DTFAWA-08-R-00007

Attachment J-2 Service Container Requirements

[image: image1.emf]
System Wide Information Management (SWIM)
Service Container Requirements

December 2007

Federal Aviation Administration

800 Independence Avenue SW

Washington, DC 20591

TABLE OF CONTENTS

11.0
BACKGROUND

2.0
OPERATIONAL CONCEPT
2
2.1
Operations
2
2.1.1
Core Capability Descriptions
4
2.1.2
SWIM Service Lifecycle Descriptions
5
3.0
TECHNICAL REQUIREMENTS
8
Appendix A – Acronyms
1

List of Figures

3Figure 2-1. Point-to-Point Interfaces Transformed by SWIM

6Figure 2-2. Development of Services

7Figure 2‑3. Registration of Services

1.0 BACKGROUND

Today’s National Airspace System (NAS) comprises systems that have been developed over time for specific purposes. In general, they are connected discretely to support specific data and information exchange needs. Each of these interfaces is custom designed, developed, managed, and maintained individually at a significant cost to the Federal Aviation Administration (FAA). The Next Generation Air Transportation System (NextGen) relies upon a new decision construct that will bring more data, systems, customers, and service providers into the process. Data will be needed at more places, for more purposes, in a timely manner, and in common formats and structures to ensure consistent use. The resulting decisions must be distributed to the affected parties efficiently and reliably to support timely execution.

The mission of the System Wide Information Management (SWIM) Program is to provide the means for greater information sharing among NAS stakeholders, both FAA and non-FAA users, to support the NextGen operations. This includes, but is not limited to, aeronautical information, flight data, traffic flow management data, surveillance, and weather information. To achieve this mission, SWIM’s strategy is to migrate NAS applications toward a loosely coupled, open, distributed processing environment focused on information sharing (where loosely coupled systems tend to be highly scalable, robust and agile). These open architecture principles will provide value by reducing costs, reducing risks, enabling new services, and extending and therefore adding value to existing services.

Specifically, SWIM will use Service Oriented Architecture (SOA) principles in designing and specifying NAS Air Traffic Management (ATM) services. Key functional elements of the SWIM SOA are the SWIM Core Capabilities and SWIM Business services. The SWIM Program Office is responsible for definition of the Core Services, whereas the FAA NAS Programs will define the business services in SWIM Segment 1.

The planned Segment 1 SWIM Core Capabilities are: Interface Management (Interface Specification, Interface Discovery, Schema Management, Service Invocation, SWIM Basic Profile), Messaging (reliable messaging), Security (authentication and authorization), and Enterprise Service Management (service monitoring and configuration). The SWIM Program Office will specify standards for all SWIM Core Capabilities; however, product standardization will be focused on the Service Container.

The SWIM Service Container is an infrastructure component that will provide many of the needed support (hosting) capabilities. It will relieve the SWIM Implementing Program (SIP) implementers of some of the housekeeping tasks required in service delivery. It should provide connections to data, to messaging services, and to authentication/authorization services (i.e., the SWIM Core Capabilities), as well as provide logging, error handling, and other support functions.

The SWIM service container is one software component of the SWIM infrastructure that provides support and hosting capabilities for NAS applications. SWIM will use the Service Container as a means for achieving consistency and interoperability among diverse NAS programs and operating elements, in the absence of a centralized service infrastructure. The Service Container will be comprised of an existing product (commercial off-the-shelf (COTS) or open source software) with components configured to support SWIM specific goals such as interoperability, extensibility, and portability. The Service Container is a logical component of the SWIM architecture that provides support for the SWIM Core Service functionality. It does so in a manner consistent with non-functional requirements for enterprise Service Oriented Architecture (SOA) and the federated approach to implementation. The Service Container serves as the point of enforcement for enterprise-wide SWIM policies and accelerates service implementation by providing standard, reusable common infrastructure elements. It provides access to enterprise resources and simplifies the service design and development process.

Use of the Service Container will encourage consistent use of common capabilities across the SWIM SIPs. It will provides flexibility, manageability, and reduce risk in achieving the SWIM vision by decoupling supporting enterprise Information Technology (IT) elements from each other while providing a lightweight enterprise management capability to help manage the SWIM environment across the NAS.

This document specifies the requirements for the SWIM Service Container software. The Service Container is a SWIM standardized architecture component that SWIM Implementing Programs (SIPs) will implement on servers that host SWIM-provided Service Container software. NAS Programs will own and manage the Business Services and will determine where and how Service Containers are deployed with guidance and support from the SWIM program.

The following sections provide background information on the SWIM Core Capabilities and Segment 1 Air Traffic Management (business) capabilities.

2.0 OPERATIONAL CONCEPT

2.1 Operations

SWIM will be developed incrementally based upon the needs of various data communities, maturity of concepts of use, and segments that are sized to fit reasonable cost, schedule, and risk thresholds. To define Segment 1, SWIM system engineers collaborated with stakeholders (called Communities of Interest (COIs)) who possess the expertise to accurately describe how information is currently being used in the NAS, predict future NAS information needs, and discern how to best fulfill those needs using a net-centric solution. COIs currently include Aeronautical Information Management (AIM), Flight and Flow Management (F&FM), and Weather; others (e.g., Surveillance) will form as needed over time.

Rather than developing a separate infrastructure, the SWIM program will provide Core Capabilities standards and Service Container software to the NAS SIPs that will implement the capabilities that comprise Segment 1. These SIPs include En Route Automation Modernization (ERAM), Traffic Flow Management System (TFMS), Aeronautical Information Management (AIM), Corridor Integrated Weather System (CIWS), Weather Message Switching Center Replacement (WMSCR), and Integrated Terminal Weather System (ITWS). The SIPs will acquire software for the Core Capabilities (that meet SWIM defined standards) and use that with the SWIM Program Office provided Service Container software to support their SWIM developed applications programs. New SWIM software will be hosted on existing hardware, if available, or SIPs will procure new hardware to support Segment 1 capabilities. The implementing programs will provide configuration management, life cycle support, safety, and security for Segment 1 functional capabilities.

The SWIM concept includes the ability to transform NAS application interfaces from a tightly coupled, point-to-point model into a Service Oriented Architecture (SOA) supporting loosely coupled (or minimally interdependent) services. This transformation is depicted in Figure 2-1. SWIM provides the flexibility to develop interfaces consistent with needs; it does not mandate a one-size-fits-all approach. The characteristics of each interface are determined based on the requirements and associated business case.

Figure 2-1. Point-to-Point Interfaces Transformed by SWIM

[image: image2]
SWIM provides a set of Core Capabilities (described in Section 2.1.1) that facilitate development and execution of services on SWIM-enabled systems and the migration of NAS systems to a SOA-based application. SWIM exposes a Service (Information or Application Service) for Service Providers and makes information about that Service available to known and potential users through SWIM Core Capabilities during Service development time. Service Consumers in turn use the Core Capabilities to locate and download information about the exposed services to generate and compile into appropriate interface codes to consume and reuse the desired Service. The stated concept is the cornerstone of SOA-based integration. In the SOA environment, one method of service provision/consumption is the publish/subscribe model. Request/Reply is another SOA method; SWIM will support both approaches.

When development of a SWIM Service is completed, the service will be deployed and monitored on a NAS System platform in the run-time environment by the SIPs. During service execution, the approved platform will provide service monitoring in accordance with SWIM standards.

2.1.1 Core Capability Descriptions

The following provides a top-level description of the SWIM Core Capabilities. The use of specific Core Capabilities is dependent on the business needs for each service. Every SIP developed NAS service will not necessarily require every Core Capability or the same capability level. Consequently, Core Capabilities will be subject to incremental implementation as requirements and programmatic priorities dictate.

Four types of Core Capabilities are described below. Core Capabilities isolate IT concerns from business concerns, allowing developers to focus on applying service oriented principles to developing services without being distracted by IT issues. It also promotes re-use of existing services and the encapsulated infrastructure (Core Capabilities). This generates cost savings, mitigates much of the integration technology risk, and provides a point of control for implementing enterprise guidance and integration patterns.

Interface Management includes capabilities (Service Design-Time Environment) that enable Service Providers to expose services and Service Consumers to find services. It includes supporting capabilities such as descriptions of the services performed (typically, in a service registry) and data exchange requirements to assist in interface development. It also provides support for managing metadata such as the schemas that define the format and semantics of interface data elements.

Messaging includes mechanisms (Service Run-Time Environment) supporting a variety of service invocation styles (e.g., publish/subscribe, request/reply) and data exchange protocols. It enables message routing including the structures and metadata supporting routing and policy. Messaging capabilities can include delivery allowing service consumers to receive queued messages after reconnecting to the network. It provides Quality of Service (QoS) including priority and response time.

Security includes mechanisms (Service Design-Time and Run-Time Environments) to enforce security policies at the service and message level including providing authorization-based access to data and services. It ensures both Service Consumers and Service Providers can verify identities, authenticate themselves and assert access privileges via authorization; and ensures confidentiality of information exchanged while invoking and consuming services. It also protects information integrity, that is, guards against unauthorized modification of data and services. SWIM security is focused on application-level interfaces and messages consistent with enterprise SOA principles.

Enterprise Service Management (Service Design-Time and Run-Time Environments) includes Governance and Monitoring. Governance manages services across all service lifecycle phases based on conformance to SWIM Policies and Guidelines in Service Design-Time. Monitoring is how NAS system ensures the key requirements are met including the ability to capture, view, and report on service performance and usage. QoS and other performance metrics are defined and measured consistent with system and service requirements and address items such as throughput, reliability, availability, latency, response time, and fault data (e.g., for isolation and repair).

2.1.2 SWIM Service Lifecycle Descriptions

The nature of how SWIM Core Capabilities are used depends on the mode of operation. As mentioned above, Core Capabilities play a role in both development and execution of services. To clarify the discussion, two service lifecycle phases are defined: design-time and run-time. Design-time refers to the development activities preceding operational implementation of a service. Run-time refers to the activities during routine service operations.

The following provides a description of each service lifecycle phase, highlighting SWIM capabilities to help users create, expose, discover, manage, invoke and consume services. Distinctions between design-time and run-time capabilities are highlighted as appropriate.

2.1.2.1 Design-Time (Development of Services)

The development of services begins when an operational need is identified and requirements are defined. Requirements are elaborated and design decisions are made that shape the service delivery approach. In particular, services can be developed independently but often will leverage existing services to provide a composite capability. That is, the service being developed can itself be a consumer of other services.

A service developer begins by using SWIM to discover available services. For example, a developer who wants to create a service that can forecast the arrival time of a flight at its destination airport may want to know what services are available that model flight trajectories. The developer will use SWIM discovery to learn about the relevant services (e.g., through the service registry). Service descriptions are available that detail the input, output and performance characteristics. When an appropriate reusable service is discovered, the developer can download a description of the service interface to enable it to be invoked by the new service. Security policies applicable to the service are used to ensure security-compliant service requirements are met. Similarly, service development is required to be performed consistent with applicable Governance policies and rules. Figure 2-2 provides an illustration of service development.

Figure 2-2. Development of Services

[image: image3]
In the design-time phase, the service description and service interface specification are reviewed. Figure 2-3 provides an illustration of service development, review and registration. Review and registration are elements of design-time phase. Non-compliant services are rejected and returned to the developers for correction. The Service reviewer is a notional role within the COI or NAS domain that evaluates services for compliance with applicable SWIM guidelines and policies.

Figure 2‑3. Registration of Services

[image: image4.emf]Service Developer Service Reviewer

•

Submit Service Meta Data

to Service Reviewers

•

Approve/Configure Service

Meta Data in accordance with

CM policy.

Submit

Approve

Generic Service can be a Web Service,

Messaging Applications, Web portals,

Sensor Platform, physical service, etc.

Reject

SWIM Registries &

Services

Service Developer Service Reviewer

•

Submit Service Meta Data

to Service Reviewers

•

Approve/Configure Service

Meta Data in accordance with

CM policy.

Submit

Approve

Generic Service can be a Web Service,

Messaging Applications, Web portals,

Sensor Platform, physical service, etc.

Reject

Service Developer Service Reviewer

•

Submit Service Meta Data

to Service Reviewers

•

Approve/Configure Service

Meta Data in accordance with

CM policy.

Submit

Approve

Generic Service can be a Web Service,

Messaging Applications, Web portals,

Sensor Platform, physical service, etc.

Reject

SWIM Registries &

Services

SWIM Registries &

Services

2.1.2.2 Run-Time (Deployment of Services)

Once a service is developed, approved, and registered it is placed at the appropriate resource (e.g., computers, portals or server platforms) for operational use. This defines the beginning of the run-time phase of a SWIM-enabled Service. The SWIM Enterprise Service Management and the Security Core Capabilities in each NAS platform, developed by SIPs in accordance with SWIM standards, will monitor the latency, availability, and performance characteristics.

Service exposure in the run-time phase occurs after the service has satisfied all testing and review requirements in its native domain and it is placed into operations. The location of run-time service access point for the operational service is exposed for run-time service execution.

3.0 TECHNICAL REQUIREMENTS

The requirements for the SWIM Service Container (SC) are provided in the table, below.

	Requirement Text
	M-Must Have;

D-Desirable

	Portability

	1. The Service Container (SC) shall operate on heterogeneous software platforms, including the following:
	

	1.1. on J2EE: servlet 2.x, EJB 2.x and 3
	M

	1.2. on JVM: J2SE 1.4, J2SE 1.5, J2SE 1.6
	M

	1.3. on .NET
	D

	2. The SC shall be capable of hosting applications written in the following languages:
	

	2.1. Java
	M

	2.2. C#
	D

	2.3. C++
	D

	2.4. Other
	D

	3. The SC shall be capable of the following:
	

	3.1. being deployed within application components
	M

	3.2. being deployed within stand-alone applications
	M

	3.3. being deployed within heavyweight application servers
	M

	3.4. being deployed within application appliances
	D

	4. The SC shall provide a non-invasive Application Program Interface (API).

Note: Non-invasive means the ability to make configuration modifications or to extend functionality with no additional coding required for connectivity to the supporting infrastructure.
	D

	5. The SC shall operate on the following Operating Systems (OS):
	

	5.1. Red Hat Linux
	M

	5.2. IBM AIX
	D

	5.3. Sun Solaris
	D

	5.4. Windows 2K3 Server
	D

	5.5. Other
	D

	6. The SC shall not require proprietary APIs when interacting with internal components for integration or extension of existing capabilities.

Note: Partial support of the Java Business Integration (JBI) specification for binding components is an example of internal standards based APIs for extension. The JBI Normalized Message Router (NMR) is not required.
	D

	7. The SC shall support business logic, implemented as a simple class/object (.NET, Java, C++, C#), to assure loose coupling of the business service from the IT infrastructure.
	M

	Flexibility

	8. The SC shall be lightweight with respect to CPU, RAM, and bandwidth requirements. For example, it must run within any of the specified deployment options in Requirement 3, above, without increasing the endpoint server CPU, RAM, and bandwidth requirements by more than 10%.
	M

	Distributed

	9. The SC shall provide a highly distributed service infrastructure across both geography and network topology.
	M

	10. The SC shall be capable of being deployed as a managed proxy on a server separate from the endpoint implementation server.
	M

	Pervasive

	11. The SC shall directly enable service endpoints at the point of implementation by supporting distribution to every node that hosts one or more endpoints throughout the enterprise.
	M

	Policy-centric

	12. The SC shall have the ability for each SC instance to enforce enterprise policies at endpoints.
	M

	Modularity

	13. The SC shall be modular in order to allow selective deployment of the following Core Services:
	

	13.1. Messaging: JMS v1.x, HTTP, ftp, SOAP
	M

	13.2. Connectivity: JCA v1.x,
	M

	13.3. Enterprise Service Management (ESM): JMX v1.2
	M

	13.4. Security: HTTP/S 1 & 1.1, TLS 1.0, PKCS #1, #5, #7, #10, #12, PKIX IETF RFC 2459, SSL 3.0, SAML 1.0 & 1.1, X.509, Kerberos 5.0, LDAP
	D

	13.5. Registry: UDDI v3
	M

	13.6. WSDL v1.1
	M

	Scalability

	14. The SC shall not prevent server clustering.
	M

	Security

	15. The SC shall enable integration with the security framework of the software platform (reference Requirement 3, above) on which it is running.
	M

	16. The SC shall provide role-based access control (RBAC) enforcement at the endpoint level, at the operational level, and at the message level.
	M

	17. The SC shall support message level security in accordance with the following standards:
	

	17.1. OASIS WS-Security 1.1
	D

	17.2. W3C XML Signature
	D

	17.3. W3C XML Encryption
	D

	17.4. OASIS Security Assertion Markup Language (SAML)
	D

	17.5. Secure Sockets Layer v3 (SSLv3)
	D

	17.6. IETF RFC 2246 Transport Layer Security v1 (TLSv1)
	D

	17.7. WS-I Basic Security Profile version 1.1
	D

	17.8. OASIS Extensible Access control Markup Language (XACML)
	D

	18. The SC shall support the following transport level security:
	

	18.1. RFC 2818: HTTP over TLS

	D

	18.2. RFC 2246: The TLS protocol Version 1.0

	D

	18.3. The SSL Protocol Version 3.0

	D

	Manageability

	19. The SC shall be capable of integrating with runtime Enterprise Service Management tools for monitor and control, including the following:
	

	19.1. Tivoli
	M

	19.2. HP Openview
	M

	19.3. Amberpoint
	D

	19.4. Actional
	D

	19.5. SOA Operations
	D

	19.6. Others
	D

	20. The SC shall support JMX 1.2 for java endpoints mechanism for providing Enterprise Service Management (ESM) capabilities.
	M

	21. The SC shall support the simple network management protocol (SNMP).
	D

	22. The SC shall provide the capability to manage multiple Business service versions.
	D

	23. The SC shall distinguish between exception types and provide the means for applying exception handling actions.

 Note: Exception handling actions include route, log, and process.
	D

	Monitoring

	24. The SC shall expose information necessary for calculating Quality of Service (QoS) metrics for assuring Service Level Agreement (SLA) compliance.

Note: Exposing information does not include aggregation of data or calculations necessary for SLA compliance assessment.
	M

	25. The SC shall provide information to monitor the load on the service provider for SLA reporting purposes. Specifically, the SC shall be able to measure the following:
	

	25.1. number of consumers on an individual endpoint
	M

	25.2. number of messages (inbound/outbound) on an individual endpoint
	M

	25.3. Response time (not end-to-end, but service execution time, only).
	M

	Control

	26. The SC shall accommodate implementation of QoS through control of endpoint policies for:
	

	26.1. Security policy
	M

	26.2. Transport Policy
	D

	26.3. Business Policy
	D

	27. The SC shall provide throttling as a means to control the load on services.
	D

	Federation

	28. The SC shall encapsulate IT infrastructure to enable an integrated, federated, and consistent environment for messaging, security and enterprise management.
	M

	Integration

	29. The SC shall enable event driven integration in order to minimize coupling between Systems and Software components.
	M

	30. Users shall be able to implement RESTful web service architectures with the SC.
	M

	31. The SC shall be capable of hosting long running business process orchestration, including batch processes.

Note: A long running business process is any process that may have an indefinite delay because of external dependencies.
	D

	32. The SC shall provide enterprise integration patterns (Hohpe) for building services from software components and other services.

Refer to http://www.enterpriseintegrationpatterns.com/index.html for additional information on the integration patterns.
	D

	33. Web services implemented with the SC shall be compliant with the WS-I Basic Profile 1.2.
	M

	SOA Orchestration

	34. The SC shall support Business Process Execution Language (BPEL) for service level orchestration.
	D

	Invocation

	35. The SC shall encapsulate how a consumer binds to the service endpoint to enable location independent service invocation (discovery and binding to other services).
	M

	36. The SC shall be compatible with the WS-Addressing Specification.
	M

	37. The SC shall perform conversion between synchronous and asynchronous invocations.
	M

	Decoupling

	38. The SC shall encapsulate the supporting enterprise IT infrastructure making the IT infrastructure pluggable, to support decoupling of ATM services from Core Services.
	M

	39. The SC shall encapsulate the IT technologies within the IT infrastructure to support modularity of IT infrastructure technology.
	M

	Transformation

	40. The SC shall support transformation of one message format to another message format (e.g., data mapper or transformation) for the purpose of providing data mediation.
	M

	Virtualization

	41. The SC shall encapsulate concerns regarding location, versioning, configuration management, deployment, configuration and availability of services.
	M

	Availability

	42. The SC shall enable active failover to a different service endpoint implementation.

Note: This means that a failed service invocation can automatically invoke another endpoint instance of the same service to satisfy the request.
	D

	Messaging

	43. Web services implemented with the SC shall be capable of complying with the SOAP 1.1 standard.
	M

	Transport

	44. The SC shall have the ability to route messages between each SC instance.
	M

	45. The SC shall support multiple application transport protocols declaratively.

Note: Support means that a service implemented with the SC will be able to accept requests on any supported protocol.
	

	45.1. PoX/HTTP(S)
	M

	45.2. PoX/JMS
	M

	45.3. SOAP/HTTP(S)
	M

	45.4. SOAP/JMS
	M

	45.5. ftp
	M

	45.6. RMI (for java endpoints)
	D

	45.7. IIOP
	D

	46. The SC shall support application transport extension and customization.

Note: The goal is to be able to add new protocols as they emerge, or to add standardized features for how supported protocols are handled.
	M

	47. The SC shall provide transport conversion between supported protocols declaratively; e.g., SOAP/HTTP to SOAP/JMS.

Note: WS-Addressing to be used for different transports for request and reply.
	M

	48. The SC shall be able to use multiple message-oriented middleware for transport, including the following:

Note: This is use of the middleware by the SC for external transport to another endpoint.
	

	48.1. IBM MQ
	M

	48.2. ActiveMQ
	M

	48.3. JMS
	M

	49. The SC shall support WS-Reliable Messaging over SOAP/HTTP.
	D

	50. The SC shall work with push/pull, pub/sub, request/reply, and synchronous /asynchronous invocation styles.

	M

	51. The SC shall provide a library of technology adapters, including the following:
	D

	51.1. CORBA
	D

	51.2. Other
	D

	52. The SC shall support WS-Notification.
	D

	53. The SC shall support at least one of the following two SOAP message attachment protocols:

53.1. either Message Transmission Optimization Mechanism (MTOM), or

53.2. SOAP with Attachments.

Note: Either MTOM or SOAP with Attachments is required. If either one is supported, then the other is only desired.
	M for the first, D for the second

	54. The SC shall provide support for content based routing.
	M

	Integrated Development Environment (IDE)

	55. SC development components shall integrate with other IDEs, including:
	

	55.1. Eclipse
	M

	55.2. JDeveloper
	D

	55.3. Others
	D

Appendix A – Acronyms

AIM
Aeronautical Information Management

AOP
Aspect Oriented Programming

API
Application Program Interface

ATC
Air Traffic Control

ATM
Air Traffic Management

BPEL
Business Process Execution Language

CIWS
Corridor Integrated Weather System

CM
Configuration Management

COI
Community of Interest

CORBA
Common Object Request Broker Architecture

COTS
Commercial off the Shelf

CPU
Central Processing Unit

DOT
Department of Transportation
ERAM
En Route Automation Modernization

ESM
Enterprise Service Management

FAA
Federal Aviation Administration

F&FM
Flight and Flow Management

HP
Hewlett Packard

HTTP
Hypertext Transfer Protocol

IBM MQ
IBM Message Queue

iCMM
FAA-Integrated Capability Maturity Model

IDE
Integrated Development Environment
IEEE
Institute of Electrical and Electronics Engineers

IT
Information Technology

ITWS
Integrated Terminal Weather System

JBI NMR
Java Business Integration Normalized Message Router

JMS
Java Message Service

JMX
Java Management Extensions

MTOM
Message Transmission Optimization Mechanism

NAS
National Airspace System

NextGen
Next Generation Air Transportation System
OS
Operating System

PoX
Plain Old XML

QoS
Quality of Service

RAM
Random Access Memory

RFC
Request for Comments

RMI
Remote Method Invocation

SAML
Security Assertion Markup Language

SC
Service Container
SIP
SWIM Implementing Program

SLA
Service Level Agreement

SNMP
Simple Network Management Protocol

SOA
Service-Oriented Architecture

SOAP
Simple Object Access Protocol

SSL
Secure Sockets Layer

SWIM
System Wide Information Management

TBD
To Be Determined

TFMS
Traffic Flow Management System

TLS
Transport Layer Security

URL
Uniform Resource Locator

WMSCR
Weather Message Switching Center Replacement

WS
Web Service

WSDL
Web Services Description Language

XACML
Extensible Access Control Markup Language

XML
Extensible Markup Language

ERAM

ETMS

ASDE

Inter

-

ARTS

WARP

ATOP

STARS

FANS

TMA

-

SWIM Core Capabilities

FANS

ETMS

ERAM

ASDE

Inter

-

ARTS

WARP

ATOP

STARS

TMA

-

Design and specify services

Describe service in meta data

Discover

Generic Service can be a Web Service,

Messaging Applications, Web portals, Sensor

Platform, or even physical service, etc.

Service Developers

SWIM Registries &

Services

Publish service meta data

Expose

Service Developers

Service Developers

Discover Service to consume according to information needs

Choose Service to consume

SWIM Registries &

Swim Registries & Services

Developers normally act as both producers and consumers

PAGE

