Reference components which are members of the {interface message 
references} property of the [owner element] operation. 

The style attribute information item has the following Infoset properties: 

 A [local name] of style 

 A [namespace name] which has no value 



The type of the style attribute information item is list of xs:anyURI. Note that its 
value must be an absolute IRI (see [IETF RFC 3987]). 

2.4.3 Mapping Interface Operation's XML Representation to Component 
Properties 

The mapping from the XML Representation of the operation element information 
item (see 2.4.2 XML Representation of Interface Operation Component) to 
the properties of the Interface Operation component (see 2.4.1 The Interface 
Operation Component) is as described in Table 2-4. 

Table 2-4. Mapping from XML Representation to Interface Operation Component 
Properties 

Property Value 

{name} 

The QName whose local name is the actual value of the name 
attribute information item and whose namespace name is the 
actual value of the targetNamespace attribute information item of 
the [parent] description element information item of the [parent] 
interface element information item. 

{message 
exchange 
pattern} 

The actual value of the pattern attribute information item; 
otherwise 'http://www.w3.org/ns/wsdl/in-out'. 

{interface 
message 
references} 

The set of message references corresponding to the input and 
output element information items in [children], if any. 

{interface 
fault 
references} 

The set of interface fault references corresponding to the infault 
and outfault element information items in [children], if any. 

{style} 

The set containing the IRIs in the actual value of the style 
attribute information item, if present; otherwise the set containing 
the IRIs in the actual value of the styleDefault attribute 
information item of the [parent] interface element information 
item, if present; otherwise empty. 

{parent} 
The Interface component corresponding to the interface element 
information item in [parent]. 

 

2.5 Interface Message Reference 

2.5.1 The Interface Message Reference Component 

An Interface Message Reference component defines the content, or payload, of 
a message exchanged in an operation. By default, the message content is 



defined by an XML-based type system such as XML Schema. Other type 
systems may be used via the WSDL 2.0 type system extension mechanism. 

A message exchange pattern defines a set of placeholder messages that 
participate in the pattern and assigns them unique message labels within the 
pattern (e.g. 'In', 'Out'). The purpose of an Interface Message Reference 
component is to associate an actual message element (XML element declaration 
or some other declaration (see 3.2 Using Other Schema Languages)) with a 
message in the pattern, as identified by its message label. Later, when the 
message exchange pattern is instantiated, messages corresponding to that 
particular label will follow the element assignment made by the Interface 
Message Reference component. 

The properties of the Interface Message Reference component are as follows: 

 {message label} REQUIRED. An xs:NCName. This property identifies the 
role this message plays in the {message exchange pattern} of the 
Interface Operation component this message is contained within. The 
value of this property MUST match the name of a placeholder message 
defined by the message exchange pattern.† 

 {direction} REQUIRED. An xs:token with one of the values in or out, 
indicating whether the message is coming to the service or going from the 
service, respectively.†  The direction MUST be the same as the direction 
of the message identified by the {message label} property in the {message 
exchange pattern} of the Interface Operation component this is contained 
within.† 

 {message content model} REQUIRED. An xs:token with one of the values 
#any, #none, #other, or #element.† A value of #any indicates that the 
message content is any single element. A value of #none indicates there 
is no message content. A value of #other indicates that the message 
content is described by some other extension property that references a 
declaration in a non-XML extension type system. A value of #element 
indicates that the message consists of a single element described by the 
global element declaration referenced by the {element declaration} 
property. This property is used only when the message is described using 
an XML-based data model. 

 {element declaration} OPTIONAL. A reference to an Element Declaration 
component in the {element declarations} property of the Description 
component. This element represents the content or “payload” of the 
message. When the {message content model} property has the value 
#any or #none, the {element declaration} property MUST be empty.† 

 {parent} REQUIRED. The Interface Operation component that contains 
this component in its {interface message references} property. 

For each Interface Message Reference component in the {interface message 
references} property of an Interface Operation component, its {message label} 
property MUST be unique.† 



If a type system not based upon the XML Infoset is in use (as considered in 3.2 
Using Other Schema Languages), then additional properties would need to be 
added to the Interface Message Reference component (along with extension 
attributes to its XML representation) to allow associating such message types 
with the message reference. 

2.5.2 XML Representation of Interface Message Reference Component 

<description> 
  <interface> 
    <operation> 
      <input 
            messageLabel="xs:NCName"? 
            element="union of xs:QName, xs:token"? > 
        <documentation />* 
      </input> 
      <output 
            messageLabel="xs:NCName"? 
            element="union of xs:QName, xs:token"? > 
        <documentation />* 
      </output> 
    </operation> 
  </interface> 
</description> 

The XML representation for an Interface Message Reference component is an 
element information item with the following Infoset properties: 

 A [local name] of input or output 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 Zero or more attribute information items amongst its [attributes] as follows: 

o An OPTIONAL messageLabel attribute information item as 
described below in 2.5.2.1 messageLabel attribute information 
item with input or output [owner element]. 

o An OPTIONAL element attribute information item as described 
below in 2.5.2.2 element attribute information item with input or 
output [owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

2.5.2.1 messageLabel attribute information item with input or output [owner 
element] 



The messageLabel attribute information item identifies the role of this message in 
the message exchange pattern of the given operation element information item. 

The messageLabel attribute information item has the following Infoset properties: 

 A [local name] of messageLabel 

 A [namespace name] which has no value 

The type of the messageLabel attribute information item is xs:NCName. 

2.5.2.2 element attribute information item with input or output [owner 
element] 

The element attribute information item has the following Infoset properties: 

 A [local name] of element. 

 A [namespace name] which has no value. 

The type of the element attribute information item is a union of xs:QName and 
xs:token where the allowed token values are #any, #none, or #other. 

2.5.3 Mapping Interface Message Reference's XML Representation to 
Component Properties 

The mapping from the XML Representation of the interface message reference 
element information item (see 2.5.2 XML Representation of Interface Message 
Reference Component) to the properties of the Interface Message Reference 
component (see 2.5.1 The Interface Message Reference Component) is as 
described in Table 2-5 and uses the definitions below. 

Define the message exchange pattern of the element information item to be the 
{message exchange pattern} of the parent Interface Operation component. 

Define the message direction of the element information item to be in if its local 
name is input, and out if its local name is output. 

Note that the messageLabel attribute information item of an interface message 
reference element information item must be present if the message exchange 
pattern has more than one placeholder message with {direction} equal to the 
message direction. 

If the messageLabel attribute information item of an interface message reference 
element information item is present, then its actual value MUST match the 
{message label} of some placeholder message with {direction} equal to the 
message direction. † 

If the messageLabel attribute information item of an interface message reference 
element information item is absent then there MUST be a unique placeholder 
message with {direction} equal to the message direction. † 

Define the effective message label of an interface message reference element 
information item to be either the actual value of the messageLabel attribute 
information item if it is present, or the {message label} of the unique placeholder 



message with {direction} equal to the message direction if the attribute 
information item is absent. 

If the local name is input then the message exchange pattern MUST have at 
least one placeholder message with direction "In".† 

If the local name is output then the message exchange pattern MUST have at 
least one placeholder message with direction "Out".† 

If the local name is infault then the message exchange pattern MUST support 
at least one fault in the "In" direction.† 

If the local name is outfault then the message exchange pattern MUST support 
at least one fault in the "Out" direction.† 

Table 2-5. Mapping from XML Representation to Interface Message Reference 
Component Properties 

Property Value 

{message 
label} 

The effective message label. 

{direction} The message direction. 

{message 
content 
model} 

If the element attribute information item is present and its value is 
a QName, then #element; otherwise the actual value of the 
element attribute information item, if any; otherwise #other. 

{element 
declaration} 

If the element attribute information item is present and its value is 
a QName, then the Element Declaration component from the 
{element declarations} property of the Description component 
resolved to by the value of the element attribute information item 
(see 2.17 QName resolution); otherwise empty. If the element 
attribute information item has a value, then it MUST resolve to an 
Element Declaration component from the {element declarations} 
property of the Description component.† 

{parent} 
The Interface Operation component corresponding to the 
interface element information item in [parent]. 

 

2.6 Interface Fault Reference 

2.6.1 The Interface Fault Reference Component 

An Interface Fault Reference component associates a defined type, specified by 
an Interface Fault component, to a fault message exchanged in an operation. 

A message exchange pattern defines a set of placeholder messages that 
participate in the pattern and assigns them unique message labels within the 
pattern (e.g. 'In', 'Out'). The purpose of an Interface Fault Reference component 
is to associate an actual message type (XML element declaration or some other 



declaration (see 3.2 Using Other Schema Languages) for message content, as 
specified by an Interface Fault component) with a fault message occurring in the 
pattern. In order to identify the fault message it describes, the Interface Fault 
Reference component uses the message label of the message the fault is 
associated with, as a key. 

As indicated earlier, the companion specification [WSDL 2.0 Adjuncts] defines 
several fault propagation rulesets that a given message exchange pattern may 
use. For the ruleset fault-replaces-message, the message that the fault relates to 
identifies the message in place of which the declared fault message will occur. 
Thus, the fault message will travel in the same direction as the message it 
replaces in the pattern. For the ruleset message-triggers-fault, the message that 
the fault relates to identifies the message after which the indicated fault may 
occur, in the opposite direction of the referred to message. That is, the fault 
message will travel in the opposite direction of the message it comes after in the 
message exchange pattern. 

The properties of the Interface Fault Reference component are as follows: 

 {interface fault} REQUIRED. An Interface Fault component in the 
{interface faults} property of the [parent] Interface Operation component's 
[parent] Interface component, or an Interface component that it directly or 
indirectly extends. Identifying the Interface Fault component therefore 
indirectly defines the actual content or payload of the fault message. 

 {message label} REQUIRED. An xs:NCName. This property identifies the 
message this fault relates to among those defined in the {message 
exchange pattern} property of the Interface Operation component it is 
contained within. The value of this property MUST match the name of a 
placeholder message defined by the message exchange pattern.† 

 {direction} REQUIRED. A xs:token with one of the values in or out, 
indicating whether the fault is coming to the service or going from the 
service, respectively. The direction MUST be consistent with the direction 
implied by the fault propagation ruleset used in the message exchange 
pattern of the operation.† For example, if the ruleset fault-replaces-
message is used, then a fault that refers to an outgoing message would 
have a {direction} property value of out. On the other hand, if the ruleset 
message-triggers-fault is used, then a fault that refers to an outgoing 
message would have a {direction} property value of in as the fault travels 
in the opposite direction of the message. 

 {parent} REQUIRED. The Interface Operation component that contains 
this component in its {interface fault references} property. 

For each Interface Fault Reference component in the {interface fault references} 
property of an Interface Operation component, the combination of its {interface 
fault} and {message label} properties MUST be unique.† 

2.6.2 XML Representation of Interface Fault Reference 

<description> 



  <interface> 
    <operation> 
      <infault 
            ref="xs:QName" 
            messageLabel="xs:NCName"? > 
        <documentation />* 
      </infault>* 
      <outfault 
            ref="xs:QName" 
            messageLabel="xs:NCName"? > 
        <documentation />* 
      </outfault>* 
    </operation> 
  </interface> 
</description> 

The XML representation for an Interface Fault Reference component is an 
element information item with the following Infoset properties: 

 A [local name] of infault or outfault 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED ref attribute information item as described below in 
2.6.2.1 ref attribute information item with infault, or outfault 
[owner element]. 

o An OPTIONAL messageLabel attribute information item as 
described below in 2.6.2.2 messageLabel attribute information 
item with infault, or outfault [owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

2.6.2.1 ref attribute information item with infault, or outfault [owner 
element] 

The ref attribute information item refers to a fault component. 

The ref attribute information item has the following Infoset properties: 

 A [local name] of ref 

 A [namespace name] which has no value 

The type of the ref attribute information item is xs:QName. 



2.6.2.2 messageLabel attribute information item with infault, or outfault 
[owner element] 

The messageLabel attribute information item identifies the message in the 
message exchange pattern of the given operation element information item that 
is associated with this fault. 

The messageLabel attribute information item has the following Infoset properties: 

 A [local name] of messageLabel 

 A [namespace name] which has no value 

The type of the messageLabel attribute information item is xs:NCName. 

The messageLabel attribute information item MUST be present in the XML 
representation of an Interface Fault Reference component with a given 
{direction}, if the {message exchange pattern} of the parent Interface Operation 
component has more than one fault with that direction.† Recall that the fault 
propagation ruleset of the {message exchange pattern} specifies the relation 
between faults and messages. For example, the fault-replaces-message ruleset 
specifies that the faults have the same direction as the messages, while the 
message-triggers-fault ruleset specifies that the faults have the opposite direction 
from the messages. 

2.6.3 Mapping Interface Fault Reference's XML Representation to 
Component Properties 

The mapping from the XML Representation of the message reference element 
information item (see 2.6.2 XML Representation of Interface Fault Reference) 
to the properties of the Interface Fault Reference component (see 2.6.1 The 
Interface Fault Reference Component) is as described in Table 2-6 and uses 
the definitions below. 

Define the message exchange pattern of the element information item to be the 
{message exchange pattern} of the parent Interface Operation component. 

Define the fault direction of the element information item to be in if its local name 
is infault and out if its local name is outfault. 

Define the message direction of the element information item to be the {direction} 
of the placeholder message associated with the fault as specified by the fault 
propagation ruleset of the message exchange pattern. 

The messageLabel attribute information item of an interface fault reference 
element information item MUST be present if the message exchange pattern has 
more than one placeholder message with {direction} equal to the message 
direction. † 

If the messageLabel attribute information item of an interface fault reference 
element information item is present then its actual value MUST match the 
{message label} of some placeholder message with {direction} equal to the 
message direction. † 



If the messageLabel attribute information item of an interface fault reference 
element information item is absent then there MUST be a unique placeholder 
message with {direction} equal to the message direction. † 

Define the effective message label of an interface fault reference element 
information item to be either the actual value of the messageLabel attribute 
information item if it is present, or the {message label} of the unique placeholder 
message whose {direction} is equal to the message direction if the attribute 
information item is absent. 

Table 2-6. Mapping from XML Representation to Interface Fault Reference 
Component Properties 

Property Value 

{interface 
fault} 

The Interface Fault component from {interface faults} property of the 
parent Interface component, or an Interface component that it 
directly or indirectly extends, with {name} equal to the actual value of 
the ref attribute information item. 

{message 
label} 

The effective message label. 

{direction} The fault direction. 

{parent} 
The Interface Operation component corresponding to the interface 
element information item in [parent]. 

 

2.7 Binding 

2.7.1 The Binding Component 

A Binding component describes a concrete message format and transmission 
protocol which may be used to define an endpoint (see 2.13 Endpoint). That is, 
a Binding component defines the implementation details necessary to access the 
service. 

Binding components can be used to describe such information in a reusable 
manner for any interface or specifically for a given interface. Furthermore, 
binding information MAY be specified on a per-operation basis (see 2.9.1 The 
Binding Operation Component) within an interface, in addition to across all 
operations of an interface. 

If a Binding component specifies any operation-specific binding details (by 
including Binding Operation components) or any fault binding details (by 
including Binding Fault components), then it MUST specify an interface the 
Binding component applies to, so as to indicate which interface the operations 
come from.† 

Conversely, a Binding component which omits any operation-specific binding 
details and any fault binding details MAY omit specifying an interface. Binding 



components that do not specify an interface MAY be used to specify operation-
independent binding details for Service components with different interfaces. 
That is, such Binding components are reusable across one or more interfaces. 

No concrete binding details are given in this specification. The companion 
specification, Web Services Description Language (WSDL) Version 2.0 Part 2: 
Adjuncts [WSDL 2.0 Adjuncts] defines such bindings for SOAP 1.2 [SOAP 1.2 
Part 1: Messaging Framework (Second Edition)] and HTTP [IETF RFC 2616]. 
Other specifications MAY define additional binding details. Such specifications 
are expected to annotate the Binding component (and its sub-components) with 
additional properties and specify the mapping from the XML representation to 
these properties. 

A Binding component that defines bindings for an Interface component MUST 
define bindings for all the operations of that Interface component.† The bindings 
can occur via defaulting rules which allow one to specify default bindings for all 
operations and faults (see, for example [WSDL 2.0 Adjuncts]) or by defining 
bindings for each Interface Operation and Interface Fault component of the 
Interface component. 

Similarly, whenever a reusable Binding component (i.e. one that does not specify 
an Interface component) is applied to a specific Interface component in the 
context of an Endpoint component (see 2.13.1 The Endpoint Component), the 
Binding component MUST define bindings for each Interface Operation and 
Interface Fault component of the Interface component, via a combination of 
properties defined on the Binding component itself and default binding rules 
specific to its binding type.† 

A Binding component that defines bindings for an Interface component MUST 
define bindings for all the faults of that Interface component that are referenced 
from any of the operations in that Interface component.† As for the case of 
operations, the binding can be defined by defaulting rules. Note that only the 
faults actually referenced by operations are required to have bindings. 

Bindings are named constructs and can be referred to by QName (see 2.17 
QName resolution). For instance, Endpoint components refer to bindings in this 
way. 

The properties of the Binding component are as follows: 

 {name} REQUIRED. An xs:QName. 

 {interface} OPTIONAL. An Interface component indicating the interface for 
which binding information is being specified. 

 {type} REQUIRED. An xs:anyURI. This xs:anyURI MUST be an absolute 
IRI as defined by [IETF RFC 3987].† The value of this IRI indicates what 
kind of concrete binding details are contained within this Binding 
component. Specifications (such as [WSDL 2.0 Adjuncts]) that define such 
concrete binding details MUST specify appropriate values for this 
property. The value of this property MAY be the namespace name of the 
extension elements or attributes which define those concrete binding 
details. 



 {binding faults} OPTIONAL. A set of Binding Fault components. 

 {binding operations} OPTIONAL. A set of Binding Operation components. 

For each Binding component in the {bindings} property of a Description 
component, the {name} property MUST be unique.† 

2.7.2 XML Representation of Binding Component 

<description> 
  <binding 
        name="xs:NCName"  
        interface="xs:QName"? 
        type="xs:anyURI" > 
    <documentation />* 
    [ <fault /> | <operation /> ]* 
  </binding> 
</description> 

The XML representation for a Binding component is an element information item 
with the following Infoset properties: 

 A [local name] of binding 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 Two or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED name attribute information item as described below in 
2.7.2.1 name attribute information item with binding [owner 
element]. 

o An OPTIONAL interface attribute information item as described 
below in 2.7.2.2 interface attribute information item with 
binding [owner element]. 

o An REQUIRED type attribute information item as described below 
in 2.7.2.3 type attribute information item with binding [owner 
element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information items amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more element information items from among the following, 
in any order: 

 Zero or more fault element information items (see 2.8.2 
XML Representation of Binding Fault Component). 

 Zero or more operation element information items (see 
2.9.2 XML Representation of Binding Operation 
Component). 



 Zero or more namespace-qualified element information 
items whose [namespace name] is NOT 
"http://www.w3.org/ns/wsdl". Such element information items 
are considered to be binding extension elements(see 2.7.2.4 
Binding extension elements). 

2.7.2.1 name attribute information item with binding [owner element] 

The name attribute information item together with the targetNamespace attribute 
information item of the description element information item forms the QName 
of the binding. 

The name attribute information item has the following Infoset properties: 

 A [local name] of name 

 A [namespace name] which has no value 

The type of the name attribute information item is xs:NCName. 

2.7.2.2 interface attribute information item with binding [owner element] 

The interface attribute information item refers, by QName, to an Interface 
component. 

The interface attribute information item has the following Infoset properties: 

 A [local name] of interface 

 A [namespace name] which has no value 

The type of the interface attribute information item is xs:QName. 

2.7.2.3 type attribute information item with binding [owner element] 

The type attribute information item identifies the kind of binding details contained 
in the Binding component. 

The type attribute information item has the following Infoset properties: 

 A [local name] of type 

 A [namespace name] which has no value 

The type of the type attribute information item is xs:anyURI. 

2.7.2.4 Binding extension elements 

Binding extension elements are used to provide information specific to a 
particular binding. The semantics of such element information items are defined 
by the specification for those element information items. Such specifications are 
expected to annotate the Binding component with additional properties and 
specify the mapping from the XML representation to those properties. 

2.7.3 Mapping Binding's XML Representation to Component Properties 



The mapping from the XML Representation of the binding element information 
item (see 2.7.2 XML Representation of Binding Component) to the properties 
of the Binding component (see 2.7.1 The Binding Component) is as described 
in Table 2-7. 

Table 2-7. Mapping from XML Representation to Binding Component Properties 

Property Value 

{name} 

The QName whose local name is the actual value of the name 
attribute information item and whose namespace name is the 
actual value of the targetNamespace attribute information item of 
the [parent] description element information item. 

{interface} 
The Interface component resolved to by the actual value of the 
interface attribute information item (see 2.17 QName 
resolution), if any. 

{type} The actual value of the type attribute information item. 

{binding 
faults} 

The set of Binding Fault components corresponding to the fault 
element information items in [children], if any. 

{binding 
operations} 

The set of Binding Operation components corresponding to the 
operation element information items in [children], if any. 

 

2.8 Binding Fault 

2.8.1 The Binding Fault Component 

A Binding Fault component describes a concrete binding of a particular fault 
within an interface to a particular concrete message format. A particular fault of 
an interface is uniquely identified by its {name} property. 

Note that the fault does not occur by itself -it occurs as part of a message 
exchange as defined by an Interface Operation component (and its binding 
counterpart the Binding Operation component). Thus, the fault binding 
information specified in a Binding Fault component describes how faults that 
occur within a message exchange of an operation will be formatted and carried in 
the transport. 

The properties of the Binding Fault component are as follows: 

 {interface fault} REQUIRED. An Interface Fault component in the 
{interface faults} property of the Interface component identified by the 
{interface} property of the parent Binding component, or an Interface 
component that that Interface component directly or indirectly extends. 
This is the Interface Fault component for which binding information is 
being specified. 

 {parent} REQUIRED. The Binding component that contains this 
component in its {binding faults} property. 



For each Binding Fault component in the {binding faults} property of a Binding 
component, the {interface fault} property MUST be unique.† That is, one cannot 
define multiple bindings for the same fault within a given Binding component. 

2.8.2 XML Representation of Binding Fault Component 

<description> 
  <binding> 
    <fault 
          ref="xs:QName" > 
      <documentation />* 
    </fault> 
  </binding> 
</description> 

The XML representation for a Binding Fault component is an element information 
item with the following Infoset properties: 

 A [local name] of fault 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED ref attribute information item as described below in 
2.8.2.1 ref attribute information item with fault [owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 
Such element information items are considered to be binding fault 
extension elements as described further below (see 2.8.2.2 
Binding Fault extension elements). 

2.8.2.1 ref attribute information item with fault [owner element] 

The ref attribute information item has the following Infoset properties: 

 A [local name] of ref 

 A [namespace name] which has no value 

The type of the ref attribute information item is xs:QName. 

2.8.2.2 Binding Fault extension elements 

Binding Fault extension elements are used to provide information specific to a 
particular fault in a binding. The semantics of such element information items are 



defined by the specification for those element information items. Such 
specifications are expected to annotate the Binding Fault component with 
additional properties and specify the mapping from the XML representation to 
those properties. 

2.8.3 Mapping Binding Fault's XML Representation to Component 
Properties 

The mapping from the XML Representation of the fault element information item 
(see 2.8.2 XML Representation of Binding Fault Component) to the properties 
of the Binding Fault component (see 2.8.1 The Binding Fault Component) is as 
described in Table 2-8. 

Table 2-8. Mapping from XML Representation to Binding Fault Component 
Properties 

Property Value 

{interface 
fault} 

The Interface Fault component corresponding to the actual value of 
the ref attribute information item. 

{parent} 
The Binding component corresponding to the binding element 
information item in [parent]. 

 

2.9 Binding Operation 

2.9.1 The Binding Operation Component 

The Binding Operation component describes the concrete message format(s) 
and protocol interaction(s) associated with a particular interface operation for a 
given endpoint. A particular operation of an interface is uniquely identified by its 
{name} property. 

The properties of the Binding Operation component are as follows: 

 {interface operation} REQUIRED. An Interface Operation component in 
the {interface operations} property of the Interface component identified by 
the {interface} property of the [parent] Binding component, or an Interface 
component that that Interface component directly or indirectly extends. 
This is the Interface Operation component for which binding information is 
being specified. 

 {binding message references} OPTIONAL. A set of Binding Message 
Reference components. 

 {binding fault references} OPTIONAL. A set of Binding Fault Reference 
components. 

 {parent} REQUIRED. The Binding component that contains this 
component in its {binding operations} property. 



For each Binding Operation component in the {binding operations} property of a 
Binding component, the {interface operation} property MUST be unique.† That is, 
one cannot define multiple bindings for the same operation within a given Binding 
component. 

2.9.2 XML Representation of Binding Operation Component 

<description> 
  <binding> 
    <operation 
          ref="xs:QName" > 
      <documentation />* 
      [ <input /> | <output /> | <infault /> | <outfault /> ]* 
    </operation> 
  </binding> 
</description> 

The XML representation for a Binding Operation component is an element 
information item with the following Infoset properties: 

 A [local name] of operation 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED ref attribute information item as described below in 
2.9.2.1 ref attribute information item with operation [owner 
element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information items amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more element information items from among the following, 
in any order: 

 Zero or more input element information items (see 2.10 
Binding Message Reference) 

 Zero or more output element information items (see 2.10 
Binding Message Reference) 

 Zero or more infault element information items (see 2.11 
Binding Fault Reference) 

 Zero or more outfault element information items (see 2.11 
Binding Fault Reference) 

 Zero or more namespace-qualified element information item 
whose [namespace name] is NOT " 
http://www.w3.org/ns/wsdl ". Such element information items 
are considered to be binding operation extension elements 



as described below (see 2.9.2.2 Binding Operation 
extension elements). 

2.9.2.1 ref attribute information item with operation [owner element] 

The ref attribute information item has the following Infoset properties: 

 A [local name] of ref 

 A [namespace name] which has no value 

The type of the ref attribute information item is xs:QName. 

2.9.2.2 Binding Operation extension elements 

Binding Operation extension elements are used to provide information specific to 
a particular operation in a binding. The semantics of such element information 
items are defined by the specification for those element information items. Such 
specifications are expected to annotate the Binding Operation component with 
additional properties and specify the mapping from the XML representation to 
those properties. 

2.9.3 Mapping Binding Operation's XML Representation to Component 
Properties 

The mapping from the XML Representation of the operation element information 
item (see 2.9.2 XML Representation of Binding Operation Component) to the 
properties of the Binding Operation component is as described in Table 2-9. 

Table 2-9. Mapping from XML Representation to Binding Operation Component 
Properties 

Property Value 

{interface 
operation} 

The Interface Operation component corresponding to the 
actual value of the ref attribute information item. 

{binding message 
references} 

The set of Binding Message Reference components 
corresponding to the input and output element information 
items in [children], if any. 

{binding fault 
references} 

The set of Binding Fault Reference components 
corresponding to the infault and outfault element 
information items in [children], if any. 

{parent} 
The Binding component corresponding to the binding 
element information item in [parent]. 

 

2.10 Binding Message Reference 



2.10.1 The Binding Message Reference Component 

A Binding Message Reference component describes a concrete binding of a 
particular message participating in an operation to a particular concrete message 
format. 

The properties of the Binding Message Reference component are as follows: 

 {interface message reference} REQUIRED. An Interface Message 
Reference component among those in the {interface message references} 
property of the Interface Operation component being bound by the 
containing Binding Operation component. 

 {parent} REQUIRED. The Binding Operation component that contains this 
component in its {binding message references} property. 

For each Binding Message Reference component in the {binding message 
references} property of a Binding Operation component, the {interface message 
reference} property MUST be unique.† That is, the same message cannot be 
bound twice within the same operation. 

2.10.2 XML Representation of Binding Message Reference Component 

<description> 
  <binding> 
    <operation> 
      <input 
            messageLabel="xs:NCName"? > 
        <documentation />* 
      </input> 
      <output 
            messageLabel="xs:NCName"? > 
        <documentation />* 
      </output> 
    </operation> 
  </binding> 
</description> 

The XML representation for a Binding Message Reference component is an 
element information item with the following Infoset properties: 

 A [local name] of input or output. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 Zero or more attribute information items amongst its [attributes] as follows: 

o An OPTIONAL messageLabel attribute information item as 
described below in 2.10.2.1 messageLabel attribute information 
item with input or output [owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], in order, as 
follows: 



1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 
Such element information items are considered to be binding 
message reference extension elements as described below (see 
2.10.2.2 Binding Message Reference extension elements). 

2.10.2.1 messageLabel attribute information item with input or output [owner 
element] 

The messageLabel attribute information item has the following Infoset properties: 

 A [local name] of messageLabel. 

 A [namespace name] which has no value. 

The type of the messageLabel attribute information item is xs:NCName. 

2.10.2.2 Binding Message Reference extension elements 

Binding Message Reference extension elements are used to provide information 
specific to a particular message in an operation. The semantics of such element 
information items are defined by the specification for those element information 
items. Such specifications are expected to annotate the Binding Message 
Reference component with additional properties and specify the mapping from 
the XML representation to those properties. 

2.10.3 Mapping Binding Message Reference's XML Representation to 
Component Properties 

The mapping from the XML Representation of the binding element information 
item (see 2.10.2 XML Representation of Binding Message Reference 
Component) to the properties of the Binding Message Reference component is 
as described in Table 2-10 and uses the definitions below. 

Define the message exchange pattern of the element information item to be the 
{message exchange pattern} of the Interface Operation component being bound. 

Define the message direction of the element information item to be in if its local 
name is input and out if its local name is output. 

Note that the messageLabel attribute information item of a binding message 
reference element information item must be present if the message exchange 
pattern has more than one placeholder message with {direction} equal to the 
message direction. 

If the messageLabel attribute information item of a binding message reference 
element information item is present then its actual value MUST match the 
{message label} of some placeholder message with {direction} equal to the 
message direction. † 



If the messageLabel attribute information item of a binding message reference 
element information item is absent then there MUST be a unique placeholder 
message with {direction} equal to the message direction. † 

Define the effective message label of a binding message reference element 
information item to be either the actual value of the messageLabel attribute 
information item if it is present, or the {message label} of the unique placeholder 
message with {direction} equal to the message direction if the attribute 
information item is absent. 

Table 2-10. Mapping from XML Representation to Binding Message Reference 
Component Properties 

Property Value 

{interface 
message 
reference} 

The Interface Message Reference component in the {interface 
message references} of the Interface Operation component 
being bound with {message label} equal to the effective 
message label. 

{parent} 
The Binding Operation component corresponding to the 
operation element information item in [parent]. 

 

2.11 Binding Fault Reference 

2.11.1 The Binding Fault Reference Component 

A Binding Fault Reference component describes a concrete binding of a 
particular fault participating in an operation to a particular concrete message 
format. 

The properties of the Binding Fault Reference component are as follows: 

 {interface fault reference} REQUIRED. An Interface Fault Reference 
component among those in the {interface fault references} property of the 
Interface Operation component being bound by the parent Binding 
Operation component. 

 {parent} REQUIRED. The Binding Operation component that contains this 
component in its {binding fault references} property. 

For each Binding Fault Reference component in the {binding fault references} 
property of a Binding Operation component, the {interface fault reference} 
property MUST be unique.† That is, the same fault cannot be bound twice within 
the same operation. 

2.11.2 XML Representation of Binding Fault Reference Component 

<description> 
  <binding> 
    <operation> 



      <infault 
            ref="xs:QName" 
            messageLabel="xs:NCName"?> 
        <documentation />* 
      </infault> 
      <outfault 
            ref="xs:QName" 
            messageLabel="xs:NCName"?> 
        <documentation />* 
      </outfault> 
    </operation> 
  </binding> 
</description> 

The XML representation for a Binding Fault Reference component is an element 
information item with the following Infoset properties: 

 A [local name] of infault or outfault. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED ref attribute information item as described below in 
2.11.2.1 ref attribute information item with infault or outfault 
[owner element]. 

An OPTIONAL messageLabel attribute information item as 
described below in 2.11.2.2 messageLabel attribute information 
item with infault or outfault [owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 
Such element information items are considered to be binding fault 
reference extension elements as described below (see 2.11.2.3 
Binding Fault Reference extension elements). 

2.11.2.1 ref attribute information item with infault or outfault [owner 
element] 

The ref attribute information item has the following Infoset properties: 

 A [local name] of ref. 

 A [namespace name] which has no value. 

The type of the ref attribute information item is xs:QName. 



2.11.2.2 messageLabel attribute information item with infault or outfault 
[owner element] 

The messageLabel attribute information item has the following Infoset properties: 

 A [local name] of messageLabel. 

 A [namespace name] which has no value. 

The type of the messageLabel attribute information item is xs:NCName. 

2.11.2.3 Binding Fault Reference extension elements 

Binding Fault Reference extension elements are used to provide information 
specific to a particular fault in an operation. The semantics of such element 
information items are defined by the specification for those element information 
items. Such specifications are expected to annotate the Binding Fault Reference 
component with additional properties and specify the mapping from the XML 
representation to those properties. 

2.11.3 Mapping Binding Fault Reference's XML Representation to 
Component Properties 

The mapping from the XML Representation of the binding element information 
item (see 2.11.2 XML Representation of Binding Fault Reference 
Component) to the properties of the Binding Fault Reference component is as 
described in Table 2-11 and uses the definitions below. 

Define the message exchange pattern of the element information item to be the 
{message exchange pattern} of the Interface Operation component being bound. 

Define the fault direction of the element information item to be in if its local name 
is infault and out if its local name is outfault. 

Define the message direction of the element information item to be the {direction} 
of the placeholder message associated with the fault as specified by the fault 
propagation ruleset of the message exchange pattern. 

The messageLabel attribute information item of a binding fault reference element 
information item MUST be present if the message exchange pattern has more 
than one placeholder message with {direction} equal to the message direction. † 

If the messageLabel attribute information item of a binding fault reference element 
information item is present then its actual value MUST match the {message 
label} of some placeholder message with {direction} equal to the message 
direction. † 

If the messageLabel attribute information item of a binding fault reference element 
information item is absent then there MUST be a unique placeholder message 
with {direction} equal to the message direction. † 

Define the effective message label of a binding fault reference element 
information item to be either the actual value of the messageLabel attribute 



information item if it is present, or the {message label} of the unique placeholder 
message with {direction} equal to the message direction if the attribute 
information item is absent. 

There MUST be an Interface Fault Reference component in the {interface fault 
references} of the Interface Operation being bound with {message label} equal to 
the effective message label and with {interface fault} equal to an Interface Fault 
component with {name} equal to the actual value of the ref attribute information 
item.† 

Table 2-11. Mapping from XML Representation to Binding Fault Reference 
Component Properties 

Property Value 

{interface 
fault 
reference} 

The Interface Fault Reference component in the {interface fault 
references} of the Interface Operation being bound with {message 
label} equal to the effective message label, and with {interface 
fault} equal to an Interface Fault component with {name} equal to 
the actual value of the ref attribute information item. 

{parent} 
The Binding Operation component corresponding to the operation 
element information item in [parent]. 

 

2.12 Service 

2.12.1 The Service Component 

A Service component describes a set of endpoints (see 2.13 Endpoint) at which 
a particular deployed implementation of the service is provided. The endpoints 
thus are in effect alternate places at which the service is provided. 

Services are named constructs and can be referred to by QName (see 2.17 
QName resolution). 

The properties of the Service component are as follows: 

 {name} REQUIRED. An xs:QName. 

 {interface} REQUIRED. An Interface component. 

 {endpoints} REQUIRED. A non-empty set of Endpoint components. 

For each Service component in the {services} property of a Description 
component, the {name} property MUST be unique.† 

2.12.2 XML Representation of Service Component 

<description> 
  <service 
        name="xs:NCName"  
        interface="xs:QName" > 
    <documentation />* 



    <endpoint />+ 
  </service> 
</description> 

The XML representation for a Service component is an element information item 
with the following Infoset properties: 

 A [local name] of service 

 A [namespace name] of "http://www.w3.org/ns/wsdl" 

 Two or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED name attribute information item as described below in 
2.12.2.1 name attribute information item with service [owner 
element]. 

o A REQUIRED interface attribute information item as described 
below in 2.12.2.2 interface attribute information item with 
service [owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 One or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. One or more element information items from among the following, 
in any order: 

 One or more endpoint element information items (see 2.13.2 
XML Representation of Endpoint Component 

 Zero or more namespace-qualified element information 
items whose [namespace name] is NOT 
"http://www.w3.org/ns/wsdl". 

2.12.2.1 name attribute information item with service [owner element] 

The name attribute information item together with the targetNamespace attribute 
information item of the description element information item forms the QName 
of the service. 

The name attribute information item has the following Infoset properties: 

 A [local name] of name 

 A [namespace name] which has no value 

The type of the name attribute information item is xs:NCName. 

2.12.2.2 interface attribute information item with service [owner element] 

The interface attribute information item identifies the interface that the service is 
an instance of. 



The interface attribute information item has the following Infoset properties: 

 A [local name] of interface 

 A [namespace name] which has no value 

The type of the interface attribute information item is xs:QName.. 

2.12.3 Mapping Service's XML Representation to Component Properties 

The mapping from the XML Representation of the service element information 
item (see 2.12.2 XML Representation of Service Component) to the properties 
of the Service component is as described in Table 2-12. 

Table 2-12. Mapping from XML Representation to Service Component Properties

Property Value 

{name} 

The QName whose local name is the actual value of the name 
attribute information item, and whose namespace name is the actual 
value of the targetNamespace attribute information item of the 
[parent] description element information item. 

{interface} 
The Interface component resolved to by the actual value of the 
interface attribute information item (see 2.17 QName resolution). 

{endpoints} 
The Endpoint components corresponding to the endpoint element 
information items in [children]. 

 

2.13 Endpoint 

2.13.1 The Endpoint Component 

An Endpoint component defines the particulars of a specific endpoint at which a 
given service is available. 

Endpoint components are local to a given Service component (see A.2 
Fragment Identifiers). 

The Binding component specified by the {binding} property of an Endpoint 
component is said to be applied to the Interface component which is the value of 
the {interface} property of the parent Service component of the Endpoint. 
According to the constraints given below, if this Binding component has an 
{interface} property, its value must be the Interface component the Binding 
component is applied to. 

The {address} property is optional to allow for means other than IRIs to be used, 
e.g. a WS-Addressing Endpoint Reference [WSA 1.0 Core]. It is also possible 
that, in certain scenarios, an address will not be required, in which case this 
property may be absent. 

The properties of the Endpoint component are as follows: 



 {name} REQUIRED. An xs:NCName. 

 {binding} REQUIRED. A Binding component. 

 {address} OPTIONAL. An xs:anyURI. This xs:anyURI MUST be an 
absolute IRI as defined by [IETF RFC 3987].† If present, the value of this 
attribute represents the network address at which the service indicated by 
the parent Service component's {interface} property is offered via the 
binding referred to by the {binding} property. Note that the presence in this 
property of the characters "?" and "#" can conflict with those potentially 
added by the query string serialization mechanism, as defined in 
Serialization as "application/x-www-form-urlencoded" ([WSDL 2.0 
Adjuncts], section 6.8.2). 

 {parent} REQUIRED. The Service component that contains this 
component in its {endpoints} property. 

For each Endpoint component in the {endpoints} property of a Service 
component, the {name} property MUST be unique. Note that this constraint is 
enforced by the normative WSDL 2.0 XML schema. 

For each Endpoint component in the {endpoints} property of a Service 
component, the {binding} property MUST either be a Binding component with an 
unspecified {interface} property or a Binding component with an {interface} 
property equal to the {interface} property of the Service component.† 

2.13.2 XML Representation of Endpoint Component 

<description> 
  <service> 
    <endpoint 
          name="xs:NCName"  
          binding="xs:QName" 
          address="xs:anyURI"? > 
      <documentation />* 
    </endpoint>+ 
  </service> 
</description> 

The XML representation for a Endpoint component is an element information 
item with the following Infoset properties: 

 A [local name] of endpoint. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 Two or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED name attribute information item as described below in 
2.13.2.1 name attribute information item with endpoint [owner 
element]. 

o A REQUIRED binding attribute information item as described 
below in 2.13.2.2 binding attribute information item with 
endpoint [owner element]. 



o An OPTIONAL address attribute information item as described 
below in 2.13.2.3 address attribute information item with 
endpoint [owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], in order, as 
follows: 

1. Zero or more documentation element information items (see 5. 
Documentation). 

2. Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 
Such element information items are considered to be endpoint 
extension elements as described below (see 2.13.2.4 Endpoint 
extension elements). 

2.13.2.1 name attribute information item with endpoint [owner element] 

The name attribute information item together with the targetNamespace attribute 
information item of the description element information item forms the QName 
of the endpoint. 

The name attribute information item has the following Infoset properties: 

 A [local name] of name. 

 A [namespace name] which has no value. 

The type of the name attribute information item is xs:NCName. 

2.13.2.2 binding attribute information item with endpoint [owner element] 

The binding attribute information item refers, by QName, to a Binding 
component 

The binding attribute information item has the following Infoset properties: 

 A [local name] of binding 

 A [namespace name] which has no value 

The type of the binding attribute information item is xs:QName. 

2.13.2.3 address attribute information item with endpoint [owner element] 

The address attribute information item specifies the address of the endpoint. 

The address attribute information item has the following Infoset properties: 

 A [local name] of address 

 A [namespace name] which has no value 

The type of the address attribute information item is xs:anyURI. 



2.13.2.4 Endpoint extension elements 

Endpoint extension elements are used to provide information specific to a 
particular endpoint in a server. The semantics of such element information items 
are defined by the specification for those element information items. Such 
specifications are expected to annotate the Endpoint component with additional 
properties and specify the mapping from the XML representation to those 
properties. 

2.13.3 Mapping Endpoint's XML Representation to Component Properties 

The mapping from the XML Representation of the endpoint element information 
item (see 2.13.2 XML Representation of Endpoint Component) to the 
properties of the Endpoint component is as described in Table 2-13. 

Table 2-13. Mapping from XML Representation to Endpoint Component 
Properties 

Property Value 

{name} The actual value of the name attribute information item. 

{binding} 
The Binding component resolved to by the actual value of the binding 
attribute information item (see 2.17 QName resolution ). 

{address} 
The actual value of the address attribute information item if present; 
otherwise empty. 

{parent} 
The Service component corresponding to the service element 
information item in [parent]. 

 

2.14 XML Schema 1.0 Simple Types Used in the Component 
Model 

The XML Schema 1.0 simple types [XML Schema: Datatypes] used in this 
specification are: 

 xs:token 

 xs:NCName 

 xs:anyURI 

 xs:QName 

 xs:boolean 

2.15 Equivalence of Components 

Two component instances of the same type are considered equivalent if, for each 
property value of the first component, there is a corresponding property with an 
equivalent value on the second component, and vice versa. 



 For values of a simple type (see 2.14 XML Schema 1.0 Simple Types 
Used in the Component Model) this means that they contain the same 
values. For instance, two string values are equivalent if they contain the 
same sequence of Unicode characters, as described in [Character Model 
for the WWW], or two boolean values are equivalent if they contain the 
same canonical value (true or false). 

 Values which are references to other components are considered 
equivalent when they refer to equivalent components (as determined 
above). 

 List-based values are considered equivalent if they have the same length 
and their elements at corresponding positions are equivalent. 

 Finally, set-based values are considered equivalent if, for each value in 
the first, there is an equivalent value in the second, and vice versa. 

Extension properties which are not string values, sets of strings or references 
MUST describe their values' equivalence rules.† 

Because different top-level components (e.g., Interface, Binding, and Service) 
are required to have different names, it is possible to determine whether two top-
level components of a given type are equivalent by simply examining their 
{name} property. 

The Binding component specified by the {binding} property of an Endpoint is said 
to be applied to the Interface component which is the value of the {interface} 
property of the {parent} Service component for the Endpoint. Note that, if this 
Binding component has an {interface} property, then its value MUST be the 
Interface component that the Binding component is applied to. 

2.16 Symbol Spaces 

This specification defines three symbol spaces, one for each top-level 
component type (Interface, Binding and Service). 

Within a symbol space, all qualified names (that is, the {name} property) are 
unique. Between symbol spaces, the names need not be unique. Thus it is 
perfectly coherent to have, for example, a binding and an interface that have the 
same name. 

When XML Schema is being used as one of the type systems for a WSDL 2.0 
description, then six other symbol spaces also exist, one for each of: global 
element declarations, global attribute declarations, named model groups, named 
attribute groups, type definitions and key constraints, as defined by [XML 
Schema: Structures]. Other type systems may define additional symbol spaces. 

2.17 QName resolution 

In its serialized form WSDL 2.0 makes significant use of references between 
components. Such references are made using the Qualified Name, or QName, of 
the component being referred to. QNames are a tuple, consisting of two parts; a 



namespace name and a local name. The namespace name for a component is 
represented by the value of the targetNamespace attribute information item of the 
[parent] description element information item. The local name is represented by 
the {name} property of the component. 

QName references are resolved by looking in the appropriate property of the 
Description component. For example, to resolve a QName of an interface (as 
referred to by the interface attribute information item on a binding), the 
{interfaces} property of the Description component would be inspected. 

If the appropriate property of the Description component does not contain a 
component with the required QName, then the reference is a broken reference. A 
Description component MUST NOT have such broken references.† 

2.18 Comparing URIs and IRIs 

This specification uses absolute URIs and IRIs to identify several components 
and components characteristics (for example, operation message exchange 
patterns and styles). When such absolute URIs and IRIs are being compared to 
determine equivalence (see 2.15 Equivalence of Components), they MUST be 
compared character-by-character as indicated in [IETF RFC 3987].† 

3. Types 

<description> 
  <types> 
    <documentation />* 
    [ <xs:import namespace="xs:anyURI" schemaLocation="xs:anyURI"? /> 
| 
      <xs:schema targetNamespace="xs:anyURI"? /> | 
      other extension elements ]* 
  </types> 
</description> 

The content of messages and faults may be constrained using type system 
components. These constraints are based upon a specific data model, and 
expressed using a particular schema language. 

Although a variety of data models can be accommodated (through WSDL 2.0 
extensions), this specification only defines a means of expressing constraints 
based upon the XML Infoset [XML Information Set]. Furthermore, although a 
number of alternate schema languages can be used to constrain the XML Infoset 
(as long as they support the semantics of either inlining or importing schema), 
this specification only defines the use of XML Schema [XML Schema: 
Structures], [XML Schema: Datatypes]. 

Specifically, the {element declarations} and {type definitions} properties of the 
Description component are collections of imported and inlined schema 
components that describe Infoset element information items. 



When extensions are used to enable the use of a non-Infoset data model, or a 
non-Schema constraint language, the wsdl:required attribute information item 
MAY be used to require support for that extension. 

Note: 

Support for the W3C XML Schema [XML Schema: Structures], [XML Schema: 
Datatypes] is included in the conformance criteria for WSDL 2.0 documents (see 
3.1 Using W3C XML Schema Definition Language ). 

The schema components contained in the {element declarations} property of the 
Description component provide the type system used for Interface Message 
Reference and Interface Fault components. Interface Message Reference 
components indicate their structure and content by using the standard attribute 
information items element, or for alternate schema languages in which these 
concepts do not map well, by using alternative attribute information item 
extensions. Interface Fault components behave similarly. Such extensions 
should define how they reference type system components. Such type system 
components MAY appear in additional collection properties on the Description 
component. 

Extensions in the form of attribute information items can be used to refer to 
constraints (type definitions or analogous constructs) described using other 
schema languages or type systems. Such components MAY appear in additional 
collection properties on the Description component. 

The types element information item encloses data type definitions, based upon 
the XML Infoset, used to define messages and has the following Infoset 
properties: 

 A [local name] of types. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 Zero or more namespace qualified attribute information items whose 
[namespace name] is NOT http://www.w3.org/ns/wsdl 

 Zero or more element information items amongst its [children] as follows: 

o Zero or more documentation element information items (see 5. 
Documentation) in its [children] property. 

o Zero or more element information items from among the following, 
in any order: 

 xs:import element information items 

 xs:schema element information items 

 Other namespace qualified element information items whose 
namespace is NOT http://www.w3.org/ns/wsdl 

3.1 Using W3C XML Schema Definition Language 

XML Schema MAY be used as the schema language via import or inlining. 



A WSDL 2.0 document MUST NOT refer to XML Schema components in a given 
namespace UNLESS an xs:import or xs:schema element information item for 
that namespace is present OR the namespace is the XML Schema namespace, 
http://www.w3.org/2001/XMLSchema, which contains built-in types as defined in 
XML Schema Part 2: Datatypes Second Edition [XML Schema: Datatypes].† That 
is, using the xs:import or xs:schema element information item is a necessary 
condition for making XML Schema components, other than the built-in 
components, referenceable within a WSDL 2.0 document. The built-in XML 
Schema datatypes are built-in to the WSDL 2.0 component model and are 
contained in the {type definitions} property of the Description component. A 
WSDL 2.0 document that refers to any element declaration or type definition 
component of the XML Schema namespace, except the built-in primitive and 
derived types, MUST import http://www.w3.org/2001/XMLSchema. 

Table 3-1 summarizes the referenceability of schema components. 

Table 3-1. Referenceability of schema components 

 XML Representation 
Referenceability of XML Schema 

Components 

Including 
description 

description/include 

XML Schema components in the 
included Description component's 
{element declarations} and {type 
definitions} properties are 
referenceable. 

Importing 
description 

description/import 

None of the XML Schema 
Components in the imported 
Description component are 
referenceable. 

Importing 
XML 
Schema 

description/types/xs:import 
Element Declaration and Type 
Definition components in the imported 
namespace are referenceable. 

Inlined XML 
Schema 

description/types/xs:schema
Element Declaration and Type 
Definition components in the inlined 
XML Schema are referenceable. 

 

3.1.1 Importing XML Schema 

Importing an XML Schema uses the syntax and semantics of the xs:import 
mechanism defined by XML Schema [XML Schema: Structures], [XML Schema: 
Datatypes], with the differences defined in this section and the following one. The 
schema components defined in the imported namespace are referenceable by 
QName (see 2.17 QName resolution). Only components in the imported 
namespace are referenceable in the WSDL 2.0 document. For each component 
in the imported namespace, a corresponding Element Declaration component or 



Type Definition component MUST appear in the {element declarations} or {type 
definitions} property respectively of the Description component corresponding to 
the WSDL document that imports the schema, or that imports directly or indirectly 
a WSDL document that imports the schema.† Schema components not in an 
imported namespace MUST NOT appear in the {element declarations} or {type 
definitions} properties.† 

A child element information item of the types element information item is defined 
with the Infoset properties as follows: 

 A [local name] of "import". 

 A [namespace name] of "http://www.w3.org/2001/XMLSchema". 

 One or two attribute information items as follows: 

o A REQUIRED namespace attribute information item as described 
below. 

o An OPTIONAL schemaLocation attribute information item as 
described below. 

3.1.1.1 namespace attribute information item 

The namespace attribute information item defines the namespace of the element 
declarations and type definitions imported from the referenced schema. The 
referenced schema MUST contain a targetNamespace attribute information item 
on its xs:schema element information item.† The value of the targetNamespace 
attribute information item of the xs:schema element information item of an 
imported schema MUST equal the value of the namespace of the import element 
information item in the importing WSDL 2.0 document.† Note that a WSDL 2.0 
document must not import a schema that does not have a targetNamespace 
attribute information item on its xs:schema element information item. Such 
schemas must first be included (using xs:include) in a schema that contains a 
targetNamespace attribute information item on its xs:schema element information 
item, which can then be either imported or inlined in the WSDL 2.0 document. 

The namespace attribute information item has the following Infoset properties: 

 A [local name] of namespace 

 A [namespace name] which has no value. 

The type of the namespace attribute information item is xs:anyURI. 

3.1.1.2 schemaLocation attribute information item 

The schemaLocation attribute information item, if present, provides a hint to the 
XML Schema processor as to where the schema may be located. Caching and 
cataloging technologies may provide better information than this hint. The 
schemaLocation attribute information item has the following Infoset properties: 

 A [local name] of schemaLocation. 

 A [namespace name] which has no value. 



The type of the schemaLocation attribute information item is xs:anyURI. 

Every QName reference must resolve (see 2.17 QName resolution). Note that, 
when resolving QNames references for schema definitions, the namespace must 
be imported by the referring WSDL 2.0 document (see 3.1 Using W3C XML 
Schema Definition Language). 

3.1.2 Inlining XML Schema 

Inlining an XML schema uses the existing top-level xs:schema element 
information item defined by XML Schema [XML Schema: Structures]. 
Conceptually, inlining can be viewed as simply cutting and pasting an existing 
schema document to a location inside the types element information item. 

The schema components defined and declared in the inlined schema document 
are referenceable by QName (see 2.17 QName resolution). Only components 
defined and declared in the schema itself and components included by it via 
xs:include are referenceable. For each component defined and declared in the 
inlined schema document or included by xs:include, a corresponding Element 
Declaration component or Type Definition component MUST appear in the 
{element declarations} property or {type definitions} property respectively of the 
Description component corresponding to the WSDL document that contains the 
schema, or that imports directly or indirectly a WSDL document that contains the 
schema.†Schema components not defined or declared in the inlined schema 
document or included by xs:include MUST NOT appear in the {element 
declarations} or {type definitions} properties.† 

Note that components in the namespace that the inline schema imports via 
xs:import are not automatically referenceable from the WSDL 2.0 document that 
contains the inline schema. If the namespace referenced in a QName is 
contained in an inline schema, it MAY be imported without a schemaLocation 
attribute, so long as the inline schema has been resolved in the current 
component model. 

Note that components defined in an inlined XML schema are not automatically 
referenceable within the WSDL 2.0 document that imported (using wsdl:import) 
the WSDL 2.0 document that inlines the schema (see 4.2 Importing 
Descriptions for more details). For this reason, it is recommended that XML 
schema documents intended to be shared across several WSDL 2.0 documents 
be placed in separate XML schema documents and imported using xs:import, 
rather than inlined inside a WSDL 2.0 document. 

Inside an inlined XML schema, the xs:import and xs:include element 
information items MAY be used to refer to other XML schemas inlined in the 
same or other WSDL 2.0 document, provided that an appropriate value, such as 
a fragment identifier (see [XML Schema: Structures] 4.3.1) is specified for their 
schemaLocation attribute information items. For xs:import, the schemaLocation 
attribute is not required so long as the namespace has been resolved in the 
current component model. The semantics of such element information items are 
governed solely by the XML Schema specification [XML Schema: Structures]. 



A WSDL 2.0 document MAY inline two or more schemas from the same 
targetNamespace. For example, two or more inlined schemas can have the same 
targetNamespace provided that they do not define the same elements or types. A 
WSDL 2.0 document MUST NOT define the same element or type in more than 
one inlined schema.† Note that it is the responsibility of the underlying XML 
Schema processor to sort out a coherent set of schema components. 

The xs:schema element information item has the following Infoset properties: 

 A [local name] of schema. 

 A [namespace name] of "http://www.w3.org/2001/XMLSchema". 

 Additional OPTIONAL attribute information items as specified for the 
xs:schema element information item by the XML Schema specification. 

 Zero or more child element information items as specified for the 
xs:schema element information item by the XML Schema specification. 

3.1.3 References to Element Declarations and Type Definitions 

Whether inlined or imported, the global element declarations present in a schema 
are referenceable from an Interface Message Reference or Interface Fault 
component. Similarly, regardless of whether they are inlined or imported, the 
global type definitions present in a schema are referenceable from other 
components. 

A named, global xs:element declaration is referenceable from the element 
attribute information item of an input, output (see 2.5.2 XML Representation of 
Interface Message Reference Component) or fault element information item 
(see 2.3.2 XML Representation of Interface Fault Component). The QName 
of the element declaration is constructed from the targetNamespace of the 
schema and the value of the name attribute information item of the xs:element 
element information item. Note that the element attribute information item cannot 
refer to a global xs:simpleType or xs:complexType definition, since these are in a 
different symbol space than global element declarations. If the element attribute 
information item erroneously contains the QName of a type definition then this 
would result in a failure to resolve the element declaration. 

3.2 Using Other Schema Languages 

Since it is unreasonable to expect that a single schema language can be used to 
describe all possible Interface Message Reference and Interface Fault 
component contents and their constraints, WSDL 2.0 allows alternate schema 
languages to be specified via extension elements. An extension element 
information item MAY appear under the types element information item to 
identify the schema language employed, and to locate the schema instance 
defining the grammar for Interface Message Reference and Interface Fault 
components. Depending upon the schema language used, an element 



information item MAY be defined to allow inlining, if and only if the schema 
language can be expressed in XML. 

A specification of extension syntax for an alternative schema language MUST 
include the declaration of an element information item, intended to appear as a 
child of the wsdl:types element information item, which references, names, and 
locates the schema instance (an import element information item).† The 
extension specification SHOULD, if necessary, define additional properties of the 
Description component (and extension attributes) to hold the components of the 
referenced type system. It is expected that additional extension attributes for 
Interface Message Reference and Interface Fault components will also be 
defined, along with a mechanism for resolving the values of those attributes to a 
particular imported type system component. 

A specification of extension syntax for an alternative schema language MUST 
use a namespace that is different than the namespace of XML Schema.† The 
namespace of the alternative schema language is used for element information 
items that are children of the wsdl:types element information item and for any 
extension attribute information items that appear on other components. The 
namespace used for an alternate schema language MUST be an absolute IRI.† 

See [WSDL 2.0 Alternative Schema Languages Support] for examples of using 
other schema languages. These examples reuse the {element declarations} 
property of the Description component and the element attribute information 
items of the wsdl:input, wsdl:output and wsdl:fault element information items. 

Note: 

This specification does not define the behavior of a WSDL 2.0 document that 
uses multiple schema languages for describing type system components 
simultaneously. 

3.3 Describing Messages that Refer to Services and Endpoints 

Web services can exchange messages that refer to other Web services or Web 
service endpoints. If the interface or binding of these referenced services or 
endpoints are known at description time, then it may be useful to include this 
information in the WSDL 2.0 document that describes the Web service. WSDL 
2.0 provides two global attribute information items, wsdlx:interface and 
wsdlx:binding that may be used to annotate XML Schema components or 
components from other type description languages. 

WSDL 2.0 defines the use of these global attribute information items to annotate 
XML Schema components that use the xs:anyURI simple type in an element 
information item or attribute information item for endpoint addresses that 
correspond to the {address} property of the Endpoint component. However, the 
use of these global attribute information items is not limited to simple types based 
on xs:anyURI. They may be used for any other types that are used to refer to 
Web services or Web service endpoints, e.g. a WS-Addressing Endpoint 



Reference [WSA 1.0 Core]. See the primer [WSDL 2.0 Primer] for more 
information and examples. 

3.3.1 wsdlx:interface attribute information item 

WSDL 2.0 provides a global attribute information item with the following Infoset 
properties: 

 A [local name] of interface. 

 A [namespace name] of " http://www.w3.org/ns/wsdl-extensions ". 

The type of the wsdlx:interface attribute information item is an xs:QName that 
specifies the {name} property of an Interface component.† 

3.3.2 wsdlx:binding attribute information item 

WSDL 2.0 provides a global attribute information item with the following Infoset 
properties: 

 A [local name] of binding. 

 A [namespace name] of " http://www.w3.org/ns/wsdl-extensions ". 

The type of the wsdlx:binding attribute information item is an xs:QName that 
specifies the {name} property of a Binding component.† 

3.3.3 wsdlx:interface and wsdlx:binding Consistency 

The wsdlx:interface and wsdlx:binding attributes may be used either 
independently or together. If wsdlx:interface and wsdlx:binding are used 
together then they MUST satisfy the same consistency rules that apply to the 
{interface} property of a Service component and the {binding} property of a 
nested Endpoint component, that is either the binding refers the interface of the 
service or the binding refers to no interface.† 

3.3.4 Use of wsdlx:interface and wsdlx:binding with xs:anyURI 

wsdlx:interface and wsdlx:binding are used to describe element information 
items and attribute information items whose type is xs:anyURI or a restriction of 
it, as well messages that contain the {address} property of an Endpoint. This is 
accomplished by including the wsdlx:interface and/or wsdlx:binding attribute 
information item in the xs:element, xs:simpleType, or xs:attribute element 
information item of the corresponding XML Schema component. 

4. Modularizing WSDL 2.0 descriptions 

WSDL 2.0 provides two mechanisms for modularizing WSDL 2.0 descriptions. 
These mechanisms help to make Web service descriptions clearer by allowing 
separation of the various components of a description. Such separation can be 



performed according to the level of abstraction of a given set of components, or 
according to the namespace affiliation required of a given set of components or 
even according to some other grouping such as application applicability. 

Both mechanisms work at the level of WSDL 2.0 components and NOT at the 
level of XML Information Sets or XML 1.0 serializations. 

4.1 Including Descriptions 

<description> 
  <include 
        location="xs:anyURI" > 
    <documentation />* 
  </include> 
</description> 

The WSDL 2.0 include element information item allows separating the different 
components of a service definition, belonging to the same target namespace, into 
independent WSDL 2.0 documents. 

The WSDL 2.0 include element information item is modeled after the XML 
Schema include element information item (see [XML Schema: Structures], 
section 4.2.3 "References to schema components in the same namespace"). 
Specifically, it can be used to include components from WSDL 2.0 descriptions 
that share a target namespace with the including description. Components in the 
transitive closure of the included WSDL 2.0 documents become part of the 
Description component of the including WSDL 2.0 document. The included 
components can be referenced by QName. Note that because all WSDL 2.0 
descriptions have a target namespace, no-namespace includes (sometimes 
known as “chameleon includes”) never occur in WSDL 2.0. 

A mutual include is the direct inclusion by one WSDL 2.0 document of another 
WSDL 2.0 document which includes the first document. A circular include 
achieves the same effect with greater indirection (for example, A includes B, B 
includes C, and C includes A). Multiple inclusion of a single WSDL 2.0 document 
resolves to a single set of components, as if the document was included only 
once. Mutual, multiple, and circular includes are explicitly permitted, and do not 
represent multiple redefinitions of the same components. 

The include element information item has: 

 A [local name] of include. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED location attribute information item as described 
below in 4.1.1 location attribute information item with include 
[owner element]. 

o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information item amongst its [children], as follows: 



o Zero or more documentation element information items (see 5. 
Documentation). 

o Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

4.1.1 location attribute information item with include [owner element] 

The location attribute information item has the following Infoset properties: 

 A [local name] of location. 

 A [namespace name] which has no value. 

A location attribute information item is of type xs:anyURI. Its actual value is the 
location of some information about the namespace identified by the 
targetNamespace attribute information item of the containing description 
element information item. 

The IRI indicated by location MUST resolve to a WSDL 2.0 document.† (see 7. 
Locating WSDL 2.0 Documents) 

The actual value of the targetNamespace attribute information item of the included 
WSDL 2.0 document MUST match the actual value of the targetNamespace 
attribute information item of the description element information item which is 
the [parent] of the include element information item.† 

4.2 Importing Descriptions 

<description> 
  <import 
        namespace="xs:anyURI" location="xs:anyURI"? > 
    <documentation />* 
  </import> 
</description> 

Every top-level WSDL 2.0 component is associated with a namespace. Every 
WSDL 2.0 document carries a targetNamespace attribute information item on its 
wsdl:description element information item. This attribute associates the 
document with a target namespace, which consequently also becomes the 
namespace of each top-level WSDL 2.0 component defined in that document. 
Any namespace other than the document's target namespace is referred to as a 
foreign namespace. Any component associated with a foreign namespace is 
referred to as a foreign component. This section describes the syntax and 
mechanisms by which references may be made from within a WSDL 2.0 
document to foreign components. In addition to this syntax, there is an optional 
facility for suggesting the IRI of a WSDL 2.0 document that contains definitions of 
foreign components. 

The WSDL 2.0 import element information item is modeled after the XML 
Schema import element information item (see [XML Schema: Structures], 
section 4.2.3 "References to schema components across namespaces"). 
Specifically, it can be used to import WSDL 2.0 components from a foreign 



namespace. The WSDL 2.0 import element information item identifies a foreign 
namespace. The presence of a WSDL 2.0 import element information item 
signals that the WSDL 2.0 document may contain references to foreign 
components. The wsdl:import element information item is therefore like a 
forward declaration for foreign namespaces. 

As with XML schema, any WSDL 2.0 document that references a foreign 
component MUST have a wsdl:import element information item for the 
associated foreign namespace (but which does not necessarily provide a 
location attribute information item that identifies the WSDL 2.0 document in 
which the referenced component is defined).† In other respects, the visibility of 
components is pervasive: if two WSDL 2.0 documents import the same 
namespace, then they will have access to the same components from the 
imported namespace (i.e. regardless of which, if any, location attribute 
information item values are provided on the respective wsdl:import element 
information items.) 

Using the wsdl:import element information item is a necessary condition for 
making foreign components available to a WSDL 2.0 document. That is, a WSDL 
2.0 document can only refer to foreign components, if it contains an wsdl:import 
element information item for the associated foreign namespace. 

If a WSDL 2.0 document contains more than one wsdl:import element 
information item for a given value of the namespace attribute information item, 
then they MUST provide different values for the location attribute information 
item.† Repeating the wsdl:import element information item for the same 
namespace value MAY be used as a way to provide alternate locations to find 
information about a given namespace. 

Furthermore, this specification DOES NOT require the location attribute 
information item to be dereferencable. When it is not dereferencable, no 
information about the imported namespace is provided by that wsdl:import 
element information item. It is possible that such lack of information can cause 
QNames in other parts of a WSDL 2.0 Description component to become broken 
references (see 2.17 QName resolution). Such broken references are not 
ascribed to the wsdl:import element information item, but rather are failures of 
the QName resolution requirements which must be detected as described in 2.17 
QName resolution. 

The import element information item has the following Infoset properties: 

 A [local name] of import. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 One or more attribute information items amongst its [attributes] as follows: 

o A REQUIRED namespace attribute information item as described 
below in 4.2.1 namespace attribute information item. 

o An OPTIONAL location attribute information item as described 
below in 4.2.2 location attribute information item with import 
[owner element]. 



o Zero or more namespace qualified attribute information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

 Zero or more element information items amongst its [children], as follows: 

o Zero or more documentation element information items (see 5. 
Documentation). 

o Zero or more namespace-qualified element information items 
whose [namespace name] is NOT "http://www.w3.org/ns/wsdl". 

4.2.1 namespace attribute information item 

The namespace attribute information item has the following Infoset properties: 

 A [local name] of namespace. 

 A [namespace name] which has no value. 

The namespace attribute information item is of type xs:anyURI. Its actual value 
indicates that the containing WSDL 2.0 document MAY contain qualified 
references to WSDL 2.0 components in that namespace (via one or more 
prefixes declared with namespace declarations in the normal way). This value 
MUST NOT match the actual value of targetNamespace attribute information item 
in the enclosing WSDL 2.0 document.†  If the location attribute in the import 
element information item is dereferencable, then it MUST reference a WSDL 2.0 
document.† If the location attribute information item of the import element 
information item is dereferencable, then the actual value of the namespace 
attribute information item MUST be identical to the actual value of the 
targetNamespace attribute information item of the referenced WSDL 2.0 
document (see 7. Locating WSDL 2.0 Documents).† 

4.2.2 location attribute information item with import [owner element] 

The location attribute information item has the following Infoset properties: 

 A [local name] of location. 

 A [namespace name] which has no value. 

The location attribute information item is of type xs:anyURI. Its actual value, if 
present, gives a hint as to where a serialization of a WSDL 2.0 document with 
definitions for the imported namespace can be found. 

The location attribute information item is optional. This allows WSDL 2.0 
components to be constructed from information other than an XML 1.0 
serialization of a WSDL 2.0 document. It also allows the development of WSDL 
2.0 processors that have a prior (i.e., built-in) knowledge of certain namespaces. 

4.3 Extensions 

The semantics of an extension MUST NOT depend on how components are 
brought into a component model instance via <import> or <include>. † That is, 



the components that are defined by a WSDL 2.0 document are determined by 
the contents of the document, EXCEPT for the resolution of references to other 
components that may be defined in other documents, AND any further 
processing, as mandated by the extension specification, that depends on such 
references having been resolved to the actual components. 

This restriction on the behavior of extensions permits WSDL 2.0 documents to be 
flexibly modularized and efficiently processed. In contrast, note that the so-called 
chameleon include mechanism of XML Schema, which allows a no-namespace 
schema to be included in a schema document that has a namespace, violates 
this restriction since the namespace of the included XML Schema components is 
determined by the including XML Schema document (see 4.2.1 Assembling a 
schema for a single target namespace from multiple schema definition 
documents in [XML Schema: Structures]). 

5. Documentation 

<documentation> 
  [extension elements]* 
</documentation> 

WSDL 2.0 uses the optional documentation element information item as a 
container for human readable or machine processable documentation. The 
content of the element information item is arbitrary character information items 
and element information items ("mixed" content in XML Schema [XML Schema: 
Structures]). The documentation element information item is allowed inside any 
WSDL 2.0 element information item. 

Like other element information items in the "http://www.w3.org/ns/wsdl" 
namespace, the documentation element information item allows qualified 
attribute information items whose [namespace name] is not 
"http://www.w3.org/ns/wsdl". The xml:lang attribute (see [XML 1.0]) MAY be 
used to indicate the language used in the contents of the documentation element 
information item. 

The documentation element information item has: 

 A [local name] of documentation. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

 Zero or more attribute information items in its [attributes] property. 

 Zero or more child element information items in its [children] property. 

 Zero or more character information items in its [children] property. 

6. Language Extensibility 

The schema for WSDL 2.0 has a two-part extensibility model based on 
namespace-qualified elements and attributes. An extension is identified by the 
QName consisting of its namespace IRI and its element or attribute name. The 



meaning of an extension SHOULD be defined (directly or indirectly) in a 
document that is available at its namespace IRI.† 

6.1 Element-based Extensibility 

WSDL 2.0 allows extensions to be defined in terms of element information items. 
Where indicated herein, WSDL 2.0 allows namespace-qualified element 
information items whose [namespace name] is NOT "http://www.w3.org/ns/wsdl" 
to appear among the [children] of specific element information items whose 
[namespace name] is "http://www.w3.org/ns/wsdl". Such element information 
items MAY be used to annotate WSDL 2.0 constructs such as interface, 
operation, etc. 

It is expected that extensions will add to the existing properties of components in 
the component model. The specification for an extension element information 
item should include definitions of any such properties and the mapping from the 
XML representation of the extension to the properties in the component model. 

The WSDL 2.0 schema defines a base type for use by extension elements. 
Example 6-1 shows the type definition. The use of this type as a base type is 
optional. 

Example 6-1. Base type for extension elements 
<xs:complexType name='ExtensionElement' abstract='true' > 
  <xs:attribute ref='wsdl:required' use='optional' /> 
</xs:complexType> 
           
           

Extension elements are commonly used to specify some technology-specific 
binding. They allow innovation in the area of network and message protocols 
without having to revise the base WSDL 2.0 specification. WSDL 2.0 
recommends that specifications defining such protocols also define any 
necessary WSDL 2.0 extensions used to describe those protocols or formats. 

6.1.1 Mandatory extensions 

Extension elements can be marked as mandatory by annotating them with a 
wsdl:required attribute information item (see 6.1.2 required attribute 
information item) with a value of "true". A mandatory extension is an extension 
that MAY change the meaning of the element to which it is attached, such that 
the meaning of that element is no longer governed by this specification. Instead, 
the meaning of an element containing a mandatory extension is governed by the 
meaning of that extension. Thus, the definition of the element's meaning is 
delegated to the specification that defines the extension. 

An extension that is NOT marked as mandatory MUST NOT invalidate the 
meaning of any part of a WSDL 2.0 document.† Thus, a NON-mandatory 
extension merely provides additional description of capabilities of the service. 



This specification does not provide a mechanism to mark extension attributes as 
being required. Therefore, all extension attributes are NON-mandatory. 

Note: 

A mandatory extension is considered mandatory because it has the ability to 
change the meaning of the element to which it is attached. Thus, the meaning of 
the element may not be fully understood without understanding the attached 
extension. A NON-mandatory extension, on the other hand, can be safely 
ignored without danger of misunderstanding the rest of the WSDL 2.0 document. 

If a WSDL 2.0 document declares an extension as optional (i.e., NON-
mandatory), then the Web service MUST NOT assume that the client supports 
that extension unless the Web service knows (through some other means) that 
the client has in fact elected to engage and support that extension.† 

Note: 

A key purpose of an extension is to formally indicate (i.e., in a machine-
processable way) that a particular feature or convention is supported or required. 
This enables toolkits that understand the extension to engage it automatically, 
while toolkits that do not yet understand a required extension can possibly bring it 
to the attention of an operator for manual support. 

If a Web service requires a client to follow a particular convention that is likely to 
be automatable in WSDL 2.0 toolkits, then that convention SHOULD be indicated 
in the WSDL 2.0 document as a wsdl:required extension, rather than just being 
conveyed out of band, even if that convention is not currently implemented in 
WSDL 2.0 toolkits. 

This practice will help prevent interoperability problems that could arise if one 
toolkit requires a particular convention that is not indicated in the WSDL 2.0 
document, while another toolkit does not realize that that convention is required. 
It will also help facilitate future automatic processing by WSDL 2.0 toolkits. 

On the other hand, a client MAY engage an extension that is declared as optional 
in the WSDL 2.0 document. Therefore, the Web service MUST support every 
extension that is declared as optional in the WSDL 2.0 document, in addition to 
supporting every extension that is declared as mandatory.† 

Note: 

If finer-grain, direction-sensitive control of extensions is desired, then such 
extensions may be designed in a direction-sensitive manner (from the client or 
from the Web service) so that either direction may be separately marked required 
or optional. For example, instead of defining a single extension that governs both 
directions, two extensions could be defined -one for each direction. 

Validity of a WSDL 2.0 document can only be assessed within the context of a 
set of supported extensions. A WSDL 2.0 document that contains a required but 
unsupported extension is invalid with respect to that set of supported extensions. 

6.1.2 required attribute information item 



WSDL 2.0 provides a global attribute information item with the following Infoset 
properties: 

 A [local name] of required. 

 A [namespace name] of "http://www.w3.org/ns/wsdl". 

The type of the required attribute information item is xs:boolean. Its default value 
is "false" (hence extensions are NOT required by default). 

6.2 Attribute-based Extensibility 

WSDL 2.0 allows qualified attribute information items whose [namespace name] 
is NOT "http://www.w3.org/ns/wsdl" to appear on any element information item 
whose namespace name IS "http://www.w3.org/ns/wsdl". Such attribute 
information items can be used to annotate WSDL 2.0 constructs such as 
interfaces, bindings, etc. 

WSDL 2.0 does not provide a mechanism for marking extension attribute 
information items as mandatory. 

6.3 Extensibility Semantics 

As indicated above, it is expected that the presence of extension elements and 
attributes will result in additional properties appearing in the component model. 

The presence of an optional extension element or attribute MAY therefore 
augment the semantics of a WSDL 2.0 document in ways that do not invalidate 
the existing semantics. However, the presence of a mandatory extension 
element MAY alter the semantics of a WSDL 2.0 document in ways that 
invalidate the existing semantics. 

Extension elements SHOULD NOT alter the existing semantics in ways that are 
likely to confuse users. 

Note: 

Note that, however, once the client and service both know that an optional 
extension has been engaged (because the service has received a message 
explicitly engaging that extension, for example), then the semantics of that 
extension supersede what the WSDL 2.0 document indicated. For example, the 
WSDL 2.0 document may have specified an XML message schema to be used, 
but also indicated an optional security extension that encrypts the messages. If 
the security extension is engaged, then the encrypted messages will no longer 
conform to the specified message schema (until they are decrypted). 

Note: 

Authors of extension elements should make sure to include in the specification of 
these elements a clear statement of the requirements for document conformance 
(see 1.3 Document Conformance). 

Note: 



Authors of extension elements that may manifest as properties of the Description 
component should be aware of the impact of imports on their extensions, or of 
their extensions on imports. It is not possible, within the component model, to 
define extensions that have an effective scope equal to the scope of a containing 
file. Extensions that modify the behavior of the components contained in a 
description may therefore unexpectedly modify the behavior of components in 
imported descriptions as well, unless proper care is taken. 

7. Locating WSDL 2.0 Documents 

A WSDL 2.0 document is a description element information item that is either 
the document root of an XML document or an element within an XML document. 
The location of a WSDL 2.0 MAY therefore be specified by an IRI for an XML 
resource whose document root is a description element information item or an 
IRI-reference for a description element information item within an XML 
resource. 

As an XML vocabulary, WSDL 2.0 documents, WSDL2.0 document fragments or 
QName references to WSDL 2.0 components MAY appear within other XML 
documents. This specification defines a global attribute, wsdlLocation, to help 
with QName resolution (see 2.17 QName resolution). This attribute allows an 
element that contains such references to be annotated to indicate where the 
WSDL 2.0 documents for one or more namespaces can be found. In particular, 
this attribute is expected to be useful when using service references in message 
exchanges. 

The wsdlLocation global attribute is defined in the namespace 
"http://www.w3.org/ns/wsdl-instance" (hereafter referred to as 
"wsdli:wsdlLocation", for brevity). This attribute MAY appear on any XML element 
which allows attributes from other namespaces to occur. It MUST NOT appear 
on a wsdl:description element or any of its children/descendants.† 

A normative XML Schema [XML Schema: Structures], [XML Schema: Datatypes] 
document for the "http://www.w3.org/ns/wsdl-instance" namespace can be found 
at http://www.w3.org/ns/wsdl-instance. 

7.1 wsdli:wsdlLocation attribute information item 

WSDL 2.0 provides a global attribute information item with the following Infoset 
properties: 

 A [local name] of wsdlLocation. 

 A [namespace name] of "http://www.w3.org/ns/wsdl-instance". 

The type of the wsdlLocation attribute information item is a list xs:anyURI. Its 
actual value MUST be a list of pairs of IRIs; where the first IRI of a pair, which 
MUST be an absolute IRI as defined in [IETF RFC 3987], indicates a WSDL 2.0 
(or 1.1) namespace name, and, the second a hint as to the location of a WSDL 
2.0 document defining WSDL 2.0 components (or WSDL 1.1 elements [WSDL 



1.1]) for that namespace name.† The second IRI of a pair MAY be absolute or 
relative. For each pair of IRIs, if the location IRI of the pair is dereferencable, 
then it MUST reference a WSDL 2.0 (or 1.1) document whose target namespace 
is the namespace IRI of the pair.† 

8. Conformance 

This section describes how this specification conforms to other specifications. 
This is limited, at present, to the XML Information Set specification. Refer to 1.3 
Document Conformance for a description of the criteria that Web service 
description documents must satisfy in order to conform to this specification. 

8.1 XML Information Set Conformance 

This specification conforms to the [XML Information Set]. The following 
information items MUST be present in the input Infosets to enable correct 
processing of WSDL 2.0 documents: 

 Document Information Items with [children] and [base URI] properties. 

 Element Information Items with [namespace name], [local name], 
[children], [attributes], [base URI] and [parent] properties. 

 Attribute Information Items with [namespace name], [local name] and 
[normalized value] properties. 

 Character Information Items with [character code], [element content 
whitespace] and [parent] properties. 

9. XML Syntax Summary (Non-Normative) 

<description targetNamespace="xs:anyURI" > 
  <documentation />* 
 
  <import namespace="xs:anyURI" location="xs:anyURI"? > 
    <documentation />* 
  </import>* 
 
  <include location="xs:anyURI" > 
    <documentation />* 
  </include>* 
 
  <types> 
    <documentation />* 
     
      [ <xs:import namespace="xs:anyURI" schemaLocation="xs:anyURI"? 
/> | 
        <xs:schema targetNamespace="xs:anyURI"? /> | 
        other extension elements ]* 
  </types> 
 



  <interface name="xs:NCName" extends="list of xs:QName"? 
styleDefault="list of xs:anyURI"? > 
    <documentation />* 
 
    <fault name="xs:NCName" element="union of xs:QName, xs:token"? > 
      <documentation />* 
    </fault>* 
 
    <operation name="xs:NCName" pattern="xs:anyURI"? style="list of 
xs:anyURI"? > 
      <documentation />* 
 
      <input messageLabel="xs:NCName"? element="union of xs:QName, 
xs:token"? > 
        <documentation />* 
      </input>* 
 
      <output messageLabel="xs:NCName"? element="union of xs:QName, 
xs:token"? > 
        <documentation />* 
 
      </output>* 
 
      <infault ref="xs:QName" messageLabel="xs:NCName"? > 
        <documentation />* 
      </infault>* 
 
      <outfault ref="xs:QName" messageLabel="xs:NCName"? > 
        <documentation />* 
      </outfault>* 
 
    </operation>* 
 
  </interface>* 
 
  <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI" > 
    <documentation />* 
 
    <fault ref="xs:QName" > 
      <documentation />* 
    </fault>* 
 
    <operation ref="xs:QName" > 
      <documentation />* 
 
      <input messageLabel="xs:NCName"? > 
        <documentation />* 
      </input>* 
 
      <output messageLabel="xs:NCName"? > 
        <documentation />* 
      </output>* 
 
      <infault ref="xs:QName" messageLabel="xs:NCName"? > 
        <documentation />* 
      </infault>* 
 



      <outfault ref="xs:QName" messageLabel="xs:NCName"? > 
        <documentation />* 
      </outfault>* 
 
    </operation>* 
 
  </binding>* 
 
  <service name="xs:NCName" interface="xs:QName" > 
    <documentation />* 
 
    <endpoint name="xs:NCName" binding="xs:QName" 
address="xs:anyURI"? > 
      <documentation />* 
    </endpoint>+ 
 
  </service>* 
</description> 

10. References 

10.1 Normative References 

[Character Model for the WWW]  
Character Model for the World Wide Web 1.0: Fundamentals, M. Dürst, F. 
Yergeau, R. Ishida, M. Wolf, T. Texin, Editors. W3C Recommendation, 15 
February 2005. Latest version available at 
http://www.w3.org/TR/charmod/.  

[IETF RFC 2119]  
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, 
Author. Internet Engineering Task Force, March 1997. Available at 
http://www.ietf.org/rfc/rfc2119.txt.  

[IETF RFC 3023]  
XML Media Types, M. Murata, S. St. Laurent, D. Kohn, Authors. Internet 
Engineering Task Force, January 2001. Available at 
http://www.ietf.org/rfc/rfc3023.txt.  

[IETF RFC 3986]  
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. 
Fielding, L. Masinter, Authors. Internet Engineering Task Force, January 
2005. Available at http://www.ietf.org/rfc/rfc3986.txt.  

[IETF RFC 3987]  
Internationalized Resource Identifiers (IRIs), M. Duerst, M. Suignard, 
Authors. Internet Engineering Task Force, January 2005. Available at 
http://www.ietf.org/rfc/rfc3987.txt.  

[XLink 1.0]  
XML Linking Language (XLink) Version 1.0, Steve DeRose, Eve Maler, 
David Orchard, Editors. World Wide Web Consortium, 27 June 2001. This 
version of the XLink Recommendation is http://www.w3.org/TR/2001/REC-



xlink-20010627/ The latest version of XLink is available at 
http://www.w3.org/TR/xlink/.  

[XML 1.0]  
Extensible Markup Language (XML) 1.0 (Fourth Edition), T. Bray, J. Paoli, 
C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, Editors. World Wide 
Web Consortium, 10 February 1998, revised 16 August 2006. This version 
of the XML 1.0 Recommendation is http://www.w3.org/TR/2006/REC-xml-
20060816/. The latest version of "Extensible Markup Language (XML) 1.0" 
is available at http://www.w3.org/TR/REC-xml.  

[XML Namespaces]  
Namespaces in XML (Second Edition), T. Bray, D. Hollander, A. Layman, 
and R. Tobin, Editors. World Wide Web Consortium, 16 August 2006. This 
version of the XML Information Set Recommendation is 
http://www.w3.org/TR/2006/REC-xml-names-20060816. The latest version 
of Namespaces in XML is available at http://www.w3.org/TR/REC-xml-
names.  

[XML Information Set]  
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors. 
World Wide Web Consortium, 24 October 2001, revised 4 February 2004. 
This version of the XML Information Set Recommendation is 
http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version 
of XML Information Set is available at http://www.w3.org/TR/xml-infoset.  

[XML Schema: Structures]  
XML Schema Part 1: Structures Second Edition, H. Thompson, D. Beech, 
M. Maloney, and N. Mendelsohn, Editors. World Wide Web Consortium, 2 
May 2001, revised 28 October 2004. This version of the XML Schema 
Part 1 Recommendation is http://www.w3.org/TR/2004/REC-xmlschema-
1-20041028. The latest version of XML Schema Part 1 is available at 
http://www.w3.org/TR/xmlschema-1.  

[XML Schema: Datatypes]  
XML Schema Part 2: Datatypes Second Edition, P. Byron and A. 
Malhotra, Editors. World Wide Web Consortium, 2 May 2001, revised 28 
October 2004. This version of the XML Schema Part 2 Recommendation 
is http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest 
version of XML Schema Part 2 is available at 
http://www.w3.org/TR/xmlschema-2.  

[WSDL 2.0 Adjuncts]  
Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts 
, R. Chinnici, H. Haas, A. Lewis, J-J. Moreau, D. Orchard, S. 
Weerawarana, Editors. World Wide Web Consortium, 26 June 2007. This 
version of the "Web Services Description Language (WSDL) Version 2.0 
Part 2: Adjuncts" Recommendation is available at 
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626. The latest 
version of "Web Services Description Language (WSDL) Version 2.0 Part 
2: Adjuncts" is available at http://www.w3.org/TR/wsdl20-adjuncts.  



10.2 Informative References 

[IETF RFC 2045]  
Multipurpose Internet Mail Extensions (MIME) Part One: Format of 
Internet Message Bodies, N. Freed, N. Borenstein, Authors. Internet 
Engineering Task Force, November 1996. Available at 
http://www.ietf.org/rfc/rfc2045.txt.  

[IETF RFC 2616]  
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, 
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Authors. Internet 
Engineering Task Force, June 1999. Available at 
http://www.ietf.org/rfc/rfc2616.txt.  

[WSA 1.0 Core]  
Web Services Addressing 1.0 - Core , M. Gudgin, M. Hadley, T. Rogers, 
Editors. World Wide Web Consortium, 9 May 2006. This version of Web 
Services Addressing 1.0 - Core Recommendation is 
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/ The latest 
version of the "Web Services Addressing 1.0 - Core" document is 
available from http://www.w3.org/TR/ws-addr-core.  

[WSDL 1.1]  
Web Services Description Language (WSDL) 1.1, E. Christensen, F. 
Curbera, G. Meredith, and S. Weerawarana, Authors. World Wide Web 
Consortium, 15 March 2002. This version of the Web Services Description 
Language 1.1 Note is http://www.w3.org/TR/2001/NOTE-wsdl-20010315. 
The latest version of Web Services Description Language 1.1 is available 
at http://www.w3.org/TR/wsdl.  

[WSDL 2.0 Primer]  
Web Services Description Language (WSDL) Version 2.0 Part 0: Primer , 
D.Booth, C.K. Liu , Editors. World Wide Web Consortium, 26 June 2007. 
This version of the "Web Services Description Language (WSDL) Version 
2.0 Part 0: Primer" Recommendation is available at 
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626. The latest 
version of "Web Services Description Language (WSDL) Version 2.0 Part 
0: Primer" is available at http://www.w3.org/TR/wsdl20-primer.  

[WSDL 2.0 Requirements]  
Web Services Description Requirements, J. Schlimmer, Editor. World 
Wide Web Consortium, 28 October 2002. This version of the Web 
Services Description Requirements document is 
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028. The latest 
version of Web Services Description Requirements is available at 
http://www.w3.org/TR/ws-desc-reqs.  

[WSDL 2.0 Alternative Schema Languages Support]  
Discussion of Alternative Schema Languages and Type System Support 
in WSDL 2.0, A. Lewis, B. Parsia, Editors. World Wide Web Consortium, 
17 August 2005. This version of the "Discussion of Alternative Schema 
Languages and Type System Support in WSDL 2.0" Working Group Note 



is http://www.w3.org/TR/2005/NOTE-wsdl20-altschemalangs-20050817/. 
The latest version of "Discussion of Alternative Schema Languages and 
Type System Support in WSDL 2.0" is available at 
http://www.w3.org/TR/wsdl20-altschemalangs.  

[SOAP 1.2 Part 1: Messaging Framework (Second Edition)]  
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), M. 
Gudgin, et al., Editors. World Wide Web Consortium, 24 June 2003, 
revised 27 April 2007. This version of the "SOAP Version 1.2 Part 1: 
Messaging Framework (Second Edition)" Recommendation is 
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. The latest 
version of "SOAP Version 1.2 Part 1: Messaging Framework" is available 
at http://www.w3.org/TR/soap12-part1/.  

[XPointer]  
XPointer Framework, P. Grosso, E. Maler, J. Marsh, N. Walsh, Editors. 
World Wide Web Consortium, 25 March 2003. This version of the XPointer 
Framework Recommendation is http://www.w3.org/TR/2003/REC-xptr-
framework-20030325/ The latest version of XPointer Framework is 
available at http://www.w3.org/TR/xptr-framework/.  

[Z Notation Reference Manual]  
The Z Notation: A Reference Manual, Second Edition, J. M. Spivey, 
Prentice Hall, 1992.  

[Fuzz 2000]  
Release Notes For Fuzz 2000, J. M. Spivey.  

A. The application/wsdl+xml Media Type 

This appendix defines the "application/wsdl+xml" media type which can be used 
to describe WSDL 2.0 documents serialized as XML. 

A.1 Registration 

MIME media type name:  

application 

MIME subtype name:  

wsdl+xml 

Required parameters:  

none 

Optional parameters:  
charset  

This parameter has identical semantics to the charset parameter of the 
"application/xml" media type as specified in [IETF RFC 3023]. 

Encoding considerations:  



Identical to those of "application/xml" as described in [IETF RFC 3023], 
section 3.2, as applied to the WSDL document Infoset. 

Security considerations:  

See section A.3 Security considerations. 

Interoperability considerations:  

There are no known interoperability issues. 

Published specifications:  

This document and [WSDL 2.0 Adjuncts]. 

Applications which use this media type:  

No known applications currently use this media type. 

Additional information:  
File extension:  

wsdl 

Fragment identifiers:  

Either a syntax identical to that of "application/xml" as described in [IETF 
RFC 3023], section 5 or the syntax defined in A.2 Fragment Identifiers. 

Base URI:  

As specified in [IETF RFC 3023], section 6. 

Macintosh File Type code:  

WSDL 

Person and email address to contact for further information:  

World Wide Web Consortium <web-human@w3.org> 

Intended usage:  

COMMON 

Author/Change controller:  

The WSDL 2.0 specification set is a work product of the World Wide Web 
Consortium's Web Service Description Working Group. The W3C has 
change control over these specifications. 

A.2 Fragment Identifiers 

This section defines a fragment identifier syntax for identifying components of a 
WSDL 2.0 document. This fragment identifier syntax is compliant with the 
[XPointer]. 

A WSDL 2.0 fragment identifier is an XPointer [XPointer], augmented with WSDL 
2.0 pointer parts as defined below. Note that many of these parts require the pre-
appearance of one or more xmlns pointer parts (see 3.4 Namespace Binding 
Context in [XPointer]). The pointer parts have a scheme name that corresponds 
to one of the standard WSDL 2.0 component types, and scheme data that is a 
path composed of names that identify the components. The scheme names all 



begin with the prefix "wsdl." to avoid name conflicts with other schemes. The 
names in the path are of type either QName, NCName, IRI, URI, or Pointer Part 
depending on the context. The scheme data for WSDL 2.0 extension 
components is defined by the corresponding extension specification. 

For QNames, any prefix MUST be defined by a preceding xmlns pointer part.† If 
a QName does not have a prefix then its namespace name is the target 
namespace of the WSDL 2.0 document. 

The fragment identifier is typically constructed from the {name} property of the 
component and the {name} properties of its ancestors as a path according to 
Table A-1. The first column of this table gives the name of the WSDL 2.0 
component. Columns labeled 1 through 4 specify the identifiers that uniquely 
identify the component within its context. Identifiers are typically formed from the 
{name} property, although in several cases references to other components are 
used. These identifiers are then used to construct the pointer part in the last 
column. The fragment identifier in a WSDL 2.0 component IRI-reference MUST 
resolve to some component as defined by the construction rules in Table A-1.† 

Table A-1. Rules for determining pointer parts for WSDL 2.0 components 

Compo
nent 

1 2 3 4 Pointer Part 

Descrip
tion 

n/a n/a n/a n/a wsdl.description() 

Elemen
t 
Declara
tion 

eleme
nt 
QNa
me 

n/a n/a n/a wsdl.elementDeclaration(element) 

Elemen
t 
Declara
tion 

eleme
nt 
QNa
me 

system 
IRI n/a n/a wsdl.elementDeclaration(element,system)

Type 
Definiti
on 

type 
QNa
me 

n/a n/a n/a wsdl.typeDefinition(type) 

Type 
Definiti
on 

type 
QNa
me 

system 
IRI n/a n/a wsdl.typeDefinition(type,system) 

Interfac
e 

inter
face 
NCNa
me 

n/a n/a n/a wsdl.interface(interface) 

Interfac
e Fault 

inter
face 
NCNa
me 

fault 
NCNa
me 

n/a n/a wsdl.interfaceFault(interface/fault) 



Interfac
e 
Operati
on 

inter
face 
NCNa
me 

operat
ion 
NCNa
me 

n/a n/a 
wsdl.interfaceOperation(interface/opera
tion) 

Interfac
e 
Messa
ge 
Refere
nce 

inter
face 
NCNa
me 

operat
ion 
NCNa
me 

messa
ge 
NCN
ame 

n/a 
wsdl.interfaceMessageReference(interfac
e/operation/message) 

Interfac
e Fault 
Refere
nce 

inter
face 
NCNa
me 

operat
ion 
NCNa
me 

messa
ge 
NCN
ame 

faul
t 
QNa
me 

wsdl.interfaceFaultReference(interface/
operation/message/fault) 

Binding 

bindi
ng 
NCNa
me 

n/a n/a n/a wsdl.binding(binding) 

Binding 
Fault 

bindi
ng 
NCNa
me 

fault 
QNam
e 

n/a n/a wsdl.bindingFault(binding/fault) 

Binding 
Operati
on 

bindi
ng 
NCNa
me 

operat
ion 
QNam
e 

n/a n/a 
wsdl.bindingOperation(binding/operation
) 

Binding 
Messa
ge 
Refere
nce 

bindi
ng 
NCNa
me 

operat
ion 
QNam
e 

messa
ge 
NCN
ame 

n/a 
wsdl.bindingMessageReference(binding/op
eration/message) 

Binding 
Fault 
Refere
nce 

bindi
ng 
NCNa
me 

operat
ion 
QNam
e 

messa
ge 
NCN
ame 

faul
t 
QNa
me 

wsdl.bindingFaultReference(binding/oper
ation/message/fault) 

Service 

servi
ce 
NCNa
me 

n/a n/a n/a wsdl.service(service) 

Endpoi
nt 

servi
ce 
NCNa
me 

endpoi
nt 
NCNa
me 

n/a n/a wsdl.endpoint(service/endpoint) 

Extensi
ons 

names
pace 

identi
fier n/a n/a wsdl.extension(namespace,identifier) 



URI extens
ion-
specifi
c-
syntax 

 

Note that the above rules are defined in terms of component properties rather 
than the XML Infoset representation of the component model. The following 
sections specify in detail how the pointer parts are constructed from the 
component model. 

A.2.1 The Description Component 

wsdl.description() 

A.2.2 The Element Declaration Component 

wsdl.elementDeclaration(element) 
wsdl.elementDeclaration(element,system) 

1. element is the {name} property of the Element Declaration component. 

2. system is the namespace absolute IRI of the extension type system used 
for the Element Declaration component (see 3.2 Using Other Schema 
Languages). This parameter is absent if XML Schema is the type system. 

A.2.3 The Type Definition Component 

wsdl.typeDefinition(type) 
wsdl.typeDefinition(type,system) 

1. type is the {name} property of the Type Definition component. 

2. system is the namespace absolute IRI of the extension type system used 
for the Type Definition component (see 3.2 Using Other Schema 
Languages). This parameter is absent if XML Schema is the type system. 

A.2.4 The Interface Component 

wsdl.interface(interface) 

1. interface is the local name of the {name} property of the Interface 
component. 

A.2.5 The Interface Fault Component 

wsdl.interfaceFault(interface/fault) 

1. interface is the local name of the {name} property of the parent Interface 
component. 



2. fault is the local name of the {name} property of the Interface Fault 
component. 

A.2.6 The Interface Operation Component 

wsdl.interfaceOperation(interface/operation) 

1. interface is the local name of the {name} property of the parent Interface 
component. 

2. operation is the local name of the {name} property of the Interface 
Operation component. 

A.2.7 The Interface Message Reference Component 

wsdl.interfaceMessageReference(interface/operation/message) 

1. interface is the local name of the {name} property of the grandparent 
Interface component. 

2. operation is the local name of the {name} property of the parent Interface 
Operation component. 

3. message is the {message label} property of the Interface Message 
Reference component. 

A.2.8 The Interface Fault Reference Component 

wsdl.interfaceFaultReference(interface/operation/message/fault) 

1. interface is the local name of the {name} property of the grandparent 
Interface component. 

2. operation is the local name of the {name} property of the parent Interface 
Operation component. 

3. message is the {message label} property of the Interface Fault Reference 
component. 

4. fault is the {name} property of the Interface Fault component referred to 
by the {interface fault} property of the Interface Fault Reference 
component. 

A.2.9 The Binding Component 

wsdl.binding(binding) 

1. binding is the local name of the {name} property of the Binding 
component. 

A.2.10 The Binding Fault Component 

wsdl.bindingFault(binding/fault) 



1. binding is the local name of the {name} property of the parent Binding 
component. 

2. fault is the {name} property of the Interface Fault component referred to 
by the {interface fault} property of the Binding Fault component. 

A.2.11 The Binding Operation Component 

wsdl.bindingOperation(binding/operation) 

1. binding is the local name of the {name} property of the parent Binding 
component. 

2. operation is the {name} property of the Interface Operation component 
referred to by the {interface operation} property of the Binding Operation 
component. 

A.2.12 The Binding Message Reference Component 

wsdl.bindingMessageReference(binding/operation/message) 

1. binding is the local name of the {name} property of the grandparent 
Binding component. 

2. operation is the {name} property of the Interface Operation component 
referred to by the {interface operation} property of the parent Binding 
Operation component. 

3. message is the {message label} property of the Interface Message 
Reference component referred to by the {interface message reference} 
property of the Binding Message Reference component. 

A.2.13 The Binding Fault Reference Component 

wsdl.bindingFaultReference(binding/operation/message/fault) 

1. binding is the local name of the {name} property of the grandparent 
Binding component. 

2. operation is the {name} property of the Interface Operation component 
referred to by the {interface operation} property of the parent Binding 
Operation component. 

3. message is the {message label} property of the Interface Fault Reference 
component referred to by the {interface fault reference} property of the 
Binding Fault Reference component. 

4. fault is the {name} property of the Interface Fault component referred to 
by the {interface fault} property of the Interface Fault Reference 
component referred to by the {interface fault reference} property of the 
Binding Fault Reference component. 

A.2.14 The Service Component 



wsdl.service(service) 

1. service is the local name of the {name} property of the Service 
component. 

A.2.15 The Endpoint Component 

wsdl.endpoint(service/endpoint) 

1. service is the local name of the {name} property of the parent Service 
component. 

2. endpoint is the {name} property of the Endpoint component. 

A.2.16 Extension Components 

WSDL 2.0 is extensible and it is possible for an extension to define new 
components types. The XPointer Framework scheme for extension components 
is: 
wsdl.extension(namespace, identifier) 

1. namespace is the namespace URI that identifies the extension, e.g. for the 
WSDL 2.0 SOAP 1.2 Binding the namespace is 
http://www.w3.org/ns/wsdl/soap. 

2. identifier is defined by the extension using a syntax specific to the 
extension. The owner of the extension must define any components 
contributed by the extension and a syntax for identifying them. 

A.3 Security considerations 

This media type uses the "+xml" convention, it shares the same security 
considerations as described in [IETF RFC 3023], section 10. 

B. Acknowledgements (Non-Normative) 

This document is the work of the W3C Web Service Description Working Group. 

Members of the Working Group are (at the time of writing, and by alphabetical 
order): Charlton Barreto (Adobe Systems, Inc), Allen Brookes (Rogue Wave 
Softwave), Dave Chappell (Sonic Software), Helen Chen (Agfa-Gevaert N. V.), 
Roberto Chinnici (Sun Microsystems), Kendall Clark (University of Maryland), 
Glen Daniels (Sonic Software), Paul Downey (British Telecommunications), 
Youenn Fablet (Canon), Ram Jeyaraman (Microsoft), Tom Jordahl (Adobe 
Systems), Anish Karmarkar (Oracle Corporation), Jacek Kopecky (DERI 
Innsbruck at the Leopold-Franzens-Universität Innsbruck, Austria), Amelia Lewis 
(TIBCO Software, Inc.), Philippe Le Hegaret (W3C), Michael Liddy (Education.au 
Ltd.), Kevin Canyang Liu (SAP AG), Jonathan Marsh (WSO2), Monica Martin 
(Sun Microsystems), Josephine Micallef (SAIC - Telcordia Technologies), Jeff 
Mischkinsky (Oracle Corporation), Dale Moberg (Cyclone Commerce), Jean-



Jacques Moreau (Canon), David Orchard (BEA Systems, Inc.), Gilbert Pilz (BEA 
Systems, Inc.), Tony Rogers (Computer Associates), Arthur Ryman (IBM), Adi 
Sakala (IONA Technologies), Michael Shepherd (Xerox), Asir Vedamuthu 
(Microsoft Corporation), Sanjiva Weerawarana (WSO2), Ümit Yalçınalp (SAP 
AG), Peter Zehler (Xerox). 

Previous members were: Eran Chinthaka (WSO2), Mark Nottingham (BEA 
Systems, Inc.), Hugo Haas (W3C), Vivek Pandey (Sun Microsystems), Bijan 
Parsia (University of Maryland), Lily Liu (webMethods, Inc.), Don Wright 
(Lexmark), Joyce Yang (Oracle Corporation), Daniel Schutzer (Citigroup), Dave 
Solo (Citigroup), Stefano Pogliani (Sun Microsystems), William Stumbo (Xerox), 
Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and 
Technology), Tim Finin (University of Maryland), Laurent De Teneuille 
(L'Echangeur), Johan Pauhlsson (L'Echangeur), Mark Jones (AT&T), Steve Lind 
(AT&T), Sandra Swearingen (U.S. Department of Defense, U.S. Air Force), 
Philippe Le Hégaret (W3C), Jim Hendler (University of Maryland), Dietmar 
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO 
Software, Inc.), Steve Graham (Global Grid Forum), Steve Tuecke (Global Grid 
Forum), Michael Mahan (Nokia), Bryan Thompson (Hicks & Associates), Ingo 
Melzer (DaimlerChrysler Research and Technology), Sandeep Kumar (Cisco 
Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne 
(Electronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA 
Technologies), Mike McHugh (W. W. Grainger), Michael Mealling (Verisign), 
Waqar Sadiq (Electronic Data Systems), Yaron Goland (BEA Systems, Inc.), 
Ümit Yalçınalp (Oracle Corporation), Peter Madziak (Agfa-Gevaert N. V.), Jeffrey 
Schlimmer (Microsoft Corporation), Hao He (The Thomson Corporation), Erik 
Ackerman (Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods, 
Inc.), William Vambenepe (Hewlett-Packard Company), David Booth (W3C), 
Sanjiva Weerawarana (IBM), Asir Vedamuthu (webMethods, Inc.), Igor Sedukhin 
(Computer Associates), Martin Gudgin (Microsoft Corporation), Rebecca 
Bergersen (IONA Technologies), Ugo Corda (SeeBeyond). 

The people who have contributed to discussions on www-ws-desc@w3.org are 
also gratefully acknowledged. 

C. IRI-References for WSDL 2.0 Components (Non-
Normative) 

This appendix provides a syntax for IRI-references for all components found in a 
WSDL 2.0 document. The IRI-references are easy to understand and compare, 
while imposing no burden on the WSDL 2.0 author. 

C.1 WSDL 2.0 IRIs 

There are two main cases for WSDL 2.0 IRIs: 

 the IRI of a WSDL 2.0 document 



 the IRI of a WSDL 2.0 namespace 

The IRI of a WSDL 2.0 document can be dereferenced to give a resource 
representation that contributes component definitions to a single WSDL 2.0 
namespace. If the media type is set to the WSDL 2.0 media type, then the 
fragment identifiers can be used to identify the main components that are defined 
in the document. 

However, in keeping with the recommendation in 2.1.1 The Description 
Component that the namespace URI be dereferencable to a WSDL 2.0 
document, this appendix specifies the use of the namespace IRI with the WSDL 
2.0 fragment identifiers to form an IRI-reference. 

The IRI in an IRI-reference for a WSDL 2.0 component is the namespace name 
of the {name} property of either the component itself, in the case of Interface , 
Binding , and Service components, or the {name} property of the ancestor top-
level component. The IRI provided by the namespace name of the {name} 
property is combined with a zero or more xmlns pointer parts (see 3.4 
Namespace Binding Context in [XPointer] ) followed by a single WSDL 2.0 
pointer part as defined in A.2 Fragment Identifiers . 

C.2 Canonical Form for WSDL 2.0 Component Designators 

The IRI-references described above MAY be used as WSDL 2.0 component 
designators. For ease of comparison, the fragment identifier of WSDL 2.0 
component designators SHOULD conform to the following canonicalization rules: 

 The fragment identifier consists of a sequence zero or more xmlns() 
pointer parts followed by exactly one wsdl.*() pointer part. † 

 Each xmlns() pointer part that appears in the fragment identifier defines a 
namespace that is referenced by the wsdl.*() pointer part. † 

 Each xmlns() pointer part defines a unique namespace. † 

 The xmlns() pointer parts define namespaces in the same order as they 
are referenced in the wsdl.*() pointer part. † 

 The namespace prefixes defined by the xmlns() pointer parts are named 
ns1 , ns2 , etc., in the order of their appearance. † 

 The fragment identifier contains no optional whitespace. † 

 No xmlns() pointer part defines a namespace for the targetNamespace of 
the WSDL 2.0 document. † 

C.3 Example 

Consider the following WSDL 2.0 document located at 
http://example.org/TicketAgent.wsdl: 

Example C-1. IRI-References - Example WSDL 2.0 Document 
 
<?xml version="1.0" encoding="UTF-8"?> 



<wsdl:description  
    targetNamespace="http://example.org/TicketAgent.wsdl20"  
    xmlns:xsTicketAgent="http://example.org/TicketAgent.xsd"  
    xmlns:wsdl="http://www.w3.org/ns/wsdl"  
    xmlns:xs="http://www.w3.org/2001/XMLSchema"  
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
    xsi:schemaLocation="http://www.w3.org/ns/wsdl 
http://www.w3.org/2007/06/wsdl/wsdl20.xsd"> 
         
    <wsdl:types> 
        <xs:import schemaLocation="TicketAgent.xsd"  
                   namespace="http://example.org/TicketAgent.xsd" /> 
    </wsdl:types> 
         
    <wsdl:interface name="TicketAgent"> 
        <wsdl:operation name="listFlights" 
                        pattern="http://www.w3.org/ns/wsdl/in-out"> 
            <wsdl:input element="xsTicketAgent:listFlightsRequest"/> 
            <wsdl:output 
element="xsTicketAgent:listFlightsResponse"/> 
        </wsdl:operation> 
                 
        <wsdl:operation name="reserveFlight" 
                        pattern="http://www.w3.org/ns/wsdl/in-out"> 
            <wsdl:input 
element="xsTicketAgent:reserveFlightRequest"/> 
            <wsdl:output 
element="xsTicketAgent:reserveFlightResponse"/> 
        </wsdl:operation> 
    </wsdl:interface> 
</wsdl:description> 
 

Its components have the following IRI-references which follow the above 
canonicalization rules except for the presence of optional whitespace that has 
been added in order to improve the formatting: 

Example C-2. IRI-References - Example IRIs 
http://example.org/TicketAgent.wsdl20# 
  wsdl.description()  
 
http://example.org/TicketAgent.wsdl20# 
  xmlns(ns1=http://example.org/TicketAgent.xsd) 
  wsdl.elementDeclaration(ns1:listFlightsRequest)  
 
http://example.org/TicketAgent.wsdl20# 
  xmlns(ns1=http://example.org/TicketAgent.xsd) 
  wsdl.elementDeclaration(ns1:listFlightsResponse)  
 
http://example.org/TicketAgent.wsdl20# 
  xmlns(ns1=http://example.org/TicketAgent.xsd) 
  wsdl.elementDeclaration(ns1:reserveFlightRequest)  
 
http://example.org/TicketAgent.wsdl20# 
  xmlns(ns1=http://example.org/TicketAgent.xsd) 
  wsdl.elementDeclaration(ns1:reserveFlightResponse)  
 



http://example.org/TicketAgent.wsdl20# 
  wsdl.interface(TicketAgent)  
 
http://example.org/TicketAgent.wsdl20# 
  wsdl.interfaceOperation(TicketAgent/listFlights)  
 
http://example.org/TicketAgent.wsdl20# 
  wsdl.interfaceMessageReference(TicketAgent/listFlights/In)  
 
http://example.org/TicketAgent.wsdl20# 
  wsdl.interfaceMessageReference(TicketAgent/listFlights/Out)  
 
http://example.org/TicketAgent.wsdl20# 
  wsdl.interfaceOperation(TicketAgent/reserveFlight) 
 
http://example.org/TicketAgent.wsdl20# 
  wsdl.interfaceMessageReference(TicketAgent/reserveFlight/In)  
 
http://example.org/TicketAgent.wsdl20# 
  wsdl.interfaceMessageReference(TicketAgent/reserveFlight/Out)  

D. Component Summary (Non-Normative) 

Table D-1 lists all the components in the WSDL 2.0 abstract Component Model, 
and all their properties. Note some properties have a generic definition that is 
used in more than one component. In this case, the Component column contains 
a "-" to indicate this generic definition of the property. 

Table D-1. Summary of WSDL 2.0 Components and their Properties 

Component Defined Properties 

- {name}, {parent} 

Binding {binding faults}, {binding operations}, {interface}, {name}, {type} 

Binding Fault {interface fault}, {parent} 

Binding Fault 
Reference 

{interface fault reference}, {parent} 

Binding 
Message 
Reference 

{interface message reference}, {parent} 

Binding 
Operation 

{binding fault references}, {binding message references}, 
{interface operation}, {parent} 

Description 
{bindings}, {element declarations}, {interfaces}, {services}, {type 
definitions} 

Element 
Declaration 

{name}, {system} 

Endpoint {address}, {binding}, {name}, {parent} 

Interface {extended interfaces}, {interface faults}, {interface operations}, 



{name} 

Interface Fault 
{element declaration}, {message content model}, {name}, 
{parent} 

Interface Fault 
Reference 

{direction}, {interface fault}, {message label}, {parent} 

Interface 
Message 
Reference 

{direction}, {element declaration}, {message content model}, 
{message label}, {parent} 

Interface 
Operation 

{interface fault references}, {interface message references}, 
{message exchange pattern}, {name}, {parent}, {style} 

Service {endpoints}, {interface}, {name} 

Type Definition {name}, {system} 

Property Where Defined 

address Endpoint.{address} 

binding Endpoint.{binding} 

binding fault 
references 

Binding Operation.{binding fault references} 

binding faults Binding.{binding faults} 

binding 
message 
references 

Binding Operation.{binding message references} 

binding 
operations 

Binding.{binding operations} 

bindings Description.{bindings} 

direction 
Interface Fault Reference.{direction}, Interface Message 
Reference.{direction} 

element 
declaration 

Interface Fault.{element declaration}, Interface Message 
Reference.{element declaration} 

element 
declarations 

Description.{element declarations} 

endpoints Service.{endpoints} 

extended 
interfaces 

Interface.{extended interfaces} 

interface Binding.{interface}, Service.{interface} 

interface fault 
Binding Fault.{interface fault}, Interface Fault 
Reference.{interface fault} 

interface fault 
reference 

Binding Fault Reference.{interface fault reference} 

interface fault Interface Operation.{interface fault references} 



references 

interface faults Interface.{interface faults} 

interface 
message 
reference 

Binding Message Reference.{interface message reference} 

interface 
message 
references 

Interface Operation.{interface message references} 

interface 
operation 

Binding Operation.{interface operation} 

interface 
operations 

Interface.{interface operations} 

interfaces Description.{interfaces} 

message 
content model 

Interface Fault.{message content model}, Interface Message 
Reference.{message content model} 

message 
exchange 
pattern 

Interface Operation.{message exchange pattern} 

message label 
Interface Fault Reference.{message label}, Interface Message 
Reference.{message label} 

name 

.{name}, Binding.{name}, Element Declaration.{name}, 
Endpoint.{name}, Interface.{name}, Interface Fault.{name}, 
Interface Operation.{name}, Service.{name}, Type 
Definition.{name} 

parent 

.{parent}, Binding Fault.{parent}, Binding Fault 
Reference.{parent}, Binding Message Reference.{parent}, 
Binding Operation.{parent}, Endpoint.{parent}, Interface 
Fault.{parent}, Interface Fault Reference.{parent}, Interface 
Message Reference.{parent}, Interface Operation.{parent} 

services Description.{services} 

style Interface Operation.{style} 

system Element Declaration.{system}, Type Definition.{system} 

type Binding.{type} 

type definitions Description.{type definitions} 

 

E. Assertion Summary (Non-Normative) 

This appendix summarizes assertions about WSDL 2.0 documents and 
components that are not enforced by the WSDL 2.0 schema. Each assertion is 



assigned a unique identifier which WSDL 2.0 processors may use to report 
errors. 

Table E-1. Summary of Assertions about WSDL 2.0 Documents 

Id Assertion 

Description-1004 

If a WSDL 2.0 document is split into multiple 
WSDL 2.0 documents (which may be combined as 
needed via 4.1 Including Descriptions), then the 
targetNamespace attribute information item 
SHOULD resolve to a master WSDL 2.0 document 
that includes all the WSDL 2.0 documents needed 
for that service description. 

Description-1005 
Zero or more element information items amongst 
its [children], in order as follows: 

Description-1006 
Its value MUST be an absolute IRI (see [IETF 
RFC 3987]) and should be dereferencable. 

Import-1082 

As with XML schema, any WSDL 2.0 document 
that references a foreign component MUST have a 
wsdl:import element information item for the 
associated foreign namespace (but which does 
not necessarily provide a location attribute 
information item that identifies the WSDL 2.0 
document in which the referenced component is 
defined). 

Import-1083 

If a WSDL 2.0 document contains more than one 
wsdl:import element information item for a given 
value of the namespace attribute information item, 
then they MUST provide different values for the 
location attribute information item. 

Import-1084 
This value MUST NOT match the actual value of 
targetNamespace attribute information item in the 
enclosing WSDL 2.0 document. 

Import-1085 
If the location attribute in the import element 
information item is dereferencable, then it MUST 
reference a WSDL 2.0 document. 

Import-1086 

If the location attribute information item of the 
import element information item is dereferencable, 
then the actual value of the namespace attribute 
information item MUST be identical to the actual 
value of the targetNamespace attribute information 
item of the referenced WSDL 2.0 document (see 
7. Locating WSDL 2.0 Documents). 

Include-1080 The IRI indicated by location MUST resolve to a 



WSDL 2.0 document. 

Include-1081 

The actual value of the targetNamespace attribute 
information item of the included WSDL 2.0 
document MUST match the actual value of the 
targetNamespace attribute information item of the 
description element information item which is the 
[parent] of the include element information item. 

Interface-1012 
Its value, if present, MUST contain absolute IRIs 
(see [IETF RFC 3987]). 

InterfaceFault-1017 

If the element attribute information item has a 
value, then it MUST resolve to an Element 
Declaration component from the {element 
declarations} property of the Description 
component. 

InterfaceFaultReference-
1040 

The messageLabel attribute information item MUST 
be present in the XML representation of an 
Interface Fault Reference component with a given 
{direction}, if the {message exchange pattern} of 
the parent Interface Operation component has 
more than one fault with that direction. 

InterfaceMessageReference-
1036 

If the element attribute information item has a 
value, then it MUST resolve to an Element 
Declaration component from the {element 
declarations} property of the Description 
component. 

Location-1092 
It MUST NOT appear on a wsdl:description 
element or any of its children/descendants. 

Location-1094 

For each pair of IRIs, if the location IRI of the pair 
is dereferencable, then it MUST reference a 
WSDL 2.0 (or 1.1) document whose target 
namespace is the namespace IRI of the pair. 

MessageLabel-1030 

If the messageLabel attribute information item of an 
interface message reference element information 
item is present, then its actual value MUST match 
the {message label} of some placeholder message 
with {direction} equal to the message direction. 

MessageLabel-1031 

If the messageLabel attribute information item of an 
interface message reference element information 
item is absent then there MUST be a unique 
placeholder message with {direction} equal to the 
message direction. 

MessageLabel-1032 If the local name is input then the message 



exchange pattern MUST have at least one 
placeholder message with direction "In". 

MessageLabel-1033 
If the local name is output then the message 
exchange pattern MUST have at least one 
placeholder message with direction "Out". 

MessageLabel-1034 
If the local name is infault then the message 
exchange pattern MUST support at least one fault 
in the "In" direction. 

MessageLabel-1035 
If the local name is outfault then the message 
exchange pattern MUST support at least one fault 
in the "Out" direction. 

MessageLabel-1041 

The messageLabel attribute information item of an 
interface fault reference element information item 
MUST be present if the message exchange 
pattern has more than one placeholder message 
with {direction} equal to the message direction. 

MessageLabel-1042 

If the messageLabel attribute information item of an 
interface fault reference element information item 
is present then its actual value MUST match the 
{message label} of some placeholder message 
with {direction} equal to the message direction. 

MessageLabel-1043 

If the messageLabel attribute information item of an 
interface fault reference element information item 
is absent then there MUST be a unique 
placeholder message with {direction} equal to the 
message direction. 

MessageLabel-1053 

If the messageLabel attribute information item of a 
binding message reference element information 
item is present then its actual value MUST match 
the {message label} of some placeholder message 
with {direction} equal to the message direction. 

MessageLabel-1054 

If the messageLabel attribute information item of a 
binding message reference element information 
item is absent then there MUST be a unique 
placeholder message with {direction} equal to the 
message direction. 

MessageLabel-1056 

The messageLabel attribute information item of a 
binding fault reference element information item 
MUST be present if the message exchange 
pattern has more than one placeholder message 
with {direction} equal to the message direction. 

MessageLabel-1057 If the messageLabel attribute information item of a 



binding fault reference element information item is 
present then its actual value MUST match the 
{message label} of some placeholder message 
with {direction} equal to the message direction. 

MessageLabel-1058 

If the messageLabel attribute information item of a 
binding fault reference element information item is 
absent then there MUST be a unique placeholder 
message with {direction} equal to the message 
direction. 

QName-resolution-1064 
A Description component MUST NOT have such 
broken references. 

Schema-1066 

A WSDL 2.0 document MUST NOT refer to XML 
Schema components in a given namespace 
UNLESS an xs:import or xs:schema element 
information item for that namespace is present OR 
the namespace is the XML Schema namespace, 
http://www.w3.org/2001/XMLSchema, which 
contains built-in types as defined in XML Schema 
Part 2: Datatypes Second Edition [XML Schema: 
Datatypes]. 

Schema-1069 
The referenced schema MUST contain a 
targetNamespace attribute information item on its 
xs:schema element information item. 

Schema-1070 

The value of the targetNamespace attribute 
information item of the xs:schema element 
information item of an imported schema MUST 
equal the value of the namespace of the import 
element information item in the importing WSDL 
2.0 document. 

Schema-1073 
A WSDL 2.0 document MUST NOT define the 
same element or type in more than one inlined 
schema. 

Schema-1075 

A specification of extension syntax for an 
alternative schema language MUST use a 
namespace that is different than the namespace of 
XML Schema. 

Schema-1076 
The namespace used for an alternate schema 
language MUST be an absolute IRI. 

Schema-1079 

If wsdlx:interface and wsdlx:binding are used 
together then they MUST satisfy the same 
consistency rules that apply to the {interface} 
property of a Service component and the {binding} 
property of a nested Endpoint component, that is 



either the binding refers the interface of the 
service or the binding refers to no interface. 

Types-1074 

A specification of extension syntax for an 
alternative schema language MUST include the 
declaration of an element information item, 
intended to appear as a child of the wsdl:types 
element information item, which references, 
names, and locates the schema instance (an 
import element information item). 

Types-1077 
The type of the wsdlx:interface attribute 
information item is an xs:QName that specifies the 
{name} property of an Interface component. 

Types-1078 
The type of the wsdlx:binding attribute 
information item is an xs:QName that specifies the 
{name} property of a Binding component. 

 
 

Table E-2. Summary of Assertions about WSDL 2.0 Components 

Id Assertion 

Binding-1044 

If a Binding component specifies any operation-
specific binding details (by including Binding 
Operation components) or any fault binding 
details (by including Binding Fault components), 
then it MUST specify an interface the Binding 
component applies to, so as to indicate which 
interface the operations come from. 

Binding-1045 
A Binding component that defines bindings for an 
Interface component MUST define bindings for all 
the operations of that Interface component. 

Binding-1046 

Similarly, whenever a reusable Binding 
component (i.e. one that does not specify an 
Interface component) is applied to a specific 
Interface component in the context of an Endpoint 
component (see 2.13.1 The Endpoint 
Component), the Binding component MUST 
define bindings for each Interface Operation and 
Interface Fault component of the Interface 
component, via a combination of properties 
defined on the Binding component itself and 
default binding rules specific to its binding type. 

Binding-1047 
A Binding component that defines bindings for an 
Interface component MUST define bindings for all 



the faults of that Interface component that are 
referenced from any of the operations in that 
Interface component. 

Binding-1048 
This xs:anyURI MUST be an absolute IRI as 
defined by [IETF RFC 3987]. 

Binding-1049 
For each Binding component in the {bindings} 
property of a Description component, the {name} 
property MUST be unique. 

BindingFault-1050 
For each Binding Fault component in the {binding 
faults} property of a Binding component, the 
{interface fault} property MUST be unique. 

BindingFaultReference-1055 

For each Binding Fault Reference component in 
the {binding fault references} property of a Binding 
Operation component, the {interface fault 
reference} property MUST be unique. 

BindingFaultReference-1059 

There MUST be an Interface Fault Reference 
component in the {interface fault references} of 
the Interface Operation being bound with 
{message label} equal to the effective message 
label and with {interface fault} equal to an 
Interface Fault component with {name} equal to 
the actual value of the ref attribute information 
item. 

BindingMessageReference-
1052 

For each Binding Message Reference component 
in the {binding message references} property of a 
Binding Operation component, the {interface 
message reference} property MUST be unique. 

BindingOperation-1051 

For each Binding Operation component in the 
{binding operations} property of a Binding 
component, the {interface operation} property 
MUST be unique. 

CanonFragId-1097 
The fragment identifier consists of a sequence 
zero or more xmlns() pointer parts followed by 
exactly one wsdl.*() pointer part. 

CanonFragId-1098 
Each xmlns() pointer part that appears in the 
fragment identifier defines a namespace that is 
referenced by the wsdl.*() pointer part. 

CanonFragId-1099 
Each xmlns() pointer part defines a unique 
namespace. 

CanonFragId-1100 
The xmlns() pointer parts define namespaces in 
the same order as they are referenced in the 
wsdl.*() pointer part. 



CanonFragId-1101 
The namespace prefixes defined by the xmlns() 
pointer parts are named ns1 , ns2 , etc., in the 
order of their appearance. 

CanonFragId-1102 
The fragment identifier contains no optional 
whitespace. 

CanonFragId-1103 
No xmlns() pointer part defines a namespace for 
the targetNamespace of the WSDL 2.0 document.

Compare-URI-IRI-1065 

When such absolute URIs and IRIs are being 
compared to determine equivalence (see 2.15 
Equivalence of Components), they MUST be 
compared character-by-character as indicated in 
[IETF RFC 3987]. 

Description-1001 
The value of the targetNamespace attribute 
information item SHOULD be dereferencable. 

Description-1002 

It SHOULD resolve to a human or machine 
processable document that directly or indirectly 
defines the intended semantics of those 
components. 

Description-1003 
It MAY resolve to a WSDL 2.0 document that 
provides service description information for that 
namespace. 

Description-1067 

For each component in the imported namespace, 
a corresponding Element Declaration component 
or Type Definition component MUST appear in the 
{element declarations} or {type definitions} 
property respectively of the Description 
component corresponding to the WSDL document 
that imports the schema, or that imports directly or 
indirectly a WSDL document that imports the 
schema. 

Description-1068 
Schema components not in an imported 
namespace MUST NOT appear in the {element 
declarations} or {type definitions} properties. 

Description-1071 

For each component defined and declared in the 
inlined schema document or included by 
xs:include, a corresponding Element Declaration 
component or Type Definition component MUST 
appear in the {element declarations} property or 
{type definitions} property respectively of the 
Description component corresponding to the 
WSDL document that contains the schema, or that 
imports directly or indirectly a WSDL document 
that contains the schema. 



Description-1072 

Schema components not defined or declared in 
the inlined schema document or included by 
xs:include MUST NOT appear in the {element 
declarations} or {type definitions} properties. 

Endpoint-1061 
This xs:anyURI MUST be an absolute IRI as 
defined by [IETF RFC 3987]. 

Endpoint-1062 

For each Endpoint component in the {endpoints} 
property of a Service component, the {binding} 
property MUST either be a Binding component 
with an unspecified {interface} property or a 
Binding component with an {interface} property 
equal to the {interface} property of the Service 
component. 

Equivalence-1063 
Extension properties which are not string values, 
sets of strings or references MUST describe their 
values' equivalence rules. 

Extensibility-1089 
An extension that is NOT marked as mandatory 
MUST NOT invalidate the meaning of any part of 
a WSDL 2.0 document. 

Extensibility-1090 

If a WSDL 2.0 document declares an extension as 
optional (i.e., NON-mandatory), then the Web 
service MUST NOT assume that the client 
supports that extension unless the Web service 
knows (through some other means) that the client 
has in fact elected to engage and support that 
extension. 

Extensibility-1091 

Therefore, the Web service MUST support every 
extension that is declared as optional in the 
WSDL 2.0 document, in addition to supporting 
every extension that is declared as mandatory. 

Extension-1088 
The meaning of an extension SHOULD be defined 
(directly or indirectly) in a document that is 
available at its namespace IRI. 

FragId-1095 
For QNames, any prefix MUST be defined by a 
preceding xmlns pointer part. 

FragId-1096 
The fragment identifier in a WSDL 2.0 component 
IRI-reference MUST resolve to some component 
as defined by the construction rules in Table A-1. 

ImportInclude-1087 

The semantics of an extension MUST NOT 
depend on how components are brought into a 
component model instance via <import> or 
<include>. 



Interface-1009 
To avoid circular definitions, an interface MUST 
NOT appear in the set of interfaces it extends, 
either directly or indirectly. 

Interface-1010 
For each Interface component in the {interfaces} 
property of a Description component, the {name} 
property MUST be unique. 

Interface-1011 
The list of xs:QName in an extends attribute 
information item MUST NOT contain duplicates. 

InterfaceFault-1013 
An xs:token with one of the values #any, #none, 
#other, or #element. 

InterfaceFault-1014 
When the {message content model} property has 
the value #any or #none the {element declaration} 
property MUST be empty. 

InterfaceFault-1015 

In cases where, due to an interface extending one 
or more other interfaces, two or more Interface 
Fault components have the same value for their 
{name} property, then the component models of 
those Interface Fault components MUST be 
equivalent (see 2.15 Equivalence of 
Components). 

InterfaceFault-1016 

For the above reason, it is considered good 
practice to ensure, where necessary, that the local 
name of the {name} property of Interface Fault 
components within a namespace SHOULD be 
unique, thus allowing such derivation to occur 
without inadvertent error. 

InterfaceFaultReference-
1037 

The value of this property MUST match the name 
of a placeholder message defined by the 
message exchange pattern. 

InterfaceFaultReference-
1038 

The direction MUST be consistent with the 
direction implied by the fault propagation ruleset 
used in the message exchange pattern of the 
operation. 

InterfaceFaultReference-
1039 

For each Interface Fault Reference component in 
the {interface fault references} property of an 
Interface Operation component, the combination 
of its {interface fault} and {message label} 
properties MUST be unique. 

InterfaceMessageReference-
1025 

An xs:token with one of the values in or out, 
indicating whether the message is coming to the 
service or going from the service, respectively. 

InterfaceMessageReference- The direction MUST be the same as the direction 



1026 of the message identified by the {message label} 
property in the {message exchange pattern} of the 
Interface Operation component this is contained 
within. 

InterfaceMessageReference-
1027 

An xs:token with one of the values #any, #none, 
#other, or #element. 

InterfaceMessageReference-
1028 

When the {message content model} property has 
the value #any or #none, the {element 
declaration} property MUST be empty. 

InterfaceMessageReference-
1029 

For each Interface Message Reference 
component in the {interface message references} 
property of an Interface Operation component, its 
{message label} property MUST be unique. 

InterfaceOperation-1018 
This xs:anyURI MUST be an absolute IRI (see 
[IETF RFC 3987]). 

InterfaceOperation-1019 
These xs:anyURIs MUST be absolute IRIs (see 
[IETF RFC 3986]). 

InterfaceOperation-1020 

In cases where, due to an interface extending one 
or more other interfaces, two or more Interface 
Operation components have the same value for 
their {name} property, then the component models 
of those Interface Operation components MUST 
be equivalent (see 2.15 Equivalence of 
Components). 

InterfaceOperation-1021 

For the above reason, it is considered good 
practice to ensure, where necessary, that the 
{name} property of Interface Operation 
components within a namespace SHOULD be 
unique, thus allowing such derivation to occur 
without inadvertent error. 

InterfaceOperation-1023 
An Interface Operation component MUST satisfy 
the specification defined by each operation style 
identified by its {style} property. 

Location-1093 

Its actual value MUST be a list of pairs of IRIs; 
where the first IRI of a pair, which MUST be an 
absolute IRI as defined in [IETF RFC 3987], 
indicates a WSDL 2.0 (or 1.1) namespace name, 
and, the second a hint as to the location of a 
WSDL 2.0 document defining WSDL 2.0 
components (or WSDL 1.1 elements [WSDL 1.1]) 
for that namespace name. 

MEP-1022 
A message exchange pattern is itself uniquely 
identified by an absolute IRI, which is used as the 



value of the {message exchange pattern} property 
of the Interface Operation component, and which 
specifies the fault propagation ruleset that its 
faults obey. 

MessageLabel-1024 
The value of this property MUST match the name 
of a placeholder message defined by the 
message exchange pattern. 

Service-1060 
For each Service component in the {services} 
property of a Description component, the {name} 
property MUST be unique. 

Types-1007 
Each XML Schema element declaration MUST 
have a unique QName. 

Types-1008 
Each XML Schema type definition MUST have a 
unique QName. 

 
 


