
Federal Aviation Administration

Software Applications and Operating
Systems

Participant Guide

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee i

Table of Contents

 Page

FAA Software Applications and Operating Systems Participant
Guide ii

Part 1: Access Board Software Applications and Operating Systems
Technical Standards 1-1

Part 2: Accessibility Features of Software Applications and Operating
Systems

Java, Unix (Gnome), Microsoft (MSAA)
2-1

Software Applications and Operating Systems Resources 3-1

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee ii

FAA Software Applications and Operating Systems
Participant Guide
Introduction

Overview of Participant Guide

The Participant Guide provides the specific documents and resources
information presented during the Software Applications and Operating
Systems training. Copies of the Power Point slides utilized during the
training are included. Also provided are the specific documents relating
to the accessibility features of prevalent software applications and
operating systems utilized by software programmers and developers.

Materials are provided for the following software applications and
operating systems:

• Java
• Unix (Gnome Accessibility Project)
• Microsoft (Microsoft Active Accessibility (MSAA))

The instructor will direct you through the power Point slides and the
resource materials provided in the participants guide during the training.

Elements of the
Guide

The Participant Guide includes:

• Software Applications and Operating Systems Power Point Slides
• Participants Notes
• Software Applications and Operating Systems Information and

Materials

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee iii

Software Applications and Operating Systems Participant
Guide

Welcome to the FAA Software Applications and Operating Systems Training.

• Each participants should have signed the registration list and received a name tag
• The FAA Software Applications and Operating Systems training will focus on the

Section 508 Software Applications and Operating Systems technical standards
developed by the Access Board (1194.21).

• This training will present the technical standards and provisions required for the
accessibility of FAA software applications and operating systems by individual with
disabilities who utilize assistive technology.

• This training will provide technical examples and explanations of how to make
inaccessible software applications and operating systems accessible to users of
assistive technology.

• The examples will highlight the development of a six-function calculator, named SF
Calculator. SF Calculator is created using Visual Basic 6 Professional (VB6Pro), a
very popular language and development tool. VB6Pro was selected because it is so
widely used, and because, while it is a powerful tool, it is relatively easy to
understand and use

• A copy of VB6Pro is required to crate and manipulate the program examples
• This training will provide an overview of the accessibility features of prevalent

software applications and operating systems utilized by software programmers and
developers. They are: Java, UNIX (Gnome) and Microsoft Active Accessibility
(MSAA).

• It is important for software programmers and developers understand how to apply
the accessibility features of these widely used software applications and operating
systems for ensuring compatibility with assistive technology devices.

The Software Applications and Operating Systems training will present :

• The application of the Section 508, 1194.21, requirements for Software
Applications and Operating Systems Technical Provisions.

• A program for a six-function calculator is developed, named SF Calculator. The
accessibility requirements of 1194.21 are illustrated during the development of the
SF Calculator.

• Provide an Overview of the Accessibility Features of the Java Software Application
• Provide an Overview of the Gnome Accessibility Project and how it relates the

UNIX operating system
• Provide an Overview of the Accessibility Features of Microsoft Active Accessibility

utilized in Microsoft software applications and operating systems.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee iv

The goals of this training is that when you’re finished with this training module, you should
understand:

• The requirements of the Software Applications and Operating Systems Technical
Standards (1194.21)

• The application of the software application Visual Basic 6 Professional (VB6Pro) in
creating an accessible program, SF Calculator

• The application of the accessibility requirements of the Software Applications and
Operating Systems technical standards during the development of SF Calculator

• Assistive Technology and Software Applications and Operating Systems
compatibility and interoperability issues.

• The Accessibility Features of the prevalent software applications and operating
systems: Java, UNIX (Gnome) and Microsoft Active Accessibility (MSAA)

• Software Applications and Operating Systems resource and information materials
available from other sources.

The information provided in this Software Applications and Operating Systems training has
been divided into the following parts:

• Part 1: Access Board Software Applications and Operating Systems Technical
Standards (1194.21)

• Part 2: Accessibility Features of Software Applications and Operating Systems
• Java, Unix (Gnome), Microsoft (MSAA)

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-1

Part 1: Access Board Software Application and Operating
Systems Technical Standards

This section of the training outlines will cover the following:

• The application of the Section 508, 1194.21, requirements for Software Applications
and Operating Systems Technical Provisions.

• A program for a six-function calculator is developed, named SF Calculator. The
accessibility requirements of 1194.21 are illustrated during the development of the SF
Calculator.

The major point of this training is that inaccessible software applications and operating
systems interfere with users of assistive technology ability to obtain and use information
quickly and easily.

• IT should increase the availability of resources to person with disabilities - barrier-free
designs opens doors to this greater audience

• Accessible design bridges the digital divide that locks out people from participating in
the workforce on the basis of disability

• Increases individual with disabilities ability to work in a professional and supported
work environment

• Accessible IT increases the number of individuals with disabilities ability to receive
the FAA message

• Accessible design minimizes risks of non-compliance

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-2

Access Board Technical Standards: Software Applications and Operating Systems
1194.21 Provisions

Section 508 Rule
§1194.21 Software Applications and Operating Systems

Keyboard
Access

§1194.21
(a)

When software is designed to run on a system that has a
keyboard, product functions shall be executable from a
keyboard where the function itself or the result of
performing a function can be discerned textually.

Accessibility
Features

§1194.21
(b)

Applications shall not disrupt or disable activated features
of other products that are identified as accessibility
features, where those features are developed and
documented according to industry standards. Applications
also shall not disrupt or disable activated features of any
operating system that are identified as accessibility
features where the application programming interface for
those accessibility features has been documented by the
manufacturer of the operating system and is available to
the product developer.

Input Focus §1194.21
(c)

A well defined on-screen indication of the current focus
shall be provided that moves among interactive interface
elements as the input focus changes. The focus shall be
programmatically exposed so that assistive technology can
track focus and focus changes.

Object
Information

§1194.21
(d)

Sufficient information about a user interface element
including the identity, operation and state of the element
shall be available to assistive technology. When an image
represents a program element, the information conveyed
by the image must also be available in text.

Bitmap Images §1194.21
(e)

When bitmap images are used to identify controls, status
indicators, or other programmatic elements, the meaning
assigned to those images shall be consistent throughout an
application's performance.

Text
Information

§1194.21
(f)

Textual information shall be provided through operating
system functions for displaying text. The minimum
information that shall be made available is text content,
text input caret location, and text attributes.

User Selected
Attributes

§1194.21
(g)

Applications shall not override user-selected contrast and
color selections and other individual display attributes.

Animation §1194.21
(h)

When animation is displayed, the information shall be
displayable in at least one non-animated presentation
mode at the option of the user.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-3

Color Coding §1194.21
(i)

Color-coding shall not be used as the only means of
conveying information, indicating an action, prompting a
response, or distinguishing a visual element.

Color and
Contrast

§1194.21
(j)

When a product permits a user to adjust color and contrast
settings, a variety of color selections capable of producing
a range of contrast levels shall be provided.

Flicker Rate §1194.21
(k)

Software shall not use flashing or blinking text, objects, or
other elements having a flash or blink frequency greater
than 2 Hz and lower than 55 Hz.

Electronic
Forms

§1194.21
(l)

When electronic forms are used, the form shall allow
people using assistive technology to access the
information, field elements, and functionality required for
completion and submission of the form, including all
directions and cues.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-4

Application of 1194.21 Software Applications and Operating Systems

Developing Accessible Software

Creating An Accessible Program, SFCalculator
This presentation illustrates the application of the Section 508, 36 CFR 1194.21, requirements
for Software Applications and Operating Systems, Technical Provisions (a)-(l). A program
for a six-function calculator is developed, named SFCalculator. The accessibility
requirements of 1194.21 are illustrated during the development of SFCalculator.

SFCalculator is created using Visual Basic 6 Professional (VB6Pro), a very popular language
and development tool. VB6Pro was selected because it is so widely used, and because, while
it is a powerful tool, it is relatively easy to understand and use.

A copy of VB6 is required to create and manipulate the program examples.

Creating the Graphical User Interface (GUI)
The first step is to create the user interface for the calculator. The following process creates
the GUI interface:

1. The input/output fields are created.

2. The command buttons are created.

3. A menu is created.

4. The program is compiled and checked.

Creating the Input/Output Fields

1. Enter the VB6 Integrated Development Environment (IDE), and select ‘Standard
EXE.’ Enter the properties Window, and change the following properties of the
Form:

Name = sfnCalculator
Caption = SFCalculator
Height = 3885
Left = 105
Top = 105
Width = 6000

2. Next, add fourteen controls to sfnCalculator and set their properties.

3. From the IDE Control ToolBox, select a Label, and place it on sfnCalculator.
Enter the properties Window, and change the following properties of the Label:

Name = lblEntry1
Caption = Entry &1
Left = 360
Top = 360

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-5

UseMnemonic = True

4. From the Control ToolBox, select a TextBox, and place it on sfnCalculator. Enter
the properties Window, and change the following properties of the TextBox:

Name = txtEntry1
Left = 1680
MaxLength = 7
Text = 0
ToolTipText = Please enter your first number.
Top = 360

5. From the Control ToolBox, select a second Label, and place it on sfnCalculator.
Enter the properties Window, and change the following properties of the second
Label:

Name = lblEntry2
Caption = Entry &2
Left = 3000
Top = 360
UseMnemonic = True

6. From the Control ToolBox, select a second TextBox, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the second TextBox:

Name = txtEntry2
Left = 4320
MaxLength = 7
Text = 0
ToolTipText = Please enter your second number.
Top = 360

7. From the Control ToolBox, select a third Label, and place it on sfnCalculator.
Enter the properties Window, and change the following properties of the third
Label:

Name = lblResult
Caption = R&esult
Left = 3000
Top = 1560
UseMnemonic = True

8. From the Control ToolBox, select a third TextBox, and place it on sfnCalculator.
Enter the properties Window, and change the following properties of the third
TextBox:

Name = txtResult

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-6

Left = 4320
Locked = True
Text = 0
ToolTipText = This field displays the calculated result.
Top = 1560

The two input fields, result field and their respective field labels have been created for
SFCalculator.

Creating the Command Buttons
The next step is to create the eight buttons on sfnCalculator that will represent SFCalculator’s
eight commands or functions. (Only six of the functions involve calculations. The other two
pertain to clearing the fields and exiting the program, respectively.)

The following step will create the eight buttons for the calculator

1. From the Control ToolBox, select a CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the CommandButton:

Name = cmdAdd
Caption = &Add
Left = 240
ToolTipText = Adds Entry 1 and Entry 2 when activated.
Top = 1200

2. From the Control ToolBox, select a second CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the second CommandButton:

Name = cmdSubtract
Caption = &Subtract
Left = 1560
ToolTipText = Subtracts Entry 2 from Entry 1 when activated.
Top = 1200

3. From the Control ToolBox, select a third CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the third CommandButton:

Name = cmdMultiply
Caption = &Multiply
Left = 240
ToolTipText = Multiplies Entry 1 and Entry 2 when activated.
Top = 1800

4. From the Control ToolBox, select a forth CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the forth CommandButton:

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-7

Name = cmdDivide
Caption = &Divide
Left = 1560
ToolTipText = Divides Entry 1 by Entry 2 when activated.
Top = 1800

5. From the Control ToolBox, select a fifth CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the fifth CommandButton:

Name = cmdRandomize
Caption = &Randomize
Left = 240
ToolTipText = Generates two random numbers and assigns them to Entry 1
and Entry 2, respectively, when activated.
Top = 2400

6. From the Control ToolBox, select a sixth CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the sixth CommandButton:

Name = cmdSquareRoot
Caption = S&quareRoot
Left = 1560ToolTipText = SquareRoots Entry 1.
Top = 2400

7. From the Control ToolBox, select a seventh CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the seventh CommandButton:

Name = cmdClear
Caption = &Clear
Left = 3000
ToolTipText = Clears Entry 1, Entry 2, and Result.
Top = 2400

8. From the Control ToolBox, select an eighth CommandButton, and place it on
sfnCalculator. Enter the properties Window, and change the following properties
of the eighth CommandButton:

Name = cmdExit
Caption = E&xit
Left = 4320
ToolTipText = Exits SFCalculator when activated.
Top = 2400

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-8

Creating the Menu
Next, use the Menu Editor to add a single Pull Down Menu that includes as its Menu Options
all eight program commands or functions. This will later allow the creation of the
CommandButton versions.

1. Assign the following properties to the PullDownMenu:

Caption = F&unctions
Name = mnuFunctions

2. To mnuFunctions, add the firstMenuOption, the add function, and assign it the
following properties:

Caption = &Add
Name = mnuAdd

3. Please be sure to use ‘ALT-R’ to designate mnuAdd as a MenuOption of
mnuFunctions rather than as another PullDownMenu.

4. Follow similar steps to create the remaining seven MenuOptions of
mnuFunctions:

a. &Subtract/mnuSubtract,
b. &Multiply/mnuMultiply,
c. &Divide/mnuDivide,
d. &Randomize/mnuRandomize,
e. S&quareRoot/mnuSquareRoot,
f. &Clear/mnuClear,
g. E&xit/mnuExit.

5. Save the program and compile it.

6. Run SFCalculator and check its function.

Provided no errors were made, a fully navigable GUI has been created. The Tab key can be
used to move among the three TextBoxes and the eight CommandButtons. The Arrow keys
allow movement up or down through the eight MenuOptions of the Functions
PullDownMenu.

Code Behind the GUI
Now, enter the following code, recompile, and then run SFCalculator.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-9

Code for SFCalculator
The following is the program code and some comments for the Six-Function Calculator,
SFCalculator.

'Declare global variables.
Dim varNumber1, varNumber2, varResult As Variant
Dim strMsg As String

'Execute the Menu-Option version of the Add function if
and when the user activates it, summing Entry #1 and Entry
#2.
Private Sub mnuAdd_Click()
varResult = varNumber1 + varNumber2
txtResult = varResult
txtResult.SetFocus
End Sub

'Execute the Command-Button version of the Add function
if and when the user activates it, summing Entry #1 and
Entry #2.
Private Sub cmdAdd_Click()
varResult = varNumber1 + varNumber2
txtResult = varResult
End Sub

'Execute the Menu-Option version of the Subtract function
if and when the user activates it, subtracting Entry #2 from
Entry #1.
Private Sub mnuSubtract_Click()
varResult = varNumber1 - varNumber2
txtResult = varResult
txtResult.SetFocus
End Sub

'Execute the Command-Button version of the Subtract
function if and when the user activates it, subtracting Entry
#2 from Entry #1.
Private Sub cmdSubtract_Click()
varResult = varNumber1 - varNumber2
txtResult = varResult
End Sub

Private Sub mnuMultiply_click()
varResult = varNumber1 * varNumber2
txtResult = varResult
txtResult.SetFocus

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-10

End Sub

Private Sub cmdMultiply_click()
varResult = varNumber1 * varNumber2
txtResult = varResult
End Sub

'Divide Entry #1 by Entry #2.
Private Sub mnuDivide_click()
If varNumber2 = 0 Then
strMsg = MsgBox("Please do not try to divide by zero!")
txtEntry2.SetFocus
Exit Sub 'Error trapping
End If
varResult = varNumber1 / varNumber2
txtResult = varResult
txtResult.SetFocus
End Sub

Private Sub cmdDivide_click()
If varNumber2 = 0 Then
strMsg = MsgBox("Please do not try to divide by zero!")
txtEntry2.SetFocus
Exit Sub
End If
varResult = varNumber1 / varNumber2
txtResult = varResult
End Sub

'Execute the Menu-Option version of Randomize when and
if the user activates it, thereby generating two large random
numbers and assigning them to Entry #1 and Entry #2.
Private Sub mnuRandomize_click()
Randomize
varNumber1 = Int(Rnd(9999999) * 1000000) + 1
varNumber2 = Int(Rnd(9999999) * 1000000) + 1
txtEntry1 = varNumber1
txtEntry2 = varNumber2
End Sub

'Execute the Command-Button version of Randomize when
and if the user activates it, thereby generating two large
random numbers and assigning them to Entry #1 and Entry
#2.
Private Sub cmdRandomize_click()
Randomize
varNumber1 = Int(Rnd(9999999) * 1000000) + 1

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-11

varNumber2 = Int(Rnd(9999999) * 1000000) + 1
txtEntry1 = varNumber1
txtEntry2 = varNumber2
End Sub

'Execute the Menu-Option version of the SquareRoot
function when and if the user activates it, producing the
square root of Entry #1 only.
Private Sub mnuSquareRoot_Click()
varResult = Sqr(varNumber1)
txtResult = varResult
txtResult.SetFocus
End Sub

'Execute the Command-Button version of the SquareRoot
function when and if the user activates it, producing the
square root of Entry #1 only.
Private Sub cmdSquareRoot_Click()
varResult = Sqr(varNumber1)
txtResult = varResult
End Sub

'Execute the Menu-Option version of the Clear function
when and if the user activates it, thereby reinitializing the
variables and the three TextBoxes.
Private Sub mnuClear_Click()
varNumber1 = 0
varNumber2 = 0
varResult = 0
txtEntry1 = 0
txtEntry2 = 0
txtResult = 0
End Sub

'Execute the Command-Button version of the Clear function
when and if the user activates it, thereby reinitializing the
variables and the three TextBoxes.
Private Sub cmdClear_Click()
varNumber1 = 0
varNumber2 = 0
varResult = 0
txtEntry1 = 0
txtEntry2 = 0
txtResult = 0
End Sub

'Execute the Menu-Option version of the Exit function when

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-12

and if the user activates it, thereby exiting the program.
Private Sub mnuExit_Click()
varNumber1 = 0
varNumber2 = 0
Unload Me
End Sub

'Execute the Command-Button version of the Exit function
when and if the user activates it, thereby exiting the
program.
Private Sub cmdExit_Click()
varNumber1 = 0
varNumber2 = 0
Unload Me
End Sub

'Validate that Entry #1 is numeric. If it is not, then warn
the user, and return input focus to Entry #1.
Private Sub txtEntry1_lostfocus()
If IsNumeric(txtEntry1.Text) = False Then
strMsg = MsgBox("Please enter your first number.")
txtEntry1.SetFocus
End If
varNumber1 = Val(txtEntry1.Text)
End Sub

'Validate that Entry #2 is numeric. If it is not, then warn
the user, and return input focus to Entry #2.
Private Sub txtEntry2_lostfocus()
If IsNumeric(txtEntry2.Text) = False Then
strMsg = MsgBox("Please enter your second number.")
txtEntry2.Refresh
txtEntry2.SetFocus
End If
varNumber2 = Val(txtEntry2)
End Sub

'Upon loading the SFCalculator, initialize variables.
Private Sub sfnCalculator_load()
varNumber1 = 0
varNumber2 = 0
varResult = 0
End Sub

Check for entry errors, recompile and run SFCalculator.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-13

Exploring the Accessibility of SFCalculator

The SFCalculator has been developed to demonstrate the application of the Section 508
provisions, specifically the Software Applications and Operating Systems provisions, 36 CFR
1194.21(a)-(l). The following discussion identifies how the various provisions apply and
have been implemented in the SFCalculator program.

Application of the 1194.21 Provisions

Keyboard Access & Object Information, §1194.21(a) & (d)
The first Technical Provision, 1194.21(a) applies to providing keyboard functionality to
programs.

Keyboard Access:

(a) When software is designed to run on a system that has a keyboard, product functions
shall be executable from a keyboard where the function itself or the result of performing a
function can be discerned textually.

For example, when developing software to run on PCs, at least one alternative keyboard
method for any function must be available, if that function or its result can be identified with
text, (e.g., a screen reader or speech-recognition system). Note that (a) has Technical
Provision (d) as a prerequisite:

Object Information:

(d) Sufficient information about a user interface element including the ident ity, operation
and state of the element shall be available to assistive technology. When an image
represents a program element, the information conveyed by the image must also be
available in text.

However, using the keyboard to execute commands without knowing what those commands
are would be pointless; hence, the importance of (d). Therefore the discussion of provision
(d) is included in the context of (a) in this section.

In exploring SFCalculator, three alternative keyboard methods of executing the va rious
functions will be demonstrated, as well as two methods of obtaining the results. To be sure,
none of the keyboard methods preclude using the mouse to operate SFCalculator.

While exploring the remainder of this keyboard example only the keyboard and not the mouse
should be used. In addition, if available, using a screen reader will increase the benefit of the
example.

Tabbing
One keyboard method used is tabbing. Tab around from Entry 1 until the highlight returns to
Entry 1. Along the way, reverse direction by pressing ‘Shift-Tab,’ and then resume the
forward direction to Entry 1. (Note that the Enter key must be pressed to execute the selected

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-14

function.)

For purposes of this discussion, there are two points to note. First, there is a definitive
keyboard means of accessing and executing the program functions, at least those on the form,
and also accessing the results. Second, as when moving from control to control, if a screen
reader was used, the screen reader identified each control with a unique text label, and the
result of any function executed was available via text. As mentioned above, the first and
second conditions are related; keyboard access to SFCalculator functions wouldn’t make
sense without knowing what those functions were. Meeting these two conditions complies
with requirements (a) and (d).

So, what in our development of SFCalculator enabled these accessibility features? First, the
Common Control Components, that VB provided, were used. A benefit of these
programming components is that important information about them is available to the OS via
the Windows Application Program Interface (Win32API), and, in turn, that information is
available to assistive technology (e.g., screen readers or speech-recognitions systems). In
other words, accessibility features or the potential for them is intrinsic to these components.
(If certain properties of controls are not set or defaulted to particular values, then some
accessibility features are not effective.) Second, in order to use the keyboard method of
tabbing, the TabStop property must be set to True, thereby informing the OS and, in turn, the
assistive technology that the given control can be tabbed to. The _Click event informs the OS
that the given control can be activated via clicking the mouse or pressing the Enter key.
Third, each control that was tabbed to is uniquely identified because it was given a unique text
value to its Caption property, in the case of the CommandButtons and of the MenuOptions,
had associated Labels to the three TextBoxes and set unique text values to their Caption
properties.

To illustrate the power of TabStop and a violation of (a), set TabStop to False for txtEntry1.
(There wouldn’t be a violation if there were at least one enabled keyboard method of
accessing and using Entry 1.) Recompile and run SFCalculator. Now notice that Entry 1 or
txtEntry1 cannot be tabbed to. (For that matter, it cannot be accessed via its AccessKey,
‘ALT-1.’ See the second keyboard method below. However the AccessKeys for the
CommandButtons do work even when TabStop is disabled.) One can, however, access Entry
1 via clicking the mouse over the edit area.

Now, set TabStop to False for the remaining TextBoxes and CommandButtons. Recompile
and run SFCalculator. Navigation by tabbing is now disabled. Since keyboard access and use
any of the three TextBoxes is not possible, SFCalculator violates Technical Provision (a) and
thus Section 508. Before continuing, be sure to return TabStop to True for every control.

Temporarily remove the text from Caption for cmdAdd, lblEntry1, lbl, Entry2, and lblResult.
By doing so, Technical Provisions (d) and (a) are violated. Tabbing is possible from TextBox
to TextBox to the Add CommandButton and it is even possible to execute the Add function
by pressing Enter, the lack of text identifiers for these controls renders keyboard access to and
use of these elements difficult and incomplete. Without trial and error, the proper functions of
the unidentified TextBoxes and the CommandButton are not known. Before continuing,
reenter the text values for cmdAdd, lblEntry1, lblEntry2, and lblResult.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-15

AccessKeys
A second keyboard method uses AccessKeys. Navigate the entire form with AccessKeys,
instead of tabbing. Press the following keystrokes with a few-seconds break between each
execution (ALT-x may be omitted to avoid exiting SFCalculator):

KEYSTROKES ACCESS WHAT PROGRAM COMMAND OR FUNCTION

ALT-2 Entry 2 input field/TextBox

ALT-e Result read-only field/TextBox

ALT-a Add CommandButton

ALT-s Subtract CommandButton

ALT-m Multiply CommandButton

ALT-d Divide CommandButton

ALT-r Randomize CommandButton

ALT-q SquareRoot CommandButton

ALT-c Clear CommandButton

SKIPPING ALT-x Exit CommandButton

ALT-1 Entry 1 input field/TextBox

Thus a second keyboard alternative to a mouse!

For purposes of this discussion, there are two points to note. First, there is a second definitive
and quick keyboard means of accessing and executing any of the program functions and
accessing the results. Second, each program function was accessed or executed, for those
running a screen reader, the screen reader identified each control with a unique text label, and
the result of any function executed was available via text. Meeting these conditions complies
with requirements (a) and (d) as well.

So, what in development of SFCalculator enabled these accessibility features? Besides using
Common Control Components and assigning unique text identifiers to each control (as
described above), the AccessKeys were created by including in each Caption ‘&’ immediately
prior to the designated AccessKey For instance, the Caption for cmdAdd reads ‘&Add,’ thus
designating ‘ALT-A’ as the AccessKey to the Add CommandButton.

Remove the ‘&’ from Caption for all eight CommandBut tons and recompile. Run
SFCalculator. The AccessKeys for the CommandButtons do not work. It is possible,
however, tab to each command and press Enter to activate a given function. If tabbing and no
other keyboard method were available, disabling the AccessKeys would definitely violate (a)
and Section 508. Before continuing, reinsert the ‘&’ for each Caption of the
CommandButtons.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-16

PullDownMenus, MenuOptions, and HotKeys
A third keyboard method is provided using the Functions PullDownMenu to select and
activate any one of the program commands. Explore the Functions PullDownMenu and its
MenuOptions. Use the ALT key to access the MenuBar and the Up and Down Arrow keys to
pull down the Functions menu and to move up and down through the various MenuOptions.
(Using the ALT-U keys is somewhat quicker for activating the Functions PullDownMenu
than using the ALT key and then Enter or Down Arrow. Likewise, from the activated
Functions PullDownMenu, using the various HotKeys, such as ‘a’ for Add or ‘c’ for Clear,
might be quicker than arrowing to the desired option and pressing Enter.) Use the ESC key to
escape from or cancel the menu.

Execute the arrow down from the Add option to the Exit option. By executing the down
arrow once more, Add option is selected, again. Executing an arrow up selects the Exit option
a second time.

Hotkey Navigation
Another navigation method is through the use of Hotkeys. From Function, press ‘r’ to
generate two large random numbers. Return to Function, and press ‘q’ to produce the square
root of the random number in Entry 1.

There are two points to note here. First, there is third method of keyboard use for accessing
and executing program functions and results. Second, arrowing from MenuOption to
MenuOption, while running a screen reader, verbally identifies each control with a unique text
label, and the result of any function executed was available via text. Not surprisingly,
meeting these conditions complies with requirements 1194.21(a) and (d).

What in the development of SFCalculator enabled these accessibility features? Besides the
steps described above, the Menu Editor was used to create mnuFunctions, the Functions
PullDownMenu, and its MenuOptions (e.g., mnuAdd). The Caption property of
mnuFunctions and mnuAdd et al. was given unique text values, including using ‘&’ in the
Caption property to designate a unique mneumonic for quick activation of the given
MenuOption.

Were the ‘&’ removed from Caption for each MenuOption, the Functions could still be used,
moving up or down and pressing Enter on the selected MenuOption. However, ability to
press ‘c’ to activate the Clear command or ‘s’ to execute the Subtract function, would be
disabled.

Choice of Keyboard Methods
So, which keyboard method is prefered? In general, providing all three methods gives
applications the most flexibility for a variety of users. Some keyboard users prefer to tab.
Some rely on AccessKeys for the fastest response. Others are used to using menus. Some
users prefer a combination of methods. Users of speech recognition and users of the mouse
could benefit as well, since they could choose, among the three paths mentioned, their
preferred way of accessing the user interface via their respective input devices, instead of the
keyboard. Many Windows applications exhibit this kind of flexibility (e.g., Microsoft Office
Products).

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-17

Image Identification
Keyboard access to and text identification of application functions and their results are not the
only requirements of Section 508 and not the only accessibility features present in
SFCalculator. Before turning to an exploration and discussion of some more requirements,
notice the second part of Technical Provision (d), namely,

When an image represents a program element, the information conveyed by the image
must also be available in text.

To make the second requirement in (d) applicable to SFCalculator, modify two properties of
cmdClear:

Picture = PathName\PictureName
Style = 1-Graphic

PathName is a placeholder for the name of the drive and path where PictureName is located,
and PictureName is a placeholder for the name of the imaged file being used. If Style is left
to its default, then the image will not become visible during runtime. For our image, use a .gif
named ‘Clear.gif’ – presumably, some bitmap/drawing of ‘Clear.’ (A .bmp image may just as
well be used.)

Recompile and run SFCalculator. The identity of the Clear CommandButton is visually
evident and available to users of assistive technology. Actually, cmdClear’s identity is
visually evident for two reasons (or, it should be): The Clear GIF graphically identifies
cmdClear, and the value of Caption identifies cmdClear with text. If a screen reader is used,
tabbing to cmdClear will read the text, it shouldn’t sound any different than it did before
loading the image. The Caption value of ‘Clear’ not only identifies cmdClear with text, but it
also identifies the image with text that is available to assistive technology. If the text is
removed from Caption, then the Clear CommandButton would still be visually identified by
the Clear image from the Picture property, but it wouldn’t be identified textually nor via many
assistive technology. Tabbing to cmdClear, again, using a screen reader, the best result would
be the identification of ‘button.’ So, by assigning appropriate text to the Caption property of
controls with (or without) images set to Picture and 1-Graphic set to Style, a means of
complying with both parts of Technical Provision (d) has been provided.

Yet, how is text employed to indicate information conveyed by images representing program
functions, but not part of controls with Caption properties? Suppose, instead of using
cmdAdd as a program element for SFCalculator, imgAdd is used. Use an Image control with
some graphical plus sign, ‘Add.bmp,’ as the picture. Since Image controls do not have a
Caption Property, an AccessKey cannot be used to activate it directly, nor could it be labeled
with text. While imgAdd would be graphically identified and sensitive to mouse actions,
therefore it would be, identified via text and sensitive to keyboard and mouse actions by
means of the MenuOption, mnuAdd, as described above.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-18

Accessibility Features, §1194.21(b)
Accessibility Features

(b) Applications shall not disrupt or disable activated features of other products that are
identified as accessibility features, where those features are developed and documented
according to industry standards. Applications also shall not disrupt or disable activated
features of any operating system that are identified as accessibility features where the
application programming interface for those accessibility features has been documented
by the manufacturer of the operating system and is available to the product developer.

Technical Provision (b) consists of two similar requirements and describes two similar
situations. What is the same in both requirements is the moratorium against interfering with
activated and documented accessibility features, and the difference is what the accessibility
feature belongs to, an OS or another application. The first situation is illustrated when an
application interferes with active features of such assistive technology as a screen reader (e.g.,
disabling the announcement of text that appears on a designated control or portion of the
screen). The second situation is illustrated when an application interferes with a Windows
Accessibility Option that has been engaged (e.g., disabling some effects of ‘Use High
Contrast’ Mode).

Interference with accessibility features can be caused in a variety of ways and thus comes in
various forms: One form is keyboard interference, and another is display interference. If an
application uses ‘ALT-1’ to perform a program function and so does the user’s assistive
technology, there would be a good chance of a keyboard conflict. The application wins the
conflict sometimes, while the assistive technology wins other times. When assistive
technology keyboard commands override application keyboard commands, good access and
use of that application can be just as problematic as if an accessibility feature of the assistive
technology were overridden instead. Sure, some assistive technologies include key-bypass
functions, but users of assistive technology shouldn’t have to decrease productivity by using
an extra keystroke that wouldn’t have been necessary had such conflicts not occurred in the
first place. As noted above in our discussion of ‘Keyboard Methods,’ if the users’ ability to
tab is disabled, via disabling the TabStop property, accessibility features of assistive
technology can be disrupted (e.g., not announcing the next control) as well as those of
applications (e.g., not being able to use some AccessKeys, assuming one categorizes
AccessKeys as such features). If the Accessibility Option of ‘Use High Contrast’ is checked,
and an application includes program code that changes some of the GUI to different colors,
then a display conflict likely would be caused. The latter is illustrated in the section on
Technical Provision (g), and the section on Technical Provision (k) illustrates how flashing
objects at a certain frequency can interfere with features of some assistive technology. As
noted in our discussion on ‘Focus,’ Technical Provision (c), using a graphical caret without
simultaneously tracking it with the invisible SystemCaret will disrupt various features of
many assistive technologies. Even certain sizes of fonts can interfere with at least one screen
reader.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-19

Input Focus, §1194.21(c)
Input Focus

(c) A well-defined on-screen indication of the current focus shall be provided that moves
among interactive interface elements as the input focus changes. The focus shall be
programmatically exposed so that assistive technology can track focus and focus changes.

In SFCalculator, as with most Windows applications, the Focus takes different visual forms.
Sometimes it takes the form of the SystemCaret, or the blinking vertical bar that commonly
used for editing (e.g., in Entry 1 and Entry 2). Sometimes it takes the form of a dotted
rectangle that moves Focus from CommandButton to CommandButton when navigating from
one to another (e.g., from cmdAdd to cmdSubtract). Sometimes it takes the form of a moving
mouse, while sometimes it takes the form of a highlighted MenuOption (e.g., mnuDivide).

The SystemCaret is behind these various forms of the Focus. With Win32API calls, the
SystemCaret can be positioned anywhere on the application window, resized and reshaped,
created and destroyed, and turned invisible. Thus, being able to move and track the Focus in
the background. The latter allows developers to use their own graphical version of the Focus
in the foreground while synchronizing it with the SystemCaret in the background. If that
synchronization is absent or implemented unreliably, the assistive technology that relies on
SystemCaret information will likely perform equally or more unreliably. In such a case,
requirement (c) and Section 508 would be violated.

How was this accessibility feature enabled in SFCalculator? The Focus was enabled simply
by using the Common Control Components that shipped with VB. A benefit of these
programming components is that they intrinsically employ the SystemCaret and its related
functions (e.g., getCaretPos and SetCaretPos). By doing so, they provide information vital to
the reliable performance of the application and of certain assistive technology (e.g., screen
readers, magnification software, or speech-recognitions systems).

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-20

Bitmap Images, §1194.21(e)
Bitmap Images

(e) When bitmap images are used to identify controls, status indicators, or other
programmatic elements, the meaning assigned to those images shall be consistent
throughout an application's performance.

Inconsistent use of program elements violates good practices in Programming, Usability, UI
Design, and Accessible Software Design. The consistent use of program elements is
particularly important for accessibility, which is the reason this provision has been included.

For this illustration:

1. Keep the Picture value of ‘Clear.gif,’ as described in the previous section.

2. Below cmdClear, place an Image control with Picture set to ‘Clear.gif., and copy
the code from Sub cmdClear_Click() to Sub imgClear_Click().

3. Recompile and run the program.

The meaning of the images is consistent throughout the running of SFCalculator. Suppose,
however, the two lines that reset txtEntry1 and txtEntry2 are commented out or removed from
Sub imgClear_Click(). When the program is recompiled and run, the meaning of the two
images is not exactly the same. Clearly, the former complies with (e), while the latter violates
it.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-21

Textual Information, §1194.21(f)
Textual Information

(f) Textual information shall be provided through operating system functions for
displaying text. The minimum information that shall be made available is text content,
text input caret location, and text attributes.

All three of these criteria are present in SFCalculator; although, in our previous explorations,
only Text Content was highlighted. Text Content was apparent each CommandButton or
TextBox when it received Focus. It was also conspicuous when entering numbers into Entry
1 or Entry 2.

Text-Input or Caret Position is most obvious when Focus is on a standard TextBox, or,
generically speaking, an input or edit field. It is especially obvious for those who can see or
feel using a Tactile Display; the caret is visible and blinks at a regular rate; and it typically
moves right one character space to indicate the current insertion point. The user of a screen
reader will not hear the caret blink, but she or he will know, at least tacitly, that an insertion
point moves along to the right as he or she types. However, users of screen readers can use
designated keystrokes to determine Caret Position. For example, pressing ALT-DEL with
one popular screen reader will reveal the Caret Position in x,y coordinates.

Text Attributes, at least some of them (e.g., Bold, Italics, common Fonts and rough Size), are
obvious to those who can see them. For example, all of the AccessKeys in SFCalculator have
the Underline attribute. Tab to Entry 1 and select the default text of ‘0,’Highlight is another
attribute of the selected text. (Of course, if the Font is ChineseGothic or the
TimesNewRoman Font is 5 Point in size, most Americans who can see are only going to
realize that the attributes need to be changed favorably.) As with Caret Position, users of
screen readers can use designated keystrokes to determine Text Attributes. For instance,
pressing Insert-F with one popular screen reader will reveal something like ‘Font = MS Sans
Sarif 11 Point’ if the caret is located on text in one of SFCalculator’s TextBoxes.

So, how were these accessibility features enabled in SFCalculator? They were enabled by
using the Common Control Components that shipped with VB. A benefit of these
programming components is that important information about them is available to the OS via
Win32API, and, in turn, that information is available to assistive technology (e.g., screen
readers, magnification software, or speech-recognitions systems). Inparticular, these
components intrinsically make information about Text Content, Caret Position, and Text
Attributes available via the Win32API and thus to assistive technology. For example, all the
standard VB controls employed in SFCalculator utilize the SystemCaret and its related
functions (e.g., GetCaretPos and SetCaretPos), thereby indicating Focus and assisting the user
to seamlessly interact with the application.

However, as mention in the section on Focus, there are ways to interfere with these features
and hence ways to violate Technical Provision (f) and Section 508. To recap, one way is to
use a purely graphical caret (a mere look-alike, if you will) without synchronizing the
SystemCaret with the look-alike. (In fact, the bitmap or drawn caret may not look like the
“real” caret.) Without that SystemCaret to track, assistive technology will not work properly.
Another way of interfering would be to employ a non-standard font that didn’t use all the
necessary text character codes recognized by the OS and thus assistive technology.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-22

Even when employing the SystemCaret and standard fonts, certain values of attributes can
interfere with the operation of some assistive technology. For example, at least one screen
reader has provided false information when FontSize was set to a value greater than 15 Point
for Labels. Set FontSize for lblEntry1 to 16 Point and recompile and run SFCalculator. The
screen reader in question correctly read ‘Entry 1 edit zero.’ Tabbing to Entry 2, however, it
incorrectly reads ‘Entry 1 edit zero.’ Even if the screen is refreshed, it consistently
misidentifies Entry 2 as Entry 1. TextBoxes and CommandButtons do not seem to be as
prone to this problem. (This problem has been known to occur in some Outlook and Word e-
mails and documents, respectively.) A FontSize of 8 to 15 Point seems relatively safe, with
10 to 13 Point being optimum.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-23

User Selected Attributes, §1194.21(g)
User Selected Attributes

 (g) Applications shall not override user selected contrast and color selections and other
individual display attributes.

Violating Technical Provision (g) is easily illustrated. Add the following code to
SFCalculator:

Private Sub txtEntry1_GotFocus()
Me.BackColor = vbRed
txtEntry1.BackColor = vbRed
txtEntry2.BackColor = vbWhite
txtResult.BackColor = vbBlue
End Sub

Recompile and run SFCalculator, to see the difference. (If need be, a screen reader’s
designated keystrokes can be used to announce the changes in foreground and background
colors.) Even without running the modified SFCalculator, the appended code shows that the
background colors of the Form and the three TextBoxes are red, red, white, and blue,
respectively. How patriotic! Putting aside the fact that txtEntry2 has white text on a white
background, an accessibility barrier has been created for individuals with certain types of
color/contrast-sensitivity. Surely not, two methods are available, the HighContrast Setting
via Accessibility Options can be modified or the Windows Appearance Scheme can be
changed, both in the Windows ControlPanel! Both approaches will now be demonstrated.

Activate the Accessibility Options in the ControlPanel, and check the first option on the
Display Tab, which reads ‘Use High Contrast.’ Activate the OkButton, and return to run our
modified SFCalculator. Guess what? While most of Windows changed its appearance, the
red, red, white, and blue background colors remain in this SFCalculator. (Note that the latter
not only illustrates how to violate Technical Provision (g), but it shows how to violate the
second part of Technical Provision (b).) By unchecking the ‘Use High Contrast’ option and
select ‘High Contrast’ from the Appearance Tab of Display in the ControlPanel, the same
results are found; the background colors remain. If a person couldn’t use applications without
their having High Contrast, like white on black, then they couldn’t use this version of
SFCalculator, as well as any other applications that violated (g) in this fashion.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-24

Animation, §1194.21(h)
Animation

(h) When animation is displayed, the information shall be displayable in at least one non-
animated presentation mode at the option of the user.

In other words, information expressed in an animation, at the choice of the user, needs to be
made available in a non-animated, accessible format. How provision (h) is implement (h) is
left to the programmer’s creativity. One implementation of (h) would be to have an
application provide an option to skip animation, while providing an accessible version of any
information conveyed by that skipped animation. Another implementation of (h) would be to
give the user the option to display the animation while conveying the information in an
accessible, non-animated format.

A simple program, ‘Section 508 Animation,’ will now be created that will illustrate these two
implementations of (h). The code is listed below, but first create the form and other controls,
that is the GUI.

Creating the GUI
1. Enter the VB6 Integrated Development Environment (IDE), and select ‘Standard

EXE.’

2. Enter the properties Window, and change the following properties of the Form:

Name = frmSection508Animation
Caption = Section 508 Animation
Height = 3600
Left = 0
ScaleMode = 3-Pixel
Top = 0
Width = 4800

3. Next, add eight controls to frmSection508Animation and set their properties.

4. From the Control ToolBox, select three CommandButtons, four Labels, and one
TextBox, and place them on frmSection508Animation.

5. For each control, enter their properties Window, and change the following
properties:

Command1
Name = cmdPressMeFirst
Appearance = 0-Flat
Caption = PressMeFirst!
Left = 136
Top = 152

Command2

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-25

Name = cmdPressMeSecond
Appearance = 0-Flat
Caption = PressMeSecond!!
Left = 48
Top = 304

Command3
Name = cmdPressMeFinale
Caption = PressMeFinale!!
Left = 856
Top = 608

Label1
Name = lblLine1
AutoSize = True
Caption =
Left = 48
Top = 40

Label2
Name = lblLine2
AutoSize = True
Caption =
Left = 128
Top = 184

Label3
Name = lblLine3
AutoSize = True
Caption =
Left = 32
Top = 328

Label4
Name = lblStatus
Caption = Status:
Height = 49
Left = 32
Top = 600

Text1
Name = txtStatus
Height = 49
Left = 120
Locked = True
MultiLine = true
Text =

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-26

Top = 600
Width = 721

Code Behind the GUI
Now, enter the code that is listed below ‘Code for Section 508 Animation,’ correct any errors,
compile, and then run it.

Code for Section 508 Animation

'The following is the code for the program, "Section 508
Animation.exe."

'Declare global variables
Dim Shift, intPause, intCounter, intLabelCount, intStep,
intCount1, intCount2 As Integer
Dim blnMoveForward, blnMoveBackward As Boolean
Dim strMsg As String

'Turns the CommandButtons invisible
Private Sub HideCommandButtons()
cmdPressMeFirst.Visible = False
cmdPressMeSecond.Visible = False
cmdPressMeFinale.Visible = False
End Sub

'Creates the yellow-on-blue StatusBar
Private Sub StatusBar()
lblStatus.BackColor = vbBlue
txtStatus.BackColor = vbBlue
lblStatus.ForeColor = vbYellow
txtStatus.ForeColor = vbYellow
lblStatus.FontSize = 10
lblStatus.FontBold = True
End Sub

'Displays this text after PressMeFinale vanishes
Private Sub DisplayStatus4()
txtStatus.Text = "After activating PressMeFinale, 'Section
508' scrolled right off the screen; 'Guide To' scrolled left off
the screen; 'Accessible Software' scrolled right; and
PressMeFinale vanished. To exit, click the close symbol at
the top right, or press 'ALT-F4.'"
End Sub

'Displays this status when PressMeSecond vanishes to the
right

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-27

Private Sub DisplayStatus3()
txtStatus.Text = "You pushed PressMeSecond to the far
right. Slightly below, left of where PressMeSecond stopped,
appeared one-inch, bold white letters, 'Accessible Software.'
PressMeSecond vanished, and PressMeFinale appeared at
the bottom right corner."
cmdPressMeFinale.Visible = True
End Sub

'Displays this status when PressMeFirst returns from its
trip and vanishes
Private Sub DisplayStatus2()
txtStatus.Text = "PressMeFirst quickly moved across the
screen, left to right to left again, leaving a temporary trail,
then vanished. Slightly above where PressMeFirst
traversed, 'Section 508' appeared in one -inch, bold white
letters. Slightly below, 'Guide To' appeared in one-inch,
bold white letters. Slightly below and left of 'Guide To,'
appeared a grey button with black text, 'PressMeSecond!'
Please press SPACEBAR on PressMeSecond until it
vanishes."
End Sub

'Displays this status immediately following the user selecting
the animation path
Private Sub DisplayStatus1()
txtStatus.Text = "On a black background, above and left of
center, appears a grey button with black text,
'PressMeFirst!' Across the bottom of the screen, there's a
blue StatusBar with yellow text, what you're currently
reading. Please click or press ENTER or SPACE on
PressMeFirst to begin the animation."
End Sub

'Displays this status text if skipping animation
Private Sub DisplayStatus0()
txtStatus.Text = "On a black background, starting from the
top, in one-inch bold white letters, appears 'Section 508' (on
line 1), 'Guide To' (on line 2), and 'Accessible Software' (on
line 3). Across the bottom of the screen, is a blue StatusBar
with yellow text, what you're currently reading. To exit,
click the close symbol at the top right, or press 'ALT-F4.'"
End Sub

'Displays the third line of text, "Accessible Software"
Private Sub DisplayLine3()
lblLine3.BackColor = vbBlack

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-28

lblLine3.ForeColor = vbWhite
lblLine3.FontBold = True
lblLine3.FontName = "Times new Roman"
lblLine3.FontSize = 72
lblLine3.Caption = "Accessible Software"
End Sub

Private Sub DisplayLine2()
lblLine2.BackColor = vbBlack
lblLine2.ForeColor = vbWhite
lblLine2.FontBold = True
lblLine2.FontName = "Times new Roman"
lblLine2.FontSize = 72
lblLine2.Caption = "Guide To"
End Sub

Private Sub DisplayLine1()
lblLine1.BackColor = vbBlack
lblLine1.ForeColor = vbWhite
lblLine1.FontBold = True
lblLine1.FontName = "Times new Roman"
lblLine1.FontSize = 72
lblLine1.Caption = "Section 508"
End Sub

'Pause subroutine, used to slow annimation
Private Sub Pause()
For intPause = 1 To 75000
Next intPause
End Sub

'Initiates movement of text
Private Sub cmdPressMeFinale_Click()
Call Disappear
End Sub

'Upon each press of SpaceBar, moves PressMeSecond
slightly right
Private Sub cmdPressMeSecond_KeyDown(KeyCode As
Integer, Shift As Integer)
If KeyCode = vbKeySpace And Shift = 0 Then
If blnMoveForward = True Then
intCount1 = intCount1 + intStep
cmdPressMeSecond.Left = intCount1
If intCount1 >= 700 Then
If intLabelCount = 2 Then
Call HideCommandButtons

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-29

Call DisplayLine3
Call DisplayStatus3
intLabelCount = 3
End If
blnMoveForward = False
blnMoveBackward = True
intCount2 = intCount1
End If
End If
End If
End Sub

'Upon one press of SpaceBar or Enter, sends PressMeFirst
zooming to the right and back, leaving a temporary trail
Private Sub cmdPressMeFirst_Click()
SendKeys ("{ENTER}")
Pause
If blnMoveForward = True Then
intCount1 = intCount1 + intStep
cmdPressMeFirst.Left = intCount1
If intCount1 >= 500 Then
If intLabelCount = 0 Then
Call DisplayLine1
intLabelCount = 1
End If
blnMoveForward = False
blnMoveBackward = True
intCount2 = intCount1
End If
End If
If blnMoveBackward = True Then
intCount2 = intCount2 - intStep
cmdPressMeFirst.Left = intCount2
If intCount2 <= 40 Then
If intLabelCount = 1 Then
Call DisplayLine2
intLabelCount = 2
End If
blnMoveForward = True
blnMoveBackward = False
intCount1 = intCount2
cmdPressMeFirst.Visible = False
cmdPressMeSecond.Visible = True
cmdPressMeSecond.SetFocus
End If
End If
Call DisplayStatus2

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-30

End Sub

'Executes animated vanishing act of "Section 508 Guide To
Accessible 'Software"
Private Sub Disappear()
Call DisplayStatus4
For intCounter = lblLine1.Left To 1100
Pause
lblLine1.Move (intCounter)
Next intCounter
For intCounter = lblLine2.Left To -500 Step -1
Pause
lblLine2.Move (intCounter)
Next intCounter
For intCounter = lblLine3.Left To 1050
Pause
lblLine3.Move (intCounter)
Next intCounter
cmdPressMeFinale.Visible = False
End Sub

'Prepares form for interactive animation, and presents user
with a choice...
Private Sub YesAnimation()
cmdPressMeSecond.Visible = False
cmdPressMeFinale.Visible = False
strMsg = MsgBox("Do you wish to display a StatusBar that
will convey the animation's information, but in static text?",
vbYesNo)
If strMsg = vbYes Then
Call StatusBar
Call DisplayStatus1
End If
If strMsg = vbNo Then
txtStatus.Visible = False
lblStatus.Visible = False
End If
End Sub

'Conveys the informational content of the animation path,
without using animation
Private Sub NoAnimation()
Call HideCommandButtons
Call DisplayLine1
Call DisplayLine2
Call DisplayLine3
Call StatusBar

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-31

Call DisplayStatus0
End Sub

'Presents the user with a choice...
Private Sub AnimationOrNot()
strMsg = MsgBox("Would you like to skip the animation
(Yes/No)?", vbYesNo)
If strMsg = vbYes Then Call NoAnimation
If strMsg = vbNo Then Call YesAnimation
End Sub

'Initializes some variables and prepares the form
Private Sub Form_Load()
intLabelCount = 0
intStep = 3
intCount1 = cmdPressMeFirst.Left
intCount2 = intCount1
blnMoveForward = True
blnMoveBackward = False
frm508Animation.WindowState = vbMaximized
frm508Animation.BackColor = vbBlack
Call AnimationOrNot
End Sub

Exploring and Running Section 508 Animation
When the program run, the user is prompted to choose between skipping the animation and
not skipping the animation. Do not skip it the first time. When the user chooses the
animation path, they are given the option of having the animation display without or with a
StatusBar that will describe the animation and its information in a static, textual version.

For those of us who can see well enough, the scene should be clear with a glance. Those
using a screen reader, should hear something like ‘PressMeFirst Button.’ If they tab, they
should hear text that informs them as to what’s present on the screen and what to do. When
activating PressMeFirst and PressMeSecond then, by tabbing to the StatusBar, updated
information about the animation is heard. The same is true about the StatusBar when the
SpaceBar is used to push PressMeSecond far to the right, so that it vanishes, and shortly after
being activated PressMeFinale.

This first path illustrates one way of implementing Technical Provision (h) (the second
implementation method mentioned above). The option was given to run the animation
without or with a non-animated presentation of the animation’s information. When the latter
is chosen, such a presentation mode was available, along with the interactive animation. If
the former path is chosen, the interactive animation and no StatusBar is presented, which
would not be fully accessible to those without usable sight.

Rerun Section 508 Animation. This time, choose the shortest path to the animation’s
information, at least the essential information. When choosing to skip the animation, the three
lines of large static text and the StatusBar describing the scene are presented. Arguably, the

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-32

essential information conveyed by the animation, when run, was the three lines of large, bold
white text. The interactive components and the disappearing lines of text were essential
elements and events for the animation, because they drove the animation, but not its basic
information.

This shorter path illustrates another way of implementing Technical Provision (h) (the first
implementation method mentioned above). The option to skip the animation is available.
When animation is skipped, the basic animation information was conveyed to us textually,
that is, in an accessible, non-animated presentation mode.

So, how are these two ways of implementing requirement (h) provided? No especially
challenging development was required. First, the GUI is created using standard controls with
built- in accessibility, that is, information about them available to assistive technology via the
Win32API. Only minor problems were experienced in developing the GUI. Hearing the
Caption of lblStatus if Height of it or txtStatus was set higher than 49 was impaired when
using one popular screen reader, and the Height and Width of txtStatus had to be adjusted to
accommodate different content. Second, from the code, it is discerned that relatively
straightforward programming was employed. The two vbYesNo MsgBoxes and four If-Thens
provide and manage the user options and user’s decisions, respectively. The StatusBar and
DisplayStatus procedures provide and manage the accessible StatusBar and its content.
Basically, these two general parts provide the application features required by (h) and Section
508. The rest of the code generates the interactive animation or is dressing.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-33

Color Coding, §1194.21(i)
Color Coding

(i) Color coding shall not be used as the only means of conveying information, indicating
an action, prompting a response, or distinguishing a visual element.

In other words, this Technical Provision requires that, when using color as an indicator, use it
in conjunction with a textual indicator.

To illustrate compliance with (i) and then a violation of (i), modify SFCalculator twice. First,
in the blocks of code for mnuDivide and cmdDivide, insert the following line of code
immediately following the If-Then line:

txtEntry2.BackColor = vbRed
Immediately following the End-If line, insert in both blocks the following line of code:

txtEntry2.BackColor = vbWhite
Recompile and run SFCalculator. When trying to divide by zero, not only do a warning
message delivered, but also a secondary warning indicator is received in the form of the
BackColor red of Entry 2. Once the division is changed to divide by a non-zero number, the
Divided-by-Zero red warning vanishes from Entry 2.

Second, in the same two blocks of code, temporarily comment out the line of code that causes
the MessageBox warning. Then recompile and run SFCalculator. Now, when trying to divide
by zero, all that occurs is Entry 2 turns red and receives focus. If the user were color blind, he
or she wouldn’t benefit from any color indicator. Even if the user weren’t color blind, some
users wouldn’t necessarily be able to infer the significance of red without a simple textual
warning.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-34

Color and Contrast, §1194.21(j)
Color and Contrast

(j) Color-coding shall not be used as the only means of conveying information, indicating
an action, prompting a response, or distinguishing a visual element.

For some people, the use of color is a matter of preference. For others it is a matter of
necessity. Some people with vision impairments require high contrast color schemes while
others need to have softer, unsaturated colors and less contrast so as not to suffer a visual
“white out.” People who suffer eyestrain after even short sessions on the computer find that
different color and contrast settings ease the discomfort. The solution to this diversity of
requirements is to provide a range of foreground and background color choices. This
provision does not require software to provide color and contrast settings. However, products
that do provide color and contrast an adjustment, this provision requires a variety of color
combinations producing a range of contrast levels.

For most applications support of the operating system color choices for text and
background colors will meet this requirement. If the application is not able to inherit
user selected system-wide foreground and background color choices, then provide
viewing choices that set both background and foreground text colors. At a minimum,
use the following 16 color pallet or an equivalent is recommended.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-35

Color Name

(Color names are
per HTML 4.0)

Color RGB Value

(Hexadecimal)

1 Black #000000

2 Blue #0000FF

3 Lime #00FF00

4 Red #FF0000

5 Aqua #00FFFF

6 Fuchsia #FF00FF

7 Yellow #FFFF00

8 White #FFFFFF

9 Navy #000080

10 Green #008000

11 Maroon #800000

12 Teal #008080

13 Purple #800080

14 Olive #808000

15 Grey #808080

16 Silver #C0C0C0

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-36

Flicker Rate, §1194.21(k)
Flicker Rate

(k) Software shall not use flashing or blinking text, objects, or other elements having a
flash or blink frequency greater than 2 Hz and lower than 55 Hz.

Technical Provision (k) is intended to prevent applications from inducing seizures by users
prone to having them. By complying with (k), interference with normal operations of
assistive technology might be prevented as well. Rather than illustrating what can be added to
our programs to make our applications more accessible, the following illustrates what should
not be included. This application would be in violation of (k) and Section 508.

Blinker is a simple illustration of the kinds of flashing objects that should not include in
applications. When the blink rate is between two and fifty-five times per second seizures may
be induced in people who are sensitive to photo- induced seizures. An element with a lower or
higher blink rate would be in compliance. Before entering the code below ‘Code for Blinker,’
create the GUI.

Creating the GUI
Start a new Standard.Exe, and set the Name property of Form1 to frmBlinker. On frmBlinker,
place Label1 left of center, Text1 in the center, and Command1, Command2, and Command3
left to right below Label1 and Text1. In order assign them, the following Name and Caption
values, respectively: lblBlinkingTextBox/Blinking TextBox, txtBlinker,
cmdIncreaseBlinkRate/&Increase Blink Rate, cmdDecreaseBlinkRate/&Decrease Blink Rate,
and cmdExit/E&xit. Check for erros, compile, and test the GUI.

Code Behind the GUI
Enter the code listed below, check for errors, recompile, and run Blinker.

Code for Blinker
'What follows is the code for the Blinker program. Blinker
prompts the user to flash a TextBox between black and
white and from zero to one-hundred times per second.

'Declare global variables.
Dim intBlinkRatePerSecond, intCount As Integer
Dim strWarning As String

'Flashes txtBlinker black and white every Timer1.interval
Private Sub Timer1_Timer()
If intCount = 1 Then
txtBlinker.BackColor = vbWhite
txtBlinker.ForeColor = vbBlack
End If
If intCount = 0 Then
txtBlinker.BackColor = vbBlack
txtBlinker.ForeColor = vbWhite
End If

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-37

intCount = intCount Xor 1
End Sub

'Increases the blink rate to no more than one hundred when
activated
Private Sub cmdIncreaseBlinkRate_Click()
If intBlinkRatePerSecond < 100 Then
intBlinkRatePerSecond = intBlinkRatePerSecond + 1
If intBlinkRatePerSecond > 0 Then Timer1.Interval = 500 /
intBlinkRatePerSecond
If intBlinkRatePerSecond = 0 Then Timer1.Interval = 0
txtBlinker.Text = intBlinkRatePerSecond
End Sub

'Decreases the blink rate to no less than zero when activated
Private Sub cmdDecreaseBlinkRate_Click()
If intBlinkRatePerSecond > 0 Then intBlinkRatePerSecond
= intBlinkRatePerSecond - 1
If intBlinkRatePerSecond > 0 Then Timer1.Interval = 500 /
intBlinkRatePerSecond
If intBlinkRatePerSecond = 0 Then Timer1.Interval = 0
txtBlinker.Text = intBlinkRatePerSecond
End Sub

'Exits Blinker when activated
Private Sub cmdExit_Click()
Unload Me
End Sub

'Initializes variables and instructs/warns user about Blinker
Private Sub Form_Load()
intCount = 0
intBlinkRatePerSecond = 0
Timer1.Interval = intBlinkRatePerSecond
txtBlinker.Text = intBlinkRatePerSecond
strWarning = MsgBox("You can use the Increase (ALT-I)
and Decrease (ALT-D)Buttons to flash the TextBox from
zero to one-hundred times per second. Pressing ALT-X will
exit Blinker. If a blink rate between two and fifty-five hertz
will cause a viewer a ceasure, DO NOT increase the blink
rate above two or below fifty-five! Also, a blink rate higher
than nine may interfere with announcing of the
CommandButtons by some screen readers.")
End Sub

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-38

Exploring Blinker
When Blinker is run, the user is given some instructions and warnings, and then an easy-to-
use interface. The user can tab and use Enter, click, or use AccessKeys to access and activate
the three CommandButtons. The focus can be placed on the TextBox using the mouse or by
tabbing to it. The blink rate can be increased and decreased. Now, try the entire gambit of
values while using whatever assistive technology is available (being sure to tab around
occasionally between changes). Certain blink rates interfere with some assistive technology.

Blinker primarily an illustration of non-compliance with Section 508,

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-39

Electronic Forms, §1194.21(l)
Electronic Forms

(l) When electronic forms are used, the form shall allow people using assistive technology
to access the information, field elements, and functionality required for completion and
submission of the form, including all directions and cues.

Technical Provision (l) requires that forms be compatible with assistive technology and be
fully accessible and usable by users of such technology. If keyboard alternatives are provided
for navigating through a form, and all elements of the form, including fields to be completed,
have sufficiently descriptive text labels located near them, the form is more likely to meet this
requirement. Note that, where applicable, no part of the form must violate any of the other
requirements, (a)-(k); again, all Technical Provisions must be met for a product to be
compliant with Section 508, unless 36 CFR 1194.5 (‘Equivalent Facilitation’) applies. For
example, if (l) is met, but a permanent 30-Hz blinking object displays or it has unchangeable
colors somewhere on the form, then the form would be non-compliant in either case.

What is an ‘electronic form’? Presumably, it is a software-based version of a paper form; one
or more sheets of paper with information/instructions/questions and requiring completion by
providing certain information and, once completed, submission. A problem with this working
definition is that some forms do not have paper versions, or, if they do, benefits of the
electronic versions are lost switching to the paper version. Many electronic forms perform
input validation, are very interactive, and, in principle, can be completed and submitted by
people with or without disabilities; paper forms do not have these advantages. Take the
simple Windows Search Dialogue or any Search form on the Web, as an example. The
Windows Search Dialogue provides information/instructions and requires the user to provide
input and to submit it in order for it to perform a search; and the same is for web Search
forms. If printed out, the paper counterparts are not serachable. Certainly, there are forms
that are completed, printed, and mailed, but electronic forms are not limited to having paper
counterparts. Accordingly, forms are ubiquitous in the computer world, on the desktop and
via the Web. A simple OpenFile or SaveFile Dialogue counts as a form, and so does an
online long version of the 1099.

Forms are so varied and so many that providing a guide for creating but a couple is beyond
the scope of this document. There are many form-specific software packages as well, and
these require their own guides. Some of the guides even address creation of forms with
accessibility in mind. The following illustrations create two similar, simple forms, one with
VB and the other with Word XP, both of which comply with Technical Provision (l). Both
forms have the same name, ‘Contact Information Form.’

Creating the VB Vers ion
Create the VB version of ‘Contact Information Form.’ As usual, begin with creating the GUI.
In fact, creating the GUI is the majority of labor behind creating the ‘Contact Information
Form’. The GUI pretty much is the form. The code provides some instructions and enables
the user to print or exit the form.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-40

Creating the GUI
1. Enter VB, and choose a Standard.Exe.

2. Set the following properties of Form1:

Name = frmContactInformation
Caption = Contact Information Form
Height = 8340
Left = -75
Top = -270
Width = 8145

3. From the Control ToolBox, place twelve Labels, twelve TextBoxes, and two
CommandButtons onto frmContactInformation.

4. Deposit the controls in the following order, and assign them the following
property values:

Label1
Name = lblFirstName
AutoSize = True
Caption = &First Name
Height = 195
Left = 720
Top = 360

Text1
Name = txtFirstName
Height = 405
Left = 720
Text =
Top = 720
Width = 1935

Label2
Name = lblMiddleName
AutoSize = True
Caption = &Middle Name
Height = 195
Left = 2880
Top = 360

Text2
Name = txtMiddleName
Height = 405
Left = 2880
Text =
Top = 720

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-41

Width = 1935

Label3
Name = lblLastName
AutoSize = True
Caption = &Last Name
Height = 195
Left = 5040
Top = 360

Text3
Name = txtLastName
Height = 405
Left = 5040
Text =
Top = 720
Width = 1935

Label4
Name = lblAddressLine1
AutoSize = True
Caption = Address Line &1
Height = 195
Left = 720
Top = 1560

Text4
Name = txtAddressLine1
Height = 405
Left = 1800
Text =
Top = 1560
Width = 4935

Label5
Name = lblAddressLine2
AutoSize = True
Caption = Address Line &2
Height = 195
Left = 720
Top = 2160

Text5
Name = txtAddressLine2
Height = 405
Left = 1800
Text =

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-42

Top = 2160
Width = 4935

Label6
Name = lblCity
AutoSize = True
Caption = Village/Town/&City
Height = 195
Left = 720
Top = 2880

Text6
Name = txtCity
Height = 405
Left = 720
Text =
Top = 3240
Width = 1935

Label7
Name = lblState
AutoSize = True
Caption = &State
Height = 195
Left = 2880
Top = 2880

Text7
Name = txtState
Height = 405
Left = 2880
Text =
Top = 3240
Width = 1935

Label8
Name = lblCountry
AutoSize = True
Caption = C&ountry
Height = 195
Left = 5040
Top = 2880

Text8
Name = txtCountry
Height = 405
Left = 5040

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-43

Text =
Top = 3240
Width = 1935

Label9
Name = lblZipCode
AutoSize = True
Caption = &Zip Code
Height = 195
Left = 720
Top = 3960

Text9
Name = txtZipCode
Height = 405
Left = 720
MaxLength = 9
Text =
Top = 4320
Width = 1095

Label10
Name = lblHomePhone
AutoSize = True
Caption = &Home Phone #
Height = 195
Left = 2880
Top = 3960

Text10
Name = txtHomePhone
Height = 405
Left = 2880
MaxLength = 10
Text =
Top = 4320
Width = 1095

Label11
Name = lblWorkPhone
AutoSize = True
Caption = &Work Phone #
Height = 195
Left = 5040
Top = 3960

Text11

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-44

Name = txtWorkPhone
Height = 405
Left = 5040
MaxLength = 10
Text =
Top = 4320
Width = 1095

Label12
Name = lblGlobalID
AutoSize = True
Caption = &Global Identification #
Height = 195
Left = 720
Top = 5040

Text12
Name = txtGlobalID
Height = 405
Left = 2400
Text =
Top = 5040
Width = 2895

Command1
Name = cmdPrint
Caption = &Print
Left = 3840
Top = 6360

Command2
Name = cmdExit
Caption = E&xit
Left = 5400
Top = 6360

5. Correct any errors, compile, and run the form.

6. Here’s the test. Try it with some assistive technology. A screen reader will read
the name of each field as it is tab or shift-tab to, that is, as it receives Focus.
Other assistive technology should be compatible with the form as well.

The Print and Exit functions have not been implemented yet. Enter the code to make them
work and to provide the user some instructions.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-45

Code for Contact Information Form
'What follows is the code for the program, "Contact
Information Form.exe"

‘Exits and unloads the program when activated
Private Sub cmdExit_Click()
Unload Me
End Sub

‘Prints the form when activated
Private Sub cmdPrint_Click()
frmContactInformation.PrintForm
End Sub

‘Displays instructions upon startup
Private Sub Form_Load()
MsgBox "Please complete the following Contact
Information Form. Each field has a corresponding
AccessKey (e.g., ALT-f for Firstname, ALT-1 for Address
line 1, ALT-h for Home Phone #, etc.). Otherwise, use the
mouse or TAB to navigate from field to field. There are two
CommandButton AccessKeys, ALT-p to Print the form and
ALT-x to Exit."
End Sub

Exploring the Form
Correct any errors, recompile, and run Contact Information Form. The form should work
better than before, for the Print and Exit CommandButtons have code to drive them. Again,
test it with and without assistive technology.

As discussed in previous sections, there are three general reasons why this form is accessible.
First, standard controls are employed. Second, every control has a text identifying it; the
TextBoxes have corresponding Labels that have appropriate Caption values, and the
CommandButtons have appropriate Caption values. Third, the Labels are either vertically or
horizontally aligned with the top left corners of their corresponding TextBoxes.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 1-46

Creating the Word XP Form
Creating a simple 508-compliant form in Word XP can be done in a few steps. (Refer to
‘Contact Information Form.doc’ for the sample Word form and more details about the form.)

1. Open a blank, new Word document.

2. Activate the Forms ToolBar on the View Pull-Down Menu.

3. On the first line, center justify and enter the title, ‘Contact Information Form.’

4. On the fourth line, enter the first field label, ‘First name.’

5. On the next line, right under ‘First name,’ insert the first EditBox or
TextFormField; both terms refer to the same edit-field control that is found on the
Forms ToolBar.

6. Press Enter twice.

7. Repeat the third through fifth steps for the remaining field labels (i.e., ‘Middle
name,’ ‘Last name,’ ‘Address Line #1’ … ‘Global Identification’). Each field
label should appear on the line above the edit field and two lines below the
previous edit field.

8. On the Tools Pull-Down Menu, activate the Protect Document option; activating
this option allows one to tab from field to field and input, delete, or edit field
contents.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-1

Part 2: Accessibility Features of Software Applications and
Operating Systems
Java, UNIX (Gnome), Microsoft (MSAA)

This section of the training outlines the following information:

• Overview of the Accessibility Features of the Java Software Application

Sun Microsystems Accessibility Program: Developer Information

Resources For Application Developers:

• Designing for Accessibility - This will assist application developers who are currently
not using the Motif toolkit.

• Accessibility Quick Reference Guide – All about accessibility, what it is, why it is
important, tips, and additiona l resources

• Java[tm] Accessibility Quick Tips – Quick tips on how to make Java[tm] applications
accessible

• The Java Tutorial – Accessibility Section - Online tutorial on how to use various
swing features

• Developing Accessible JFC Applications – A shorter companion document to IBM’s
“Accessible Java Programming Guidelines” that focuses on strategies for passing
Java[tm] Accessibility Helper tool tests.

• IBM Guidelines for writing Applications Using 100% Pure Java[tm] - Written for
application developers

• IBM Software Accessibility Checklist
• IBM Java Accessibility Checklist

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-2

JAVA Accessibility Features
(www.java.sun.com)

Java Accessibility is currently broken into two separate packages:

The Java Accessibility API
 A cross platform, toolkit independent API designed to give assistive technologies direct
access to the information in user interface objects and is part of the Java Foundation Classes.
Defines a contract between individual user- interface components that make up a Java
application and an assistive technology that is providing access to that Java application. If a
Java application fully supports the Java Accessibility API, then it should be compatible with,
and friendly toward, assistive technologies such as screen readers, screen magnifiers, etc.
With a Java application that fully supports the Java Accessibility API, no off screen model
would be necessary because the API provides all of the information normally contained in an
off screen model.

The Java Accessibility API package consists of 8 Java programming language interfaces,
and 6 Java programming language classes:

The Java Accessibility Utilities
 In order to provide access to a Java application, an assistive technology requires more than
the Java Accessibility API: it also requires support in locating the objects that implement the
API as well as support for being located into the Java virtual machine, tracking events, etc.
The Java Accessibility utility classes provide this assistance.

The Java Accessibility Utilities are delivered by Sun as a separately downloadable package
for use by assistive technology vendors in their products which provide access to Java
applications running in a Java Virtual Machine. This package provides the necessary support
for assistive technologies to locate and query user interface objects inside a Java application
running in a Java Virtual Machine. It also provides support for installing "event listeners" into
these objects. These event listeners allow objects to learn about specific evens occurring in
other objects using the peer-to-peer approach defined by the delegation event model
introduced in JDK1.1.

This package is still in active development, and is not as fully defined as the Java
Accessibility API. This package is made up of the following major pieces:

Key information about the Java Application(s)
This package contains methods for retrieving key information about the Java application(s)
running in the Java Virtual Machine. This support provides a list of the top- level windows of
all of the Java applications, an event listener architecture to be informed when top level
windows appear (and disappear), and means for locating the window that has the input focus,
locating the mouse position, and inserting events into the system event queue. In order to
provide this support immediately for the JDK1.1 environments, Sun took advantage of an
implementation detail in the Sun reference implementation of the JDK. In the Sun
implementation, the system-wide EventQueue can be replaced with an alternate one. The Java

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-3

Accessibility Utilities provide an alternate system EventQueue in the class
EventQueueMonitor that implements the functionality described previously.

Automatic Loading of Assistive Technologies
In order for an assistive technology to work with a Java application, it needs to be loaded into
the same Java Virtual Machine as the Java application it is providing access to. This is done
by extending the class libraries to look for a special configuration line in the awt.properties
file specifying a list of assistive technology classes to load. This support is in the class
EventQueueMonitor, which is a replacement for the system event queue. As stated above, the
EventQueueMonitor implementation is dependent upon specific details of the Sun reference
implementation of the JDK1.1 Java Virtual Machine, and not on the formal specification.
Because of this, automatic loading of assistive technologies may not work in all JDK1.1
environments. The automatic loading of assistive technologies is part of the JDK1.2
specification, however, so this support will be in all Java Virtual Machines that support
JDK1.2.

Event Support
The Java Accessibility Utilities include three classes for monitoring events in the Java Virtual
Machine. The first class, AWTEventMonitor, provides a way to monitor all AWT events in
all AWT components running in the Java Virtual Machine. This class essentially provides
system-wide monitoring of AWT events, registering an individual listener for each AWT
event type on each AWT component that supports that type of listener. Thus, an assistive
technology can register a "Focused listener" with AWTEventMonitor, which will in turn
register a "Focused listener" with each and every AWT component in each and every Java
application in the Java Virtual Machine. Those individual listeners will funnel the events they
hear about to the assistive technology that registered the listener with AWTEventMonitor in
the first place. Thus, whenever a component gains or loses focus (e.g. the user hits the TAB
key), the assistive technology will be notified.

The second class, SwingEventMonitor, extends AWTEventMonitor to provide additional
support for monitoring the Swing events supported by the Swing components. Since
SwingEventMonitor extends AWTEventMonitor, there is no need to use both classes if you
are using SwingEventMonitor in your assistive technology.

The third class, AccessibilityEventMonitor, provides support for property change events on
Accessible objects. When an assisitive technology requests notification of Accessible
property change events using AccessibilityEventMonitor, the AccessibilityEventMonitor will
automatically register Accessible property change listeners on all the components. In
addition, it will detect when components are added and removed from the component
hierarchy and add and remove the property change listeners accordingly. When an Accessible
property change occurs in any of the components, the AccessibilityEventMonitor will notify
the assistive technology.

AWT Translators
With the release of the Java Foundation Classes (JFC), many developers who were using the
AWT to build the user interfaces of their Java applications will switch to the new Swing
classes in the JFC. Many will also update their existing AWT programs to Swing. Still, a

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-4

significant number of Java applications will remain using some AWT components for
displaying their user interfaces. The Java Accessibility Utilities contain a set of classes which
implement the Java Accessibility API on behalf of AWT components -- in effect translating
for them! These translators work in concert with the support for finding Accessible
components in the first place, which is part of the EventQueueMonitor method
getAccessib leAt. If the object at that location isn't an actual instance of an Accessible, the
getAccessibleAt method looks for a Translator that will implement the Accessible interface
on behalf of that component.

Like much of the rest of the Java Accessibility support, the translator architecture is
completely extensible. Any programmer can create a translator. As long as the user's
environment is configured properly, the Java Accessibility utility classes will automatically
find the new translator and engage it. This means that both mainstream developers and
assistive technology vendors can create and distribute new Accessible Translators, making
formerly inaccessible user interface components accessible in the process.

Sample Source Code
In addition to the utility classes and translator architecture, the Java Accessibility Utilties
includes several example assistive technology programs. The example programs include
programs that monitor AWT and Swing events, a program that fully exercises the Java
Accessibility API for the component underneath the mouse, and a program that traverses the
component hierarchy, displaying the entire hierarchy in tree view.

The Java Accessibility Bridge to Native Code
(www.java.sun.com)
 Java applications run on a wide variety of host operating systems, many of which already
have assistive technologies to provide access to program written in the Java programming
language, they need a bridge between themselves in their native environment(s) and the Java
Accessibility support that is available from within the Java virtual machine (or Java VM).
This bridge, by virtue of the fact that it has one end in the Java VM and the other on the native
platform, will be slightly different for each platform it bridges to. Sun is currently developing
both the Java programming language side of this bridge, and the Win32 side. In cooperation
with assistive technology vendors and the various platform vendors.

In order for existing assistive technologies available on host systems (e.g. Microsoft
Windows, Macintosh, OS/2) to provide access to Java applications, they need some way to
communicate with the Java Accessibility support in those Java applications. The Java
Accessibility Bridge supports that communication. This bridge is a class which contains
"native methods." Part of the code for the class is actually supplied by a DLL on the host
system - Solaris, OS/2, Microsoft Windows, Macintosh, etc. The assistive technology running
on the host (e.g., a Macintosh screen reader) communicates with the Macintosh native DLL
portion of the bridge class, which in turn communicates with the Java Virtual Machine, and
from there to the Java Accessibility utility support and the Java Accessibility API on the
individual user interface objects of the Java application it is providing access to.

For example, in order for a screen reader for Microsoft Windows to provide access to Java
applications running on that system, that screen reader would make calls to the Java

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-5

Accessibility Bridge for Microsoft Windows. If/when a the user launched a Java application,
the bridge would inform the screen reader of this fact. Then the screen reader would query the
bridge about the Java application and the bridge would in turn forward those queries on to the
Java Accessibility Utilities that were loaded into the Java Virtual Machine, and in many cases
on to the individual user interface object that implemented the Java Accessibility API. When
those answers came back to the bridge, the bridge would forward them on to the screen reader
for Microsoft Windows, which would then use the answers to tell the user what was going on
in the Java application

The Pluggable Look and Feel of the Java Foundation Classes
(www.java.sun.com)
 The Java Foundation Classes (or LFC) are a collection of technologies that represent a new
foundation upon which to build Java applications. The Java Accessibility API is one of the
technologies of the JFC. Another is the “Swing” set of user- interface components, which is
built using Pluggable Look and Feel architecture. This architecture separates the
implementation of the user- interface components from their presentation. On a component-
by-component basis, the presentation is programmatically determined and can be chosen by
the user. Instead of a visual presentation, a user could instead choose an audio presentation,
or a tactile (e.g. Braille) presentation, or a combination of the two. With this support, a user
would not need a separate assistive technology product interpreting the visual presentation of
the program on the screen. Instead, the user would have direct access to that program because
it would interact with the user in his/her modality.

How the Swing classes provide a Pluggable Look and Feel
For each component in Swing, there are actually (at least) five Java programming language
objects that are needed to make that Swing component pluggable. These are: the component
itself (e.g., a button); the Java programming language interface that defines the user interface
(e.g., the button's UI); a default implementation of that user interface (e.g., the Basic Button);
a Java programming language interface that defines the model of the component (e.g., the
Button model); and finally, a default implementation of that model (e.g., the Swing Button
model).

For most uses of a given Swing component (e.g., a Button), the programmer doesn't need to
know or care about any Swing object other than the first of the five listed above. The
programmer simply creates a new instance of the first object of the five, and writes code to
interact with it. The others are created automatically based upon the settings on the user's
machine. By default, the choice of which user interface and model to use is made in the user's
preferences files, where an entire "factory" of user- interfaces and models is specified by the
user.

What Swing provides
In order to make it easy to migrate from the user interface classes in the AWT to the new
Swing user interface classes, Swing provides a parallel set of user interface classes to those in
AWT. Each Swing class that has a parallel in the AWT bears a name that is identical to the
AWT name, except that the letter "J" is prepended to it. Otherwise, each parallel user
interface object contains a superset of the public methods and variables of the corresponding

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-6

AWT class. There are roughly 55 user interface building blocks in Swing, including the
common items such as buttons, check boxes, radio buttons, combo boxes, menus, and labels,
as well more sophisticated items such as tooltips, tabbed panes, tree views, table views,
editable text fields, HTML editors, a Color Chooser, a Money Chooser, etc. Each of these
Swing user interface classes fully supports the Pluggable Look and Feel architecture.

Providing Direct Accessibility in Swing
In order to get direct access to a Swing program via a non-mainstream modality (e.g., audio,
Braille, etc.), the user would need a factory containing a set of user interface classes installed
on their system for each of the Swing classes listed above. Then the user would need to
specify that this replacement set be used in the appropriate properties file. Finally, the user
would need to run Swing programs that didn't explicitly bar the use of alternate user interface
factories.

In setting this up, the user has three options: complete replacement of a mainstream user
interface with their alternate one(s); having the mainstream interface and the alternate
interface(s) working simultaneously (e.g., visual and audio) through the use of the special
multi-plexing user interface factory supplied by Sun; or finally, by choosing on a component-
by-component basis which user interface class to use.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-7

UNIX Accessibility (Gnome Accessibility Project)

This section of the training outlines the following:

• Overview of the Gnome Accessibility Project and how it relates the
UNIX operating system

GNOME Accessibility Project: The Problem we are trying to solve
(www.gnome.org)

The goal of the GNOME Accessibility effort is to ensure that people with
disabilities can use the standard GNOME desktop user-environment. There
are three sub-pieces to delivering such a desktop:

1. defining what it means to be accessible
2. ensuring that all applications that comprise the GNOME desktop

conform to that definition of accessibility

building the assistive technologies that people with disabilities use in order to
interact with the GNOME user environment

Breaking Down Barriers with GNOME 2.0
Paving the Way to a New Generation of Accessible Desktop Solutions
(www.gnome.org)
The growing popularity of the GNOME desktop is driving the need for
accessible desktop software for the UNIX and Linux platforms, allowing
organizations to provide functional solutions for their employees with
disabilities. GNOME 2.0 will help you reach these users by providing the
infrastructure you need to quickly build innovative solutions for them. By
providing breakthrough technologies that are very easy to use, you can quickly
integrate support for accessibility in your applications or assistive technology
projects without major architectural changes
The Accessibility Framework integrated into the GNOME architecture delivers
several key benefits:

• Simple- built- in framework means no major architectural changes
required

• Cross-platform – assistive technologies can run on any GNOME-
enabled platform

• Uniform – one standard API across all interface components
• Innovative – an extensible system-wide architecture

Sun Microsystems is leading the way in providing accessibility support in
GNOME, leveraging much of the expertise developed for the Java

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-8

accessibility project. From this expertise has emerged a solid foundation for
allowing developers to write accessible applications from the ground up using
the major components of the Accessibility Framework:

• An Accessibility Toolkit Application Programming Interface (ATK
API) and associated implementation library integrated with the GTK +
2.0 user interface toolkit that provides built- in accessibility support,
enabling developers using GTK + widgets to quickly build accessible
applications

• An Assistive Technology Service Provider Interface (AT SPI) for
developers to interface technologies such as voice command, text-to-
speech, screen readers, and screen magnifiers with GNOME accessible
applications on any UNIX, Linux or other GNOME-established
platform.

User Interface Guidelines for Supporting Accessibility
(www.gnome.org)

When designing your application's GUI, there are a number of simple
guidelines you should follow to ensure that it can be used by as wide an
audience as possible, whether in conjunction with assistive technologies or not.
Don't be fooled into thinking that this is just a case of "making your GUI
usable by people with disabilities", though, and that you shouldn't bother if
you know a disabled person is never going to use your application. Following
these guidelines will improve the overall usability of your application for
everyone who uses it—including you

User Interface Checklist - The User Interface Guidelines for Supporting
Accessibility are summarized in this checklist. When testing an application
for accessibility, you should go through each of th items in the list and note
whether the application passes or fails each test, or does not apply for that
application.

How Accessibility Works in GNOME
(www.gnome.org)

The Accessibility Toolkit (ATK) describes a set of interfaces that need to be
implemented by GUI components to make them accessible. The interfaces are
toolkit- independent-- implementations could be written for any widget set,
such as GTK, Motif or Qt.

The implementation for the GTK widgets is in a module called GAIL
(GNOME Accessbility Implementation Library), which is dynamically
loadable at runtime by a GTK application. Once loaded, those parts of your
application that use standard GTK widgets will have a basic level of

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-9

accessibility, without you having to modify your application at all. (If GAIL is
not loaded, GTK widgets will have a default accessibility implementation that
essentially returns no information, though it nominally conforms to the ATK
API.)

Unlike some accessbility frameworks, GNOME doesn't maintain an off-screen
model of the desktop that is then interrogated by assistive technologies (ATs).
Instead, all the information required by the ATs is provided directly by the
running applications, through a toolkit- independent Service Provider Interface
(SPI). The SPI provides a means for UNIX-based ATs, such as screen readers
and screen magnifiers, to obtain accessibility information from running
applications via the relevant "bridge" (see diagram below).

Figure 1. GNOME Accessibility Architecture

You can probably also improve on the default descriptions provided for some
of the widgets, and tailor them to that widget's specific purpose in your
application. You should add or change the textual descriptions for these
widgets with the appropriate ATK function call, so that an assistive technology
can describe their purpose or state to the user.

See Coding Guidelines for Supporting Accessibility for more information.

See Making Custom Components Accessible and Examples that Use the
Accessibility API for more information.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-10

Microsoft Active Accessibility

This section of the training outlines the following:

• Overview of the Accessibility Features of Microsoft Active
Accessibility utilized in Microsoft software applications and
operating systems.

Microsoft Active Accessibility (MSAA)

(www.microsoft.com/enable)

Microsoft® Active Accessibility® 2.0 is a set of COM interfaces and
APIs that provides a reliable way to expose and collect information
about Microsoft Windows-based user interface (UI) elements and Web
content. Using this information, Assistive Technology Vendors can
represent the UI in alternative formats, such as speech or Braille, and
voice command and control applications can remotely manipulate the
interface. Active Accessibility relies on Windows® technology and can
be used in conjunction only with Windows-based controls and other
Windows applications.

Supported Platforms
Active Accessibility 2.0 supports most Microsoft platforms and is
included as part of the Windows XP operating system. If you do not
know which version of Active Accessibility you are running, see Which
Version of Active Accessibility Is Currently Installed?
If you do not have the latest version of Active Accessibility, use the
Microsoft Active Accessibility 2.0 Redistribution Kit (RDK) to
upgrade. This RDK contains all of the core system files needed to
incorporate Active Accessibility 2.0 technology into client and server
applications. It supports Microsoft Windows® 98, Microsoft Windows
NT® version 4.0 with Service Pack 6 or later, and Microsoft Windows
XP.

How Active Accessibility Works
Microsoft® Active Accessibility® is designed to help accessibility aids,
called clients, interact with standard and custom user interface (UI)
elements of other applications and the operating system. An Active
Accessibility client is any program that uses Active Accessibility to
access, identify, or manipulate the UI elements of an application. Clients

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-11

include accessibility aids, automated testing tools, and some computer-
based training applications.
Using Active Accessibility, a client application can:

• Query for information—for example, about a UI element at a
particular location.

• Receive notifications when information changes—for example,
when a control becomes grayed or when a text string changes.

• Carry out actions that affect user interface or document contents—
for example, click a push button, drop down a menu, and choose a
menu command.

The applications that interact with and provide information for clients
are called servers. A server uses Active Accessibility to provide
information about its UI elements to clients. Any control, module, or
application that uses Active Accessibility to expose information about
its user interface is considered an Active Accessibility server. Servers
communicate with clients by sending event notifications (such as calling
NotifyWinEvent) and responding to client requests for access to UI
elements (such as handling WM_GETOBJECT messages sent from
OLEACC). Servers expose information through the IAccessible
interface.
Using Active Accessibility, a server application can:

• Provide information about its custom user interface objects and the
contents of its client windows.

• Send notifications when its user interface changes.

For example, to enable a user to select commands verbally from a word
processor's custom toolbar, a speech recognition program must have
information about that toolbar. The word processor would therefore
need to make that information available. Active Accessibility provides
the means for the word processor to expose information about its
custom toolbar and for the speech recognition program to get that
information.

Active Accessibility Basics
(www.microsoft.com/enable)

Here are the main feature areas of Microsoft® Active Accessibility®.
This includes the following topics:

• Active Accessibility Objects (Only feature covered)
• Types of IAccessible Support
• Client-Server Communication

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-12

Active Accessibility Objects
In Active Accessibility terminology, there are accessible objects and
simple elements. Although most applications contain both, accessible
objects are more common than simple elements. This section defines
and discusses accessible objects and simple elements and provides
appropriate UI examples. For more information, see the following
topics:

• Accessible Objects
• Simple Elements
• How Child IDs Are Used in Parameters
• Custom User Interface Elements
• Dual Interfaces: IAccessible and IDispatch
• System-Provided User Interface Elements

Accessible Objects
With Microsoft Active Accessibility, user interface (UI) elements are
exposed to clients as COM objects. These accessible objects maintain
pieces of information, called properties, which describe the object's
name, screen location, and other information needed by accessibility
aids. Accessible objects also provide methods that clients call to cause
the object to perform some action. Accessible objects that have simple
elements associated with them are also called parents, or containers.
Accessible objects are implemented using Active Accessibility's COM-
based IAccessible interface. The IAccessible methods and properties
enable client applications to get information about UI elements needed
by users. For example, IAccessible::get_accParent returns an interface
pointer to an accessible object's parent, and IAccessible::accNavigate
provides a means for clients to get information about other objects
within a container.

Simple Elements
A simple element is a UI element that shares an IAccessible object with
other elements and relies on that IAccessible object (typically its parent)
to expose its properties. To differentiate between the elements sharing
an IAccessible object, the server assigns a unique, positive child
identifier to each simple element. This assignment is done on a per-
instance-of- interface basis, so the IDs must be unique within that
context. Many implementations assign these IDs sequentially, beginning
with 1. This scheme does not allow simple elements to have children of
their own. Simple elements are also known as children.
To be uniquely identified and exposed, a simple element requires an
IAccessible object and child ID. Therefore, when communicating with

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-13

an IAccessible object, the clients must supply the appropriate child ID.
A special identifier, CHILDID_SELF, can be used to refer to the
accessible object itself, instead of one of its children.
The IAccessible object shared among simple elements often
corresponds to a common parent object in the user interface. For
example, system list boxes expose an accessible object for the overall
list box and simple elements for each list box item. In this case, the
IAccessible object for the list box is also the parent or container of the
list items.
For more information about accessible objects, see Accessible Objects.

How Child IDs Are Used in Parameters
This topic describes input parameters, output parameters, and special
cases for interpreting child IDs returned from IAccessible methods.

Input Parameters
Many of the Active Accessibility functions and most of the IAccessible
properties take a VARIANT input parameter. For most of the
IAccessible properties, this parameter allows client developers to
specify whether they want information about the object itself or about
one of the object's simple elements.
Active Accessibility provides the constant CHILDID_SELF to indicate
that information is needed about the object itself. To obtain information
about a simple element, client developers specify its child ID in the
VARIANT parameter.
When initializing a VARIANT parameter, be sure to specify VT_I4 in
the vt member in addition to specifying the child ID value (or
CHILDID_SELF) in the lVal member.
For example, to get the name of an object, and not one of the object's
child elements, initialize the variant for the first parameter of
IAccessible::get_accName (CHILDID_SELF in the lVal member and
VT_I4 in the vt member), and then call IAccessible::get_accName .

Output Parameters
Several IAccessible functions and methods have a VARIANT* output
parameter that contains a child ID or an IDispatch interface pointer to a
child object. There are different steps that a client must take depending
on whether they receive a VT_I4 child ID (simple element) or an
IDispatch interface pointer with CHILDID_SELF (full object).
Following these steps will provide an IAccessible interface pointer and
child ID that together allow clients to use the IAccessible methods and
properties. These steps apply to the IAccessible accHitTest,
get_accFocus , and get_accSelection methods. They also apply to the
AccessibleObjectFromEvent, AccessibleObjectFromPoint, and
AccessibleObjectFromWindow client functions.
The following table lists the possible result returned and the required

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-14

post-processing steps so that clients will have an IAccessible interface
pointer and child ID.
Result returned Post-processing for the return

value

IDispatch interface pointer This is a full object.

Call QueryInterface to access the
IAccessible interface pointer.
Use the IAccessible interface
pointer with CHILDID_SELF to
access IAccessible methods and
properties.

VT_I4 childID Call IAccessible::get_accChild
using the childID to see if you
have an IDispatch interface
pointer.
If you get an IDispatch interface
pointer, use it with
CHILDID_SELF to access
IAccessible interface methods and
properties.
If the call to get_accChild fails,
you have a simple element. Use
the original IAccessible interface
pointer (the one you used in your
call to the method or function
mentioned above) with the VT_I4
childID that the call returned.

Before you can use a VARIANT parameter, you must initialize it by
calling the VariantInit COM function. When finished with the
structure, call VariantClear to free the memory reserved for that
VARIANT.

Special Cases
There are exceptions to the guidelines in the above table, such as when a
child ID is returned by the IAccessible::accHitTest method. Servers
must return an IDispatch interface if the child is an accessible object. If
a child ID is returned by IAccessible::accHitTest, the child is a simple
element.
In addition, there are special cases for accNavigate. For more
information, see IAccessible::accNavigate and Spatial and Logical
Navigation.

Custom User Interface Elements
Server developers design accessible objects based on an application's
user interface (UI). Because Active Accessibility implements the

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-15

IAccessible interface on behalf of system-provided user interface
elements such as list boxes, menus, and trackbar controls, you need to
implement the IAccessible interface only for the following kinds of
custom UI elements:

• Custom controls created by registering an application-defined
window class

• Custom controls drawn directly on the screen that do not have an
associated HWND

• Custom controls such as Microsoft ActiveX® and Java controls
• Controls or objects in the application's client window that aren't

already exposed

Owner-drawn controls and menus are accessible as long as you follow
the guidelines discussed in Shortcuts for Exposing Custom User
Interface Elements. If you follow these guidelines, then you do not need
to implement the IAccessible interface for owner-drawn controls and
menus.
In most cases, superclassed and subclassed controls are accessible
because the system handles the basic functionality of the control.
However, if a superclassed or subclassed control significantly modifies
the behavior of the system-provided control on which it is based, then
you must implement the IAccessible interface. For more information,
see Exposing Controls Based on System Controls.
If an application uses only system-provided user interface elements,
then it does not need to implement IAccessible, except for its client
window. For example, an application that includes a text editor, not
implemented using an edit control, exposes lines of text as accessible
objects. Note that Active Accessibility automatically exposes the text in
edit and rich edit controls as a single string of text in the Value property
of the control.

Dual Interfaces: IAccessible and IDispatch
Server developers must provide the standard COM interface IDispatch
for their accessible objects. The IDispatch interface allows client
applications written in Microsoft Visual Basic© and various scripting
languages to use the methods and properties exposed by IAccessible.
Since an accessible object provides access to an object either indirectly
through IDispatch::Invoke or directly with IAccessible, it is said to
have a dual interface.
When C/C++ clients get back an IDispatch interface pointer, clients can
call QueryInterface to try converting the IDispatch interface pointer to
an IAccessible interface pointer. To call the IAccessible methods
indirectly, C/C++ clients call IDispatch::Invoke. For improved
performance, call the IAccessible methods to use the object directly.
For a list of the dispatch IDs (DISPIDs) that IDispatch uses to identify
the IAccessible methods and properties, see Appendix C: IAccessible

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 2-16

DISPIDs.

System-Provided User Interface Elements
(www.microsoft.com/enable)
Active Accessibility provides support for most predefined and common
controls. The following illustration shows a typical window and some of
the system-provided user interface elements that Active Accessibility
exposes, such as title bars, menus, combo boxes, toolbar controls, tree
view controls, status bars, size grips, list view controls, and scroll bars.

Active Accessibility exposes system-provided user interface elements to
server applications without requiring the server developer to implement
the IAccessible interface. Any application that contains these elements
automatically inherits their accessibility.
For a list of the controls and other system-provided user interface
elements that Active Accessibility supports, see Appendix A: Supported
User Interface Elements Reference.

Software Applications and Operating Systems

Participant Guide
Updated October 15, 2003
By Grady N. McGhee 3-1

Part 3: Software Applications and Operating Systems
Resources

MICROSOFT

Microsoft Accessibility: http://www.microsoft.com/enable/default.htm

Microsoft Accessibility for Developers (MSDN Area):
http://www.msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000544

ORACLE

Oracle Accessibility Program: http://www.oracle.com/accessibility.faq.html

JAVA

Sun Java Accessibility Site (text version):
 http://java.sun.com/products/jfc/jaccess-1.3/doc/index.html

Sun Java Foundation Classes: http://java.sun.com/products/jfc/

Sun Accessibility Program: http://www.sun.com/access/general/overview.html

Java Accessibility for Developers: http://www.sun.com/access/developers/index.html

GNOME

GNOME Accessibility for Developers:
http://developer.gnome.org/projects/gap/guide/gad/index.html

Accessibility Design Guidelines:
http://developer.gnome.org/projects/gap/hi-design.html

Assistive Technologies:
http://developer.gnome.org/projects/gap/at-types.html

