Aeronautical Information Manual

Explanation of Changes

Effective: July 24, 2014

a. 1–1–3. VHF Omni-Directional Range (VOR)

This change reflects the fact that some VOR receivers are capable of identifying the VOR.

b. 1–1–9. Instrument Landing System (ILS)

For those facilities that have had the middle marker decommissioned, this change identifies a distance (1/2 mile) from the approach end of the runway for protection of the Localizer Critical Area. This change also removes MLS from the required phraseology to advise pilots that the ILS Critical Area is not protected.

c. 1–1–11. Microwave Landing System (MLS)

This change removes the reference to the ILS service protection date of 2010.

d. 1–1–14. User Reports Requested on NAVAID or Global Navigation Satellite System (GNSS) Performance or Interference

4–5–6. Traffic Information Service (TIS)

4–5–7. Automatic Dependent Surveillance – Broadcast (ADS–B) Services

4–5–8. Traffic Information Service (TIS) – Broadcast (TIS–B)

7–1–11. Flight Information Services (FIS)

FAA Form 8740–5, Safety Improvement Report, is no longer used to report malfunctions. Therefore, references to this form have been deleted.

e. 1–1–21. Precision Approach Systems other than ILS, GLS, and MLS

2–1–5. In–runway Lighting

2–3–4. Taxiway Markings

2–3–5. Holding Position Markings

5–4–12. Radar Monitoring of Instrument Approaches

This change removes Microwave Landing System (MLS) as an approach type.

f. 4–1–22. Airport Reservation Operations and Special Traffic Management Programs

This change updates the contact information for the Airport Reservation Office since the Command Center’s relocation to Vint Hill, VA.

g. 4–3–3. Traffic Patterns

This change adds a graphic that depicts headwind, crosswind, and tailwind calculation charts.

h. 4–6–9. Contingency Actions: Weather Encounters and Aircraft System Failures

This change is made to clarify to operators that they may request deviations per Title 14, of the Code of Federal Regulations (14 CFR), Part 91.180 (d) after entry into Reduced Vertical Separation Minimum (RVSM) airspace and not before.

i. 5–1–1. Preflight Preparation

This change reflects the cancellation of FAA Orders 7230.16C, Pilot Education Program–Operation Rain Check, and 7230.17, Pilot Education Program–Operation Takeoff.

j. 5–3–3. Additional Reports

This change harmonizes the AIM/Aeronautical Information Publication guidance with the most recent update to International Civil Aviation Organization (ICAO) Annex 2, Rules of the Air, Paragraph 3.6.2.2.

k. 5–4–3. Approach Control

5–4–26. Landing Priority

This change removes references to MLS and adds references to include RNAV and GBAS Landing System (GLS) approaches.

l. 5–4–5. Instrument Approach Procedure Charts

This change clarifies the pilot’s responsibility while descending on the glidepath in dependent and independent approaches. The content and graphics within the Terminal Arrival Area section is also updated to bring it in line with new procedures and...
terminology. In addition, this change provides an explanation (both visually and verbally) as to why circling minima may be lower than the LNAV/VNAV minima on the same approach plate.

m. 5–4–13. ILS/MLS Approaches to Parallel Runways
 5–4–14. Parallel ILS/MLS Approaches (Dependent)

This change removes references to MLS and adds references to include RNAV and GLS approaches. It clarifies the runway spacing requirements for the use of final monitor controller and PRM radar. It also includes a discussion of pilot procedures when conducting simultaneous (parallel) dependent operations.

n. 5–4–15. Simultaneous Parallel ILS/RNAV/GLS Approaches (Independent)

This change clarifies the runway spacing requirement when No Transgression Zone (NTZ) monitoring is required. It also clarifies monitor controller procedures during NTZ monitoring of simultaneous (parallel) independent approaches.

o. 5–4–16. Simultaneous Close Parallel ILS/RNAV/GLS PRM Approaches (Independent) and Simultaneous Offset Instrument Approaches (SOIA)

This change adds RNAV PRM and GLS PRM approach discussions. It includes specific information about the unique Flight Management System coding issues for SOIA.

p. 5–4–17. Simultaneous Converging Instrument Approaches

This change broadens the requirements for conducting converging approaches to include approaches other than ILS.

q. 5–6–1. National Security

This change now contains complete instructions regarding Defense Visual Flight Rule position reporting prior to Air Defense Identification Zone penetration per 14 CFR 99.15.

r. 7–5–15. Avoid Flight in the Vicinity of Thermal Plumes (Smoke Stacks and Cooling Towers)

This change updates the terminology and provides more detail regarding the associated hazards of exhaust plumes.

s. 7–6–4. Unidentified Flying Object (UFO) Reports

This change removes outdated contact information regarding the collection and/or reporting of UFO phenomena.

t. Entire publication.

Editorial/format changes were made where necessary. Revision bars were not used when changes are insignificant in nature.
AIM Change 1
Page Control Chart
July 24, 2014

<table>
<thead>
<tr>
<th>REMOVE PAGES</th>
<th>DATED</th>
<th>INSERT PAGES</th>
<th>DATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checklist of Pages CK−1 through CK−6</td>
<td>4/3/14</td>
<td>Checklist of Pages CK−1 through CK−6</td>
<td>7/24/14</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>4/3/14</td>
<td>Subscription Information</td>
<td>7/24/14</td>
</tr>
<tr>
<td>Table of Contents i through xi</td>
<td>4/3/14</td>
<td>Table of Contents i through xi</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−1</td>
<td>4/3/14</td>
<td>1−1−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−2 through 1−1−4</td>
<td>4/3/14</td>
<td>1−1−2 through 1−1−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−11 and 1−1−12</td>
<td>4/3/14</td>
<td>1−1−11 and 1−1−12</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−13</td>
<td>4/3/14</td>
<td>1−1−13</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−14</td>
<td>4/3/14</td>
<td>1−1−14</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−17</td>
<td>4/3/14</td>
<td>1−1−17</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−18</td>
<td>4/3/14</td>
<td>1−1−18</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−35</td>
<td>4/3/14</td>
<td>1−1−35</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−36</td>
<td>4/3/14</td>
<td>1−1−36</td>
<td>7/24/14</td>
</tr>
<tr>
<td>2−1−5</td>
<td>4/3/14</td>
<td>2−1−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−6 through 2−1−10</td>
<td>4/3/14</td>
<td>2−1−6 through 2−1−10</td>
<td>7/24/14</td>
</tr>
<tr>
<td>2−3−7</td>
<td>4/3/14</td>
<td>2−3−7</td>
<td>7/24/14</td>
</tr>
<tr>
<td>2−3−8</td>
<td>4/3/14</td>
<td>2−3−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−11</td>
<td>4/3/14</td>
<td>2−3−11</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−12</td>
<td>4/3/14</td>
<td>2−3−12</td>
<td>7/24/14</td>
</tr>
<tr>
<td>4−1−21</td>
<td>4/3/14</td>
<td>4−1−21</td>
<td>7/24/14</td>
</tr>
<tr>
<td>4−1−22</td>
<td>4/3/14</td>
<td>4−1−22</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−3−1</td>
<td>4/3/14</td>
<td>4−3−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−3−2 through 4−3−28</td>
<td>4/3/14</td>
<td>4−3−2 through 4−3−29</td>
<td>7/24/14</td>
</tr>
<tr>
<td>4−5−13</td>
<td>4/3/14</td>
<td>4−5−13</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−14</td>
<td>4/3/14</td>
<td>4−5−14</td>
<td>7/24/14</td>
</tr>
<tr>
<td>4−5−17 and 4−5−18</td>
<td>4/3/14</td>
<td>4−5−17 and 4−5−18</td>
<td>7/24/14</td>
</tr>
<tr>
<td>4−6−7</td>
<td>4/3/14</td>
<td>4−6−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−8</td>
<td>4/3/14</td>
<td>4−6−8</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−1−1</td>
<td>4/3/14</td>
<td>5−1−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−1−2</td>
<td>4/3/14</td>
<td>5−1−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−3</td>
<td>4/3/14</td>
<td>5−3−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−4</td>
<td>4/3/14</td>
<td>5−3−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−3 and 5−4−4</td>
<td>4/3/14</td>
<td>5−4−3 and 5−4−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−7 through 5−4−62</td>
<td>4/3/14</td>
<td>5−4−7 through 5−4−63</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−6−1 through 5−6−3</td>
<td>4/3/14</td>
<td>5−6−1 through 5−6−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−6−4</td>
<td>4/3/14</td>
<td>5−6−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−3</td>
<td>4/3/14</td>
<td>7−1−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−4 and 7−1−5</td>
<td>4/3/14</td>
<td>7−1−4 and 7−1−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−6</td>
<td>4/3/14</td>
<td>7−1−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>REMOVE PAGES</td>
<td>DATED</td>
<td>INSERT PAGES</td>
<td>DATED</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>7–1–23</td>
<td>4/3/14</td>
<td>7–1–23</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7–1–24 and 7–1–25</td>
<td>4/3/14</td>
<td>7–1–24 and 7–1–25</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7–1–26</td>
<td>4/3/14</td>
<td>7–1–26</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7–1–41</td>
<td>4/3/14</td>
<td>7–1–41</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7–1–42</td>
<td>4/3/14</td>
<td>7–1–42</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7–1–43</td>
<td>4/3/14</td>
<td>7–1–43</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7–1–44</td>
<td>4/3/14</td>
<td>7–1–44</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7–1–59</td>
<td>4/3/14</td>
<td>7–1–59</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7–1–60</td>
<td>4/3/14</td>
<td>7–1–60</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7–5–13 and 7–5–14</td>
<td>4/3/14</td>
<td>7–5–13 and 7–5–14</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7–6–3</td>
<td>7/24/14</td>
<td>7–6–3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG–1</td>
<td>4/3/14</td>
<td>PCG–1 and PCG–2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A–1 through PCG W–2</td>
<td>4/3/14</td>
<td>PCG A–1 through PCG W–2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>Index I–1 through I–13</td>
<td>4/3/14</td>
<td>Index I–1 through I–13</td>
<td>7/24/14</td>
</tr>
</tbody>
</table>
Checklist of Pages

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>7/24/14</td>
</tr>
<tr>
<td>Record of Changes</td>
<td>N/A</td>
</tr>
<tr>
<td>Exp of Chg−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>Exp of Chg−2</td>
<td>7/24/14</td>
</tr>
</tbody>
</table>

Table of Contents

- i 7/24/14
- ii 7/24/14
- iii 7/24/14
- iv 7/24/14
- v 7/24/14
- vi 7/24/14
- vii 7/24/14
- viii 7/24/14
- ix 7/24/14
- x 7/24/14
- xi 7/24/14

Chapter 1. Air Navigation

Section 1. Navigation Aids

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1−1−1−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>1−1−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−1−11</td>
<td>7/24/14</td>
</tr>
</tbody>
</table>

Chapter 2. Aeronautical Lighting and Other Airport Visual Aids

Section 1. Airport Lighting Aids

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2−1−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−11</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−12</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−13</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−14</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−1−15</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 2. Air Navigation and Obstruction Lighting

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2−2−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−2−2</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 3. Airport Marking Aids and Signs

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2−3−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−7</td>
<td>7/24/14</td>
</tr>
<tr>
<td>2−3−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−11</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−12</td>
<td>7/24/14</td>
</tr>
<tr>
<td>2−3−13</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−14</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−15</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−16</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−17</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−18</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−19</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−20</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−21</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 2. Area Navigation (RNAV) and Required Navigation Performance (RNP)

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1−2−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−2−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−2−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−2−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−2−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−2−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>1−2−7</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Checklist of Pages CK−1
Checklist of Pages

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2−3−22</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−23</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−24</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−25</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−26</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−27</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−28</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−29</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−30</td>
<td>4/3/14</td>
</tr>
<tr>
<td>2−3−31</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Chapter 3. Airspace
Section 1. General
3−1−1 | 4/3/14 |
3−1−2 | 4/3/14 |

Section 2. Controlled Airspace
3−2−1 | 4/3/14 |
3−2−2 | 4/3/14 |
3−2−3 | 4/3/14 |
3−2−4 | 4/3/14 |
3−2−5 | 4/3/14 |
3−2−6 | 4/3/14 |
3−2−7 | 4/3/14 |
3−2−8 | 4/3/14 |
3−2−9 | 4/3/14 |

Section 3. Class G Airspace
3−3−1 | 4/3/14 |

Section 4. Special Use Airspace
3−4−1 | 4/3/14 |
3−4−2 | 4/3/14 |

Section 5. Other Airspace Areas
3−5−1 | 4/3/14 |
3−5−2 | 4/3/14 |
3−5−3 | 4/3/14 |
3−5−4 | 4/3/14 |
3−5−5 | 4/3/14 |
3−5−6 | 4/3/14 |
3−5−7 | 4/3/14 |
3−5−8 | 4/3/14 |
3−5−9 | 4/3/14 |

Chapter 4. Air Traffic Control
Section 1. Services Available to Pilots
4−1−1 | 4/3/14 |
4−1−2 | 4/3/14 |
4−1−3 | 4/3/14 |
4−1−4 | 4/3/14 |
4−1−5 | 4/3/14 |
4−1−6 | 4/3/14 |
4−1−7 | 4/3/14 |
4−1−8 | 4/3/14 |
4−1−9 | 4/3/14 |
4−1−10 | 4/3/14 |
4−1−11 | 4/3/14 |
4−1−12 | 4/3/14 |
4−1−13 | 4/3/14 |
4−1−14 | 4/3/14 |
4−1−15 | 4/3/14 |
4−1−16 | 4/3/14 |
4−1−17 | 4/3/14 |
4−1−18 | 4/3/14 |
4−1−19 | 4/3/14 |
4−1−20 | 4/3/14 |
4−1−21 | 7/24/14 |
4−1−22 | 4/3/14 |
4−1−23 | 4/3/14 |

Section 2. Radio Communications Phraseology and Techniques
4−2−1 | 4/3/14 |
4−2−2 | 4/3/14 |
4−2−3 | 4/3/14 |
4−2−4 | 4/3/14 |
4−2−5 | 4/3/14 |
4−2−6 | 4/3/14 |
4−2−7 | 4/3/14 |
4−2−8 | 4/3/14 |

Section 3. Airport Operations
4−3−1 | 4/3/14 |
4−3−2 | 7/24/14 |
4−3−3 | 7/24/14 |
4−3−4 | 7/24/14 |
4−3−5 | 7/24/14 |
4−3−6 | 7/24/14 |
4−3−7 | 7/24/14 |
4−3−8 | 7/24/14 |

Section 4. ATC Clearances and Aircraft Separation
4−4−1 | 4/3/14 |
4−4−2 | 4/3/14 |
4−4−3 | 4/3/14 |
4−4−4 | 4/3/14 |
4−4−5 | 4/3/14 |
4−4−6 | 4/3/14 |
4−4−7 | 4/3/14 |
4−4−8 | 4/3/14 |
4−4−9 | 4/3/14 |
4−4−10 | 4/3/14 |
4−4−11 | 4/3/14 |

Section 5. Surveillance Systems
4−5−1 | 4/3/14 |
4−5−2 | 4/3/14 |
4−5−3 | 4/3/14 |
4−5−4 | 4/3/14 |
4−5−5 | 4/3/14 |
4−5−6 | 4/3/14 |
4−5−7 | 4/3/14 |
4−5−8 | 4/3/14 |
4−5−9 | 4/3/14 |
4−5−10 | 4/3/14 |
4−5−11 | 4/3/14 |
4−5−12 | 4/3/14 |

7/24/14
<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4−5−13</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−14</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−15</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−16</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−17</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−18</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−19</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−5−20</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 6. Operational Policy/Procedures for Reduced Vertical Separation Minimum (RVSM) in the Domestic U.S., Alaska, Offshore Airspace and the San Juan FIR

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4−6−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−8</td>
<td>7/24/14</td>
</tr>
<tr>
<td>4−6−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−6−11</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 7. Operational Policy/Procedures for the Gulf of Mexico 50 NM Lateral Separation Initiative

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4−7−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−7−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−7−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−7−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>4−7−5</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Chapter 5. Air Traffic Procedures

Section 1. Preflight

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5−1−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−1−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−1−11</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 2. Departure Procedures

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5−2−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−2−11</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 3. En Route Procedures

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5−3−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−3−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−11</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−12</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−13</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−3−14</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 4. Arrival Procedures

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5−4−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−4−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−4−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−4−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−4−7</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−8</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−9</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−10</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−11</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−12</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−13</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−14</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−15</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−16</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−17</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−18</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−19</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−20</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−21</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−22</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−23</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−24</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−25</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−26</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−27</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−28</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−29</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−30</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−31</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−32</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−33</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−34</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−35</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−36</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−37</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−38</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−39</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−40</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−41</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−42</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−43</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−44</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−45</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PAGE</td>
<td>DATE</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>5−4−46</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−47</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−48</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−49</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−50</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−51</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−52</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−53</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−54</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−55</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−56</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−57</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−58</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−59</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−60</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−61</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−62</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−4−63</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−5−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−5−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−5−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−5−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−5−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−5−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−5−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−5−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−6−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−6−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−6−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>5−6−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−6−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−6−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−6−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−6−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−6−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>5−6−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−1−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−2−11</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−3−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−3−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−3−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−3−4</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−3−5</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−3−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−3−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−4−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−4−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−5−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>6−5−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−1</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−2</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−3</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−6</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−7</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−8</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−9</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−10</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−11</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−12</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−13</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−14</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−15</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−16</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−17</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−18</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−19</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−20</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−21</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−22</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−23</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−24</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−25</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−26</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−27</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−28</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−29</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−30</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−31</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−32</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−33</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−34</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−35</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−36</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−37</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−38</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−39</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−40</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−41</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−42</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−43</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−44</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−45</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−46</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−47</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−48</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−49</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−50</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−51</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−52</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−53</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−54</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−55</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−56</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−57</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−58</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−59</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>
Checklist of Pages

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7−1−60</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−1−61</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−62</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−63</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−64</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−65</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−66</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−67</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−68</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−69</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−70</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−71</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−1−72</td>
<td>4/3/14</td>
</tr>
</tbody>
</table>

Section 2. Altimeter Setting Procedures

7−2−1 4/3/14
7−2−2 4/3/14
7−2−3 4/3/14
7−2−4 4/3/14

Section 3. Wake Turbulence

7−3−1 4/3/14
7−3−2 4/3/14
7−3−3 4/3/14
7−3−4 4/3/14
7−3−5 4/3/14
7−3−6 4/3/14
7−3−7 4/3/14
7−3−8 4/3/14

Section 4. Bird Hazards and Flight Over National Refuges, Parks, and Forests

7−4−1 4/3/14
7−4−2 4/3/14

Section 5. Potential Flight Hazards

7−5−1 4/3/14
7−5−2 4/3/14
7−5−3 4/3/14
7−5−4 4/3/14
7−5−5 4/3/14
7−5−6 4/3/14
7−5−7 4/3/14
7−5−8 4/3/14
7−5−9 4/3/14
7−5−10 4/3/14

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7−5−11</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−5−12</td>
<td>4/3/14</td>
</tr>
<tr>
<td>7−5−13</td>
<td>7/24/14</td>
</tr>
<tr>
<td>7−5−14</td>
<td>7/24/14</td>
</tr>
</tbody>
</table>

Section 6. Safety, Accident, and Hazard Reports

7−6−1 4/3/14
7−6−2 4/3/14
7−6−3 7/24/14

Chapter 8. Medical Facts for Pilots

Section 1. Fitness for Flight

8−1−1 4/3/14
8−1−2 4/3/14
8−1−3 4/3/14
8−1−4 4/3/14
8−1−5 4/3/14
8−1−6 4/3/14
8−1−7 4/3/14
8−1−8 4/3/14
8−1−9 4/3/14

Chapter 9. Aeronautical Charts and Related Publications

Section 1. Types of Charts Available

9−1−1 4/3/14
9−1−2 4/3/14
9−1−3 4/3/14
9−1−4 4/3/14
9−1−5 4/3/14
9−1−6 4/3/14
9−1−7 4/3/14
9−1−8 4/3/14
9−1−9 4/3/14
9−1−10 4/3/14
9−1−11 4/3/14
9−1−12 4/3/14
9−1−13 4/3/14

Chapter 10. Helicopter Operations

Section 1. Helicopter IFR Operations

10−1−1 4/3/14

Appendices

Appendix 1−1 4/3/14
Env N/A
Appendix 2−1 4/3/14
Appendix 3−1 4/3/14
Appendix 3−2 4/3/14
Appendix 3−3 4/3/14
Appendix 3−4 4/3/14
Appendix 3−5 4/3/14

Pilot/Controller Glossary

PCG−1 7/24/14
PCG−2 7/24/14
PCG A−1 7/24/14
PCG A−2 7/24/14
PCG A−3 7/24/14
PCG A−4 7/24/14
PCG A−5 7/24/14
PCG A−6 7/24/14
PCG A−7 7/24/14
PCG A−8 7/24/14
Checklist of Pages

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCG A−9</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A−10</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A−11</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A−12</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A−13</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A−14</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A−15</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG A−16</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG B−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG B−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−6</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−7</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−8</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−9</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG C−10</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG D−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG D−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG D−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG D−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG E−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG E−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG F−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG F−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG F−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG F−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG F−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG F−6</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG G−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG G−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG H−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG H−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG H−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG I−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG I−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG I−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG I−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG I−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG J−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG K−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG L−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG L−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG L−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG M−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG M−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG M−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG M−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG M−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG M−6</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG N−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG N−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG N−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG N−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG O−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG O−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG O−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG O−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG P−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG P−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG P−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG P−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG P−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG Q−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−6</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−7</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG R−8</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−1</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−2</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−3</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−4</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−5</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−6</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−7</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG S−8</td>
<td>7/24/14</td>
</tr>
<tr>
<td>PCG T−1</td>
<td>7/24/14</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I−1</td>
</tr>
<tr>
<td>I−2</td>
</tr>
<tr>
<td>I−3</td>
</tr>
<tr>
<td>I−4</td>
</tr>
<tr>
<td>I−5</td>
</tr>
<tr>
<td>I−6</td>
</tr>
<tr>
<td>I−7</td>
</tr>
<tr>
<td>I−8</td>
</tr>
<tr>
<td>I−9</td>
</tr>
<tr>
<td>I−10</td>
</tr>
<tr>
<td>I−11</td>
</tr>
<tr>
<td>I−12</td>
</tr>
<tr>
<td>I−13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Cover</td>
</tr>
</tbody>
</table>

Checklist of Pages
Subscription Information

This and other selected Air Traffic publications are available online:
www.faa.gov/air_traffic/publications

To Obtain Copies of this Publication

<table>
<thead>
<tr>
<th>General Public</th>
<th>Department of Defense and U.S. Coast Guard Organizations</th>
<th>Federal Aviation Administration (FAA) Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact: Superintendent of Documents U.S. Government Printing Office P.O. Box 979050 St. Louis, MO 63197–9000 Call: 202–512–1800 Online: http://bookstore.gpo.gov</td>
<td>Contact: National Geospatial–Intelligence Agency ATTN: Safety of Navigation 3838 Vogel Road Arnold, MO 63010</td>
<td>Contact: Appropriate Distribution Office (listed below)</td>
</tr>
</tbody>
</table>

To amend publication quantity or cancel subscription, please contact GPO. To amend publication quantity or cancel subscription, please e-mail: 9–AWA–ATPUBS@faa.gov

Contact Information for FAA Distribution Offices

<table>
<thead>
<tr>
<th>FAA Region/Center/Organization</th>
<th>3–Ltr ID</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaskan Region</td>
<td>AAL</td>
<td>907–271–4020</td>
</tr>
<tr>
<td>Central Region</td>
<td>ACE</td>
<td>816–329–3013</td>
</tr>
<tr>
<td>Eastern Region</td>
<td>AEA</td>
<td>718–553–4593</td>
</tr>
<tr>
<td>Great Lakes Region</td>
<td>AGL</td>
<td>847–294–7646</td>
</tr>
<tr>
<td>William J. Hughes Technical Center</td>
<td>AJP</td>
<td>609–485–6652</td>
</tr>
<tr>
<td>Aviation System Standards</td>
<td>AJW</td>
<td>405–954–6632</td>
</tr>
<tr>
<td>Mike Monroney Aeronautical Center</td>
<td>AMI</td>
<td>405–954–6891</td>
</tr>
<tr>
<td>New England Region</td>
<td>ANE</td>
<td>781–238–7673</td>
</tr>
<tr>
<td>Northwest Mountain Region</td>
<td>ANM</td>
<td>425–227–2885</td>
</tr>
<tr>
<td>Southern Region</td>
<td>ASO</td>
<td>404–305–5087</td>
</tr>
<tr>
<td>Southwest Region</td>
<td>ASW</td>
<td>817–222–4062</td>
</tr>
<tr>
<td>FAA Headquarters (Washington, DC)</td>
<td>AWA</td>
<td>202–267–9884</td>
</tr>
<tr>
<td>Western–Pacific Region</td>
<td>AWP</td>
<td>310–725–7691</td>
</tr>
</tbody>
</table>
Federal Aviation Administration (FAA)

The Federal Aviation Administration is responsible for insuring the safe, efficient, and secure use of the Nation’s airspace, by military as well as civil aviation, for promoting safety in air commerce, for encouraging and developing civil aeronautics, including new aviation technology, and for supporting the requirements of national defense.

The activities required to carry out these responsibilities include: safety regulations; airspace management and the establishment, operation, and maintenance of a civil–military common system of air traffic control (ATC) and navigation facilities; research and development in support of the fostering of a national system of airports, promulgation of standards and specifications for civil airports, and administration of Federal grants—in–aid for developing public airports; various joint and cooperative activities with the Department of Defense; and technical assistance (under State Department auspices) to other countries.

Aeronautical Information Manual (AIM)
Basic Flight Information and ATC Procedures

This manual is designed to provide the aviation community with basic flight information and ATC procedures for use in the National Airspace System (NAS) of the United States. An international version called the Aeronautical Information Publication contains parallel information, as well as specific information on the international airports for use by the international community.

This manual contains the fundamentals required in order to fly in the United States NAS. It also contains items of interest to pilots concerning health and medical facts, factors affecting flight safety, a pilot/controller glossary of terms used in the ATC System, and information on safety, accident, and hazard reporting.

This manual is complemented by other operational publications which are available via separate subscriptions. These publications are:

- Notices to Airmen publication - A publication containing current Notices to Airmen (NOTAMs) which are considered essential to the safety of flight as well as supplemental data affecting the other operational publications listed here. It also includes current Flight Data Center NOTAMs, which are regulatory in nature, issued to establish restrictions to flight or to amend charts or published Instrument Approach Procedures. This publication is issued every four weeks and is available through subscription from the Superintendent of Documents.

- The Airport/Facility Directory, the Alaska Supplement, and the Pacific Chart Supplement - These publications contain information on airports, communications, navigation aids, instrument landing systems, VOR receiver check points, preferred routes, Flight Service Station/Weather Service telephone numbers, Air Route Traffic Control Center (ARTCC) frequencies, part–time surface areas, and various other pertinent special notices essential to air navigation. These publications are available upon subscription from the Aeronautical Navigation Products (AeroNav) Logistics Group, Federal Aviation Administration, Glenn Dale, Maryland 20769.

<table>
<thead>
<tr>
<th>Publication Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic or Change</td>
</tr>
<tr>
<td>Basic Manual</td>
</tr>
<tr>
<td>Change 1</td>
</tr>
<tr>
<td>Change 2</td>
</tr>
<tr>
<td>Change 3</td>
</tr>
<tr>
<td>Basic Manual</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1. Air Navigation

Section 1. Navigation Aids

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1-1. General</td>
<td>1-1-1</td>
</tr>
<tr>
<td>1-1-2. Nondirectional Radio Beacon (NDB)</td>
<td>1-1-1</td>
</tr>
<tr>
<td>1-1-3. VHF Omni-directional Range (VOR)</td>
<td>1-1-1</td>
</tr>
<tr>
<td>1-1-4. VOR Receiver Check</td>
<td>1-1-2</td>
</tr>
<tr>
<td>1-1-5. Tactical Air Navigation (TACAN)</td>
<td>1-1-3</td>
</tr>
<tr>
<td>1-1-6. VHF Omni-directional Range/Tactical Air Navigation (VORTAC)</td>
<td>1-1-3</td>
</tr>
<tr>
<td>1-1-7. Distance Measuring Equipment (DME)</td>
<td>1-1-3</td>
</tr>
<tr>
<td>1-1-8. Navigational Aid (NAVAID) Service Volumes</td>
<td>1-1-4</td>
</tr>
<tr>
<td>1-1-9. Instrument Landing System (ILS)</td>
<td>1-1-7</td>
</tr>
<tr>
<td>1-1-10. Simplified Directional Facility (SDF)</td>
<td>1-1-12</td>
</tr>
<tr>
<td>1-1-11. Microwave Landing System (MLS)</td>
<td>1-1-14</td>
</tr>
<tr>
<td>1-1-12. NAVAID Identifier Removal During Maintenance</td>
<td>1-1-16</td>
</tr>
<tr>
<td>1-1-13. NAVAIDs with Voice</td>
<td>1-1-17</td>
</tr>
<tr>
<td>1-1-14. User Reports Requested on NAVAID or Global Navigation Satellite System (GNSS) Performance or Interference</td>
<td>1-1-17</td>
</tr>
<tr>
<td>1-1-15. LORAN</td>
<td>1-1-17</td>
</tr>
<tr>
<td>1-1-16. Inertial Reference Unit (IRU), Inertial Navigation System (INS), and Attitude Heading Reference System (AHRS)</td>
<td>1-1-17</td>
</tr>
<tr>
<td>1-1-17. Doppler Radar</td>
<td>1-1-18</td>
</tr>
<tr>
<td>1-1-18. Global Positioning System (GPS)</td>
<td>1-1-18</td>
</tr>
<tr>
<td>1-1-19. Wide Area Augmentation System (WAAS)</td>
<td>1-1-31</td>
</tr>
<tr>
<td>1-1-20. Ground Based Augmentation System (GBAS) Landing System (GLS)</td>
<td>1-1-36</td>
</tr>
<tr>
<td>1-1-21. Precision Approach Systems other than ILS and GLS</td>
<td>1-1-36</td>
</tr>
</tbody>
</table>

Section 2. Area Navigation (RNAV) and Required Navigation Performance (RNP)

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2-1. Area Navigation (RNAV)</td>
<td>1-2-1</td>
</tr>
<tr>
<td>1-2-2. Required Navigation Performance (RNP)</td>
<td>1-2-4</td>
</tr>
</tbody>
</table>

Chapter 2. Aeronautical Lighting and Other Airport Visual Aids

Section 1. Airport Lighting Aids

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1-1. Approach Light Systems (ALS)</td>
<td>2-1-1</td>
</tr>
<tr>
<td>2-1-2. Visual Glideslope Indicators</td>
<td>2-1-1</td>
</tr>
<tr>
<td>2-1-3. Runway End Identifier Lights (REIL)</td>
<td>2-1-6</td>
</tr>
<tr>
<td>2-1-4. Runway Edge Light Systems</td>
<td>2-1-6</td>
</tr>
<tr>
<td>2-1-5. In-runway Lighting</td>
<td>2-1-6</td>
</tr>
<tr>
<td>2-1-6. Runway Status Light (RWSL) System</td>
<td>2-1-7</td>
</tr>
<tr>
<td>2-1-7. Stand-Alone Final Approach Runway Occupancy Signal (FAROS)</td>
<td>2-1-10</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>2–1–8. Control of Lighting Systems</td>
<td>2–1–11</td>
</tr>
<tr>
<td>2–1–9. Pilot Control of Airport Lighting</td>
<td>2–1–11</td>
</tr>
<tr>
<td>2–1–10. Airport/Heliport Beacons</td>
<td>2–1–14</td>
</tr>
<tr>
<td>2–1–11. Taxiway Lights</td>
<td>2–1–15</td>
</tr>
</tbody>
</table>

Section 2. Air Navigation and Obstruction Lighting

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–2–1. Aeronautical Light Beacons</td>
<td>2–2–1</td>
</tr>
<tr>
<td>2–2–2. Code Beacons and Course Lights</td>
<td>2–2–1</td>
</tr>
<tr>
<td>2–2–3. Obstruction Lights</td>
<td>2–2–1</td>
</tr>
</tbody>
</table>

Section 3. Airport Marking Aids and Signs

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–3–1. General</td>
<td>2–3–1</td>
</tr>
<tr>
<td>2–3–2. Airport Pavement Markings</td>
<td>2–3–1</td>
</tr>
<tr>
<td>2–3–3. Runway Markings</td>
<td>2–3–1</td>
</tr>
<tr>
<td>2–3–6. Other Markings</td>
<td>2–3–16</td>
</tr>
<tr>
<td>2–3–7. Airport Signs</td>
<td>2–3–19</td>
</tr>
<tr>
<td>2–3–9. Location Signs</td>
<td>2–3–23</td>
</tr>
<tr>
<td>2–3–12. Information Signs</td>
<td>2–3–28</td>
</tr>
<tr>
<td>2–3–13. Runway Distance Remaining Signs</td>
<td>2–3–29</td>
</tr>
</tbody>
</table>

Chapter 3. Airspace

Section 1. General

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–1–1. General</td>
<td>3–1–1</td>
</tr>
<tr>
<td>3–1–2. General Dimensions of Airspace Segments</td>
<td>3–1–1</td>
</tr>
<tr>
<td>3–1–3. Hierarchy of Overlapping Airspace Designations</td>
<td>3–1–1</td>
</tr>
<tr>
<td>3–1–4. Basic VFR Weather Minimums</td>
<td>3–1–1</td>
</tr>
<tr>
<td>3–1–5. VFR Cruising Altitudes and Flight Levels</td>
<td>3–1–2</td>
</tr>
</tbody>
</table>

Section 2. Controlled Airspace

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–2–1. General</td>
<td>3–2–1</td>
</tr>
<tr>
<td>3–2–2. Class A Airspace</td>
<td>3–2–2</td>
</tr>
<tr>
<td>3–2–3. Class B Airspace</td>
<td>3–2–2</td>
</tr>
<tr>
<td>3–2–4. Class C Airspace</td>
<td>3–2–4</td>
</tr>
<tr>
<td>3–2–5. Class D Airspace</td>
<td>3–2–8</td>
</tr>
<tr>
<td>3–2–6. Class E Airspace</td>
<td>3–2–9</td>
</tr>
</tbody>
</table>

Section 3. Class G Airspace

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–3–1. General</td>
<td>3–3–1</td>
</tr>
<tr>
<td>3–3–2. VFR Requirements</td>
<td>3–3–1</td>
</tr>
<tr>
<td>3–3–3. IFR Requirements</td>
<td>3–3–1</td>
</tr>
</tbody>
</table>
Section 4. Special Use Airspace

Paragraph	Page
3–4–1. General | 3–4–1
3–4–2. Prohibited Areas | 3–4–1
3–4–3. Restricted Areas | 3–4–1
3–4–4. Warning Areas | 3–4–1
3–4–6. Alert Areas | 3–4–2
3–4–7. Controlled Firing Areas | 3–4–2

Section 5. Other Airspace Areas

3–5–1. Airport Advisory/Information Services | 3–5–1
3–5–2. Military Training Routes | 3–5–1
3–5–5. Published VFR Routes | 3–5–5
3–5–6. Terminal Radar Service Area (TRSA) | 3–5–9

Chapter 4. Air Traffic Control

Section 1. Services Available to Pilots

4–1–1. Air Route Traffic Control Centers | 4–1–1
4–1–2. Control Towers | 4–1–1
4–1–3. Flight Service Stations | 4–1–1
4–1–4. Recording and Monitoring | 4–1–1
4–1–5. Communications Release of IFR Aircraft Landing at an Airport Without an Operating Control Tower | 4–1–1
4–1–6. Pilot Visits to Air Traffic Facilities | 4–1–1
4–1–7. Operation Take-off and Operation Raincheck | 4–1–2
4–1–8. Approach Control Service for VFR Arriving Aircraft | 4–1–2
4–1–10. IFR Approaches/Ground Vehicle Operations | 4–1–6
4–1–11. Designated UNICOM/MULTICOM Frequencies | 4–1–6
4–1–12. Use of UNICOM for ATC Purposes | 4–1–7
4–1–13. Automatic Terminal Information Service (ATIS) | 4–1–7
4–1–16. Safety Alert | 4–1–10
4–1–17. Radar Assistance to VFR Aircraft | 4–1–11
4–1–18. Terminal Radar Services for VFR Aircraft | 4–1–12
4–1–19. Tower En Route Control (TEC) | 4–1–14
4–1–20. Transponder Operation | 4–1–15
4–1–21. Hazardous Area Reporting Service | 4–1–18
4–1–22. Airport Reservation Operations and Special Traffic Management Programs | 4–1–21
4–1–24. Weather System Processor | 4–1–23
Section 2. Radio Communications Phraseology and Techniques

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–2–1. General</td>
<td>4–2–1</td>
</tr>
<tr>
<td>4–2–2. Radio Technique</td>
<td>4–2–1</td>
</tr>
<tr>
<td>4–2–3. Contact Procedures</td>
<td>4–2–1</td>
</tr>
<tr>
<td>4–2–4. Aircraft Call Signs</td>
<td>4–2–3</td>
</tr>
<tr>
<td>4–2–5. Description of Interchange or Leased Aircraft</td>
<td>4–2–4</td>
</tr>
<tr>
<td>4–2–6. Ground Station Call Signs</td>
<td>4–2–4</td>
</tr>
<tr>
<td>4–2–7. Phonetic Alphabet</td>
<td>4–2–5</td>
</tr>
<tr>
<td>4–2–8. Figures</td>
<td>4–2–6</td>
</tr>
<tr>
<td>4–2–9. Altitudes and Flight Levels</td>
<td>4–2–6</td>
</tr>
<tr>
<td>4–2–10. Directions</td>
<td>4–2–6</td>
</tr>
<tr>
<td>4–2–11. Speeds</td>
<td>4–2–6</td>
</tr>
<tr>
<td>4–2–12. Time</td>
<td>4–2–6</td>
</tr>
<tr>
<td>4–2–13. Communications with Tower when Aircraft Transmitter or Receiver</td>
<td>4–2–7</td>
</tr>
<tr>
<td>or Both are Inoperative</td>
<td></td>
</tr>
<tr>
<td>4–2–14. Communications for VFR Flights</td>
<td>4–2–8</td>
</tr>
</tbody>
</table>

Section 3. Airport Operations

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–3–1. General</td>
<td>4–3–1</td>
</tr>
<tr>
<td>4–3–2. Airports with an Operating Control Tower</td>
<td>4–3–1</td>
</tr>
<tr>
<td>4–3–12. Low Approach</td>
<td>4–3–16</td>
</tr>
<tr>
<td>4–3–15. Gate Holding Due to Departure Delays</td>
<td>4–3–18</td>
</tr>
<tr>
<td>4–3–16. VFR Flights in Terminal Areas</td>
<td>4–3–18</td>
</tr>
<tr>
<td>4–3–17. VFR Helicopter Operations at Controlled Airports</td>
<td>4–3–18</td>
</tr>
<tr>
<td>Observing System (ASOS)/Automated Weather Sensor System(AWSS)/</td>
<td></td>
</tr>
<tr>
<td>Automated Weather Observing System (AWOS)</td>
<td></td>
</tr>
</tbody>
</table>
Section 4. ATC Clearances and Aircraft Separation

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-4-1. Clearance</td>
<td>4-4-1</td>
</tr>
<tr>
<td>4-4-2. Clearance Prefix</td>
<td>4-4-1</td>
</tr>
<tr>
<td>4-4-3. Clearance Items</td>
<td>4-4-1</td>
</tr>
<tr>
<td>4-4-4. Amended Clearances</td>
<td>4-4-2</td>
</tr>
<tr>
<td>4-4-5. Coded Departure Route (CDR)</td>
<td>4-4-3</td>
</tr>
<tr>
<td>4-4-6. Special VFR Clearances</td>
<td>4-4-3</td>
</tr>
<tr>
<td>4-4-7. Pilot Responsibility upon Clearance Issuance</td>
<td>4-4-4</td>
</tr>
<tr>
<td>4-4-8. IFR Clearance VFR—on-top</td>
<td>4-4-4</td>
</tr>
<tr>
<td>4-4-9. VFR/IFR Flights</td>
<td>4-4-5</td>
</tr>
<tr>
<td>4-4-10. Adherence to Clearance</td>
<td>4-4-5</td>
</tr>
<tr>
<td>4-4-11. IFR Separation Standards</td>
<td>4-4-7</td>
</tr>
<tr>
<td>4-4-12. Speed Adjustments</td>
<td>4-4-7</td>
</tr>
<tr>
<td>4-4-13. Runway Separation</td>
<td>4-4-9</td>
</tr>
<tr>
<td>4-4-14. Visual Separation</td>
<td>4-4-10</td>
</tr>
<tr>
<td>4-4-15. Use of Visual Clearing Procedures</td>
<td>4-4-10</td>
</tr>
<tr>
<td>4-4-16. Traffic Alert and Collision Avoidance System (TCAS I & II)</td>
<td>4-4-11</td>
</tr>
<tr>
<td>4-4-17. Traffic Information Service (TIS)</td>
<td>4-4-11</td>
</tr>
</tbody>
</table>

Section 5. Surveillance Systems

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5-1. Radar</td>
<td>4-5-1</td>
</tr>
<tr>
<td>4-5-2. Air Traffic Control Radar Beacon System (ATCRBS)</td>
<td>4-5-2</td>
</tr>
<tr>
<td>4-5-3. Surveillance Radar</td>
<td>4-5-7</td>
</tr>
<tr>
<td>4-5-4. Precision Approach Radar (PAR)</td>
<td>4-5-7</td>
</tr>
<tr>
<td>4-5-5. Airport Surface Detection Equipment — Model X (ASDE—X)</td>
<td>4-5-7</td>
</tr>
<tr>
<td>4-5-6. Traffic Information Service (TIS)</td>
<td>4-5-8</td>
</tr>
<tr>
<td>4-5-7. Automatic Dependent Surveillance—Broadcast (ADS—B) Services</td>
<td>4-5-14</td>
</tr>
<tr>
<td>4-5-8. Traffic Information Service—Broadcast (TIS—B)</td>
<td>4-5-17</td>
</tr>
<tr>
<td>4-5-9. Flight Information Service—Broadcast (FIS—B)</td>
<td>4-5-18</td>
</tr>
<tr>
<td>4-5-10. Automatic Dependent Surveillance—Rebroadcast (ADS—R)</td>
<td>4-5-20</td>
</tr>
</tbody>
</table>

Section 6. Operational Policy/Procedures for Reduced Vertical Separation Minimum (RVSM) in the Domestic U.S., Alaska, Offshore Airspace and the San Juan FIR

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6-1. Applicability and RVSM Mandate (Date/Time and Area)</td>
<td>4-6-1</td>
</tr>
<tr>
<td>4-6-2. Flight Level Orientation Scheme</td>
<td>4-6-1</td>
</tr>
<tr>
<td>4-6-3. Aircraft and Operator Approval Policy/Procedures, RVSM Monitoring and Databases for Aircraft and Operator Approval</td>
<td>4-6-2</td>
</tr>
<tr>
<td>4-6-4. Flight Planning into RVSM Airspace</td>
<td>4-6-3</td>
</tr>
<tr>
<td>4-6-5. Pilot RVSM Operating Practices and Procedures</td>
<td>4-6-3</td>
</tr>
<tr>
<td>4-6-6. Guidance on Severe Turbulence and Mountain Wave Activity (MWA)</td>
<td>4-6-4</td>
</tr>
<tr>
<td>4-6-7. Guidance on Wake Turbulence</td>
<td>4-6-5</td>
</tr>
<tr>
<td>4-6-8. Pilot/Controller Phraseology</td>
<td>4-6-6</td>
</tr>
<tr>
<td>4-6-9. Contingency Actions: Weather Encounters and Aircraft System Failures that Occur After Entry into RVSM Airspace</td>
<td>4-6-8</td>
</tr>
<tr>
<td>4-6-10. Procedures for Accommodation of Non–RVSM Aircraft</td>
<td>4-6-10</td>
</tr>
<tr>
<td>4-6-11. Non–RVSM Aircraft Requesting Climb to and Descent from Flight Levels Above RVSM Airspace Without Intermediate Level Off</td>
<td>4-6-11</td>
</tr>
</tbody>
</table>
Section 7. Operational Policy/Procedures for the Gulf of Mexico 50 NM Lateral Separation Initiative

Paragraph	Page
4-7-1. Introduction and Background | 4-7-1
4-7-2. Gulf of Mexico 50 NM Lateral Separation Initiative Web Page: Policy, Procedures and Guidance for Operators and Regulators | 4-7-1
4-7-3. Lateral Separation Minima Applied | 4-7-1
4-7-4. Operation on Routes on the periphery of the Gulf of Mexico CTAs | 4-7-2
4-7-5. Provisions for Accommodation of NonRNP10 Aircraft (Aircraft Not Authorized RNP 10 or RNP 4) | 4-7-2
4-7-6. Operator Action | 4-7-2
4-7-7. RNP 10 or RNP 4 Authorization: Policy and Procedures for Aircraft and Operators | 4-7-2
4-7-8. Flight Planning Requirements | 4-7-4
4-7-9. Pilot and Dispatcher Procedures: Basic and In-flight Contingency Procedures | 4-7-5

Chapter 5. Air Traffic Procedures

Section 1. Preflight

5-1-1. Preflight Preparation | 5-1-1
5-1-2. Follow IFR Procedures Even When Operating VFR | 5-1-2
5-1-3. Notice to Airmen (NOTAM) System | 5-1-2
5-1-4. Flight Plan – VFR Flights | 5-1-7
5-1-5. Operational Information System (OIS) | 5-1-10
5-1-6. Flight Plan – Defense VFR (DVFR) Flights | 5-1-10
5-1-7. Composite Flight Plan (VFR/IFR Flights) | 5-1-11
5-1-8. Flight Plan (FAA Form 7233–1)— Domestic IFR Flights | 5-1-11
5-1-9. International Flight Plan (FAA Form 7233–4)— IFR Flights (For Domestic or International Flights) | 5-1-17
5-1-10. IFR Operations to High Altitude Destinations | 5-1-27
5-1-11. Flights Outside the U.S. and U.S. Territories | 5-1-28
5-1-12. Change in Flight Plan | 5-1-30
5-1-13. Change in Proposed Departure Time | 5-1-30
5-1-14. Closing VFR/DVFR Flight Plans | 5-1-30
5-1-15. Canceling IFR Flight Plan | 5-1-30
5-1-16. RNAV and RNP Operations | 5-1-30

Section 2. Departure Procedures

5-2-1. Pre-taxi Clearance Procedures | 5-2-1
5-2-2. Pre-departure Clearance Procedures | 5-2-1
5-2-3. Taxi Clearance | 5-2-1
5-2-4. Line Up and Wait (LUAW) | 5-2-1
5-2-5. Abbreviated IFR Departure Clearance (Cleared. . .as Filed) Procedures | 5-2-2
5-2-6. Departure Restrictions, Clearance Void Times, Hold for Release, and Release Times | 5-2-4
5-2-7. Departure Control | 5-2-5
5-2-8. Instrument Departure Procedures (DP) – Obstacle Departure Procedures (ODP) and Standard Instrument Departures (SID) | 5-2-5
Section 3. En Route Procedures

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–3–1. ARTCC Communications</td>
<td>5–3–1</td>
</tr>
<tr>
<td>5–3–3. Additional Reports</td>
<td>5–3–4</td>
</tr>
<tr>
<td>5–3–5. Airway or Route Course Changes</td>
<td>5–3–7</td>
</tr>
<tr>
<td>5–3–6. Changeover Points (COPs)</td>
<td>5–3–8</td>
</tr>
</tbody>
</table>

Section 4. Arrival Procedures

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–4–1. Standard Terminal Arrival (STAR) Procedures</td>
<td>5–4–1</td>
</tr>
<tr>
<td>5–4–2. Local Flow Traffic Management Program</td>
<td>5–4–3</td>
</tr>
<tr>
<td>5–4–3. Approach Control</td>
<td>5–4–3</td>
</tr>
<tr>
<td>5–4–4. Advance Information on Instrument Approach</td>
<td>5–4–4</td>
</tr>
<tr>
<td>5–4–6. Approach Clearance</td>
<td>5–4–24</td>
</tr>
<tr>
<td>5–4–9. Procedure Turn and Hold—in—lieu of Procedure Turn</td>
<td>5–4–28</td>
</tr>
<tr>
<td>5–4–10. Timed Approaches from a Holding Fix</td>
<td>5–4–31</td>
</tr>
<tr>
<td>5–4–11. Radar Approaches</td>
<td>5–4–34</td>
</tr>
<tr>
<td>5–4–12. Radar Monitoring of Instrument Approaches</td>
<td>5–4–35</td>
</tr>
<tr>
<td>5–4–13. ILS/RNAV/GLS Approaches to Parallel Runways</td>
<td>5–4–36</td>
</tr>
<tr>
<td>5–4–14. Simultaneous (Parallel) Dependent ILS/RNAV/GLS Approaches (See FIG 5–4–19.)</td>
<td>5–4–38</td>
</tr>
<tr>
<td>5–4–15. Simultaneous (Parallel) Independent ILS/RNAV/GLS Approaches (See FIG 5–4–20.)</td>
<td>5–4–40</td>
</tr>
<tr>
<td>5–4–16. Simultaneous Close Parallel ILS PRM/RNAV PRM/GLS PRM Approaches and Simultaneous Offset Instrument Approaches (SOIA) (See FIG 5–4–21.)</td>
<td>5–4–42</td>
</tr>
<tr>
<td>5–4–17. Simultaneous Converging Instrument Approaches</td>
<td>5–4–49</td>
</tr>
<tr>
<td>5–4–18. RNP AR Instrument Approach Procedures</td>
<td>5–4–49</td>
</tr>
<tr>
<td>5–4–19. Side—step Maneuver</td>
<td>5–4–52</td>
</tr>
<tr>
<td>5–4–20. Approach and Landing Minimums</td>
<td>5–4–52</td>
</tr>
<tr>
<td>5–4–25. Contact Approach</td>
<td>5–4–62</td>
</tr>
<tr>
<td>5–4–27. Overhead Approach Maneuver</td>
<td>5–4–62</td>
</tr>
</tbody>
</table>

Section 5. Pilot/Controller Roles and Responsibilities

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–5–1. General</td>
<td>5–5–1</td>
</tr>
<tr>
<td>5–5–2. Air Traffic Clearance</td>
<td>5–5–1</td>
</tr>
<tr>
<td>5–5–3. Contact Approach</td>
<td>5–5–2</td>
</tr>
<tr>
<td>5–5–4. Instrument Approach</td>
<td>5–5–2</td>
</tr>
<tr>
<td>5–5–5. Missed Approach</td>
<td>5–5–2</td>
</tr>
<tr>
<td>5–5–6. Radar Vectors</td>
<td>5–5–3</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–5–8. See and Avoid</td>
<td>5–5–4</td>
</tr>
<tr>
<td>5–5–9. Speed Adjustments</td>
<td>5–5–4</td>
</tr>
<tr>
<td>5–5–10. Traffic Advisories (Traffic Information)</td>
<td>5–5–4</td>
</tr>
<tr>
<td>5–5–13. VFR-on-top</td>
<td>5–5–6</td>
</tr>
<tr>
<td>5–5–16. RNAV and RNP Operations</td>
<td>5–5–7</td>
</tr>
</tbody>
</table>

Section 6. National Security and Interception Procedures

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–6–1. National Security</td>
<td>5–6–1</td>
</tr>
<tr>
<td>5–6–2. Interception Procedures</td>
<td>5–6–2</td>
</tr>
<tr>
<td>5–6–3. Law Enforcement Operations by Civil and Military Organizations</td>
<td>5–6–6</td>
</tr>
<tr>
<td>5–6–4. Interception Signals</td>
<td>5–6–7</td>
</tr>
<tr>
<td>5–6–5. ADIZ Boundaries and Designated Mountainous Areas (See FIG 5–6–3.)</td>
<td>5–6–9</td>
</tr>
<tr>
<td>5–6–6. Visual Warning System (VWS)</td>
<td>5–6–10</td>
</tr>
</tbody>
</table>

Chapter 6. Emergency Procedures

Section 1. General

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–1–1. Pilot Responsibility and Authority</td>
<td>6–1–1</td>
</tr>
<tr>
<td>6–1–2. Emergency Condition—Request Assistance Immediately</td>
<td>6–1–1</td>
</tr>
</tbody>
</table>

Section 2. Emergency Services Available to Pilots

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–2–1. Radar Service for VFR Aircraft in Difficulty</td>
<td>6–2–1</td>
</tr>
<tr>
<td>6–2–2. Transponder Emergency Operation</td>
<td>6–2–1</td>
</tr>
<tr>
<td>6–2–3. Intercept and Escort</td>
<td>6–2–1</td>
</tr>
<tr>
<td>6–2–4. Emergency Locator Transmitter (ELT)</td>
<td>6–2–2</td>
</tr>
<tr>
<td>6–2–5. FAA K–9 Explosives Detection Team Program</td>
<td>6–2–3</td>
</tr>
<tr>
<td>6–2–6. Search and Rescue</td>
<td>6–2–4</td>
</tr>
</tbody>
</table>

Section 3. Distress and Urgency Procedures

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–3–1. Distress and Urgency Communications</td>
<td>6–3–1</td>
</tr>
<tr>
<td>6–3–2. Obtaining Emergency Assistance</td>
<td>6–3–2</td>
</tr>
</tbody>
</table>

Section 4. Two-way Radio Communications Failure

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–4–1. Two-way Radio Communications Failure</td>
<td>6–4–1</td>
</tr>
<tr>
<td>6–4–2. Transponder Operation During Two-way Communications Failure</td>
<td>6–4–2</td>
</tr>
<tr>
<td>6–4–3. Reestablishing Radio Contact</td>
<td>6–4–2</td>
</tr>
</tbody>
</table>
Section 5. Aircraft Rescue and Fire Fighting Communications

Paragraph	Page
6–5–1. Discrete Emergency Frequency | 6–5–1
6–5–2. Radio Call Signs | 6–5–1
6–5–3. ARFF Emergency Hand Signals | 6–5–1

Chapter 7. Safety of Flight

Section 1. Meteorology

7–1–1. National Weather Service Aviation Products | 7–1–1
7–1–2. FAA Weather Services | 7–1–1
7–1–3. Use of Aviation Weather Products | 7–1–3
7–1–4. Preflight Briefing | 7–1–5
7–1–5. En Route Flight Advisory Service (EFAS) | 7–1–7
7–1–6. Inflight Aviation Weather Advisories | 7–1–8
7–1–7. Categorical Outlooks | 7–1–18
7–1–8. Telephone Information Briefing Service (TIBS) | 7–1–19
7–1–9. Transcribed Weather Broadcast (TWEB) (Alaska Only) | 7–1–19
7–1–10. Inflight Weather Broadcasts | 7–1–19
7–1–11. Flight Information Services (FIS) | 7–1–22
7–1–12. Weather Observing Programs | 7–1–26
7–1–13. Weather Radar Services | 7–1–34
7–1–14. ATC Inflight Weather Avoidance Assistance | 7–1–38
7–1–15. Runway Visual Range (RVR) | 7–1–40
7–1–16. Reporting of Cloud Heights | 7–1–42
7–1–17. Reporting Prevailing Visibility | 7–1–42
7–1–18. Estimating Intensity of Rain and Ice Pellets | 7–1–42
7–1–19. Estimating Intensity of Snow or Drizzle (Based on Visibility) | 7–1–43
7–1–20. Pilot Weather Reports (PIREPs) | 7–1–43
7–1–21. PIREPs Relating to Airframe Icing | 7–1–44
7–1–22. Definitions of Inflight Icing Terms | 7–1–45
7–1–23. PIREPs Relating to Turbulence | 7–1–47
7–1–24. Wind Shear PIREPs | 7–1–48
7–1–25. Clear Air Turbulence (CAT) PIREPs | 7–1–48
7–1–26. Microbursts | 7–1–48
7–1–27. PIREPs Relating to Volcanic Ash Activity | 7–1–58
7–1–28. Thunderstorms | 7–1–58
7–1–29. Thunderstorm Flying | 7–1–59
7–1–30. Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR) | 7–1–61

Section 2. Altimeter Setting Procedures

7–2–1. General | 7–2–1
7–2–2. Procedures | 7–2–1
7–2–3. Altimeter Errors | 7–2–3
7–2–4. High Barometric Pressure | 7–2–4
7–2–5. Low Barometric Pressure | 7–2–4
Section 3. Wake Turbulence

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–3–1. General</td>
<td>7–3–1</td>
</tr>
<tr>
<td>7–3–2. Vortex Generation</td>
<td>7–3–1</td>
</tr>
<tr>
<td>7–3–3. Vortex Strength</td>
<td>7–3–1</td>
</tr>
<tr>
<td>7–3–4. Vortex Behavior</td>
<td>7–3–1</td>
</tr>
</tbody>
</table>

Section 4. Bird Hazards and Flight Over National Refuges, Parks, and Forests

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–4–1. Migratory Bird Activity</td>
<td>7–4–1</td>
</tr>
<tr>
<td>7–4–2. Reducing Bird Strike Risks</td>
<td>7–4–1</td>
</tr>
<tr>
<td>7–4–3. Reporting Bird Strikes</td>
<td>7–4–1</td>
</tr>
<tr>
<td>7–4–4. Reporting Bird and Other Wildlife Activities</td>
<td>7–4–1</td>
</tr>
<tr>
<td>7–4–5. Pilot Advisories on Bird and Other Wildlife Hazards</td>
<td>7–4–2</td>
</tr>
<tr>
<td>7–4–6. Flights Over Charted U.S. Wildlife Refuges, Parks, and Forest Service Areas</td>
<td>7–4–2</td>
</tr>
</tbody>
</table>

Section 5. Potential Flight Hazards

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–5–1. Accident Cause Factors</td>
<td>7–5–1</td>
</tr>
<tr>
<td>7–5–2. VFR in Congested Areas</td>
<td>7–5–1</td>
</tr>
<tr>
<td>7–5–3. Obstructions To Flight</td>
<td>7–5–1</td>
</tr>
<tr>
<td>7–5–4. Avoid Flight Beneath Unmanned Balloons</td>
<td>7–5–2</td>
</tr>
<tr>
<td>7–5–5. Unmanned Aircraft Systems</td>
<td>7–5–2</td>
</tr>
<tr>
<td>7–5–6. Mountain Flying</td>
<td>7–5–3</td>
</tr>
<tr>
<td>7–5–8. Seaplane Safety</td>
<td>7–5–6</td>
</tr>
<tr>
<td>7–5–10. Emergency Airborne Inspection of Other Aircraft</td>
<td>7–5–8</td>
</tr>
<tr>
<td>7–5–11. Precipitation Static</td>
<td>7–5–9</td>
</tr>
<tr>
<td>7–5–13. Flying in Flat Light and White Out Conditions</td>
<td>7–5–11</td>
</tr>
</tbody>
</table>

Section 6. Safety, Accident, and Hazard Reports

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–6–1. Aviation Safety Reporting Program</td>
<td>7–6–1</td>
</tr>
<tr>
<td>7–6–2. Aircraft Accident and Incident Reporting</td>
<td>7–6–1</td>
</tr>
<tr>
<td>7–6–3. Near Midair Collision Reporting</td>
<td>7–6–2</td>
</tr>
<tr>
<td>7–6–4. Unidentified Flying Object (UFO) Reports</td>
<td>7–6–3</td>
</tr>
<tr>
<td>7–6–5. Safety Alerts For Operators (SAFO) and Information For Operators (InFO)</td>
<td>7–6–3</td>
</tr>
</tbody>
</table>
Chapter 8. Medical Facts for Pilots

Section 1. Fitness for Flight

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8–1–1. Fitness For Flight</td>
<td>8–1–1</td>
</tr>
<tr>
<td>8–1–2. Effects of Altitude</td>
<td>8–1–3</td>
</tr>
<tr>
<td>8–1–3. Hyperventilation in Flight</td>
<td>8–1–5</td>
</tr>
<tr>
<td>8–1–4. Carbon Monoxide Poisoning in Flight</td>
<td>8–1–5</td>
</tr>
<tr>
<td>8–1–5. Illusions in Flight</td>
<td>8–1–5</td>
</tr>
<tr>
<td>8–1–6. Vision in Flight</td>
<td>8–1–6</td>
</tr>
<tr>
<td>8–1–7. Aerobatic Flight</td>
<td>8–1–8</td>
</tr>
<tr>
<td>8–1–8. Judgment Aspects of Collision Avoidance</td>
<td>8–1–8</td>
</tr>
</tbody>
</table>

Chapter 9. Aeronautical Charts and Related Publications

Section 1. Types of Charts Available

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9–1–1. General</td>
<td>9–1–1</td>
</tr>
<tr>
<td>9–1–2. Obtaining Aeronautical Charts</td>
<td>9–1–1</td>
</tr>
<tr>
<td>9–1–3. Selected Charts and Products Available</td>
<td>9–1–1</td>
</tr>
<tr>
<td>9–1–4. General Description of each Chart Series</td>
<td>9–1–1</td>
</tr>
<tr>
<td>9–1–5. Where and How to Get Charts of Foreign Areas</td>
<td>9–1–12</td>
</tr>
</tbody>
</table>

Chapter 10. Helicopter Operations

Section 1. Helicopter IFR Operations

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–1–1. Helicopter Flight Control Systems</td>
<td>10–1–1</td>
</tr>
<tr>
<td>10–1–2. Helicopter Instrument Approaches</td>
<td>10–1–3</td>
</tr>
<tr>
<td>10–1–3. Helicopter Approach Procedures to VFR Heliports</td>
<td>10–1–5</td>
</tr>
<tr>
<td>10–1–4. The Gulf of Mexico Grid System</td>
<td>10–1–6</td>
</tr>
</tbody>
</table>

Section 2. Special Operations

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–2–1. Offshore Helicopter Operations</td>
<td>10–2–1</td>
</tr>
<tr>
<td>10–2–3. Landing Zone Safety</td>
<td>10–2–10</td>
</tr>
<tr>
<td>10–2–4. Emergency Medical Service (EMS) Multiple Helicopter Operations</td>
<td>10–2–16</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendices</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1. Bird/Other Wildlife Strike Report</td>
<td>Appendix 1–1</td>
</tr>
<tr>
<td>Appendix 2. Volcanic Activity Reporting Form (V AR)</td>
<td>Appendix 2–1</td>
</tr>
<tr>
<td>Appendix 3. Abbreviations/Acronyms</td>
<td>Appendix 3–1</td>
</tr>
</tbody>
</table>

Pilot/Controller Glossary | PCG–1
Index | I–1

Table of Contents
Chapter 1. Air Navigation
Section 1. Navigation Aids

1–1–1. General

a. Various types of air navigation aids are in use today, each serving a special purpose. These aids have varied owners and operators, namely: the Federal Aviation Administration (FAA), the military services, private organizations, individual states and foreign governments. The FAA has the statutory authority to establish, operate, maintain air navigation facilities and to prescribe standards for the operation of any of these aids which are used for instrument flight in federally controlled airspace. These aids are tabulated in the Airport/Facility Directory (A/FD).

b. Pilots should be aware of the possibility of momentary erroneous indications on cockpit displays when the primary signal generator for a ground-based navigational transmitter (for example, a glideslope, VOR, or nondirectional beacon) is inoperative. Pilots should disregard any navigation indication, regardless of its apparent validity, if the particular transmitter was identified by NOTAM or otherwise as unusable or inoperative.

1–1–2. Nondirectional Radio Beacon (NDB)

a. A low or medium frequency radio beacon transmits nondirectional signals whereby the pilot of an aircraft properly equipped can determine bearings and “home” on the station. These facilities normally operate in a frequency band of 190 to 535 kilohertz (kHz), according to ICAO Annex 10 the frequency range for NDBs is between 190 and 1750 kHz, and transmit a continuous carrier with either 400 or 1020 hertz (Hz) modulation. All radio beacons except the compass locators transmit a continuous three-letter identification in code except during voice transmissions.

b. When a radio beacon is used in conjunction with the Instrument Landing System markers, it is called a Compass Locator.

c. Voice transmissions are made on radio beacons unless the letter “W” (without voice) is included in the class designator (HW).

d. Radio beacons are subject to disturbances that may result in erroneous bearing information. Such disturbances result from such factors as lightning, precipitation static, etc. At night, radio beacons are vulnerable to interference from distant stations. Nearly all disturbances which affect the Automatic Direction Finder (ADF) bearing also affect the facility’s identification. Noisy identification usually occurs when the ADF needle is erratic. Voice, music or erroneous identification may be heard when a steady false bearing is being displayed. Since ADF receivers do not have a “flag” to warn the pilot when erroneous bearing information is being displayed, the pilot should continuously monitor the NDB’s identification.

1–1–3. VHF Omni-directional Range (VOR)

a. VORs operate within the 108.0 to 117.95 MHz frequency band and have a power output necessary to provide coverage within their assigned operational service volume. They are subject to line-of-sight restrictions, and the range varies proportionally to the altitude of the receiving equipment.

NOTE—Normal service ranges for the various classes of VORs are given in Navigational Aid (NAVAID) Service Volumes, Paragraph 1–1–8

b. Most VORs are equipped for voice transmission on the VOR frequency. VORs without voice capability are indicated by the letter “W” (without voice) included in the class designator (VORW).

c. The only positive method of identifying a VOR is by its Morse Code identification or by the recorded automatic voice identification which is always indicated by use of the word “VOR” following the range’s name. Reliance on determining the identification of an omnirange should never be placed on listening to voice transmissions by the Flight Service Station (FSS) (or approach control facility) involved. Many FSSs remotely operate several omniranges with different names. In some cases, none of the VORs have the name of the “parent” FSS. During periods of maintenance, the facility may radiate a T–E–S–T code (− ⋅ ⋅ ⋅ ⋅ −) or the code may be...
removed. Some VOR equipment decodes the identifier and displays it to the pilot for verification to charts, while other equipment simply displays the expected identifier from a database to aid in verification to the audio tones. You should be familiar with your equipment and use it appropriately. If your equipment automatically decodes the identifier, it is not necessary to listen to the audio identification.

d. Voice identification has been added to numerous VORs. The transmission consists of a voice announcement, “AIRVILLE VOR” alternating with the usual Morse Code identification.

e. The effectiveness of the VOR depends upon proper use and adjustment of both ground and airborne equipment.

1. Accuracy. The accuracy of course alignment of the VOR is excellent, being generally plus or minus 1 degree.

2. Roughness. On some VORs, minor course roughness may be observed, evidenced by course needle or brief flag alarm activity (some receivers are more susceptible to these irregularities than others). At a few stations, usually in mountainous terrain, the pilot may occasionally observe a brief course needle oscillation, similar to the indication of “approaching station.” Pilots flying over unfamiliar routes are cautioned to be on the alert for these vagaries, and in particular, to use the “to/from” indicator to determine positive station passage.

(a) Certain propeller revolutions per minute (RPM) settings or helicopter rotor speeds can cause the VOR Course Deviation Indicator to fluctuate as much as plus or minus six degrees. Slight changes to the RPM setting will normally smooth out this roughness. Pilots are urged to check for this modulation phenomenon prior to reporting a VOR station or aircraft equipment for unsatisfactory operation.

1–1–4. VOR Receiver Check

a. The FAA VOR test facility (VOT) transmits a test signal which provides users a convenient means to determine the operational status and accuracy of a VOR receiver while on the ground where a VOT is located. The airborne use of VOT is permitted; however, its use is strictly limited to those areas/altitudes specifically authorized in the A/FD or appropriate supplement.

b. To use the VOT service, tune in the VOT frequency on your VOR receiver. With the Course Deviation Indicator (CDI) centered, the omni-bearing selector should read 0 degrees with the to/from indication showing “from” or the omni-bearing selector should read 180 degrees with the to/from indication showing “to.” Should the VOR receiver operate an RMI (Radio Magnetic Indicator), it will indicate 180 degrees on any omni-bearing selector (OBS) setting. Two means of identification are used. One is a series of dots and the other is a continuous tone. Information concerning an individual test signal can be obtained from the local FSS.

c. Periodic VOR receiver calibration is most important. If a receiver’s Automatic Gain Control or modulation circuit deteriorates, it is possible for it to display acceptable accuracy and sensitivity close into the VOR or VOT and display out-of-tolerance readings when located at greater distances where weaker signal areas exist. The likelihood of this deterioration varies between receivers, and is generally considered a function of time. The best assurance of having an accurate receiver is periodic calibration. Yearly intervals are recommended at which time an authorized repair facility should recalibrate the receiver to the manufacturer’s specifications.

d. Federal Aviation Regulations (14 CFR Section 91.171) provides for certain VOR equipment accuracy checks prior to flight under instrument flight rules. To comply with this requirement and to ensure satisfactory operation of the airborne system, the FAA has provided pilots with the following means of checking VOR receiver accuracy:

1. VOT or a radiated test signal from an appropriately rated radio repair station.

2. Certified airborne check points.

3. Certified check points on the airport surface.

e. A radiated VOT from an appropriately rated radio repair station serves the same purpose as an FAA VOR signal and the check is made in much the same manner as a VOT with the following differences:

1. The frequency normally approved by the Federal Communications Commission is 108.0 MHz.

2. Repair stations are not permitted to radiate the VOR test signal continuously; consequently, the
owner or operator must make arrangements with the repair station to have the test signal transmitted. This service is not provided by all radio repair stations. The aircraft owner or operator must determine which repair station in the local area provides this service. A representative of the repair station must make an entry into the aircraft logbook or other permanent record certifying to the radial accuracy and the date of transmission. The owner, operator or representative of the repair station may accomplish the necessary checks in the aircraft and make a logbook entry stating the results. It is necessary to verify which test radial is being transmitted and whether you should get a “to” or “from” indication.

f. Airborne and ground check points consist of certified radials that should be received at specific points on the airport surface or over specific landmarks while airborne in the immediate vicinity of the airport.

1. Should an error in excess of plus or minus 4 degrees be indicated through use of a ground check, or plus or minus 6 degrees using the airborne check, Instrument Flight Rules (IFR) flight must not be attempted without first correcting the source of the error.

CAUTION—
No correction other than the correction card figures supplied by the manufacturer should be applied in making these VOR receiver checks.

2. Locations of airborne check points, ground check points and VOTs are published in the A/FD.

3. If a dual system VOR (units independent of each other except for the antenna) is installed in the aircraft, one system may be checked against the other. Turn both systems to the same VOR ground facility and note the indicated bearing to that station. The maximum permissible variations between the two indicated bearings is 4 degrees.

1–1–5. Tactical Air Navigation (TACAN)

a. For reasons peculiar to military or naval operations (unusual siting conditions, the pitching and rolling of a naval vessel, etc.) the civil VOR/Distance Measuring Equipment (DME) system of air navigation was considered unsuitable for military or naval use. A new navigational system, TACAN, was therefore developed by the military and naval forces to more readily lend itself to military and naval requirements. As a result, the FAA has integrated TACAN facilities with the civil VOR/DME program. Although the theoretical, or technical principles of operation of TACAN equipment are quite different from those of VOR/DME facilities, the end result, as far as the navigating pilot is concerned, is the same. These integrated facilities are called VORTACs.

b. TACAN ground equipment consists of either a fixed or mobile transmitting unit. The airborne unit in conjunction with the ground unit reduces the transmitted signal to a visual presentation of both azimuth and distance information. TACAN is a pulse system and operates in the Ultrahigh Frequency (UHF) band of frequencies. Its use requires TACAN airborne equipment and does not operate through conventional VOR equipment.

1–1–6. VHF Omni–directional Range/Tactical Air Navigation (VORTAC)

a. A VORTAC is a facility consisting of two components, VOR and TACAN, which provides three individual services: VOR azimuth, TACAN azimuth and TACAN distance (DME) at one site. Although consisting of more than one component, incorporating more than one operating frequency, and using more than one antenna system, a VORTAC is considered to be a unified navigational aid. Both components of a VORTAC are envisioned as operating simultaneously and providing the three services at all times.

b. Transmitted signals of VOR and TACAN are each identified by three–letter code transmission and are interlocked so that pilots using VOR azimuth with TACAN distance can be assured that both signals being received are definitely from the same ground station. The frequency channels of the VOR and the TACAN at each VORTAC facility are “paired” in accordance with a national plan to simplify airborne operation.

1–1–7. Distance Measuring Equipment (DME)

a. In the operation of DME, paired pulses at a specific spacing are sent out from the aircraft (this is the interrogation) and are received at the ground station. The ground station (transponder) then transmits paired pulses back to the aircraft at the same pulse spacing but on a different frequency. The time
required for the round trip of this signal exchange is measured in the airborne DME unit and is translated into distance (nautical miles) from the aircraft to the ground station.

b. Operating on the line–of–sight principle, DME furnishes distance information with a very high degree of accuracy. Reliable signals may be received at distances up to 199 NM at line–of–sight altitude with an accuracy of better than 1/2 mile or 3 percent of the distance, whichever is greater. Distance information received from DME equipment is SLANT RANGE distance and not actual horizontal distance.

c. Operating frequency range of a DME according to ICAO Annex 10 is from 960 MHz to 1215 MHz. Aircraft equipped with TACAN equipment will receive distance information from a VORTAC automatically, while aircraft equipped with VOR must have a separate DME airborne unit.

d. Aircraft equipped with slaved compass systems may be susceptible to heading errors caused by exposure to magnetic field disturbances (flux fields) found in materials that are commonly located on the surface or buried under taxiways and ramps. These materials generate a magnetic flux field that can be sensed by the aircraft’s compass system flux detector or “gate”, which can cause the aircraft’s system to align with the material’s magnetic field rather than the earth’s natural magnetic field. The system’s erroneous heading may not self-correct. Prior to take off pilots should be aware that a heading misalignment may have occurred during taxi. Pilots are encouraged to follow the manufacturer’s or other appropriate procedures to correct possible heading misalignment before take off is commenced.

e. VOR/DME, VORTAC, Instrument Landing System (ILS)/DME, and localizer (LOC)/DME navigation facilities established by the FAA provide course and distance information from collocated components under a frequency pairing plan. Aircraft receiving equipment which provides for automatic DME selection assures receipt of azimuth and distance information from a common source when designated VOR/DME, VORTAC and ILS/DME navigation facilities are selected. Pilots are cautioned to disregard any distance displays from automatically selected DME equipment when VOR or ILS facilities, which do not have the DME feature installed, are being used for position determination.

1−1−8. Navigational Aid (NAVAID) Service Volumes

a. Most air navigation radio aids which provide positive course guidance have a designated standard service volume (SSV). The SSV defines the reception limits of unrestricted NAVAIDs which are usable for random/unpublished route navigation.

b. A NAVAID will be classified as restricted if it does not conform to flight inspection signal strength and course quality standards throughout the published SSV. However, the NAVAID should not be considered usable at altitudes below that which could be flown while operating under random route IFR conditions (14 CFR Section 91.177), even though these altitudes may lie within the designated SSV. Service volume restrictions are first published in Notices to Airmen (NOTAMs) and then with the alphabetical listing of the NAVAIDs in the A/FD.

c. Standard Service Volume limitations do not apply to published IFR routes or procedures.
(a) **Category I.** Decision Height (DH) 200 feet and Runway Visual Range (RVR) 2,400 feet (with touchdown zone and centerline lighting, RVR 1,800 feet), or (with Autopilot or FD or HUD, RVR 1,800 feet);

(b) **Special Authorization Category I.** DH 150 feet and Runway Visual Range (RVR) 1,400 feet, HUD to DH;

(c) **Category II.** DH 100 feet and RVR 1,200 feet (with autoland or HUD to touchdown and noted on authorization, RVR 1,000 feet);

(d) **Special Authorization Category II with Reduced Lighting.** DH 100 feet and RVR 1,200 feet with autoland or HUD to touchdown and noted on authorization (touchdown zone, centerline lighting, and ALSF−2 are not required);

(e) **Category IIIa.** No DH or DH below 100 feet and RVR not less than 700 feet;

(f) **Category IIIb.** No DH or DH below 50 feet and RVR less than 700 feet but not less than 150 feet; and

(g) **Category IIIc.** No DH and no RVR limitation.

NOTE—
Special authorization and equipment required for Categories II and III.

j. **Inoperative ILS Components**

1. **Inoperative localizer.** When the localizer fails, an ILS approach is not authorized.

2. **Inoperative glide slope.** When the glide slope fails, the ILS reverts to a nonprecision localizer approach.

REFERENCE—
See the inoperative component table in the U.S. Government Terminal Procedures Publication (TPP), for adjustments to minimums due to inoperative airborne or ground system equipment.

k. **ILS Course Distortion**

1. All pilots should be aware that disturbances to ILS localizer and glide slope courses may occur when surface vehicles or aircraft are operated near the localizer or glide slope antennas. Most ILS installations are subject to signal interference by either surface vehicles, aircraft or both. ILS CRITICAL AREAS are established near each localizer and glide slope antenna.

2. **ATC issues control instructions to avoid interfering operations within ILS critical areas at controlled airports during the hours the Airport Traffic Control Tower (ATCT) is in operation as follows:**

(a) **Weather Conditions.** Less than ceiling 800 feet and/or visibility 2 miles.

(1) **Localizer Critical Area.** Except for aircraft that land, exit a runway, depart, or execute a missed approach, vehicles and aircraft are not authorized in or over the critical area when an arriving aircraft is inside the outer marker (OM) or the fix used in lieu of the OM. Additionally, when conditions are less than reported ceiling 200 feet or RVR less than 2,000 feet, do not authorize vehicles or aircraft operations in or over the area when an arriving aircraft is inside the MM, or in the absence of a MM, ½ mile final.

(2) **Glide Slope Critical Area.** Do not authorize vehicles or aircraft operations in or over the area when an arriving aircraft is inside the ILS outer marker (OM), or the fix used in lieu of the OM, unless the arriving aircraft has reported the runway in sight and is circling or side−stepping to land on another runway.

(b) **Weather Conditions.** At or above ceiling 800 feet and/or visibility 2 miles.

(1) No critical area protective action is provided under these conditions.

(2) A flight crew, under these conditions, should advise the tower that it will conduct an AUToland or COUPLED approach.

EXAMPLE—
"Denver Tower, United 1153, Request Autoland/Coupled Approach (runway)"
ATC replies with:
"United 1153, Denver Tower, Roger, Critical Areas not protected."

3. Aircraft holding below 5,000 feet between the outer marker and the airport may cause localizer signal variations for aircraft conducting the ILS approach. Accordingly, such holding is not authorized when weather or visibility conditions are less than ceiling 800 feet and/or visibility 2 miles.

4. Pilots are cautioned that vehicular traffic not subject to ATC may cause momentary deviation to ILS course or glide slope signals. Also, critical areas are not protected at uncontrolled airports or at airports
with an operating control tower when weather or visibility conditions are above those requiring protective measures. Aircraft conducting coupled or autoland operations should be especially alert in monitoring automatic flight control systems. (See FIG 1–1–7.)

NOTE—

Unless otherwise coordinated through Flight Standards, ILS signals to Category I runways are not flight inspected below the point that is 100 feet less than the decision altitude (DA). Guidance signal anomalies may be encountered below this altitude.

1–1–10. **Simplified Directional Facility (SDF)**

a. The SDF provides a final approach course similar to that of the ILS localizer. It does not provide glide slope information. A clear understanding of the ILS localizer and the additional factors listed below completely describe the operational characteristics and use of the SDF.

b. The SDF transmits signals within the range of 108.10 to 111.95 MHz.

c. The approach techniques and procedures used in an SDF instrument approach are essentially the same as those employed in executing a standard localizer approach except the SDF course may not be aligned with the runway and the course may be wider, resulting in less precision.

d. Usable off–course indications are limited to 35 degrees either side of the course centerline. Instrument indications received beyond 35 degrees should be disregarded.

e. The SDF antenna may be offset from the runway centerline. Because of this, the angle of convergence between the final approach course and the runway bearing should be determined by reference to the instrument approach procedure chart. This angle is generally not more than 3 degrees. However, it should be noted that inasmuch as the approach course originates at the antenna site, an approach which is continued beyond the runway threshold will lead the aircraft to the SDF offset position rather than along the runway centerline.
FAA Instrument Landing Systems

VHF LOCALIZER

Provide Horizontal Guidance
108.10 to 111.95 MHz radiates about 100 watts horizontal polarization. Modulation frequencies 90 to 150 Hz. Modulation depth is 20% for each frequency. Code identification (1020 Hz, 5%) and voice communication (modulated 50%) provided on same channel.

1000 ft typical. Localizer transmitter building is offset 250 ft minimum from center of antenna array and within 90° +/- 30° from approach end. Antenna is on centerline and normally is under 50/1 clearance plane.

Runway length 7000 ft (typical)

250 to 600 ft from centerline of runway

Situated to provide 55 ft (+/- 5 ft) runway threshold crossing height

UHF GLIDE SLOPE TRANSMITTER

Provides Vertical Guidance
329.3 to 335.0 MHz. Radiated about 5 watts. Horizontal polarization, modulation on path 40% for 90 Hz and 150 Hz. The standard glide slope angle is 3.0 degrees. It may be higher depending on local terrain.

Point of intersection runway and glide slope extended.

3000' to 6000' from threshold

200°

MIDDLE MARKER

Indicates Approximate Decision Height Point Modulation 1300 Hz 95% Keying: 95 Alternate Dot and Dash Combinations/Minute

Amber Light

OUTER MARKER

Provides Final Approach Fix For Nonprecision Approach Keying: Two dashed/second Modulation 460 Hz, 95% Blue Light

Compass locators, rated at 25 watts output 190 to 535 KHz, are installed at many outer and some middle markers. A 400 Hz or a 1020 Hz tone, modulating the carrier about 95%, is keyed with the first two letters of the ILS identification on the outer locater and the last two letters on the middle locater. At some locations, simultaneous voice transmissions from the control tower are provided, with appropriate reduction in identification percentage.

Rate of Descent Chart (feet per minute)

<table>
<thead>
<tr>
<th>Speed (Knot)</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>400</td>
</tr>
<tr>
<td>110</td>
<td>485</td>
</tr>
<tr>
<td>130</td>
<td>575</td>
</tr>
<tr>
<td>150</td>
<td>665</td>
</tr>
<tr>
<td>160</td>
<td>707</td>
</tr>
</tbody>
</table>

Compass locators, rated at 25 watts output 190 to 535 KHz, are installed at many outer and some middle markers. A 400 Hz or a 1020 Hz tone, modulating the carrier about 95%, is keyed with the first two letters of the ILS identification on the outer locater and the last two letters on the middle locater. At some locations, simultaneous voice transmissions from the control tower are provided, with appropriate reduction in identification percentage.

Figures marked with asterisk are typical. Actual figures vary with deviations in distances to markers, glide angles and localizer widths.
f. The SDF signal is fixed at either 6 degrees or 12 degrees as necessary to provide maximum flyability and optimum course quality.

g. Identification consists of a three-letter identifier transmitted in Morse Code on the SDF frequency. The appropriate instrument approach chart will indicate the identifier used at a particular airport.

1–1–11. Microwave Landing System (MLS)
a. General

1. The MLS provides precision navigation guidance for exact alignment and descent of aircraft on approach to a runway. It provides azimuth, elevation, and distance.

2. Both lateral and vertical guidance may be displayed on conventional course deviation indicators or incorporated into multipurpose cockpit displays. Range information can be displayed by conventional DME indicators and also incorporated into multipurpose displays.

3. The system may be divided into five functions:

 (a) Approach azimuth;
 (b) Back azimuth;
 (c) Approach elevation;
 (d) Range; and
 (e) Data communications.

4. The standard configuration of MLS ground equipment includes:

 (a) An azimuth station to perform functions (a) and (e) above. In addition to providing azimuth navigation guidance, the station transmits basic data which consists of information associated directly with the operation of the landing system, as well as advisory data on the performance of the ground equipment.

 (b) An elevation station to perform function (c).

 (c) Distance Measuring Equipment (DME) to perform range guidance, both standard DME (DME/N) and precision DME (DME/P).

5. MLS Expansion Capabilities. The standard configuration can be expanded by adding one or more of the following functions or characteristics.

 (a) Back azimuth. Provides lateral guidance for missed approach and departure navigation.

 (b) Auxiliary data transmissions. Provides additional data, including refined airborne positioning, meteorological information, runway status, and other supplementary information.

 (c) Expanded Service Volume (ESV) proportional guidance to 60 degrees.

6. MLS identification is a four-letter designation starting with the letter M. It is transmitted in International Morse Code at least six times per minute by the approach azimuth (and back azimuth) ground equipment.

b. Approach Azimuth Guidance

1. The azimuth station transmits MLS angle and data on one of 200 channels within the frequency range of 5031 to 5091 MHz.

2. The equipment is normally located about 1,000 feet beyond the stop end of the runway, but there is considerable flexibility in selecting sites. For example, for heliport operations the azimuth transmitter can be collocated with the elevation transmitter.

3. The azimuth coverage extends:

 (See FIG 1–1–8.)

 (a) Laterally, at least 40 degrees on either side of the runway centerline in a standard configuration,

 (b) In elevation, up to an angle of 15 degrees and to at least 20,000 feet, and

 (c) In range, to at least 20 NM.
NOTE—
DO NOT attempt to fly a procedure that is NOTAMed out of service even if the identification is present. In certain cases, the identification may be transmitted for short periods as part of the testing.

1–1–13. NAVAIDs with Voice

a. Voice equipped en route radio navigational aids are under the operational control of either a Flight Service Station (FSS) or an approach control facility. The voice communication is available on some facilities. Hazardous Inflight Weather Advisory Service (HIWAS) broadcast capability is available on selected VOR sites throughout the conterminous U.S. and does not provide two-way voice communication. The availability of two-way voice communication and HIWAS is indicated in the A/FD and aeronautical charts.

b. Unless otherwise noted on the chart, all radio navigation aids operate continuously except during shutdowns for maintenance. Hours of operation of facilities not operating continuously are annotated on charts and in the A/FD.

1–1–14. User Reports Requested on NAVAID or Global Navigation Satellite System (GNSS) Performance or Interference

a. Users of the National Airspace System (NAS) can render valuable assistance in the early correction of NAVAID malfunctions or GNSS problems and are encouraged to report their observations of undesirable performance. Although NAVAIDs are monitored by electronic detectors, adverse effects of electronic interference, new obstructions or changes in terrain near the NAVAID can exist without detection by the ground monitors. Some of the characteristics of malfunction or deteriorating performance which should be reported are: erratic course or bearing indications; intermittent, or full, flag alarm; garbled, missing or obviously improper coded identification; poor quality communications reception; or, in the case of frequency interference, an audible hum or tone accompanying radio communications or NAVAID identification. GNSS problems are often characterized by navigation degradation or service loss indications.

b. Reporters should identify the NAVAID (for example, VOR) malfunction or GNSS problem, location of the aircraft (i.e., latitude, longitude or bearing/distance from a NAVAID), altitude, date and time of the observation, type of aircraft and description of the condition observed, and the type of receivers in use (i.e., make/model/software revision). Reports can be made in any of the following ways:

1. Immediately, by radio communication to the controlling Air Route Traffic Control Center (ARTCC), Control Tower, or FSS.

2. By telephone to the nearest FAA facility.

c. In aircraft that have more than one receiver, there are many combinations of possible interference between units. This can cause either erroneous navigation indications or, complete or partial blanking out of the communications. Pilots should be familiar enough with the radio installation of the particular airplanes they fly to recognize this type of interference.

1–1–15. LORAN

NOTE—
In accordance with the 2010 DHS Appropriations Act, the U.S. Coast Guard (USCG) terminated the transmission of all U.S. LORAN–C signals on 08 Feb 2010. The USCG also terminated the transmission of the Russian American signals on 01 Aug 2010, and the Canadian LORAN–C signals on 03 Aug 2010. For more information, visit http://www.navcen.uscg.gov. Operators should also note that TSO–C60b, AIRBORNE AREA NAVIGATION EQUIPMENT USING LORAN–C INPUTS, has been canceled by the FAA.

1–1–16. Inertial Reference Unit (IRU), Inertial Navigation System (INS), and Attitude Heading Reference System (AHRS)

a. IRUs are self–contained systems comprised of gyro and accelerometers that provide aircraft attitude (pitch, roll, and heading), position, and velocity information in response to signals resulting from inertial effects on system components. Once aligned with a known position, IRUs continuously calculate position and velocity. IRU position accuracy decays with time. This degradation is known as “drift.”
b. INSs combine the components of an IRU with an internal navigation computer. By programming a series of waypoints, these systems will navigate along a predetermined track.

c. AHRSs are electronic devices that provide attitude information to aircraft systems such as weather radar and autopilot, but do not directly compute position information.

1–1–17. Doppler Radar

Doppler Radar is a semiautomatic self-contained dead reckoning navigation system (radar sensor plus computer) which is not continuously dependent on information derived from ground based or external aids. The system employs radar signals to detect and measure ground speed and drift angle, using the aircraft compass system as its directional reference. Doppler is less accurate than INS, however, and the use of an external reference is required for periodic updates if acceptable position accuracy is to be achieved on long range flights.

1–1–18. Global Positioning System (GPS)

a. System Overview

1. System Description. The Global Positioning System is a satellite-based radio navigation system, which broadcasts a signal that is used by receivers to determine precise position anywhere in the world. The receiver tracks multiple satellites and determines a pseudorange measurement that is then used to determine the user location. A minimum of four satellites is necessary to establish an accurate three-dimensional position. The Department of Defense (DOD) is responsible for operating the GPS satellite constellation and monitors the GPS satellites to ensure proper operation. Every satellite’s orbital parameters (ephemeris data) are sent to each satellite for broadcast as part of the data message embedded in the GPS signal. The GPS coordinate system is the Cartesian earth-centered earth-fixed coordinates as specified in the World Geodetic System 1984 (WGS–84).

2. System Availability and Reliability

(a) The status of GPS satellites is broadcast as part of the data message transmitted by the GPS satellites. GPS status information is also available by means of the U.S. Coast Guard navigation information service: (703) 313–5907, Internet: http://www.navcen.uscg.gov/. Additionally, satellite status is available through the Notice to Airmen (NOTAM) system.

(b) The operational status of GNSS operations depends upon the type of equipment being used. For GPS–only equipment TSO–C129a, the operational status of nonprecision approach capability for flight planning purposes is provided through a prediction program that is embedded in the receiver or provided separately.

3. Receiver Autonomous Integrity Monitoring (RAIM). When GNSS equipment is not using integrity information from WAAS or LAAS, the GPS navigation receiver using RAIM provides GPS signal integrity monitoring. RAIM is necessary since delays of up to two hours can occur before an erroneous satellite transmission can be detected and corrected by the satellite control segment. The RAIM function is also referred to as fault detection. Another capability, fault exclusion, refers to the ability of the receiver to exclude a failed satellite from the position solution and is provided by some GPS receivers and by WAAS receivers.

4. The GPS receiver verifies the integrity (usability) of the signals received from the GPS constellation through receiver autonomous integrity monitoring (RAIM) to determine if a satellite is providing corrupted information. At least one satellite, in addition to those required for navigation, must be in view for the receiver to perform the RAIM function; thus, RAIM needs a minimum of 5 satellites in view, or 4 satellites and a barometric altimeter (baro–aiding) to detect an integrity anomaly. [Baro–aiding satisfies the RAIM requirement in lieu of a fifth satellite.] For receivers capable of doing so, RAIM needs 6 satellites in view (or 5 satellites with baro–aiding) to isolate the corrupt satellite signal and remove it from the navigation solution. Baro–aiding is a method of augmenting the GPS integrity solution by using a nonsatellite input source. GPS derived altitude should not be relied upon to determine aircraft altitude since the vertical error can be quite large and no integrity is provided. To ensure that baro–aiding is available, the current altimeter setting must be entered into the receiver as described in the operating manual.

5. RAIM messages vary somewhat between receivers; however, generally there are two types. One type indicates that there are not enough satellites
vertical off flag appears, the pilot may elect to use the LNAV minima if the rules under which the flight is operating allow changing the type of approach being flown after commencing the procedure. If the lateral integrity limit is exceeded on an LP approach, a missed approach will be necessary since there is no way to reset the lateral alarm limit while the approach is active.

3. Another additional feature of WAAS receivers is the ability to exclude a bad GPS signal and continue operating normally. This is normally accomplished by the WAAS correction information. Outside WAAS coverage or when WAAS is not available, it is accomplished through a receiver algorithm called FDE. In most cases this operation will be invisible to the pilot since the receiver will continue to operate with other available satellites after excluding the “bad” signal. This capability increases the reliability of navigation.

4. Both lateral and vertical scaling for the LNAV/VNAV and LPV approach procedures are different than the linear scaling of basic GPS. When the complete published procedure is flown, +/-1 NM linear scaling is provided until two (2) NM prior to the FAF, where the sensitivity increases to be similar to the angular scaling of an ILS. There are two differences in the WAAS scaling and ILS: 1) on long final approach segments, the initial scaling will be +/-0.3 NM to achieve equivalent performance to GPS (and better than ILS, which is less sensitive far from the runway); 2) close to the runway threshold, the scaling changes to linear instead of continuing to become more sensitive. The width of the final approach course is tailored so that the total width is usually 700 feet at the runway threshold. Since the origin point of the lateral splay for the angular portion of the final is not fixed due to antenna placement like localizer, the splay angle can remain fixed, making a consistent width of final for aircraft being vectored onto the final approach course on different length runways. When the complete published procedure is not flown, and instead the aircraft needs to capture the extended final approach course similar to ILS, the vector to final (VTF) mode is used. Under VTF the scaling is linear at +/-1 NM until the point where the ILS angular splay reaches a width of +/-1 NM regardless of the distance from the FAWP.

5. The WAAS scaling is also different than GPS TSO–C129 in the initial portion of the missed approach. Two differences occur here. First, the scaling abruptly changes from the approach scaling to the missed approach scaling, at approximately the departure end of the runway or when the pilot requests missed approach guidance rather than ramping as GPS does. Second, when the first leg of the missed approach is a Track to Fix (TF) leg aligned within 3 degrees of the inbound course, the receiver will change to 0.3 NM linear sensitivity until the turn initiation point for the first waypoint in the missed approach procedure, at which time it will abruptly change to terminal (+/-1 NM) sensitivity. This allows the elimination of close in obstacles in the early part of the missed approach that may cause the DA to be raised.

6. A new method has been added for selecting the final approach segment of an instrument approach. Along with the current method used by most receivers using menus where the pilot selects the airport, the runway, the specific approach procedure and finally the IAF, there is also a channel number selection method. The pilot enters a unique 5-digit number provided on the approach chart, and the receiver recalls the matching final approach segment from the aircraft database. A list of information including the available IAFs is displayed and the pilot selects the appropriate IAF. The pilot should confirm that the correct final approach segment was loaded by cross checking the Approach ID, which is also provided on the approach chart.

7. The Along–Track Distance (ATD) during the final approach segment of an LNAV procedure (with a minimum descent altitude) will be to the MAWP. On LNAV/VNAV and LPV approaches to a decision altitude, there is no missed approach waypoint so the along–track distance is displayed to a point normally located at the runway threshold. In most cases the MAWP for the LNAV approach is located on the runway threshold at the centerline, so these distances will be the same. This distance will always vary slightly from any ILS DME that may be present, since the ILS DME is located further down the runway. Initiation of the missed approach on the LNAV/VNAV and LPV approaches is still based on reaching the decision altitude without any of the items listed in 14 CFR Section 91.175 being visible, and must not be delayed until the ATD reaches zero. The WAAS receiver, unlike a GPS receiver, will automatically sequence past the MAWP if the missed approach procedure has been designed for RNAV. The pilot
may also select missed approach prior to the MAWP, however, navigation will continue to the MAWP prior to waypoint sequencing taking place.

1–1–20. **Ground Based Augmentation System (GBAS) Landing System (GLS)**

a. **General**

1. The GLS provides precision navigation guidance for exact alignment and descent of aircraft on approach to a runway. It provides differential augmentation to the Global Navigation Satellite System (GNSS).

NOTE—GBAS is the ICAO term for Local Area Augmentation System (LAAS).

2. LAAS was developed as an “ILS look–alike” system from the pilot perspective. LAAS is based on GPS signals augmented by ground equipment and has been developed to provide GLS precision approaches similar to ILS at airfields.

3. GLS provides guidance similar to ILS approaches for the final approach segment; portions of the GLS approach prior to and after the final approach segment will be based on Area Navigation (RNAV) or Required Navigation Performance (RNP).

4. The equipment consists of a GBAS Ground Facility (GGF), four reference stations, a VHF Data Broadcast (VDB) uplink antenna, and an aircraft GBAS receiver.

b. **Procedure**

1. Pilots will select the five digit GBAS channel number of the associated approach within the Flight Management System (FMS) menu or manually select the five digits (system dependent). Selection of the GBAS channel number also tunes the VDB.

2. Following procedure selection, confirmation that the correct LAAS procedure is loaded can be accomplished by cross checking the charted Reference Path Indicator (RPI) or approach ID with the cockpit displayed RPI or audio identification of the RPI with Morse Code (for some systems).

3. The pilot will fly the GLS approach using the same techniques as an ILS, once selected and identified.

1–1–21. **Precision Approach Systems other than ILS and GLS**

a. **General**

Approval and use of precision approach systems other than ILS and GLS require the issuance of special instrument approach procedures.

b. **Special Instrument Approach Procedure**

1. Special instrument approach procedures must be issued to the aircraft operator if pilot training, aircraft equipment, and/or aircraft performance is different than published procedures. Special instrument approach procedures are not distributed for general public use. These procedures are issued to an aircraft operator when the conditions for operations approval are satisfied.

2. General aviation operators requesting approval for special procedures should contact the local Flight Standards District Office to obtain a letter of authorization. Air carrier operators requesting approval for use of special procedures should contact their Certificate Holding District Office for authorization through their Operations Specification.

c. **Transponder Landing System (TLS)**

1. The TLS is designed to provide approach guidance utilizing existing airborne ILS localizer, glide slope, and transponder equipment.

2. Ground equipment consists of a transponder interrogator, sensor arrays to detect lateral and vertical position, and ILS frequency transmitters. The TLS detects the aircraft’s position by interrogating its transponder. It then broadcasts ILS frequency signals to guide the aircraft along the desired approach path.

3. TLS instrument approach procedures are designated Special Instrument Approach Procedures. Special aircrew training is required. TLS ground equipment provides approach guidance for only one aircraft at a time. Even though the TLS signal is received using the ILS receiver, no fixed course or glidepath is generated. The concept of operation is very similar to an air traffic controller providing radar vectors, and just as with radar vectors, the guidance is valid only for the intended aircraft. The TLS ground equipment tracks one aircraft, based on its transponder code, and provides correction signals to course and glidepath based on the position of the tracked aircraft. Flying the TLS corrections computed for another aircraft will not provide guidance.
d. **Pulsating Systems.** Pulsating visual approach slope indicators normally consist of a single light unit projecting a two-color visual approach path into the final approach area of the runway upon which the indicator is installed. The on glide path indication is a steady white light. The slightly below glide path indication is a steady red light. If the aircraft descends further below the glide path, the red light starts to pulsate. The above glide path indication is a pulsating white light. The pulsating rate increases as the aircraft gets further above or below the desired glide slope. The useful range of the system is about four miles during the day and up to ten miles at night. (See FIG 2–1–7.)

e. **Alignment of Elements Systems.** Alignment of elements systems are installed on some small general aviation airports and are a low-cost system consisting of painted plywood panels, normally black and white or fluorescent orange. Some of these systems are lighted for night use. The useful range of these systems is approximately three-quarter miles. To use the system the pilot positions the aircraft so the
elements are in alignment. The glide path indications are shown in FIG 2−1−8.

2−1−3. Runway End Identifier Lights (REIL)

REILs are installed at many airfields to provide rapid and positive identification of the approach end of a particular runway. The system consists of a pair of synchronized flashing lights located laterally on each side of the runway threshold. REILs may be either omnidirectional or unidirectional facing the approach area. They are effective for:

a. Identification of a runway surrounded by a preponderance of other lighting.

b. Identification of a runway which lacks contrast with surrounding terrain.

c. Identification of a runway during reduced visibility.

2−1−4. Runway Edge Light Systems

a. Runway edge lights are used to outline the edges of runways during periods of darkness or restricted visibility conditions. These light systems are classified according to the intensity or brightness they are capable of producing: they are the High Intensity Runway Lights (HIRL), Medium Intensity Runway Lights (MIRL), and the Low Intensity Runway Lights (LIRL). The HIRL and MIRL systems have variable intensity controls, whereas the LIRLs normally have one intensity setting.

b. The runway edge lights are white, except on instrument runways yellow replaces white on the last 2,000 feet or half the runway length, whichever is less, to form a caution zone for landings.

c. The lights marking the ends of the runway emit red light toward the runway to indicate the end of runway to a departing aircraft and emit green outward from the runway end to indicate the threshold to landing aircraft.

2−1−5. In−runway Lighting

a. Runway Centerline Lighting System (RCLS). Runway centerline lights are installed on some precision approach runways to facilitate landing under adverse visibility conditions. They are located along the runway centerline and are spaced at 50−foot intervals. When viewed from the landing threshold, the runway centerline lights are white until the last 3,000 feet of the runway. The white lights begin to alternate with red for the next 2,000 feet, and for the last 1,000 feet of the runway, all centerline lights are red.

b. Touchdown Zone Lights (TDZL). Touchdown zone lights are installed on some precision approach runways to indicate the touchdown zone when landing under adverse visibility conditions. They consist of two rows of transverse light bars disposed symmetrically about the runway centerline. The system consists of steady−burning white lights which start 100 feet beyond the landing threshold and extend to 3,000 feet beyond the landing threshold or to the midpoint of the runway, whichever is less.

c. Taxiway Centerline Lead−Off Lights. Taxiway centerline lead−off lights provide visual guidance to persons exiting the runway. They are color−coded to warn pilots and vehicle drivers that they are within the runway environment or instrument landing system (ILS) critical area, whichever is more restrictive. Alternate green and yellow lights are installed, beginning with green, from the runway centerline to one centerline light position beyond the runway holding position or ILS critical area holding position.

d. Taxiway Centerline Lead−On Lights. Taxiway centerline lead−on lights provide visual guidance to persons entering the runway. These “lead−on” lights are also color−coded with the same color pattern as lead−off lights to warn pilots and vehicle drivers that they are within the runway environment or instrument landing system (ILS) critical area, whichever is more conservative. The fixtures used for lead−on lights are bidirectional, i.e., one side emits light for the lead−on function while the other side emits light for the lead−off function. Any fixture that emits yellow light for the lead−off function must also emit yellow light for the lead−on function. (See FIG 2−1−14.)

e. Land and Hold Short Lights. Land and hold short lights are used to indicate the hold short point on certain runways which are approved for Land and Hold Short Operations (LAHSO). Land and hold short lights consist of a row of pulsing white lights installed across the runway at the hold short point. Where installed, the lights will be on anytime LAHSO is in effect. These lights will be off when LAHSO is not in effect.
2−1−6. Runway Status Light (RWSL) System

a. Introduction.

RWSL is a fully automated system that provides runway status information to pilots and surface vehicle operators to clearly indicate when it is unsafe to enter, cross, takeoff from, or land on a runway. The RWSL system processes information from surveillance systems and activates Runway Entrance Lights (REL), Takeoff Hold Lights (THL), Runway Intersection Lights (RIL), and Final Approach Runway Occupancy Signal (FAROS) in accordance with the position and velocity of the detected surface traffic and approach traffic. REL, THL, and RIL are in-pavement light fixtures that are directly visible to pilots and surface vehicle operators. FAROS alerts arriving pilots that the approaching runway is occupied by flashing the Precision Approach Path Indicator (PAPI). FAROS may be implemented as an add-on to the RWSL system or implemented as a stand-alone system at airports without a RWSL system. RWSL is an independent safety enhancement that does not substitute for or convey an ATC clearance. Clearance to enter, cross, takeoff from, land on, or operate on a runway must still be received from ATC. Although ATC has limited control over the system, personnel do not directly use and may not be able to view light fixture activations and deactivations during the conduct of daily ATC operations.

b. Runway Entrance Lights (REL): The REL system is composed of flush mounted, in-pavement, unidirectional light fixtures that are parallel to and focused along the taxiway centerline and directed toward the pilot at the hold line. An array of REL lights include the first light at the hold line followed by a series of evenly spaced lights to the runway edge; one additional light at the runway centerline is in line with the last two lights before the runway edge (see FIG 2−1−9 and FIG 2−1−12). When activated, the red lights indicate that there is high speed traffic on the runway or there is an aircraft on final approach within the activation area.

1. REL Operating Characteristics – Departing Aircraft:

When a departing aircraft reaches a site adaptable speed of approximately 30 knots, all taxiway intersections with REL arrays along the runway ahead of the aircraft will illuminate (see FIG 2−1−9). As the aircraft approaches an REL equipped taxiway intersection, the lights at that intersection extinguish approximately 3 to 4 seconds before the aircraft reaches it. This allows controllers to apply “anticipated separation” to permit ATC to move traffic more expeditiously without compromising safety. After the aircraft is declared “airborne” by the system, all REL lights associated with this runway will extinguish.

2. REL Operating Characteristics – Arriving Aircraft:

When an aircraft on final approach is approximately 1 mile from the runway threshold, all sets of taxiway REL light arrays that intersect the runway illuminate. The distance is adjustable and can be configured for specific operations at particular airports. Lights extinguish at each equipped taxiway intersection approximately 3 to 4 seconds before the aircraft reaches it to apply anticipated separation until the aircraft has slowed to approximately 80 knots (site adjustable parameter). Below 80 knots, all arrays that are not within 30 seconds of the aircraft’s forward path are extinguished. Once the arriving aircraft slows to approximately 34 knots (site adjustable parameter), it is declared to be in a taxi state, and all lights extinguish.

3. What a pilot would observe: A pilot at or approaching the hold line to a runway will observe RELs illuminate and extinguish in reaction to an aircraft or vehicle operating on the runway, or an arriving aircraft operating less than 1 mile from the runway threshold.

4. When a pilot observes the red lights of the REL, that pilot will stop at the hold line or remain stopped. The pilot will then contact ATC for resolution if the clearance is in conflict with the lights. Should pilots note illuminated lights under circumstances when remaining clear of the runway is impractical for safety reasons (for example, aircraft is already on the runway), the crew should proceed according to their best judgment while understanding the illuminated lights indicate the runway is unsafe to enter or cross. Contact ATC at the earliest possible opportunity.
c. Takeoff Hold Lights (THL) : The THL system is composed of flush mounted, in-pavement, unidirectional light fixtures in a double longitudinal row aligned either side of the runway centerline lighting. Fixtures are focused toward the arrival end of the runway at the “line up and wait” point. THLs extend for 1,500 feet in front of the holding aircraft starting at a point 375 feet from the departure threshold (see FIG 2–1–13). Illuminated red lights provide a signal, to an aircraft in position for takeoff or rolling, that it is unsafe to takeoff because the runway is occupied or about to be occupied by another aircraft or ground vehicle. Two aircraft, or a surface vehicle and an aircraft, are required for the lights to illuminate. The departing aircraft must be in position for takeoff or beginning takeoff roll. Another aircraft or a surface vehicle must be on or about to cross the runway.

1. THL Operating Characteristics − Departing Aircraft:

THLs will illuminate for an aircraft in position for departure or departing when there is another aircraft or vehicle on the runway or about to enter the runway (see FIG 2–1–9.) Once that aircraft or vehicle exits the runway, the THLs extinguish. A pilot may notice lights extinguish prior to the downfield aircraft or vehicle being completely clear of the runway but still moving. Like RELs, THLs have an “anticipated separation” feature.

NOTE—

When the THLs extinguish, this is not clearance to begin a takeoff roll. All takeoff clearances will be issued by ATC.

2. What a pilot would observe: A pilot in position to depart from a runway, or has begun takeoff roll, will observe THLs illuminate in reaction to an aircraft or vehicle on the runway or entering or crossing it. Lights will extinguish when the runway is clear. A pilot may observe several cycles of illumination and extinguishing depending on the amount of crossing traffic.

3. When a pilot observes the red light of the THLs, the pilot should safely stop if it’s feasible or remain stopped. The pilot must contact ATC for resolution if any clearance is in conflict with the lights. Should pilots note illuminated lights while in takeoff roll and under circumstances when stopping is impractical for safety reasons, the crew should proceed according to their best judgment while understanding the illuminated lights indicate that
continuing the takeoff is unsafe. Contact ATC at the earliest possible opportunity.

d. Runway Intersection Lights (RIL): The RIL system is composed of flush mounted, in-pavement, unidirectional light fixtures in a double longitudinal row aligned either side of the runway centerline lighting in the same manner as THLs. Their appearance to a pilot is similar to that of THLs. Fixtures are focused toward the arrival end of the runway, and they extend for 3,000 feet in front of an aircraft that is approaching an intersecting runway. They end at the Land and Hold Short Operation (LASHO) light bar or the hold short line for the intersecting runway.

1. RIL Operating Characteristics – Departing Aircraft:
RILs will illuminate for an aircraft departing or in position to depart when there is high speed traffic operating on the intersecting runway (see FIG 2–1–9). Note that there must be an aircraft or vehicle in a position to observe the RILs for them to illuminate. Once the conflicting traffic passes through the intersection, the RILs extinguish.

2. RIL Operating Characteristics – Arriving Aircraft:
RILs will illuminate for an aircraft that has landed and is rolling out when there is high speed traffic on the intersecting runway that is ±5 seconds of meeting at the intersection. Once the conflicting traffic passes through the intersection, the RILs extinguish.

3. What a pilot would observe: A pilot departing or arriving will observe RILs illuminate in reaction to the high speed traffic operation on the intersecting runway. The lights will extinguish when that traffic has passed through the runway intersection.

4. Whenever a pilot observes the red light of the RIL array, the pilot will stop before the LAHSO stop bar or the hold line for the intersecting runway. If a departing aircraft is already at high speed in the takeoff roll when the RILs illuminate, it may be impractical to stop for safety reasons. The crew should safely operate according to their best judgment while understanding the illuminated lights indicate that continuing the takeoff is unsafe. Contact ATC at the earliest possible opportunity.

e. The Final Approach Runway Occupancy Signal (FAROS) is communicated by flashing of the Precision Approach Path Indicator (PAPI) (see FIG 2–1–9). When activated, the light fixtures of the PAPI flash or pulse to indicate to the pilot on an approach that the runway is occupied and that it may be unsafe to land.

NOTE–
FAROS is an independent automatic alerting system that does not rely on ATC control or input.

1. FAROS Operating Characteristics:
If an aircraft or surface vehicle occupies a FAROS equipped runway, the PAPI(s) on that runway will flash. The glide path indication will not be affected, and the allotment of red and white PAPI lights observed by the pilot on approach will not change. The FAROS system will flash the PAPI when traffic enters the runway and there is an aircraft on approach and within 1.5 nautical miles of the landing threshold.

2. What a pilot would observe: A pilot on approach to the runway will observe the PAPI flash if there is traffic on the runway and will notice the PAPI ceases to flash when the traffic moves outside the hold short lines for the runway.

3. When a pilot observes a flashing PAPI at 500 feet above ground level (AGL), the contact height, the pilot must look for and acquire the traffic on the runway. At 300 feet AGL, the pilot must contact ATC for resolution if the FAROS indication is in conflict with the clearance. If the PAPI continues to flash, the pilot must execute an immediate “go around” and contact ATC at the earliest possible opportunity.

f. Pilot Actions:

1. When operating at airports with RWSL, pilots will operate with the transponder “On” when departing the gate or parking area until it is shutdown upon arrival at the gate or parking area. This ensures interaction with the FAA surveillance systems such as ASDE-X which provide information to the RWSL system.

2. Pilots must always inform the ATCT when they have either stopped, are verifying a landing clearance, or are executing a go-around due to RWSL or FAROS indication that are in conflict with ATC instructions. Pilots must request clarification of the taxi, takeoff, or landing clearance.

3. Never cross over illuminated red lights. Under normal circumstances, RWSL will confirm the pilot’s taxi or takeoff clearance previously issued by ATC. If RWSL indicates that it is unsafe to takeoff
from, land on, cross, or enter a runway, immediately notify ATC of the conflict and re-confirm the clearance.

4. Do not proceed when lights have extinguished without an ATC clearance. RWSL verifies an ATC clearance; it does not substitute for an ATC clearance.

5. Never land if PAPI continues to flash. Execute a go around and notify ATC.

g. ATC Control of RWSL System:

1. Controllers can set in-pavement lights to one of five (5) brightness levels to assure maximum conspicuity under all visibility and lighting conditions. REL, THL, and RIL subsystems may be independently set.

2. System lights can be disabled should RWSL operations impact the efficient movement of air traffic or contribute, in the opinion of the assigned ATC Manager, to unsafe operations. REL, THL, RIL, and FAROS light fixtures may be disabled separately. Disabling of the FAROS subsystem does not extinguish PAPI lights or impact its glide path function. Whenever the system or a component is disabled, a NOTAM must be issued, and the Automatic Terminal Information System (ATIS) must be updated.

2–1–7. Stand-Alone Final Approach Runway Occupancy Signal (FAROS)

a. Introduction:

The stand-alone FAROS system is a fully automated system that provides runway occupancy status to pilots on final approach to indicate whether it may be unsafe to land. When an aircraft or vehicle is detected on the runway, the Precision Approach Path Indicator (PAPI) light fixtures flash as a signal to indicate that the runway is occupied and that it may be unsafe to land. The stand-alone FAROS system is activated by localized or comprehensive sensors detecting aircraft or ground vehicles occupying activation zones.

The stand-alone FAROS system monitors specific areas of the runway, called activation zones, to determine the presence of aircraft or ground vehicles in the zone (see FIG 2–1–10). These activation zones are defined as areas on the runway that are frequently occupied by ground traffic during normal airport operations and could present a hazard to landing aircraft. Activation zones may include the full-length departure position, the midfield departure position, a frequently crossed intersection, or the entire runway.

Pilots can refer to the airport specific FAROS pilot information sheet for activation zone configuration.

Clearance to land on a runway must be issued by Air Traffic Control (ATC). ATC personnel have limited control over the system and may not be able to view the FAROS signal.
2−3−4. Taxiway Markings

a. General. All taxiways should have centerline markings and runway holding position markings whenever they intersect a runway. Taxiway edge markings are present whenever there is a need to separate the taxiway from a pavement that is not intended for aircraft use or to delineate the edge of the taxiway. Taxiways may also have shoulder markings and holding position markings for Instrument Landing System (ILS) critical areas, and taxiway/taxiway intersection markings.

REFERENCE—AIM, Holding Position Markings, Paragraph 2−3−5

b. Taxiway Centerline.

1. Normal Centerline. The taxiway centerline is a single continuous yellow line, 6 inches (15 cm) to 12 inches (30 cm) in width. This provides a visual cue to permit taxiing along a designated path. Ideally, the aircraft should be kept centered over this line during taxi. However, being centered on the taxiway centerline does not guarantee wingtip clearance with other aircraft or other objects.

2. Enhanced Centerline. At some airports, mostly the larger commercial service airports, an enhanced taxiway centerline will be used. The enhanced taxiway centerline marking consists of a parallel line of yellow dashes on either side of the normal taxiway centerline. The taxiway centerlines are enhanced for a maximum of 150 feet prior to a runway holding position marking. The purpose of this enhancement is to warn the pilot that he/she is approaching a runway holding position marking and should prepare to stop unless he/she has been cleared onto or across the runway by ATC. (See FIG 2−3−8.)

c. Taxiway Edge Markings. Taxiway edge markings are used to define the edge of the taxiway. They are primarily used when the taxiway edge does not correspond with the edge of the pavement. There are two types of markings depending upon whether the aircraft is supposed to cross the taxiway edge:

1. Continuous Markings. These consist of a continuous double yellow line, with each line being at least 6 inches (15 cm) in width spaced 6 inches (15 cm) apart. They are used to define the taxiway edge from the shoulder or some other abutting paved surface not intended for use by aircraft.

2. Dashed Markings. These markings are used when there is an operational need to define the edge of a taxiway or taxilane on a paved surface where the adjoining pavement to the taxiway edge is intended for use by aircraft, e.g., an apron. Dashed taxiway edge markings consist of a broken double yellow line, with each line being at least 6 inches (15 cm) in width, spaced 6 inches (15 cm) apart (edge to edge). These lines are 15 feet (4.5 m) in length with 25 foot (7.5 m) gaps. (See FIG 2−3−9.)

d. Taxi Shoulder Markings. Taxiways, holding bays, and aprons are sometimes provided with paved shoulders to prevent blast and water erosion. Although shoulders may have the appearance of full strength pavement they are not intended for use by aircraft, and may be unable to support an aircraft. Usually the taxiway edge marking will define this area. Where conditions exist such as islands or taxiway curves that may cause confusion as to which side of the edge stripe is for use by aircraft, taxiway shoulder markings may be used to indicate the pavement is unusable. Taxiway shoulder markings are yellow. (See FIG 2−3−10.)
FIG 2–3–6
Markings for Blast Pad or Stopway or Taxiway Preceding a Displaced Threshold
FIG 2–3–11
Surface Painted Signs
2–3–5. Holding Position Markings

a. Runway Holding Position Markings. For runways, these markings indicate where an aircraft is supposed to stop when approaching a runway. They consist of four yellow lines, two solid and two dashed, spaced six or twelve inches apart, and extending across the width of the taxiway or runway. The solid lines are always on the side where the aircraft is to hold. There are three locations where runway holding position markings are encountered.

1. Runway Holding Position Markings on Taxiways. These markings identify the locations on a taxiway where an aircraft is supposed to stop when it does not have clearance to proceed onto the runway. Generally, runway holding position markings also identify the boundary of the runway safety area for aircraft exiting the runway. The runway holding position markings are shown in FIG 2–3–13 and FIG 2–3–16. When instructed by ATC to, “Hold short of (runway “xx”),” the pilot must stop so that no part of the aircraft extends beyond the runway holding position marking. When approaching the runway, a pilot should not cross the runway holding position marking without ATC clearance at a controlled airport, or without making sure of adequate separation from other aircraft at uncontrolled airports. An aircraft exiting a runway is not clear of the runway until all parts of the aircraft have crossed the applicable holding position marking.

REFERENCE
AIM, Exiting the Runway After Landing., Paragraph 4–3–20

2. Runway Holding Position Markings on Runways. These markings are installed on runways only if the runway is normally used by air traffic control for “land, hold short” operations or taxiing operations and have operational significance only for those two types of operations. A sign with a white inscription on a red background is installed adjacent to these holding position markings. (See FIG 2–3–14.) The holding position markings are placed on runways prior to the intersection with another runway, or some designated point. Pilots receiving instructions “cleared to land, runway “xx”” from air traffic control are authorized to use the entire landing length of the runway and should disregard any holding position markings located on the runway. Pilots receiving and accepting instructions “cleared to land runway “xx,” hold short of runway “yy”” from air traffic control must either exit runway “xx,” or stop at the holding position prior to runway “yy.”

3. Taxiways Located in Runway Approach Areas. These markings are used at some airports where it is necessary to hold an aircraft on a taxiway located in the approach or departure area of a runway so that the aircraft does not interfere with the operations on that runway. This marking is collocated with the runway approach area holding position sign. When specifically instructed by ATC “Hold short of (runway xx approach area)” the pilot should stop so no part of the aircraft extends beyond the holding position marking. (See subparagraph 2–3–8b2, Runway Approach Area Holding Position Sign, and FIG 2–3–15.)

b. Holding Position Markings for Instrument Landing System (ILS). Holding position markings for ILS critical areas consist of two yellow solid lines spaced two feet apart connected by pairs of solid lines spaced ten feet apart extending across the width of the taxiway as shown. (See FIG 2–3–16.) A sign with an inscription in white on a red background is installed adjacent to these hold position markings. When the ILS critical area is being protected, the pilot should stop so no part of the aircraft extends beyond the holding position marking. When approaching the holding position marking, a pilot should not cross the marking without ATC clearance. ILS critical area is not clear until all parts of the aircraft have crossed the applicable holding position marking.

REFERENCE
AIM, Instrument Landing System (ILS), Paragraph 1–1–9

c. Holding Position Markings for Taxiway/Taxiway Intersections. Holding position markings for taxiway/taxiway intersections consist of a single dashed line extending across the width of the taxiway as shown. (See FIG 2–3–17.) They are installed on taxiways where air traffic control normally holds aircraft short of a taxiway intersection. When instructed by ATC “hold short of (taxiway)” the pilot should stop so no part of the aircraft extends beyond the holding position marking. When the marking is not present the pilot should stop the aircraft at a point which provides adequate clearance from an aircraft on the intersecting taxiway.

d. Surface Painted Holding Position Signs. Surface painted holding position signs have a red background with a white inscription and supplement the signs located at the holding position. This type of marking is normally used where the width of the holding position on the taxiway is greater than 200 feet(60m). It is located to the left side of the taxiway centerline on the holding side and prior to the holding position marking. (See FIG 2–3–11.)
f. Everglades Reporting Service.

This service is offered by Miami Automated International Flight Service Station (MIA AIFSS), in extreme southern Florida. The service is provided to aircraft crossing the Florida Everglades, between Lee County (Ft. Myers, FL) VORTAC (RSW) on the northwest side, and Dolphin (Miami, FL) VOR (DHP) on the southeast side.

1. The pilot must request the service from Miami AIFSS.
2. MIA AIFSS frequency information, 122.2, 122.3, and 122.65.
3. The pilot must file a VFR flight plan with the remark: ERS.
4. The pilot must maintain 2000 feet of altitude.
5. The pilot must make position reports every ten (10) minutes. SAR begins fifteen (15) minutes after position report is not made on time.
6. The pilot is expected to land as soon as is practical, in the event of two−way radio failure, and advise MIA AIFSS that the service is terminated.
7. The pilot must notify Miami AIFSS when the flight plan is cancelled or the service is suspended.

4−1−22. Airport Reservation Operations and Special Traffic Management Programs

This section describes procedures for obtaining required airport reservations at airports designated by the FAA and for airports operating under Special Traffic Management Programs.

a. Slot Controlled Airports.

1. The FAA may adopt rules to require advance operations for unscheduled operations at certain airports. In addition to the information in the rules adopted by the FAA, a listing of the airports and relevant information will be maintained on the FAA Web site listed below.

2. The FAA has established an Airport Reservation Office (ARO) to receive and process reservations for unscheduled flights at the slot controlled airports. The ARO uses the Enhanced Computer Voice Reservation System (e−CVRS) to allocate reservations. Reservations will be available beginning 72 hours in advance of the operation at the slot controlled airport. Refer to the Web site or touch−tone phone interface for the current listing of slot controlled airports, limitations, and reservation procedures.

NOTE—
The web interface/telephone numbers to obtain a reservation for unscheduled operations at a slot controlled airport are:

2. Touch−tone: 1−800−875−9694 or 703−707−0568. (e−CVRS interface).
3. Trouble number: 540−422−4246.

3. For more detailed information on operations and reservation procedures at a Slot Controlled Airport, please see Advisory Circular 93−1A, Reservations for Unscheduled Operations at slot controlled airports. A copy of the Advisory Circular may be obtained via the Internet at: http://www.faa.gov.

b. Special Traffic Management Programs (STMP).

1. Special procedures may be established when a location requires special traffic handling to accommodate above normal traffic demand (e.g., the Indianapolis 500, Super Bowl) or reduced airport capacity (e.g., airport runway/taxiway closures for airport construction). The special procedures may remain in effect until the problem has been resolved or until local traffic management procedures can handle the situation and a need for special handling no longer exists.

2. There will be two methods available for obtaining slot reservations through the ATCSCC: the web interface and the touch−tone interface. If these methods are used, a NOTAM will be issued relaying the web site address and toll free telephone number. Be sure to check current NOTAMs to determine: what airports are included in the STMP; the dates and times reservations are required; the time limits for reservation requests; the point of contact for reservations; and any other instructions.

3. Users may contact the ARO at 703−904−4452 if they have a problem making a reservation or have a question concerning the slot controlled airport/STMP regulations or procedures.
d. Making Reservations.

1. Internet Users. Detailed information and User Instruction Guides for using the Web interface to the reservation systems are available on the websites for the slot controlled airports (e-CVRS), http://www.fly.faa.gov/ecvrs; and STMPs (e-STMP), http://www.fly.faa.gov/estmp.

2. Telephone users. When using the telephone to make a reservation, you are prompted for input of information about what you wish to do. All input is accomplished using the keypad on the telephone. The only problem with a telephone is that most keys have a letter and number associated with them. When the system asks for a date or time, it is expecting an input of numbers. A problem arises when entering an aircraft call sign or tail number. The system does not detect if you are entering a letter (alpha character) or a number. Therefore, when entering an aircraft call sign or tail number two keys are used to represent each letter or number. When entering a number, precede the number you wish by the number 0 (zero) i.e., 01, 02, 03, 04, If you wish to enter a letter, first press the key on which the letter appears and then press 1, 2, or 3, depending upon whether the letter you desire is the first, second, or third letter on that key. For example to enter the letter “N” first press the “6” key because “N” is on that key, then press the “2” key because the letter “N” is the second letter on the “6” key. Since there are no keys for the letters “Q” and “Z” e-CVRS pretends they are on the number “1” key. Therefore, to enter the letter “Q”, press 11, and to enter the letter “Z” press 12.

NOTE—

Users are reminded to enter the “N” character with their tail numbers. (See TBL 4–1–4.)

TBL 4–1–4

Codes for Call Sign/Tail Number Input

<table>
<thead>
<tr>
<th>Codes for Call Sign/Tail Number Input Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>A–21</td>
</tr>
<tr>
<td>B–22</td>
</tr>
<tr>
<td>C–23</td>
</tr>
<tr>
<td>D–31</td>
</tr>
<tr>
<td>E–32</td>
</tr>
<tr>
<td>F–33</td>
</tr>
<tr>
<td>G–41</td>
</tr>
<tr>
<td>H–42</td>
</tr>
<tr>
<td>I–43</td>
</tr>
</tbody>
</table>
Section 3. Airport Operations

4–3–1. General

Increased traffic congestion, aircraft in climb and descent attitudes, and pilot preoccupation with cockpit duties are some factors that increase the hazardous accident potential near the airport. The situation is further compounded when the weather is marginal, that is, just meeting VFR requirements. Pilots must be particularly alert when operating in the vicinity of an airport. This section defines some rules, practices, and procedures that pilots should be familiar with and adhere to for safe airport operations.

4–3–2. Airports with an Operating Control Tower

a. When operating at an airport where traffic control is being exercised by a control tower, pilots are required to maintain two–way radio contact with the tower while operating within the Class B, Class C, and Class D surface area unless the tower authorizes otherwise. Initial callup should be made about 15 miles from the airport. Unless there is a good reason to leave the tower frequency before exiting the Class B, Class C, and Class D surface areas, it is a good operating practice to remain on the tower frequency for the purpose of receiving traffic information. In the interest of reducing tower frequency congestion, pilots are reminded that it is not necessary to request permission to leave the tower frequency once outside of Class B, Class C, and Class D surface areas. Not all airports with an operating control tower will have Class D airspace. These airports do not have weather reporting which is a requirement for surface based controlled airspace, previously known as a control zone. The controlled airspace over these airports will normally begin at 700 feet or 1,200 feet above ground level and can be determined from the visual aeronautical charts. Pilots are expected to use good operating practices and communicate with the control tower as described in this section.

b. When necessary, the tower controller will issue clearances or other information for aircraft to generally follow the desired flight path (traffic patterns) when flying in Class B, Class C, and Class D surface areas and the proper taxi routes when operating on the ground. If not otherwise authorized or directed by the tower, pilots of fixed–wing aircraft approaching to land must circle the airport to the left. Pilots approaching to land in a helicopter must avoid the flow of fixed–wing traffic. However, in all instances, an appropriate clearance must be received from the tower before landing.

NOTE—
This diagram is intended only to illustrate terminology used in identifying various components of a traffic pattern. It should not be used as a reference or guide on how to enter a traffic pattern.

c. The following terminology for the various components of a traffic pattern has been adopted as standard for use by control towers and pilots (See FIG 4–3–1):

1. Upwind leg. A flight path parallel to the landing runway in the direction of landing.

2. Crosswind leg. A flight path at right angles to the landing runway off its takeoff end.

3. Downwind leg. A flight path parallel to the landing runway in the opposite direction of landing.

4. Base leg. A flight path at right angles to the landing runway off its approach end and extending from the downwind leg to the intersection of the extended runway centerline.

5. Final approach. A flight path in the direction of landing along the extended runway centerline from the base leg to the runway.

6. Departure leg. The flight path which begins after takeoff and continues straight ahead along the extended runway centerline. The departure climb continues until reaching a point at least ½ mile.
beyond the departure end of the runway and within 300 feet of the traffic pattern altitude.

d. Many towers are equipped with a tower radar display. The radar uses are intended to enhance the effectiveness and efficiency of the local control, or tower, position. They are not intended to provide radar services or benefits to pilots except as they may accrue through a more efficient tower operation. The four basic uses are:

1. To determine an aircraft’s exact location. This is accomplished by radar identifying the VFR aircraft through any of the techniques available to a radar position, such as having the aircraft squawk ident. Once identified, the aircraft’s position and spatial relationship to other aircraft can be quickly determined, and standard instructions regarding VFR operation in Class B, Class C, and Class D surface areas will be issued. Once initial radar identification of a VFR aircraft has been established and the appropriate instructions have been issued, radar monitoring may be discontinued; the reason being that the local controller’s primary means of surveillance in VFR conditions is visually scanning the airport and local area.

2. To provide radar traffic advisories. Radar traffic advisories may be provided to the extent that the local controller is able to monitor the radar display. Local control has primary control responsibilities to the aircraft operating on the runways, which will normally supersede radar monitoring duties.

3. To provide a direction or suggested heading. The local controller may provide pilots flying VFR with generalized instructions which will facilitate operations; e.g., “PROCEED SOUTH-WESTBOUND, ENTER A RIGHT DOWNWIND RUNWAY THREE ZERO,” or provide a suggested heading to establish radar identification or as an advisory aid to navigation; e.g., “SUGGESTED HEADING TWO TWO ZERO, FOR RADAR IDENTIFICATION.” In both cases, the instructions are advisory aids to the pilot flying VFR and are not radar vectors.

NOTE—Pilots have complete discretion regarding acceptance of the suggested headings or directions and have sole responsibility for seeing and avoiding other aircraft.

4. To provide information and instructions to aircraft operating within Class B, Class C, and Class D surface areas. In an example of this situation, the local controller would use the radar to advise a pilot on an extended downwind when to turn base leg.

NOTE—The above tower radar applications are intended to augment the standard functions of the local control position. There is no controller requirement to maintain constant radar identification. In fact, such a requirement could compromise the local controller’s ability to visually scan the airport and local area to meet FAA responsibilities to the aircraft operating on the runways and within the Class B, Class C, and Class D surface areas. Normally, pilots will not be advised of being in radar contact since that continued status cannot be guaranteed and since the purpose of the radar identification is not to establish a link for the provision of radar services.

e. A few of the radar equipped towers are authorized to use the radar to ensure separation between aircraft in specific situations, while still others may function as limited radar approach controls. The various radar uses are strictly a function of FAA operational need. The facilities may be indistinguishable to pilots since they are all referred to as tower and no publication lists the degree of radar use. Therefore, when in communication with a tower controller who may have radar available, do not assume that constant radar monitoring and complete ATC radar services are being provided.

4–3–3. Traffic Patterns

a. At most airports and military air bases, traffic pattern altitudes for propeller-driven aircraft generally extend from 600 feet to as high as 1,500 feet above the ground. Also, traffic pattern altitudes for military turbojet aircraft sometimes extend up to 2,500 feet above the ground. Therefore, pilots of en route aircraft should be constantly on the alert for other aircraft in traffic patterns and avoid these areas whenever possible. Traffic pattern altitudes should be maintained unless otherwise required by the applicable distance from cloud criteria (14 CFR Section 91.155). (See FIG 4–3–2 and FIG 4–3–3.)

b. Wind conditions affect all airplanes in varying degrees. Figure 4–3–4 is an example of a chart used to determine the headwind, crosswind, and tailwind components based on wind direction and velocity relative to the runway. Pilots should refer to similar information provided by the aircraft manufacturer when determining these wind components.
EXAMPLE—
Key to traffic pattern operations

1. Enter pattern in level flight, abeam the midpoint of the runway, at pattern altitude. (1,000’ AGL is recommended pattern altitude unless established otherwise . . .)

2. Maintain pattern altitude until abeam approach end of the landing runway on downwind leg.

3. Complete turn to final at least 1/4 mile from the runway.

4. Continue straight ahead until beyond departure end of runway.

5. If remaining in the traffic pattern, commence turn to crosswind leg beyond the departure end of the runway within 300 feet of pattern altitude.

6. If departing the traffic pattern, continue straight out, or exit with a 45 degree turn (to the left when in a left-hand traffic pattern; to the right when in a right-hand traffic pattern) beyond the departure end of the runway, after reaching pattern altitude.
EXAMPLE—

Key to traffic pattern operations

1. Enter pattern in level flight, abeam the midpoint of the runway, at pattern altitude. (1,000’ AGL is recommended pattern altitude unless established otherwise…)

2. Maintain pattern altitude until abeam approach end of the landing runway on downwind leg.

3. Complete turn to final at least 1/4 mile from the runway.

4. Continue straight ahead until beyond departure end of runway.

5. If remaining in the traffic pattern, commence turn to crosswind leg beyond the departure end of the runway within 300 feet of pattern altitude.

6. If departing the traffic pattern, continue straight out, or exit with a 45 degree turn (to the left when in a left-hand traffic pattern; to the right when in a right-hand traffic pattern) beyond the departure end of the runway, after reaching pattern altitude.

7. Do not overshoot final or continue on a track which will penetrate the final approach of the parallel runway.

8. Do not continue on a track which will penetrate the departure path of the parallel runway.
FIG 4-3-4
Headwind/Tailwind/Crosswind Component Calculator

EXAMPLE:
WIND SPEED 20 KNOTS. ANGLE BETWEEN RUNWAY AND DIRECTION OF WIND 80°. CROSSWIND COMPONENT - 17 KNOTS, HEADWIND COMPONENT - 10 KNOTS.
4–3–6. Visual Indicators at Airports Without an Operating Control Tower

a. At those airports without an operating control tower, a segmented circle visual indicator system, if installed, is designed to provide traffic pattern information.

REFERENCE—
AIM, Traffic Advisory Practices at Airports Without Operating Control Towers, Paragraph 4–1–9

b. The segmented circle system consists of the following components:

1. The segmented circle. Located in a position affording maximum visibility to pilots in the air and on the ground and providing a centralized location for other elements of the system.

2. The wind direction indicator. A wind cone, wind sock, or wind tee installed near the operational runway to indicate wind direction. The large end of the wind cone/wind sock points into the wind as does the large end (cross bar) of the wind tee. In lieu of a tetrahedron and where a wind sock or wind cone is collocated with a wind tee, the wind tee may be manually aligned with the runway in use to indicate landing direction. These signaling devices may be located in the center of the segmented circle and may be lighted for night use. Pilots are cautioned against using a tetrahedron to indicate wind direction.

3. The landing direction indicator. A tetrahedron is installed when conditions at the airport warrant its use. It may be used to indicate the direction of landings and takeoffs. A tetrahedron may be located at the center of a segmented circle and may be lighted for night operations. The small end of the tetrahedron points in the direction of landing. Pilots are cautioned against using a tetrahedron for any purpose other than as an indicator of landing direction. Further, pilots should use extreme caution when making runway selection by use of a tetrahedron in very light or calm wind conditions as the tetrahedron may not be aligned with the designated calm−wind runway. At airports with control towers, the tetrahedron should only be referenced when the control tower is not in operation. Tower instructions supersede tetrahedron indications.

4. Landing strip indicators. Installed in pairs as shown in the segmented circle diagram and used to show the alignment of landing strips.

5. Traffic pattern indicators. Arranged in pairs in conjunction with landing strip indicators and used to indicate the direction of turns when there is a variation from the normal left traffic pattern. (If there is no segmented circle installed at the airport, traffic pattern indicators may be installed on or near the end of the runway.)

c. Preparatory to landing at an airport without a control tower, or when the control tower is not in operation, pilots should concern themselves with the indicator for the approach end of the runway to be used. When approaching for landing, all turns must be made to the left unless a traffic pattern indicator indicates that turns should be made to the right. If the pilot will mentally enlarge the indicator for the runway to be used, the base and final approach legs of the traffic pattern to be flown immediately become apparent. Similar treatment of the indicator at the departure end of the runway will clearly indicate the direction of turn after takeoff.

d. When two or more aircraft are approaching an airport for the purpose of landing, the pilot of the aircraft at the lower altitude has the right−of−way over the pilot of the aircraft at the higher altitude. However, the pilot operating at the lower altitude should not take advantage of another aircraft, which is on final approach to land, by cutting in front of, or overtaking that aircraft.
4–3–5. Unexpected Maneuvers in the Airport Traffic Pattern

There have been several incidents in the vicinity of controlled airports that were caused primarily by aircraft executing unexpected maneuvers. ATC service is based upon observed or known traffic and airport conditions. Controllers establish the sequence of arriving and departing aircraft by requiring them to adjust flight as necessary to achieve proper spacing. These adjustments can only be based on observed traffic, accurate pilot reports, and anticipated aircraft maneuvers. Pilots are expected to cooperate so as to preclude disrupting traffic flows or creating conflicting patterns. The pilot–in–command of an aircraft is directly responsible for and is the final authority as to the operation of the aircraft. On occasion it may be necessary for pilots to maneuver their aircraft to maintain spacing with the traffic they have been sequenced to follow. The controller can anticipate minor maneuvering such as shallow “S” turns. The controller cannot, however, anticipate a major maneuver such as a 360 degree turn. If a pilot makes a 360 degree turn after obtaining a landing sequence, the result is usually a gap in the landing interval and, more importantly, it causes a chain reaction which may result in a conflict with following traffic and an interruption of the sequence established by the tower or approach controller. Should a pilot decide to make maneuvering turns to maintain spacing behind a preceding aircraft, the pilot should always advise the controller if at all possible. Except when requested by the controller or in emergency situations, a 360 degree turn should never be executed in the traffic pattern or when receiving radar service without first advising the controller.

4–3–6. Use of Runways/Declared Distances

a. Runways are identified by numbers which indicate the nearest 10–degree increment of the azimuth of the runway centerline. For example, where the magnetic azimuth is 183 degrees, the runway designation would be 18; for a magnetic azimuth of 87 degrees, the runway designation would be 9. For a magnetic azimuth ending in the number 5, such as 185, the runway designation could be either 18 or 19. Wind direction issued by the tower is also magnetic and wind velocity is in knots.

b. Airport proprietors are responsible for taking the lead in local aviation noise control. Accordingly, they may propose specific noise abatement plans to the FAA. If approved, these plans are applied in the form of Formal or Informal Runway Use Programs for noise abatement purposes.

REFERENCE—
Pilot/Controller Glossary Term— “Runway Use Program”

1. At airports where no runway use program is established, ATC clearances may specify:
 (a) The runway most nearly aligned with the wind when it is 5 knots or more;
 (b) The “calm wind” runway when wind is less than 5 knots; or
 (c) Another runway if operationally advantageous.

NOTE—
It is not necessary for a controller to specifically inquire if the pilot will use a specific runway or to offer a choice of runways. If a pilot prefers to use a different runway from that specified, or the one most nearly aligned with the wind, the pilot is expected to inform ATC accordingly.

2. At airports where a runway use program is established, ATC will assign runways deemed to have the least noise impact. If in the interest of safety a runway different from that specified is preferred, the pilot is expected to advise ATC accordingly. ATC will honor such requests and advise pilots when the requested runway is noise sensitive. When use of a runway other than the one assigned is requested, pilot cooperation is encouraged to preclude disruption of traffic flows or the creation of conflicting patterns.

c. Declared Distances.

1. Declared distances for a runway represent the maximum distances available and suitable for meeting takeoff and landing distance performance requirements. These distances are determined in accordance with FAA runway design standards by adding to the physical length of paved runway any clearway or stopway and subtracting from that sum any lengths necessary to obtain the standard runway safety areas, runway object free areas, or runway protection zones. As a result of these additions and subtractions, the declared distances for a runway may be more or less than the physical length of the runway as depicted on aeronautical charts and related publications, or available in electronic navigation databases provided by either the U.S. Government or commercial companies.

2. All 14 CFR Part 139 airports report declared distances for each runway. Other airports may also
report declared distances for a runway if necessary to meet runway design standards or to indicate the presence of a clearway or stopway. Where reported, declared distances for each runway end are published in the Airport/Facility Directory (A/FD). For runways without published declared distances, the declared distances may be assumed to be equal to the physical length of the runway unless there is a displaced landing threshold, in which case the Landing Distance Available (LDA) is shortened by the amount of the threshold displacement.

NOTE--
A symbol is shown on U.S. Government charts to indicate that runway declared distance information is available (See appropriate A/FD, Alaska, or Pacific Supplement).

(a) The FAA uses the following definitions for runway declared distances (See FIG 4−3−5):

REFERENCE--
Pilot/Controller Glossary Terms: “Accelerate−Stop Distance Available,” “Landing Distance Available,” “Takeoff Distance Available,” “Takeoff Run Available,” “Stopway,” and “Clearway.”

(1) Takeoff Run Available (TORA) – The runway length declared available and suitable for the ground run of an airplane taking off.

The TORA is typically the physical length of the runway, but it may be shorter than the runway length if necessary to satisfy runway design standards. For example, the TORA may be shorter than the runway length if a portion of the runway must be used to satisfy runway protection zone requirements.

(2) Takeoff Distance Available (TODA) – The takeoff run available plus the length of any remaining runway or clearway beyond the far end of the takeoff run available.

The TODA is the distance declared available for satisfying takeoff distance requirements for airplanes where the certification and operating rules and available performance data allow for the consideration of a clearway in takeoff performance computations.

NOTE--
The length of any available clearway will be included in the TODA published in the A/FD’s entry for that runway end.

(3) Accelerate−Stop Distance Available (ASDA) – The runway plus stopway length declared available and suitable for the acceleration and deceleration of an airplane aborting a takeoff.

The ASDA may be longer than the physical length of the runway when a stopway has been designated available by the airport operator, or it may be shorter than the physical length of the runway if necessary to use a portion of the runway to satisfy runway design standards; for example, where the airport operator uses a portion of the runway to achieve the runway safety area requirement. ASDA is the distance used to satisfy the airplane accelerate−stop distance performance requirements where the certification and operating rules require accelerate−stop distance computations.

NOTE--
The length of any available stopway will be included in the ASDA published in the A/FD’s entry for that runway end.

(4) Landing Distance Available (LDA) – The runway length declared available and suitable for a landing airplane.

The LDA may be less than the physical length of the runway or the length of the runway remaining beyond a displaced threshold if necessary to satisfy runway design standards; for example, where the airport operator uses a portion of the runway to achieve the runway safety area requirement.

Although some runway elements (such as stopway length and clearway length) may be available information, pilots must use the declared distances determined by the airport operator and not attempt to independently calculate declared distances by adding those elements to the reported physical length of the runway.

(b) The airplane operating rules and/or the airplane operating limitations establish minimum distance requirements for takeoff and landing and are based on performance data supplied in the Airplane Flight Manual or Pilot’s Operating Handbook. The minimum distances required for takeoff and landing obtained either in planning prior to takeoff or in performance assessments conducted at the time of landing must fall within the applicable declared distances before the pilot can accept that runway for takeoff or landing.

(c) Runway design standards may impose restrictions on the amount of runway available for use in takeoff and landing that are not apparent from the reported physical length of the runway or from runway markings and lighting. The runway elements of Runway Safety Area (RSA), Runway Object Free Area (ROFA), and Runway Protection

4−3−8

Airport Operations
Zone (RPZ) may reduce a runway’s declared distances to less than the physical length of the runway at geographically constrained airports (See FIG 4−3−6). When considering the amount of runway available for use in takeoff or landing performance calculations, the declared distances published for a runway must always be used in lieu of the runway’s physical length.

REFERENCE—
AC 150/5300−13, Airport Design.

EXAMPLE—
1. The declared LDA for runway 9 must be used when showing compliance with the landing distance requirements of the applicable airplane operating rules and/or airplane operating limitations or when making a before landing performance assessment. The LDA is less than the physical runway length, not only because of the displaced threshold, but also because of the subtractions necessary to meet the RSA beyond the far end of the runway. However, during the actual landing operation, it is permissible for the airplane to roll beyond the unmarked end of the LDA.

2. The declared ASDA for runway 9 must be used when showing compliance with the accelerate−stop distance requirements of the applicable airplane operating rules and/or airplane operating limitations. The ASDA is less than the physical length of the runway due to subtractions necessary to achieve the full RSA requirement. However, in the event of an aborted takeoff, it is permissible for the airplane to roll beyond the unmarked end of the ASDA as it is brought to a full−stop on the remaining usable runway.

REFERENCE—
AIM, Runway Markings, Paragraph 2−3−3
AC 150/5340−1, Standards for Airport Markings.

(d) While some runway elements associated with declared distances may be identifiable through runway markings or lighting (for example, a displaced threshold or a stopway), the individual declared distance limits are not marked or otherwise identified on the runway. An aircraft is **not prohibited** from operating beyond a declared distance limit during the takeoff, landing, or taxi operation provided the runway surface is appropriately marked as usable runway (See FIG 4−3−6). The following examples clarify the intent of this paragraph.
FIG 4–3–5

Declared Distances with Full–Standard Runway Safety Areas, Runway Object Free Areas, and Runway Protection Zones

![Diagram of runway distances and safety areas](image)

Note: All declared distances in this illustration are based on operations from left to right.

<table>
<thead>
<tr>
<th>Runway</th>
<th>Length (feet)</th>
<th>TORA</th>
<th>ASDA</th>
<th>TODA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 27</td>
<td>8000</td>
<td>8000</td>
<td>8500</td>
<td>8700</td>
<td>7700</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>8600</td>
<td>8600</td>
<td>8000</td>
<td></td>
</tr>
</tbody>
</table>
FIG 4−3−6
Effects of a Geographical Constraint on a Runway’s Declared Distances

Runway 27 operations: Runway 27 threshold displaced to provide the required RSA at the approach end of the runway. As a result, the LDA is reduced 200 ft.

Runway 9 operations: The ASDA is reduced by 600 ft to achieve the required RSA at the roll-out end of the runway. The LDA is reduced by 900 ft because, 1) the 300 ft displaced threshold located at the approach end of the runway (due to an approach obstacle), and 2) as result of the 600 ft of runway needed to achieve the required RSA at the roll-out end of the runway.

<table>
<thead>
<tr>
<th>Runway</th>
<th>Length (feet)</th>
<th>TORA</th>
<th>TODA</th>
<th>ASDA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>7400</td>
<td>7100</td>
</tr>
<tr>
<td>27</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>7800</td>
</tr>
</tbody>
</table>

NOTE—
A runway’s RSA begins a set distance prior to the threshold and will extend a set distance beyond the end of the runway depending on the runway’s design criteria. If these required lengths cannot be achieved, the ASDA and/or LDA will be reduced as necessary to obtain the required lengths to the extent practicable.
4–3–7. Low Level Wind Shear/Microburst Detection Systems

Low Level Wind Shear Alert System (LLWAS), Terminal Doppler Weather Radar (TDWR), Weather System Processor (WSP), and Integrated Terminal Weather System (ITWS) display information on hazardous wind shear and microburst activity in the vicinity of an airport to air traffic controllers who relay this information to pilots.

a. LLWAS provides wind shear alert and gust front information but does not provide microburst alerts. The LLWAS is designed to detect low level wind shear conditions around the periphery of an airport. It does not detect wind shear beyond that limitation. Controllers will provide this information to pilots by giving the pilot the airport wind followed by the boundary wind.

EXAMPLE—
Wind shear alert, airport wind 230 at 8, south boundary wind 170 at 20.

b. LLWAS “network expansion,” (LLWAS NE) and LLWAS Relocation/Sustainment (LLWAS–RS) are systems integrated with TDWR. These systems provide the capability of detecting microburst alerts and wind shear alerts. Controllers will issue the appropriate wind shear alerts or microburst alerts. In some of these systems controllers also have the ability to issue wind information oriented to the threshold or departure end of the runway.

EXAMPLE—
Runway 17 arrival microburst alert, 40 knot loss 3 mile final.

REFERENCE—
AIM, Microbursts, Paragraph 7–1–26

c. More advanced systems are in the field or being developed such as ITWS. ITWS provides alerts for microbursts, wind shear, and significant thunderstorm activity. ITWS displays wind information oriented to the threshold or departure end of the runway.

d. The WSP provides weather processor enhancements to selected Airport Surveillance Radar (ASR)–9 facilities. The WSP provides Air Traffic with detection and alerting of hazardous weather such as wind shear, microbursts, and significant thunderstorm activity. The WSP displays terminal area 6 level weather, storm cell locations and movement, as well as the location and predicted future position and intensity of wind shifts that may affect airport operations. Controllers will receive and issue alerts based on Areas Noted for Attention (ARENA). An ARENA extends on the runway center line from a 3 mile final to the runway to a 2 mile departure.

e. An airport equipped with the LLWAS, ITWS, or WSP is so indicated in the Airport/Facility Directory under Weather Data Sources for that particular airport.

4–3–8. Braking Action Reports and Advisories

a. When available, ATC furnishes pilots the quality of braking action received from pilots or airport management. The quality of braking action is described by the terms “good,” “fair,” “poor,” and “nil,” or a combination of these terms. When pilots report the quality of braking action by using the terms noted above, they should use descriptive terms that are easily understood, such as, “braking action poor the first/last half of the runway,” together with the particular type of aircraft.

b. For NOTAM purposes, braking action reports are classified according to the most critical term (“fair,” “poor,” or “nil”) used and issued as a NOTAM(D).

c. When tower controllers have received runway braking action reports which include the terms poor or nil, or whenever weather conditions are conducive to deteriorating or rapidly changing runway braking conditions, the tower will include on the ATIS broadcast the statement, “BRAKING ACTION ADVISORIES ARE IN EFFECT.”

d. During the time that braking action advisories are in effect, ATC will issue the latest braking action report for the runway in use to each arriving and departing aircraft. Pilots should be prepared for deteriorating braking conditions and should request current runway condition information if not volunteered by controllers. Pilots should also be prepared to provide a descriptive runway condition report to controllers after landing.

4–3–9. Runway Friction Reports and Advisories

a. Friction is defined as the ratio of the tangential force needed to maintain uniform relative motion between two contacting surfaces (aircraft tires to the
pavement surface) to the perpendicular force holding them in contact (distributed aircraft weight to the aircraft tire area). Simply stated, friction quantifies slipperiness of pavement surfaces.

b. The greek letter MU (pronounced “myew”), is used to designate a friction value representing runway surface conditions.

c. MU (friction) values range from 0 to 100 where zero is the lowest friction value and 100 is the maximum friction value obtainable. For frozen contaminants on runway surfaces, a MU value of 40 or less is the level when the aircraft braking performance starts to deteriorate and directional control begins to be less responsive. The lower the MU value, the less effective braking performance becomes and the more difficult directional control becomes.

d. At airports with friction measuring devices, airport management should conduct friction measurements on runways covered with compacted snow and/or ice.

1. Numerical readings may be obtained by using any FAA approved friction measuring device. As these devices do not provide equal numerical readings on contaminated surfaces, it is necessary to designate the type of friction measuring device used.

2. When the MU value for any one-third zone of an active runway is 40 or less, a report should be given to ATC by airport management for dissemination to pilots. The report will identify the runway, the time of measurement, the type of friction measuring device used, MU values for each zone, and the contaminant conditions, e.g., wet snow, dry snow, slush, deicing chemicals, etc. Measurements for each one-third zone will be given in the direction of takeoff and landing on the runway. A report should also be given when MU values rise above 40 in all zones of a runway previously reporting a MU below 40.

3. Airport management should initiate a NOTAM(D) when the friction measuring device is out of service.

e. When MU reports are provided by airport management, the ATC facility providing approach control or local airport advisory will provide the report to any pilot upon request.

f. Pilots should use MU information with other knowledge including aircraft performance characteristics, type, and weight, previous experience, wind conditions, and aircraft tire type (i.e., bias ply vs. radial constructed) to determine runway suitability.

g. No correlation has been established between MU values and the descriptive terms “good,” “fair,” “poor,” and “nil” used in braking action reports.

4–3–10. Intersection Takeoffs

a. In order to enhance airport capacities, reduce taxiing distances, minimize departure delays, and provide for more efficient movement of air traffic, controllers may initiate intersection takeoffs as well as approve them when the pilot requests. If for ANY reason a pilot prefers to use a different intersection or the full length of the runway or desires to obtain the distance between the intersection and the runway end, THE PILOT IS EXPECTED TO INFORM ATC ACCORDINGLY.

b. Pilots are expected to assess the suitability of an intersection for use at takeoff during their preflight planning. They must consider the resultant length reduction to the published runway length and to the published declared distances from the intersection intended to be used for takeoff. The minimum runway required for takeoff must fall within the reduced runway length and the reduced declared distances before the intersection can be accepted for takeoff.

REFERENCE—
AIM, Use of Runways/Declared Distances, Paragraph 4–3–6

c. Controllers will issue the measured distance from the intersection to the runway end rounded “down” to the nearest 50 feet to any pilot who requests and to all military aircraft, unless use of the intersection is covered in appropriate directives. Controllers, however, will not be able to inform pilots of the distance from the intersection to the end of any of the published declared distances.

REFERENCE—

d. An aircraft is expected to taxi to (but not onto) the end of the assigned runway unless prior approval for an intersection departure is received from ground control.

e. Pilots should state their position on the airport when calling the tower for takeoff from a runway intersection.

EXAMPLE—
Cleveland Tower, Apache Three Seven Two Two Papa, at the intersection of taxiway Oscar and runway two three right, ready for departure.
Controllers are required to separate small aircraft (12,500 pounds or less, maximum certificated takeoff weight) departing (same or opposite direction) from an intersection behind a large nonheavy aircraft on the same runway, by ensuring that at least a 3–minute interval exists between the time the preceding large aircraft has taken off and the succeeding small aircraft begins takeoff roll. To inform the pilot of the required 3–minute hold, the controller will state, “Hold for wake turbulence.” If after considering wake turbulence hazards, the pilot feels that a lesser time interval is appropriate, the pilot may request a waiver to the 3–minute interval. To initiate such a request, simply say “Request waiver to 3–minute interval,” or a similar statement. Controllers may then issue a takeoff clearance if other traffic permits, since the pilot has accepted the responsibility for wake turbulence separation.

The 3–minute interval is not required when the intersection is 500 feet or less from the departure point of the preceding aircraft and both aircraft are taking off in the same direction. Controllers may permit the small aircraft to alter course after takeoff to avoid the flight path of the preceding departure.

The 3–minute interval is mandatory behind a heavy aircraft in all cases.

4–3–11. Pilot Responsibilities When Conducting Land and Hold Short Operations (LAHSO)

LAHSO is an acronym for “Land and Hold Short Operations.” These operations include landing and holding short of an intersecting runway, an intersecting taxiway, or some other designated point on a runway other than an intersecting runway or taxiway. (See FIG 4–3–7, FIG 4–3–8, FIG 4–3–9.)

Pilot Responsibilities and Basic Procedures.

1. LAHSO is an air traffic control procedure that requires pilot participation to balance the needs for increased airport capacity and system efficiency, consistent with safety. This procedure can be done safely provided pilots and controllers are knowledgeable and understand their responsibilities. The following paragraphs outline specific pilot/operator responsibilities when conducting LAHSO.

2. At controlled airports, air traffic may clear a pilot to land and hold short. Pilots may accept such a clearance provided that the pilot–in–command determines that the aircraft can safely land and stop within the Available Landing Distance (ALD). ALD data are published in the special notices section of the Airport/Facility Directory (A/FD) and in the U.S. Terminal Procedures Publications. Controllers will also provide ALD data upon request. Student pilots or pilots not familiar with LAHSO should not participate in the program.

3. The pilot–in–command has the final authority to accept or decline any land and hold short clearance. The safety and operation of the aircraft remain the responsibility of the pilot. Pilots are expected to decline a LAHSO clearance if they determine it will compromise safety.

4. To conduct LAHSO, pilots should become familiar with all available information concerning LAHSO at their destination airport. Pilots should have, readily available, the published ALD and runway slope information for all LAHSO runway combinations at each airport of intended landing. Additionally, knowledge about landing performance data permits the pilot to readily determine that the ALD for the assigned runway is sufficient for safe LAHSO. As part of a pilot’s preflight planning process, pilots should determine if their destination airport has LAHSO. If so, their preflight planning process should include an assessment of which LAHSO combinations would work for them given their aircraft’s required landing distance. Good pilot decision making is knowing in advance whether one can accept a LAHSO clearance if offered.
EXAMPLE—
FIG 4–3–9 – holding short at a designated point may be required to avoid conflicts with the runway safety area/flight path of a nearby runway.

NOTE—
Each figure shows the approximate location of LAHSO markings, signage, and in-pavement lighting when installed.

REFERENCE—
AIM, Chapter 2, Aeronautical Lighting and Other Airport Visual Aids.

5. If, for any reason, such as difficulty in discerning the location of a LAHSO intersection, wind conditions, aircraft condition, etc., the pilot elects to request to land on the full length of the runway, to land on another runway, or to decline LAHSO, a pilot is expected to promptly inform air traffic, ideally even before the clearance is issued. A LAHSO clearance, once accepted, must be adhered to, just as any other ATC clearance, unless an amended clearance is obtained or an emergency occurs. A LAHSO clearance does not preclude a rejected landing.

6. A pilot who accepts a LAHSO clearance should land and exit the runway at the first convenient taxiway (unless directed otherwise) before reaching the hold short point. Otherwise, the pilot must stop and hold at the hold short point. If a rejected landing becomes necessary after accepting a LAHSO clearance, the pilot should maintain safe separation from other aircraft or vehicles, and should promptly notify the controller.

7. Controllers need a full read back of all LAHSO clearances. Pilots should read back their LAHSO clearance and include the words, “HOLD SHORT OF (RUNWAY/TAXIWAY/OR POINT)” in their acknowledgment of all LAHSO clearances. In order to reduce frequency congestion, pilots are encouraged to read back the LAHSO clearance.
without prompting. Don’t make the controller have to ask for a read back!

c. LAHSO Situational Awareness

1. Situational awareness is vital to the success of LAHSO. Situational awareness starts with having current airport information in the cockpit, readily accessible to the pilot. (An airport diagram assists pilots in identifying their location on the airport, thus reducing requests for “progressive taxi instructions” from controllers.)

2. Situational awareness includes effective pilot-controller radio communication. ATC expects pilots to specifically acknowledge and read back all LAHSO clearances as follows:

EXAMPLE−
ATC: “(Airport ID) cleared to land runway six right, hold short of taxiway bravo for crossing traffic (type aircraft).”
Aircraft: “(Airport ID), wilco, cleared to land runway six right to hold short of taxiway bravo.”
ATC: “(Airport ID) cross runway six right at taxiway bravo, landing aircraft will hold short.”
Aircraft: “(Airport ID), wilco, cross runway six right at bravo, landing traffic (type aircraft) to hold.”

3. For those airplanes flown with two crewmembers, effective intra-cockpit communication between cockpit crewmembers is also critical. There have been several instances where the pilot working the radios accepted a LAHSO clearance but then simply forgot to tell the pilot flying the aircraft.

4. Situational awareness also includes a thorough understanding of the airport markings, signage, and lighting associated with LAHSO. These visual aids consist of a three-part system of yellow hold-short markings, red and white signage and, in certain cases, in-pavement lighting. Visual aids assist the pilot in determining where to hold short. FIG 4−3−7, FIG 4−3−8, FIG 4−3−9 depict how these markings, signage, and lighting combinations will appear once installed. Pilots are cautioned that not all airports conducting LAHSO have installed any or all of the above markings, signage, or lighting.

5. Pilots should only receive a LAHSO clearance when there is a minimum ceiling of 1,000 feet and 3 statute miles visibility. The intent of having “basic” VFR weather conditions is to allow pilots to maintain visual contact with other aircraft and ground vehicle operations. Pilots should consider the effects of prevailing inflight visibility (such as landing into the sun) and how it may affect overall situational awareness. Additionally, surface vehicles and aircraft being taxied by maintenance personnel may also be participating in LAHSO, especially in those operations that involve crossing an active runway.

4−3−12. Low Approach

a. A low approach (sometimes referred to as a low pass) is the go-around maneuver following an approach. Instead of landing or making a touch-and-go, a pilot may wish to go around (low approach) in order to expedite a particular operation (a series of practice instrument approaches is an example of such an operation). Unless otherwise authorized by ATC, the low approach should be made straight ahead, with no turns or climb made until the pilot has made a thorough visual check for other aircraft in the area.

b. When operating within a Class B, Class C, and Class D surface area, a pilot intending to make a low approach should contact the tower for approval. This request should be made prior to starting the final approach.

c. When operating to an airport, not within a Class B, Class C, and Class D surface area, a pilot intending to make a low approach should, prior to leaving the final approach fix inbound (nonprecision approach) or the outer marker or fix used in lieu of the outer marker inbound (precision approach), so advise the FSS, UNICOM, or make a broadcast as appropriate.

REFERENCE−
AIM, Traffic Advisory Practices at Airports Without Operating Control Towers, Paragraph 4−1−9

4−3−13. Traffic Control Light Signals

a. The following procedures are used by ATCTs in the control of aircraft, ground vehicles, equipment, and personnel not equipped with radio. These same procedures will be used to control aircraft, ground vehicles, equipment, and personnel equipped with radio if radio contact cannot be established. ATC personnel use a directive traffic control signal which emits an intense narrow light beam of a selected color (either red, white, or green) when controlling traffic by light signals.
b. Although the traffic signal light offers the advantage that some control may be exercised over nonradio equipped aircraft, pilots should be cognizant of the disadvantages which are:

1. Pilots may not be looking at the control tower at the time a signal is directed toward their aircraft.

2. The directions transmitted by a light signal are very limited since only approval or disapproval of a pilot’s anticipated actions may be transmitted. No supplement or explanatory information may be transmitted except by the use of the “General Warning Signal” which advises the pilot to be on the alert.

c. Between sunset and sunrise, a pilot wishing to attract the attention of the control tower should turn on a landing light and taxi the aircraft into a position, clear of the active runway, so that light is visible to the tower. The landing light should remain on until appropriate signals are received from the tower.

d. Air Traffic Control Tower Light Gun Signals. (See TBL 4–3–1.)

e. During daylight hours, acknowledge tower transmissions or light signals by moving the ailerons or rudder. At night, acknowledge by blinking the landing or navigation lights. If radio malfunction occurs after departing the parking area, watch the tower for light signals or monitor tower frequency.

<table>
<thead>
<tr>
<th>Color and Type of Signal</th>
<th>Movement of Vehicles, Equipment and Personnel</th>
<th>Aircraft on the Ground</th>
<th>Aircraft in Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady green</td>
<td>Cleared to cross, proceed or go</td>
<td>Cleared for takeoff</td>
<td>Cleared to land</td>
</tr>
<tr>
<td>Flashing green</td>
<td>Not applicable</td>
<td>Cleared for taxi</td>
<td>Return for landing (to be followed by steady green at the proper time)</td>
</tr>
<tr>
<td>Steady red</td>
<td>STOP</td>
<td>STOP</td>
<td>Give way to other aircraft and continue circling</td>
</tr>
<tr>
<td>Flashing red</td>
<td>Clear the taxiway/runway</td>
<td>Taxi clear of the runway in use</td>
<td>Airport unsafe, do not land</td>
</tr>
<tr>
<td>Flashing white</td>
<td>Return to starting point on airport</td>
<td>Return to starting point on airport</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Alternating red and green</td>
<td>Exercise extreme caution</td>
<td>Exercise extreme caution</td>
<td>Exercise extreme caution</td>
</tr>
</tbody>
</table>

4–3–14. Communications

a. Pilots of departing aircraft should communicate with the control tower on the appropriate ground control/clearance delivery frequency prior to starting engines to receive engine start time, taxi and/or clearance information. Unless otherwise advised by the tower, remain on that frequency during taxiing and runup, then change to local control frequency when ready to request takeoff clearance.

NOTE−
Pilots are encouraged to monitor the local tower frequency as soon as practical consistent with other ATC requirements.

REFERENCE−
AIM, Automatic Terminal Information Service (ATIS), Paragraph 4–1–13

b. The tower controller will consider that pilots of turbine–powered aircraft are ready for takeoff when they reach the runway or warm–up block unless advised otherwise.

c. The majority of ground control frequencies are in the 121.6–121.9 MHz bandwidth. Ground control frequencies are provided to eliminate frequency congestion on the tower (local control) frequency and are limited to communications between the tower and aircraft on the ground and between the tower and utility vehicles on the airport. A pilot who has just landed should not change from the tower frequency to the ground control frequency until directed to do so by the controller. Normally, only one ground control frequency is assigned at an airport; however, at locations where the amount of traffic so warrants, a second ground control frequency and/or another frequency designated as a clearance delivery frequency, may be assigned.
d. A controller may omit the ground or local control frequency if the controller believes the pilot knows which frequency is in use. If the ground control frequency is in the 121 MHz bandwidth the controller may omit the numbers preceding the decimal point; e.g., 121.7, “CONTACT GROUND POINT SEVEN.” However, if any doubt exists as to what frequency is in use, the pilot should promptly request the controller to provide that information.

e. Controllers will normally avoid issuing a radio frequency change to helicopters, known to be single–piloted, which are hovering, air taxiing, or flying near the ground. At times, it may be necessary for pilots to alert ATC regarding single pilot operations to minimize delay of essential ATC communications. Whenever possible, ATC instructions will be relayed through the frequency being monitored until a frequency change can be accomplished. You must promptly advise ATC if you are unable to comply with a frequency change. Also, you should advise ATC if you must land to accomplish the frequency change unless it is clear the landing will have no impact on other air traffic; e.g., on a taxiway or in a helicopter operating area.

4–3–15. Gate Holding Due to Departure Delays

a. Pilots should contact ground control or clearance delivery prior to starting engines as gate hold procedures will be in effect whenever departure delays exceed or are anticipated to exceed 15 minutes. The sequence for departure will be maintained in accordance with initial call up unless modified by flow control restrictions. Pilots should monitor the ground control or clearance delivery frequency for engine startup advisories or new proposed start time if the delay changes.

b. The tower controller will consider that pilots of turbine–powered aircraft are ready for takeoff when they reach the runway or warm–up block unless advised otherwise.

4–3–16. VFR Flights in Terminal Areas

Use reasonable restraint in exercising the prerogative of VFR flight, especially in terminal areas. The weather minimums and distances from clouds are minimums. Giving yourself a greater margin in specific instances is just good judgment.

4–3–17. VFR Helicopter Operations at Controlled Airports

a. General.

1. The following ATC procedures and phraseologies recognize the unique capabilities of helicopters and were developed to improve service to all users. Helicopter design characteristics and user needs often require operations from movement areas and nonmovement areas within the airport boundary. In order for ATC to properly apply these procedures, it is essential that pilots familiarize themselves with the local operations and make it known to controllers when additional instructions are necessary.

2. Insofar as possible, helicopter operations will be instructed to avoid the flow of fixed–wing aircraft to minimize overall delays; however, there will be many situations where faster/larger helicopters may be integrated with fixed–wing aircraft for the benefit of all concerned. Examples would include IFR flights, avoidance of noise sensitive areas, or use of runways/taxiways to minimize the hazardous effects of rotor downwash in congested areas.

3. Because helicopter pilots are intimately familiar with the effects of rotor downwash, they are best qualified to determine if a given operation can be conducted safely. Accordingly, the pilot has the final authority with respect to the specific airspeed/altitude
combinations. ATC clearances are in no way intended to place the helicopter in a hazardous position. It is expected that pilots will advise ATC if a specific clearance will cause undue hazards to persons or property.

b. Controllers normally limit ATC ground service and instruction to movement areas; therefore, operations from nonmovement areas are conducted at pilot discretion and should be based on local policies, procedures, or letters of agreement. In order to maximize the flexibility of helicopter operations, it is necessary to rely heavily on sound pilot judgment. For example, hazards such as debris, obstructions, vehicles, or personnel must be recognized by the pilot, and action should be taken as necessary to avoid such hazards. Taxi, hover taxi, and air taxi operations are considered to be ground movements. Helicopters conducting such operations are expected to adhere to the same conditions, requirements, and practices as apply to other ground taxiing and ATC procedures in the AIM.

1. The phraseology taxi is used when it is intended or expected that the helicopter will taxi on the airport surface, either via taxiways or other prescribed routes. Taxi is used primarily for helicopters equipped with wheels or in response to a pilot request. Preference should be given to this procedure whenever it is necessary to minimize effects of rotor downwash.

2. Pilots may request a hover taxi when slow forward movement is desired or when it may be appropriate to move very short distances. Pilots should avoid this procedure if rotor downwash is likely to cause damage to parked aircraft or if blowing dust/snow could obscure visibility. If it is necessary to operate above 25 feet AGL when hover taxiing, the pilot should initiate a request to ATC.

3. Air taxi is the preferred method for helicopter ground movements on airports provided ground operations and conditions permit. Unless otherwise requested or instructed, pilots are expected to remain below 100 feet AGL. However, if a higher than normal airspeed or altitude is desired, the request should be made prior to lift–off. The pilot is solely responsible for selecting a safe airspeed for the altitude/operation being conducted. Use of air taxi enables the pilot to proceed at an optimum airspeed/altitude, minimize downwash effect, conserve fuel, and expedite movement from one point to another. Helicopters should avoid overflight of other aircraft, vehicles, and personnel during air–taxi operations. Caution must be exercised concerning active runways and pilots must be certain that air taxi instructions are understood. Special precautions may be necessary at unfamiliar airports or airports with multiple/intersecting active runways. The taxi procedures given in Paragraph 4–3–18, Taxiing, Paragraph 4–3–19, Taxi During Low Visibility, and Paragraph 4–3–20, Exiting the Runway After Landing, also apply.

REFERENCE—
Pilot/Controller Glossary Term— Taxi.
Pilot/Controller Glossary Term— Hover Taxi.
Pilot/Controller Glossary Term— Air Taxi.

c. Takeoff and Landing Procedures.

1. Helicopter operations may be conducted from a runway, taxiway, portion of a landing strip, or any clear area which could be used as a landing site such as the scene of an accident, a construction site, or the roof of a building. The terms used to describe designated areas from which helicopters operate are: movement area, landing/takeoff area, apron/ramp, heliport and helipad (See Pilot/Controller Glossary). These areas may be improved or unimproved and may be separate from or located on an airport/heliport. ATC will issue takeoff clearances from movement areas other than active runways, or in diverse directions from active runways, with additional instructions as necessary. Whenever possible, takeoff clearance will be issued in lieu of extended hover/air taxi operations. Phraseology will be “CLEARED FOR TAKEOFF FROM (taxiway, helipad, runway number, etc.), MAKE RIGHT/LEFT TURN FOR (direction, heading, NAVAID radial) DEPARTURE/DEPARTURE ROUTE (number, name, etc.).” Unless requested by the pilot, downwind takeoffs will not be issued if the tailwind exceeds 5 knots.

2. Pilots should be alert to wind information as well as to wind indications in the vicinity of the helicopter. ATC should be advised of the intended method of departing. A pilot request to takeoff in a given direction indicates that the pilot is willing to accept the wind condition and controllers will honor the request if traffic permits. Departure points could be a significant distance from the control tower and it may be difficult or impossible for the controller to determine the helicopter’s relative position to the wind.
3. If takeoff is requested from nonmovement areas, an area not authorized for helicopter use, an area not visible from the tower, an unlighted area at night, or an area off the airport, the phraseology “DEPARTURE FROM (requested location) WILL BE AT YOUR OWN RISK (additional instructions, as necessary). USE CAUTION (if applicable).” The pilot is responsible for operating in a safe manner and should exercise due caution.

4. Similar phraseology is used for helicopter landing operations. Every effort will be made to permit helicopters to proceed direct and land as near as possible to their final destination on the airport. Traffic density, the need for detailed taxiing instructions, frequency congestion, or other factors may affect the extent to which service can be expedited. As with ground movement operations, a high degree of pilot/controller cooperation and communication is necessary to achieve safe and efficient operations.

4–3–18. Taxiing

a. General. Approval must be obtained prior to moving an aircraft or vehicle onto the movement area during the hours an Airport Traffic Control Tower is in operation.

1. Always state your position on the airport when calling the tower for taxi instructions.

2. The movement area is normally described in local bulletins issued by the airport manager or control tower. These bulletins may be found in FSSs, fixed base operators offices, air carrier offices, and operations offices.

3. The control tower also issues bulletins describing areas where they cannot provide ATC service due to nonvisibility or other reasons.

4. A clearance must be obtained prior to taxiing on a runway, taking off, or landing during the hours an Airport Traffic Control Tower is in operation.

5. A clearance must be obtained prior to crossing any runway. ATC will issue an explicit clearance for all runway crossings.

6. When assigned a takeoff runway, ATC will first specify the runway, issue taxi instructions, and state any hold short instructions or runway crossing clearances if the taxi route will cross a runway. This does not authorize the aircraft to “enter” or “cross” the assigned departure runway at any point. In order to preclude misunderstandings in radio communications, ATC will not use the word “cleared” in conjunction with authorization for aircraft to taxi.

7. When issuing taxi instructions to any point other than an assigned takeoff runway, ATC will specify the point to taxi to, issue taxi instructions, and state any hold short instructions or runway crossing clearances if the taxi route will cross a runway.

NOTE—
ATC is required to obtain a readback from the pilot of all runway hold short instructions.

8. If a pilot is expected to hold short of a runway approach (“APPCH”) area or ILS holding position (see FIG 2–3–15, Taxiways Located in Runway Approach Area), ATC will issue instructions.

9. When taxi instructions are received from the controller, pilots should always read back:

 (a) The runway assignment.

 (b) Any clearance to enter a specific runway.

 (c) Any instruction to hold short of a specific runway or line up and wait.

Controllers are required to request a readback of runway hold short assignment when it is not received from the pilot/vehicle.

b. ATC clearances or instructions pertaining to taxiing are predicated on known traffic and known physical airport conditions. Therefore, it is important that pilots clearly understand the clearance or instruction. Although an ATC clearance is issued for taxiing purposes, when operating in accordance with the CFRs, it is the responsibility of the pilot to avoid collision with other aircraft. Since “the pilot—in—command of an aircraft is directly responsible for, and is the final authority as to, the operation of that aircraft” the pilot should obtain clarification of any clearance or instruction which is not understood.

REFERENCE—
AIM, General, Paragraph 7–3–1

1. Good operating practice dictates that pilots acknowledge all runway crossing, hold short, or takeoff clearances unless there is some misunderstanding, at which time the pilot should query the controller until the clearance is understood.
NOTE—
Air traffic controllers are required to obtain from the pilot a readback of all runway hold short instructions.

2. Pilots operating a single pilot aircraft should monitor only assigned ATC communications after being cleared onto the active runway for departure. Single pilot aircraft should not monitor other than ATC communications until flight from Class B, Class C, or Class D surface area is completed. This same procedure should be practiced after receipt of the clearance for landing until the landing and taxi activities are complete. Proper effective scanning for other aircraft, surface vehicles, or other objects should be continuously exercised in all cases.

3. If the pilot is unfamiliar with the airport or for any reason confusion exists as to the correct taxi routing, a request may be made for progressive taxi instructions which include step-by-step routing directions. Progressive instructions may also be issued if the controller deems it necessary due to traffic or field conditions (for example, construction or closed taxiways).

c. At those airports where the U.S. Government operates the control tower and ATC has authorized noncompliance with the requirement for two-way radio communications while operating within the Class B, Class C, or Class D surface area, or at those airports where the U.S. Government does not operate the control tower and radio communications cannot be established, pilots must obtain a clearance by visual light signal prior to taxiing on a runway and prior to takeoff and landing.

d. The following phraseologies and procedures are used in radiotelephone communications with aeronautical ground stations.

1. Request for taxi instructions prior to departure. State your aircraft identification, location, type of operation planned (VFR or IFR), and the point of first intended landing.

EXAMPLE—
Aircraft: “Washington ground, Beechcraft One Three One Five Niner at hangar eight, ready to taxi, I−F−R to Chicago.”

Tower: “Beechcraft one three one five niner, Washington ground, runway two seven, taxi via taxiways Charlie and Delta, hold short of runway three three left.”

Aircraft: “Beechcraft One Three One Five Niner, hold short of runway three three left.”

2. Receipt of ATC clearance. ARTCC clearances are relayed to pilots by airport traffic controllers in the following manner.

EXAMPLE—
Tower: “Beechcraft One Three One Five Niner, cleared to the Chicago Midway Airport via Victor Eight, maintain eight thousand.”

Aircraft: “Beechcraft One Three One Five Niner, cleared to the Chicago Midway Airport via Victor Eight, maintain eight thousand.”

NOTE—
Normally, an ATC IFR clearance is relayed to a pilot by the ground controller. At busy locations, however, pilots may be instructed by the ground controller to “contact clearance delivery” on a frequency designated for this purpose. No surveillance or control over the movement of traffic is exercised by this position of operation.

3. Request for taxi instructions after landing. State your aircraft identification, location, and that you request taxi instructions.

EXAMPLE—
Aircraft: “Dulles ground, Beechcraft One Four Two Six One clearing runway one right on taxiway echo three, request clearance to Page.”

Tower: “Beechcraft One Four Two Six One, Dulles ground, taxi to Page via taxiways echo three, echo one, and echo niner.”

or

Aircraft: “Orlando ground, Beechcraft One Four Two Six One clearing runway one eight left at taxiway bravo three, request clearance to Page.”

Tower: “Beechcraft One Four Two Six One, Orlando ground, hold short of runway one eight right.”

Aircraft: “Beechcraft One Four Two Six One, hold short of runway one eight right.”

4−3−19. Taxi During Low Visibility

a. Pilots and aircraft operators should be constantly aware that during certain low visibility conditions the movement of aircraft and vehicles on airports may not be visible to the tower controller. This may prevent visual confirmation of an aircraft’s adherence to taxi instructions.
b. Of vital importance is the need for pilots to notify the controller when difficulties are encountered or at the first indication of becoming disoriented. Pilots should proceed with extreme caution when taxiing toward the sun. When vision difficulties are encountered pilots should immediately inform the controller.

c. Advisory Circular 120−57, Surface Movement Guidance and Control System, commonly known as SMGCS (pronounced “SMIGS”) requires a low visibility taxi plan for any airport which has takeoff or landing operations in less than 1,200 feet runway visual range (RVR) visibility conditions. These plans, which affect aircrew and vehicle operators, may incorporate additional lighting, markings, and procedures to control airport surface traffic. They will be addressed at two levels; operations less than 1,200 feet RVR to 600 feet RVR and operations less than 600 feet RVR.

NOTE− Specific lighting systems and surface markings may be found in paragraph 2−1−11, Taxiway Lights, and paragraph 2−3−4 Taxiway Markings.

d. When low visibility conditions exist, pilots should focus their entire attention on the safe operation of the aircraft while it is moving. Checklists and nonessential communication should be withheld until the aircraft is stopped and the brakes set.

4−3−20. Exiting the Runway After Landing

The following procedures must be followed after landing and reaching taxi speed.

a. Exit the runway without delay at the first available taxiway or on a taxiway as instructed by ATC. Pilots must not exit the landing runway onto another runway unless authorized by ATC. At airports with an operating control tower, pilots should not stop or reverse course on the runway without first obtaining ATC approval.

b. Taxi clear of the runway unless otherwise directed by ATC. An aircraft is considered clear of the runway when all parts of the aircraft are past the runway edge and there are no restrictions to its continued movement beyond the runway holding position markings. In the absence of ATC instructions, the pilot is expected to taxi clear of the landing runway by taxiing beyond the runway holding position markings associated with the landing runway, even if that requires the aircraft to protrude into or cross another taxiway or ramp area. Once all parts of the aircraft have crossed the runway holding position markings, the pilot must hold unless further instructions have been issued by ATC.

NOTE−
1. The tower will issue the pilot instructions which will permit the aircraft to enter another taxiway, runway, or ramp area when required.
2. Guidance contained in subparagraphs a and b above is considered an integral part of the landing clearance and satisfies the requirement of 14 CFR Section 91.129.

c. Immediately change to ground control frequency when advised by the tower and obtain a taxi clearance.

NOTE−
1. The tower will issue instructions required to resolve any potential conflicts with other ground traffic prior to advising the pilot to contact ground control.
2. Ground control will issue taxi clearance to parking. That clearance does not authorize the aircraft to “enter” or “cross” any runways. Pilots not familiar with the taxi route should request specific taxi instructions from ATC.

4−3−21. Practice Instrument Approaches

a. Various air traffic incidents have indicated the necessity for adoption of measures to achieve more organized and controlled operations where practice instrument approaches are conducted. Practice instrument approaches are considered to be instrument approaches made by either a VFR aircraft not on an IFR flight plan or an aircraft on an IFR flight plan. To achieve this and thereby enhance air safety, it is Air Traffic’s policy to provide for separation of such operations at locations where approach control facilities are located and, as resources permit, at certain other locations served by ARTCCs or parent approach control facilities. Pilot requests to practice instrument approaches may be approved by ATC subject to traffic and workload conditions. Pilots should anticipate that in some instances the controller may find it necessary to deny approval or withdraw previous approval when traffic conditions warrant. It must be clearly understood, however, that even though the controller may be providing separation, pilots on VFR flight plans are required to comply with basic VFR weather minimums (14 CFR Section 91.155). Application of ATC procedures or any action taken by the controller to avoid traffic conflicts does not relieve IFR and VFR pilots of...
their responsibility to see–and–avoid other traffic while operating in VFR conditions (14 CFR Section 91.113). In addition to the normal IFR separation minimums (which includes visual separation) during VFR conditions, 500 feet vertical separation may be applied between VFR aircraft and between a VFR aircraft and the IFR aircraft. Pilots not on IFR flight plans desiring practice instrument approaches should always state ‘practice’ when making requests to ATC. Controllers will instruct VFR aircraft requesting an instrument approach to maintain VFR. This is to preclude misunderstandings between the pilot and controller as to the status of the aircraft. If pilots wish to proceed in accordance with instrument flight rules, they must specifically request and obtain, an IFR clearance.

b. Before practicing an instrument approach, pilots should inform the approach control facility or the tower of the type of practice approach they desire to make and how they intend to terminate it, i.e., full–stop landing, touch–and–go, or missed or low approach maneuver. This information may be furnished progressively when conducting a series of approaches. Pilots on an IFR flight plan, who have made a series of instrument approaches to full stop landings should inform ATC when they make their final landing. The controller will control flights practicing instrument approaches so as to ensure that they do not disrupt the flow of arriving and departing itinerant IFR or VFR aircraft. The priority afforded itinerant aircraft over practice instrument approaches is not intended to be so rigidly applied that it causes grossly inefficient application of services. A minimum delay to itinerant traffic may be appropriate to allow an aircraft practicing an approach to complete that approach.

NOTE–
A clearance to land means that appropriate separation on the landing runway will be ensured. A landing clearance does not relieve the pilot from compliance with any previously issued restriction.

c. At airports without a tower, pilots wishing to make practice instrument approaches should notify the facility having control jurisdiction of the desired approach as indicated on the approach chart. All approach control facilities and ARTCCs are required to publish a Letter to Airmen depicting those airports where they provide standard separation to both VFR and IFR aircraft conducting practice instrument approaches.

d. The controller will provide approved separation between both VFR and IFR aircraft when authorization is granted to make practice approaches to airports where an approach control facility is located and to certain other airports served by approach control or an ARTCC. Controller responsibility for separation of VFR aircraft begins at the point where the approach clearance becomes effective, or when the aircraft enters Class B or Class C airspace, or a TRSA, whichever comes first.

e. VFR aircraft practicing instrument approaches are not automatically authorized to execute the missed approach procedure. This authorization must be specifically requested by the pilot and approved by the controller. Separation will not be provided unless the missed approach has been approved by ATC.

f. Except in an emergency, aircraft cleared to practice instrument approaches must not deviate from the approved procedure until cleared to do so by the controller.

g. At radar approach control locations when a full approach procedure (procedure turn, etc.,) cannot be approved, pilots should expect to be vectored to a final approach course for a practice instrument approach which is compatible with the general direction of traffic at that airport.

h. When granting approval for a practice instrument approach, the controller will usually ask the pilot to report to the tower prior to or over the final approach fix inbound (nonprecision approaches) or over the outer marker or fix used in lieu of the outer marker inbound (precision approaches).

i. When authorization is granted to conduct practice instrument approaches to an airport with a tower, but where approved standard separation is not provided to aircraft conducting practice instrument approaches, the tower will approve the practice approach, instruct the aircraft to maintain VFR and issue traffic information, as required.

j. When an aircraft notifies a FSS providing Local Airport Advisory to the airport concerned of the intent to conduct a practice instrument approach and whether or not separation is to be provided, the pilot will be instructed to contact the appropriate facility on a specified frequency prior to initiating the approach. At airports where separation is not provided, the FSS will acknowledge the message and issue known traffic information but will neither approve or disapprove the approach.
k. Pilots conducting practice instrument approaches should be particularly alert for other aircraft operating in the local traffic pattern or in proximity to the airport.

4–3–22. Option Approach

The “Cleared for the Option” procedure will permit an instructor, flight examiner or pilot the option to make a touch-and-go, low approach, missed approach, stop-and-go, or full stop landing. This procedure can be very beneficial in a training situation in that neither the student pilot nor examinee would know what maneuver would be accomplished. The pilot should make a request for this procedure passing the final approach fix inbound on an instrument approach or entering downwind for a VFR traffic pattern. The advantages of this procedure as a training aid are that it enables an instructor or examiner to obtain the reaction of a trainee or examinee under changing conditions, the pilot would not have to discontinue an approach in the middle of the procedure due to student error or pilot proficiency requirements, and finally it allows more flexibility and economy in training programs. This procedure will only be used at those locations with an operational control tower and will be subject to ATC approval.

4–3–23. Use of Aircraft Lights

a. Aircraft position lights are required to be lighted on aircraft operated on the surface and in flight from sunset to sunrise. In addition, aircraft equipped with an anti-collision light system are required to operate that light system during all types of operations (day and night). However, during any adverse meteorological conditions, the pilot-in-command may determine that the anti-collision lights should be turned off when their light output would constitute a hazard to safety (14 CFR Section 91.209). Supplementary strobe lights should be turned off on the ground when they adversely affect ground personnel or other pilots, and in flight when there are adverse reflection from clouds.

b. An aircraft anti-collision light system can use one or more rotating beacons and/or strobe lights, be colored either red or white, and have different (higher than minimum) intensities when compared to other aircraft. Many aircraft have both a rotating beacon and a strobe light system.

c. The FAA has a voluntary pilot safety program, Operation Lights On, to enhance the see-and-avoid concept. Pilots are encouraged to turn on their landing lights during takeoff; i.e., either after takeoff clearance has been received or when beginning takeoff roll. Pilots are further encouraged to turn on their landing lights when operating below 10,000 feet, day or night, especially when operating within 10 miles of any airport, or in conditions of reduced visibility and in areas where flocks of birds may be expected, i.e., coastal areas, lake areas, around refuse dumps, etc. Although turning on aircraft lights does enhance the see-and-avoid concept, pilots should not become complacent about keeping a sharp lookout for other aircraft. Not all aircraft are equipped with lights and some pilots may not have their lights turned on. Aircraft manufacturer’s recommendations for operation of landing lights and electrical systems should be observed.

d. Prop and jet blast forces generated by large aircraft have overturned or damaged several smaller aircraft taxiing behind them. To avoid similar results, and in the interest of preventing upsets and injuries to ground personnel from such forces, the FAA recommends that air carriers and commercial operators turn on their rotating beacons anytime their aircraft engines are in operation. General aviation pilots using rotating beacon equipped aircraft are also encouraged to participate in this program which is designed to alert others to the potential hazard. Since this is a voluntary program, exercise caution and do not rely solely on the rotating beacon as an indication that aircraft engines are in operation.

e. Prior to commencing taxi, it is recommended to turn on navigation, position, anti-collision, and logo lights (if equipped). To signal intent to other pilots, consider turning on the taxi light when the aircraft is moving or intending to move on the ground, and turning it off when stopped or yielding to other ground traffic. Strobe lights should not be illuminated during taxi if they will adversely affect the vision of other pilots or ground personnel.

f. At the discretion of the pilot-in-command, all exterior lights should be illuminated when taxiing on or across any runway. This increases the conspicuousness of the aircraft to controllers and other pilots approaching to land, taxiing, or crossing the runway. Pilots should comply with any equipment operating limitations and consider the effects of landing and strobe lights on other aircraft in their vicinity.
g. When entering the departure runway for takeoff or to “line up and wait,” all lights, except for landing lights, should be illuminated to make the aircraft conspicuous to ATC and other aircraft on approach. Landing lights should be turned on when takeoff clearance is received or when commencing takeoff roll at an airport without an operating control tower.

4–3–24. Flight Inspection/‘Flight Check’ Aircraft in Terminal Areas

a. Flight check is a call sign used to alert pilots and air traffic controllers when a FAA aircraft is engaged in flight inspection/certification of NAVAIDs and flight procedures. Flight check aircraft fly preplanned high/low altitude flight patterns such as grids, orbits, DME arcs, and tracks, including low passes along the full length of the runway to verify NAVAID performance.

b. Pilots should be especially watchful and avoid the flight paths of any aircraft using the call sign “Flight Check.” These flights will normally receive special handling from ATC. Pilot patience and cooperation in allowing uninterrupted recordings can significantly help expedite flight inspections, minimize costly, repetitive runs, and reduce the burden on the U.S. taxpayer.

4–3–25. Hand Signals

FIG 4–3–10
Signalman Directs Towing
FIG 4–3–11
Signalman’s Position

FIG 4–3–12
All Clear
(O.K.)

FIG 4–3–13
Start Engine

FIG 4–3–14
Pull Chocks
FIG 4–3–15
Proceed Straight Ahead

FIG 4–3–16
Left Turn

FIG 4–3–17
Right Turn

FIG 4–3–18
Slow Down
FIG 4-3-19
Flagman Directs Pilot

FIG 4-3-20
Insert Chocks

FIG 4-3-21
Cut Engines

FIG 4-3-22
Night Operation

Use same hand movements as day operation

a. Many airports throughout the National Airspace System are equipped with either ASOS, AWSS, or AWOS. At most airports with an operating control tower or human observer, the weather will be available to you in an Aviation Routine Weather Report (METAR) hourly or special observation format on the Automatic Terminal Information Service (ATIS) or directly transmitted from the controller/observer.

b. At uncontrolled airports that are equipped with ASOS/AWSS/AWOS with ground–to–air broadcast capability, the one–minute updated airport weather should be available to you within approximately 25 NM of the airport below 10,000 feet. The frequency for the weather broadcast will be published on sectional charts and in the Airport/Facility Directory. Some part–time towered airports may also broadcast the automated weather on their ATIS frequency during the hours that the tower is closed.

c. Controllers issue SVFR or IFR clearances based on pilot request, known traffic and reported weather, i.e., METAR/Nonroutine (Special) Aviation Weather Report (SPECI) observations, when they are available. Pilots have access to more current weather at uncontrolled ASOS/AWSS/AWOS airports than do the controllers who may be located several miles away. Controllers will rely on the pilot to determine the current airport weather from the ASOS/AWSS/AWOS. All aircraft arriving or departing an ASOS/AWSS/AWOS equipped uncontrolled airport should monitor the airport weather frequency to ascertain the status of the airspace. Pilots in Class E airspace must be alert for changing weather conditions which may effect the status of the airspace from IFR/VFR. If ATC service is required for IFR/SVFR approach/departure or requested for VFR service, the pilot should advise the controller that he/she has received the one–minute weather and state his/her intentions.

EXAMPLE—
“I have the (airport) one–minute weather, request an ILS Runway 14 approach.”

REFERENCE—
AIM, Weather Observing Programs, Paragraph 7–1–12
indicated in FIG 4–5–4. TIS users must be alert to altitude encoder malfunctions, as TIS has no mechanism to determine if client altitude reporting is correct. A failure of this nature will cause erroneous and possibly unpredictable TIS operation. If this malfunction is suspected, confirmation of altitude reporting with ATC is suggested.

(c) Intruder Altitude Reporting. Intruders without altitude reporting capability will be displayed without the accompanying altitude tag. Additionally, nonaltitude reporting intruders are assumed to be at the same altitude as the TIS client for alert computations. This helps to ensure that the pilot will be alerted to all traffic under radar coverage, but the actual altitude difference may be substantial. Therefore, visual acquisition may be difficult in this instance.

(d) Coverage Limitations. Since TIS is provided by ground–based, secondary surveillance radar, it is subject to all limitations of that radar. If an aircraft is not detected by the radar, it cannot be displayed on TIS. Examples of these limitations are as follows:

1. TIS will typically be provided within 55 NM of the radars depicted in FIG 4–5–5, Terminal Mode S Radar Sites. This maximum range can vary by radar site and is always subject to “line of sight” limitations; the radar and data link signals will be blocked by obstructions, terrain, and curvature of the earth.

2. TIS will be unavailable at low altitudes in many areas of the country, particularly in mountainous regions. Also, when flying near the “floor” of radar coverage in a particular area, intruders below the client aircraft may not be detected by TIS.

3. TIS will be temporarily disrupted when flying directly over the radar site providing coverage if no adjacent site assumes the service. A ground–based radar, like a VOR or NDB, has a zenith cone, sometimes referred to as the cone of confusion or cone of silence. This is the area of ambiguity directly above the station where bearing information is unreliable. The zenith cone setting for TIS is 34 degrees: Any aircraft above that angle with respect to the radar horizon will lose TIS coverage from that radar until it is below this 34 degree angle. The aircraft may not actually lose service in areas of multiple radar coverage since an adjacent radar will provide TIS. If no other TIS–capable radar is available, the “Good–bye” message will be received and TIS terminated until coverage is resumed.

(e) Intermittent Operations. TIS operation may be intermittent during turns or other maneuvering, particularly if the transponder system does not include antenna diversity (antenna mounted on the top and bottom of the aircraft). As in (d) above, TIS is dependent on two–way, “line of sight” communications between the aircraft and the Mode S radar. Whenever the structure of the client aircraft comes between the transponder antenna (usually located on the underside of the aircraft) and the ground–based radar antenna, the signal may be temporarily interrupted.

(f) TIS Predictive Algorithm. TIS information is collected one radar scan prior to the scan during which the uplink occurs. Therefore, the surveillance information is approximately 5 seconds old. In order to present the intruders in a “real time” position, TIS uses a “predictive algorithm” in its tracking software. This algorithm uses track history data to extrapolate intruders to their expected positions consistent with the time of display in the cockpit. Occasionally, aircraft maneuvering will cause this algorithm to induce errors in the TIS display. These errors primarily affect relative bearing information; intruder distance and altitude will remain relatively accurate and may be used to assist in “see and avoid.” Some of the more common examples of these errors are as follows:

1. When client or intruder aircraft maneuver excessively or abruptly, the tracking algorithm will report incorrect horizontal position until the maneuvering aircraft stabilizes.

2. When a rapidly closing intruder is on a course that crosses the client at a shallow angle (either overtaking or head on) and either aircraft abruptly changes course within ¼ NM, TIS will display the intruder on the opposite side of the client than it actually is.

These are relatively rare occurrences and will be corrected in a few radar scans once the course has stabilized.

(g) Heading/Course Reference. Not all TIS aircraft installations will have onboard heading reference information. In these installations, aircraft course reference to the TIS display is provided by the
Mode S radar. The radar only determines ground track information and has no indication of the client aircraft heading. In these installations, all intruder bearing information is referenced to ground track and does not account for wind correction. Additionally, since ground-based radar will require several scans to determine aircraft course following a course change, a lag in TIS display orientation (intruder aircraft bearing) will occur. As in (f) above, intruder distance and altitude are still usable.

(h) Closely-Spaced Intruder Errors. When operating more than 30 NM from the Mode S sensor, TIS forces any intruder within 3/8 NM of the TIS client to appear at the same horizontal position as the client aircraft. Without this feature, TIS could display intruders in a manner confusing to the pilot in critical situations (e.g., a closely-spaced intruder that is actually to the right of the client may appear on the TIS display to the left). At longer distances from the radar, TIS cannot accurately determine relative bearing/distance information on intruder aircraft that are in close proximity to the client.

Because TIS uses a ground-based, rotating radar for surveillance information, the accuracy of TIS data is dependent on the distance from the sensor (radar) providing the service. This is much the same phenomenon as experienced with ground-based navigational aids, such as VOR or NDB. As distance from the radar increases, the accuracy of surveillance decreases. Since TIS does not inform the pilot of distance from the Mode S radar, the pilot must assume that any intruder appearing at the same position as the client aircraft may actually be up to 3/8 NM away in any direction. Consistent with the operation of TIS, an alert on the display (regardless of distance from the radar) should stimulate an outside visual scan, intruder acquisition, and traffic avoidance based on outside reference.

e. Reports of TIS Malfunctions

1. Users of TIS can render valuable assistance in the early correction of malfunctions by reporting their observations of undesirable performance. Reporters should identify the time of observation, location, type and identity of aircraft, and describe the condition observed; the type of transponder processor, and software in use can also be useful information. Since TIS performance is monitored by maintenance personnel rather than ATC, it is suggested that malfunctions be reported by radio or telephone to the nearest Flight Service Station (FSS) facility.

4–5–7. Automatic Dependent Surveillance–Broadcast (ADS–B) Services

a. Introduction

1. Automatic Dependent Surveillance–Broadcast (ADS–B) is a surveillance technology being deployed throughout the NAS (see FIG 4–5–7). The ADS–B system is composed of aircraft avionics and a ground infrastructure. Onboard avionics determine the position of the aircraft by using the GNSS and transmit its position along with additional information about the aircraft to ground stations for use by ATC and other ADS–B services. This information is transmitted at a rate of approximately once per second.

2. In the United States, ADS–B equipped aircraft exchange information is on one of two frequencies: 978 or 1090 MHz. The 1090 MHz frequency is associated with Mode A, C, and S transponder operations. 1090 MHz transponders with integrated ADS–B functionality extend the transponder message sets with additional ADS–B information. This additional information is known as an “extended squitter” message and referred to as 1090ES. ADS–B equipment operating on 978 MHz is known as the Universal Access Transceiver (UAT).
2. Use of ADS−B radar services is limited to the service volume of the GBT.

NOTE—
The coverage volume of GBTs are limited to line−of−sight.

f. Reports of ADS−B Malfunctions

Users of ADS−B can provide valuable assistance in the correction of malfunctions by reporting instances of undesirable system performance. Reports should identify the time of observation, location, type and identity of aircraft, and describe the condition observed; the type of avionics system and its software version in use should also be included. Since ADS−B performance is monitored by maintenance personnel rather than ATC, it is suggested that malfunctions be reported in any one of the following ways:

1. By radio or telephone to the nearest Flight Service Station (FSS) facility.
2. By reporting the failure directly to the FAA Safe Flight 21 program at 1−877−FLYADSB or http://www.adsb.gov.

4−5−8. Traffic Information Service−Broadcast (TIS−B)

TIS−B is the broadcast of ATC derived traffic information to ADS−B equipped (1090ES or UAT) aircraft from ground radio stations. The source of this traffic information is derived from ground−based air traffic surveillance radar sensors. TIS−B service will be available throughout the NAS where there are both adequate surveillance coverage (radar) from ground sensors and adequate broadcast coverage from ADS−B ground radio stations. The quality level of traffic information provided by TIS−B is dependent upon the number and type of ground sensors available as TIS−B sources and the timeliness of the reported data.

a. TIS−B Requirements.

In order to receive TIS−B service, the following conditions must exist:

1. Aircraft must be equipped with an ADS−B transmitter/receiver or transceiver, and a cockpit display of traffic information (CDTI).
2. Aircraft must fly within the coverage volume of a compatible ground radio station that is configured for TIS−B uplinks. (Not all ground radio stations provide TIS−B due to a lack of radar coverage or because a radar feed is not available).

3. Aircraft must be within the coverage of and detected by at least one ATC radar serving the ground radio station in use.

b. TIS−B Capabilities.

1. TIS−B is intended to provide ADS−B equipped aircraft with a more complete traffic picture in situations where not all nearby aircraft are equipped with ADS−B Out. This advisory−only application is intended to enhance a pilot’s visual acquisition of other traffic.

2. Only transponder−equipped targets (i.e., Mode A/C or Mode S transponders) are transmitted through the ATC ground system architecture. Current radar siting may result in limited radar surveillance coverage at lower altitudes near some airports, with subsequently limited TIS−B service volume coverage. If there is no radar coverage in a given area, then there will be no TIS−B coverage in that area.

c. TIS−B Limitations.

1. TIS−B is NOT intended to be used as a collision avoidance system and does not relieve the pilot’s responsibility to “see and avoid” other aircraft, in accordance with 14CFR §91.113b. TIS−B must not be used for avoidance maneuvers during times when there is no visual contact with the intruder aircraft. TIS−B is intended only to assist in the visual acquisition of other aircraft.

NOTE—
No aircraft avoidance maneuvers are authorized as a direct result of a TIS−B target being displayed in the cockpit.

2. While TIS−B is a useful aid to visual traffic avoidance, its inherent system limitations must be understood to ensure proper use.

(a) A pilot may receive an intermittent TIS−B target of themselves, typically when maneuvering (e.g., climbing turns) due to the radar not tracking the aircraft as quickly as ADS−B.

(b) The ADS−B−to−radar association process within the ground system may at times have difficulty correlating an ADS−B report with corresponding radar returns from the same aircraft. When this happens the pilot may see duplicate traffic symbols (i.e., “TIS−B shadows”) on the cockpit display.
(c) Updates of TIS–B traffic reports will occur less often than ADS–B traffic updates. TIS–B position updates will occur approximately once every 3–13 seconds depending on the type of radar system in use within the coverage area. In comparison, the update rate for ADS–B is nominally once per second.

(d) The TIS–B system only uplinks data pertaining to transponder–equipped aircraft. Aircraft without a transponder will not be displayed as TIS–B traffic.

(e) There is no indication provided when any aircraft is operating inside or outside the TIS–B service volume, therefore it is difficult to know if one is receiving uplinked TIS–B traffic information.

3. Pilots and operators are reminded that the airborne equipment that displays TIS–B targets is for pilot situational awareness only and is not approved as a collision avoidance tool. Unless there is an imminent emergency requiring immediate action, any deviation from an air traffic control clearance in response to perceived converging traffic appearing on a TIS–B display must be approved by the controlling ATC facility before commencing the maneuver, except as permitted under certain conditions in 14CFR §91.123. Uncoordinated deviations may place an aircraft in close proximity to other aircraft under ATC control not seen on the airborne equipment and may result in a pilot deviation or other incident.

d. Reports of TIS–B Malfunctions

Users of TIS–B can provide valuable assistance in the correction of malfunctions by reporting instances of undesirable system performance. Reporters should identify the time of observation, location, type and identity of the aircraft, and describe the condition observed; the type of avionics system and its software version used. Since TIS–B performance is monitored by maintenance personnel rather than ATC, it is suggested that malfunctions be reported in anyone of the following ways:

1. By radio or telephone to the nearest Flight Service Station (FSS) facility.

2. By reporting the failure directly to the FAA Surveillance and Broadcast Services Program Office at 1–877–FLYADSB or http://www.adsb.gov.

4–5–9. Flight Information Service–Broadcast (FIS–B)

a. FIS–B is a ground broadcast service provided through the ADS–B Services network over the 978 MHz UAT data link. The FAA FIS–B system provides pilots and flight crews of properly equipped aircraft with a cockpit display of certain aviation weather and aeronautical information. FIS–B service availability is expected across the NAS in 2013 and is currently available within certain regions.

b. The weather products provided by FIS–B are for information only. Therefore, these products do not meet the safety and regulatory requirements of official weather products. The weather products displayed on FIS–B should not be used as primary weather products, i.e., aviation weather to meet operational and safety requirements. Official weather products (primary products) can be obtained from a variety of sources including ATC, FSSs, and, if applicable, AOCC VHF/HF voice, which can transmit aviation weather, NOTAMS, and other operational aeronautical information to aircraft in flight. FIS–B augments the traditional ATC/FSS/AOCC services by providing additional information and, for some products, offers the advantage of being displayed graphically. By using FIS–B for orientation and information, the usefulness of information received from official sources may be enhanced, but the user should be alert and understand any limitations associated with individual products. FIS–B provides the initial basic products listed below at no–charge to the user. Additional products are envisioned, but may incur subscription charges to the user. FIS–B reception is line–of–sight within the service volume of the ground infrastructure.
TBL 4–6–1

Pilot/Controller Phraseology

<table>
<thead>
<tr>
<th>Message</th>
<th>Phraseology</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a controller to ascertain the RVSM approval status of an aircraft:</td>
<td>(call sign) confirm RVSM approved</td>
</tr>
<tr>
<td>Pilot indication that flight is RVSM approved</td>
<td>Affirm RVSM</td>
</tr>
<tr>
<td>Pilot report of lack of RVSM approval (non–RVSM status). Pilot will report non–RVSM status, as follows:</td>
<td>Negative RVSM. (supplementary information, e.g., “Certification flight”).</td>
</tr>
<tr>
<td>a. On the initial call on any frequency in the RVSM airspace and . . .</td>
<td></td>
</tr>
<tr>
<td>b. In all requests for flight level changes pertaining to flight levels within the RVSM airspace and . . .</td>
<td></td>
</tr>
<tr>
<td>c. In all read backs to flight level clearances pertaining to flight levels within the RVSM airspace and . . .</td>
<td></td>
</tr>
<tr>
<td>d. In read back of flight level clearances involving climb and descent through RVSM airspace (FL 290 – 410).</td>
<td></td>
</tr>
<tr>
<td>Pilot report of one of the following after entry into RVSM airspace: all primary altimeters, automatic altitude control systems or altitude alerters have failed. (See paragraph 4–6–9, Contingency Actions: Weather Encounters and Aircraft System Failures.)</td>
<td>Unable RVSM Due Equipment</td>
</tr>
<tr>
<td>NOTE— This phrase is to be used to convey both the initial indication of RVSM aircraft system failure and on initial contact on all frequencies in RVSM airspace until the problem ceases to exist or the aircraft has exited RVSM airspace.</td>
<td></td>
</tr>
<tr>
<td>ATC denial of clearance into RVSM airspace</td>
<td>Unable issue clearance into RVSM airspace, maintain FL</td>
</tr>
<tr>
<td>*Pilot reporting inability to maintain cleared flight level due to weather encounter. (See paragraph 4–6–9, Contingency Actions: Weather Encounters and Aircraft System Failures).</td>
<td>Unable RVSM due (state reason) (e.g., turbulence, mountain wave)</td>
</tr>
<tr>
<td>ATC requesting pilot to confirm that an aircraft has regained RVSM–approved status or a pilot is ready to resume RVSM</td>
<td>Confirm able to resume RVSM</td>
</tr>
<tr>
<td>Pilot ready to resume RVSM after aircraft system or weather contingency</td>
<td>Ready to resume RVSM</td>
</tr>
</tbody>
</table>
4–6–9. **Contingency Actions: Weather Encounters and Aircraft System Failures that Occur After Entry into RVSM Airspace**

TBL 4–6–2 provides pilot guidance on actions to take under certain conditions of aircraft system failure that occur after entry into RVSM airspace and weather encounters. It also describes the expected ATC controller actions in these situations. It is recognized that the pilot and controller will use judgment to determine the action most appropriate to any given situation.

TBL 4–6–2

Contingency Actions: Weather Encounters and Aircraft System Failures that Occur After Entry into RVSM Airspace

<table>
<thead>
<tr>
<th>Initial Pilot Actions in Contingency Situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial pilot actions when unable to maintain flight level (FL) or unsure of aircraft altitude–keeping capability:</td>
</tr>
<tr>
<td>• Notify ATC and request assistance as detailed below.</td>
</tr>
<tr>
<td>• Maintain cleared flight level, to the extent possible, while evaluating the situation.</td>
</tr>
<tr>
<td>• Watch for conflicting traffic both visually and by reference to TCAS, if equipped.</td>
</tr>
<tr>
<td>• Alert nearby aircraft by illuminating exterior lights (commensurate with aircraft limitations).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severe Turbulence and/or Mountain Wave Activity (MWA) Induced Altitude Deviations of Approximately 200 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot will:</td>
</tr>
<tr>
<td>• When experiencing severe turbulence and/or MWA induced altitude deviations of approximately 200 feet or greater, pilot will contact ATC and state “Unable RVSM Due (state reason)” (e.g., turbulence, mountain wave)</td>
</tr>
<tr>
<td>• If not issued by the controller, request vector clear of traffic at adjacent FLs</td>
</tr>
<tr>
<td>• If desired, request FL change or re–route</td>
</tr>
<tr>
<td>• Report location and magnitude of turbulence or MWA to ATC</td>
</tr>
<tr>
<td>Controller will:</td>
</tr>
<tr>
<td>• Vector aircraft to avoid merging target with traffic at adjacent flight levels, traffic permitting</td>
</tr>
<tr>
<td>• Advise pilot of conflicting traffic</td>
</tr>
<tr>
<td>• Issue FL change or re–route, traffic permitting</td>
</tr>
<tr>
<td>• Issue PIREP to other aircraft</td>
</tr>
</tbody>
</table>

Paragraph 4–6–6 explains “traffic permitting.”

See paragraph 4–6–6, Guidance on Severe Turbulence and Mountain Wave Activity (MWA) for detailed guidance.
Chapter 5. Air Traffic Procedures

Section 1. Preflight

5–1–1. Preflight Preparation

a. Every pilot is urged to receive a preflight briefing and to file a flight plan. This briefing should consist of the latest or most current weather, airport, and en route NAVAID information. Briefing service may be obtained from an FSS either by telephone or interphone, or by radio when airborne. Pilots with a current medical certificate in the 48 contiguous States may access toll-free the Direct User Access Terminal System (DUATS) through a personal computer. DUATS will provide alpha-numeric preflight weather data and allow pilots to file domestic VFR or IFR flight plans.

REFERENCE—
AIM, FAA Weather Services, Paragraph 7–1–2 lists DUATS vendors.

NOTE—
Pilots filing flight plans via “fast file” who desire to have their briefing recorded, should include a statement at the end of the recording as to the source of their weather briefing.

b. The information required by the FAA to process flight plans is contained on FAA Form 7233–1, Flight Plan, or FAA Form 7233–4, International Flight Plan. The forms are available at all flight service stations. Additional copies will be provided on request.

REFERENCE—
AIM, Flight Plan— VFR Flights, Paragraph 5–1–4
AIM, Flight Plan— IFR Flights, Paragraph 5–1–8
AIM, International Flight Plan— IFR Flights, Paragraph 5–1–9

NOTE—
NOTAMs which are known in sufficient time for publication and are of 7 days duration or longer are normally incorporated into the Notices to Airmen Publication and carried there until cancellation time. FDC NOTAMs, which apply to instrument flight procedures, are also included in the Notices to Airmen Publication up to and including the number indicated in the FDC NOTAM legend. Printed NOTAMs are not provided during a briefing unless specifically requested by the pilot since the FSS specialist has no way of knowing whether the pilot has already checked the Notices to Airmen Publication prior to calling. Remember to ask for NOTAMs in the Notices to Airmen Publication. This information is not normally furnished during your briefing.

REFERENCE—
AIM, Notice to Airmen (NOTAM) System, Paragraph 5–1–3

NOTE—
Pilots filing flight plans via “fast file” who desire to have their briefing recorded, should include a statement at the end of the recording as to the source of their weather briefing.

ec. FSSs are required to advise of pertinent NOTAMs if a standard briefing is requested, but if they are overlooked, don’t hesitate to remind the specialist that you have not received NOTAM information.

NOTE—
NOTAMs which are known in sufficient time for publication and are of 7 days duration or longer are normally incorporated into the Notices to Airmen Publication and carried there until cancellation time. FDC NOTAMs, which apply to instrument flight procedures, are also included in the Notices to Airmen Publication up to and including the number indicated in the FDC NOTAM legend. Printed NOTAMs are not provided during a briefing unless specifically requested by the pilot since the FSS specialist has no way of knowing whether the pilot has already checked the Notices to Airmen Publication prior to calling. Remember to ask for NOTAMs in the Notices to Airmen Publication. This information is not normally furnished during your briefing.

REFERENCE—
AIM, Notice to Airmen (NOTAM) System, Paragraph 5–1–3

f. When requesting a preflight briefing, identify yourself as a pilot and provide the following:

1. Type of flight planned; e.g., VFR or IFR.
2. Aircraft’s number or pilot’s name.
3. Aircraft type.
4. Departure Airport.
5. Route of flight.
6. Destination.
7. Flight altitude(s).
8. ETD and ETE.

NOTE—
Pilots filing flight plans via “fast file” who desire to have their briefing recorded, should include a statement at the end of the recording as to the source of their weather briefing.

REFERENCE—
AIM, General Description of Each Chart Series, Paragraph 9–1–4

NOTE—
NOTAMs which are known in sufficient time for publication and are of 7 days duration or longer are normally incorporated into the Notices to Airmen Publication and carried there until cancellation time. FDC NOTAMs, which apply to instrument flight procedures, are also included in the Notices to Airmen Publication up to and including the number indicated in the FDC NOTAM legend. Printed NOTAMs are not provided during a briefing unless specifically requested by the pilot since the FSS specialist has no way of knowing whether the pilot has already checked the Notices to Airmen Publication prior to calling. Remember to ask for NOTAMs in the Notices to Airmen Publication. This information is not normally furnished during your briefing.

REFERENCE—
AIM, Notice to Airmen (NOTAM) System, Paragraph 5–1–3

g. Prior to conducting a briefing, briefers are required to have the background information listed above so that they may tailor the briefing to the needs of the proposed flight. The objective is to communicate a “picture” of meteorological and aeronautical information necessary for the conduct of
a safe and efficient flight. Briefers use all available weather and aeronautical information to summarize data applicable to the proposed flight. They do not read weather reports and forecasts verbatim unless specifically requested by the pilot. FSS briefers do not provide FDC NOTAM information for special instrument approach procedures unless specifically asked. Pilots authorized by the FAA to use special instrument approach procedures must specifically request FDC NOTAM information for these procedures. Pilots who receive the information electronically will receive NOTAMs for special IAPs automatically.

REFERENCE--
AIM, Preflight Briefings, Paragraph 7−1−4 contains those items of a weather briefing that should be expected or requested.

h. FAA by 14 CFR Part 93, Subpart K, has designated High Density Traffic Airports (HDTAs) and has prescribed air traffic rules and requirements for operating aircraft (excluding helicopter operations) to and from these airports.

REFERENCE--
Airport/Facility Directory, Special Notices Section.
AIM, Airport Reservation Operations and Special Traffic Management Programs, Paragraph 4−1−22

i. In addition to the filing of a flight plan, if the flight will traverse or land in one or more foreign countries, it is particularly important that pilots leave a complete itinerary with someone directly concerned and keep that person advised of the flight’s progress. If serious doubt arises as to the safety of the flight, that person should first contact the FSS.

REFERENCE--
AIM, Flights Outside the U.S. and U.S. Territories, Paragraph 5−1−1

j. Pilots operating under provisions of 14 CFR Part 135 on a domestic flight and not having an FAA assigned 3−letter designator, are urged to prefix the normal registration (N) number with the letter “T” on flight plan filing; e.g., TN1234B.

REFERENCE--
AIM, Aircraft Call Signs, Paragraph 4−2−4

5−1−2. Follow IFR Procedures Even When Operating VFR

a. To maintain IFR proficiency, pilots are urged to practice IFR procedures whenever possible, even when operating VFR. Some suggested practices include:

1. Obtain a complete preflight and weather briefing. Check the NOTAMs.

2. File a flight plan. This is an excellent low cost insurance policy. The cost is the time it takes to fill it out. The insurance includes the knowledge that someone will be looking for you if you become overdue at your destination.

3. Use current charts.

4. Use the navigation aids. Practice maintaining a good course—keep the needle centered.

5. Maintain a constant altitude which is appropriate for the direction of flight.

6. Estimate en route position times.

7. Make accurate and frequent position reports to the FSSs along your route of flight.

b. Simulated IFR flight is recommended (under the hood); however, pilots are cautioned to review and adhere to the requirements specified in 14 CFR Section 91.109 before and during such flight.

c. When flying VFR at night, in addition to the altitude appropriate for the direction of flight, pilots should maintain an altitude which is at or above the minimum en route altitude as shown on charts. This is especially true in mountainous terrain, where there is usually very little ground reference. Do not depend on your eyes alone to avoid rising unlighted terrain, or even lighted obstructions such as TV towers.

5−1−3. Notice to Airmen (NOTAM) System

a. Time-critical aeronautical information which is of either a temporary nature or not sufficiently known in advance to permit publication on aeronautical charts or in other operational publications receives immediate dissemination via the National NOTAM System.

NOTE--
1. NOTAM information is that aeronautical information that could affect a pilot’s decision to make a flight. It includes such information as airport or aerodrome primary runway closures, taxiways, ramps, obstructions, communications, airspace, changes in the status of navigational aids, ILSs, radar service availability, and other information essential to planned en route, terminal, or landing operations.

2. NOTAM information is transmitted using standard contractions to reduce transmission time. See TBL 5−1−2 for a listing of the most commonly used contractions. For a complete listing, see FAA Order JO 7340.2, Contractions.

b. NOTAM information is classified into five categories. These are NOTAM (D) or distant, Flight
NOTE—
The exchange of information between an aircraft and an ARTCC through an FSS is quicker than relay via company radio because the FSS has direct interphone lines to the responsible ARTCC sector. Accordingly, when circumstances dictate a choice between the two, during an ARTCC frequency outage, relay via FSS radio is recommended.

5–3–2. Position Reporting

The safety and effectiveness of traffic control depends to a large extent on accurate position reporting. In order to provide the proper separation and expedite aircraft movements, ATC must be able to make accurate estimates of the progress of every aircraft operating on an IFR flight plan.

a. Position Identification.

1. When a position report is to be made passing a VOR radio facility, the time reported should be the time at which the first complete reversal of the “to/from” indicator is accomplished.

2. When a position report is made passing a facility by means of an airborne ADF, the time reported should be the time at which the indicator makes a complete reversal.

3. When an aural or a light panel indication is used to determine the time passing a reporting point, such as a fan marker, Z marker, cone of silence or intersection of range courses, the time should be noted when the signal is first received and again when it ceases. The mean of these two times should then be taken as the actual time over the fix.

4. If a position is given with respect to distance and direction from a reporting point, the distance and direction should be computed as accurately as possible.

5. Except for terminal area transition purposes, position reports or navigation with reference to aids not established for use in the structure in which flight is being conducted will not normally be required by ATC.

b. Position Reporting Points. CFRs require pilots to maintain a listening watch on the appropriate frequency and, unless operating under the provisions of subparagraph c, to furnish position reports passing certain reporting points. Reporting points are indicated by symbols on en route charts. The designated compulsory reporting point symbol is a solid triangle ▲ and the “on request” reporting point symbol is the open triangle ▼. Reports passing an “on request” reporting point are only necessary when requested by ATC.

c. Position Reporting Requirements.

1. Flights Along Airways or Routes. A position report is required by all flights regardless of altitude, including those operating in accordance with an ATC clearance specifying “VFR−on−top,” over each designated compulsory reporting point along the route being flown.

2. Flights Along a Direct Route. Regardless of the altitude or flight level being flown, including flights operating in accordance with an ATC clearance specifying “VFR−on−top,” pilots must report over each reporting point used in the flight plan to define the route of flight.

3. Flights in a Radar Environment. When informed by ATC that their aircraft are in “Radar Contact,” pilots should discontinue position reports over designated reporting points. They should resume normal position reporting when ATC advises “RADAR CONTACT LOST” or “RADAR SERVICE TERMINATED.”

4. Flights in an Oceanic (Non-radar) Environment. Pilots must report over each point used in the flight plan to define the route of flight, even if the point is depicted on aeronautical charts as an “on request” (non-compulsory) reporting point. For aircraft providing automatic position reporting via an Automatic Dependent Surveillance-Contract (ADS-C) logon, pilots should discontinue voice position reports.

NOTE—
ATC will inform pilots that they are in “radar contact”:
(a) when their aircraft is initially identified in the ATC system; and
(b) when radar identification is reestablished after radar service has been terminated or radar contact lost. Subsequent to being advised that the controller has established radar contact, this fact will not be repeated to the pilot when handed off to another controller. At times, the aircraft identity will be confirmed by the receiving controller; however, this should not be construed to mean that radar contact has been lost. The identity of transponder equipped aircraft will be confirmed by asking the pilot to “ident,” “squawk standby,” or to change codes. Aircraft without transponders will be advised of their position to confirm identity. In this case, the pilot is
expected to advise the controller if in disagreement with the position given. Any pilot who cannot confirm the accuracy of the position given because of not being tuned to the NAVAID referenced by the controller, should ask for another radar position relative to the tuned in NAVAID.

d. Position Report Items:

1. Position reports should include the following items:
 (a) Identification;
 (b) Position;
 (c) Time;
 (d) Altitude or flight level (include actual altitude or flight level when operating on a clearance specifying VFR-on–top);
 (e) Type of flight plan (not required in IFR position reports made directly to ARTCCs or approach control);
 (f) ETA and name of next reporting point;
 (g) The name only of the next succeeding reporting point along the route of flight; and
 (h) Pertinent remarks.

5–3–3. Additional Reports

a. The following reports should be made to ATC or FSS facilities without a specific ATC request:

1. At all times.
 (a) When vacating any previously assigned altitude or flight level for a newly assigned altitude or flight level.
 (b) When an altitude change will be made if operating on a clearance specifying VFR-on–top.
 (c) When unable to climb/descend at a rate of a least 500 feet per minute.
 (d) When approach has been missed. (Request clearance for specific action; i.e., to alternative airport, another approach, etc.)
 (e) Change in the average true airspeed (at cruising altitude) when it varies by 5 percent or 10 knots (whichever is greater) from that filed in the flight plan.
 (f) The time and altitude or flight level upon reaching a holding fix or point to which cleared.
 (g) When leaving any assigned holding fix or point.

 NOTE—
The reports in subparagraphs (f) and (g) may be omitted by pilots of aircraft involved in instrument training at military terminal area facilities when radar service is being provided.

 (h) Any loss, in controlled airspace, of VOR, TACAN, ADF, low frequency navigation receiver capability, GPS anomalies while using installed IFR-certified GPS/GNSS receivers, complete or partial loss of ILS receiver capability or impairment of air/ground communications capability. Reports should include aircraft identification, equipment affected, degree to which the capability to operate under IFR in the ATC system is impaired, and the nature and extent of assistance desired from ATC.

 NOTE—
 1. Other equipment installed in an aircraft may effectively impair safety and/or the ability to operate under IFR. If such equipment (e.g., airborne weather radar) malfunctions and in the pilot’s judgment either safety or IFR capabilities are affected, reports should be made as above.

 2. When reporting GPS anomalies, include the location and altitude of the anomaly. Be specific when describing the location and include duration of the anomaly if necessary.
 (i) Any information relating to the safety of flight.

2. When not in radar contact.

 (a) When leaving final approach fix inbound on final approach (nonprecision approach) or when leaving the outer marker or fix used in lieu of the outer marker inbound on final approach (precision approach).

 (b) A corrected estimate at anytime it becomes apparent that an estimate as previously submitted is in error in excess of 2 minutes. For flights in the North Atlantic (NAT), a revised estimate is required if the error is 3 minutes or more.

 b. Pilots encountering weather conditions which have not been forecast, or hazardous conditions which have been forecast, are expected to forward a report of such weather to ATC.

REFERENCE—
AIM, Pilot Weather Reports (PIREPs), Paragraph 7–1–20
14 CFR Section 91.183(B) and (C).
Flight crew of a loss of GPS, the operator must
develop procedures to verify correct GPS operation.

REFERENCE—
AIM, Global Positioning System (GPS)
Paragraph 1–1–18, Impact of Magnetic Variation on RNAV Sys-
tems

5–4–2. Local Flow Traffic Management Pro-
gram

a. This program is a continuing effort by the FAA
to enhance safety, minimize the impact of aircraft
noise and conserve aviation fuel. The enhancement
of safety and reduction of noise is achieved in this
program by minimizing low altitude maneuvering of
arriving turbojet and turboprop aircraft weighing
more than 12,500 pounds and, by permitting
departure aircraft to climb to higher altitudes sooner,
as arrivals are operating at higher altitudes at the
points where their flight paths cross. The application
of these procedures also reduces exposure time
between controlled aircraft and uncontrolled aircraft
at the lower altitudes in and around the terminal
environment. Fuel conservation is accomplished by
absorbing any necessary arrival delays for aircraft
included in this program operating at the higher and
more fuel efficient altitudes.

b. A fuel efficient descent is basically an
uninterrupted descent (except where level flight is
required for speed adjustment) from cruising altitude
to the point when level flight is necessary for the pilot
to stabilize the aircraft on final approach. The
procedure for a fuel efficient descent is based on an
altitude loss which is most efficient for the majority
of aircraft being served. This will generally result in
descend gradient window of 250–350 feet per
nautical mile.

c. When crossing altitudes and speed restrictions
are issued verbally or are depicted on a chart, ATC
will expect the pilot to descend first to the crossing
altitude and then reduce speed. Verbal clearances for
descent will normally permit an uninterrupted
descent in accordance with the procedure as
described in paragraph b above. Acceptance of a
charted fuel efficient descent (Runway Profile
Descent) clearance requires the pilot to adhere to the
altitudes, speeds, and headings depicted on the charts
unless otherwise instructed by ATC. PILOTS
RECEIVING A CLEARANCE FOR A FUEL
EFFICIENT DESCENT ARE EXPECTED TO

ADVISE ATC IF THEY DO NOT HAVE RUNWAY
PROFILE DESCENT CHARTS PUBLISHED FOR
THAT AIRPORT OR ARE UNABLE TO COMPLY
WITH THE CLEARANCE.

5–4–3. Approach Control

a. Approach control is responsible for controlling
all instrument flight operating within its area of
responsibility. Approach control may serve one or
more airfields, and control is exercised primarily by
direct pilot and controller communications. Prior to
arriving at the destination radio facility, instructions
will be received from ARTCC to contact approach
control on a specified frequency.

b. Radar Approach Control.

1. Where radar is approved for approach control
service, it is used not only for radar approaches
(Airport Surveillance Radar [ASR] and Precision
Approach Radar [PAR]) but is also used to provide
vectors in conjunction with published nonradar
approaches based on radio NAVAIDs (ILS, VOR,
NDB, TACAN). Radar vectors can provide course
guidance and expedite traffic to the final approach
course of any established IAP or to the traffic pattern
for a visual approach. Approach control facilities
that provide this radar service will operate in the follow-
ing manner:

(a) Arriving aircraft are either cleared to an
outer fix most appropriate to the route being flown
with vertical separation and, if required, given
holding information or, when radar handoffs are
effected between the ARTCC and approach control,
or between two approach control facilities, aircraft
are cleared to the airport or to a fix so located that the
handoff will be completed prior to the time the
aircraft reaches the fix. When radar handoffs are
utilized, successive arriving flights may be handed
off to approach control with radar separation in lieu
of vertical separation.

(b) After release to approach control, aircraft
are vectored to the final approach course (ILS, RNAV,
GLS, VOR, ADF, etc.). Radar vectors and altitude or
flight levels will be issued as required for spacing and
separating aircraft. **Therefore, pilots must not deviate
from the headings issued by approach control.**
Aircraft will normally be informed when it is
necessary to vector across the final approach course
for spacing or other reasons. If approach course
crossing is imminent and the pilot has not been
informed that the aircraft will be vectored across the final approach course, the pilot should query the controller.

(c) The pilot is not expected to turn inbound on the final approach course unless an approach clearance has been issued. This clearance will normally be issued with the final vector for interception of the final approach course, and the vector will be such as to enable the pilot to establish the aircraft on the final approach course prior to reaching the final approach fix.

(d) In the case of aircraft already inbound on the final approach course, approach clearance will be issued prior to the aircraft reaching the final approach fix. When established inbound on the final approach course, radar separation will be maintained and the pilot will be expected to complete the approach utilizing the approach aid designated in the clearance (ILS, RNAV, GLS, VOR, radio beacons, etc.) as the primary means of navigation. Therefore, once established on the final approach course, pilots must not deviate from it unless a clearance to do so is received from ATC.

(e) After passing the final approach fix on final approach, aircraft are expected to continue inbound on the final approach course and complete the approach or effect the missed approach procedure published for that airport.

2. ARTCCs are approved for and may provide approach control services to specific airports. The radar systems used by these centers do not provide the same precision as an ASR/PAR used by approach control facilities and towers, and the update rate is not as fast. Therefore, once established on the final approach course, pilots may be requested to report established on the final approach course.

3. Whether aircraft are vectored to the appropriate final approach course or provide their own navigation on published routes to it, radar service is automatically terminated when the landing is completed or when instructed to change to advisory frequency at uncontrolled airports, whichever occurs first.

5–4–4. Advance Information on Instrument Approach

a. When landing at airports with approach control services and where two or more IAPs are published, pilots will be provided in advance of their arrival with the type of approach to expect or that they may be vectored for a visual approach. This information will be broadcast either by a controller or on ATIS. It will not be furnished when the visibility is three miles or better and the ceiling is at or above the highest initial approach altitude established for any low altitude IAP for the airport.

b. The purpose of this information is to aid the pilot in planning arrival actions; however, it is not an ATC clearance or commitment and is subject to change. Pilots should bear in mind that fluctuating weather, shifting winds, blocked runway, etc., are conditions which may result in changes to approach information previously received. It is important that pilots advise ATC immediately they are unable to execute the approach ATC advised will be used, or if they prefer another type of approach.

c. Aircraft destined to uncontrolled airports, which have automated weather data with broadcast capability, should monitor the ASOS/AWSS/AWOS frequency to ascertain the current weather for the airport. The pilot must advise ATC when he/she has received the broadcast weather and state his/her intentions.

NOTE—

1. ASOS/AWSS/AWOS should be set to provide one-minute broadcast weather updates at uncontrolled airports that are without weather broadcast capability by a human observer.

2. Controllers will consider the long line disseminated weather from an automated weather system at an uncontrolled airport as trend and planning information only and will rely on the pilot for current weather information for the airport. If the pilot is unable to receive the current broadcast weather, the last long line disseminated weather will be issued to the pilot. When receiving IFR services, the pilot/aircraft operator is responsible for determining if weather/visibility is adequate for approach/landing.

d. When making an IFR approach to an airport not served by a tower or FSS, after ATC advises “CHANGE TO ADVISORY FREQUENCY APPROVED” you should broadcast your intentions, including the type of approach being executed, your position, and when over the final approach fix inbound (nonprecision approach) or when over the outer marker or fix used in lieu of the outer marker inbound (precision approach). Continue to monitor the appropriate frequency (UNICOM, etc.) for reports from other pilots.
course and glidepath deviation information meeting the precision standards of ICAO Annex 10. For example, PAR, ILS, and GLS are precision approaches.

(b) Approach with Vertical Guidance (APV). An instrument approach based on a navigation system that is not required to meet the precision approach standards of ICAO Annex 10 but provides course and glidepath deviation information. For example, Baro–VNAV, LDA with glidepath, LNAV/VNAV and LPV are APV approaches.

c) Nonprecision Approach (NPA). An instrument approach based on a navigation system which provides course deviation information, but no glidepath deviation information. For example, VOR, NDB and LNAV. As noted in subparagraph k, Vertical Descent Angle (VDA) on Nonprecision Approaches, some approach procedures may provide a Vertical Descent Angle as an aid in flying a stabilized approach, without requiring its use in order to fly the procedure. This does not make the approach an APV procedure, since it must still be flown to an MDA and has not been evaluated with a glidepath.

b. The method used to depict prescribed altitudes on instrument approach charts differs according to techniques employed by different chart publishers. Prescribed altitudes may be depicted in four different configurations: minimum, maximum, mandatory, and recommended. The U.S. Government distributes charts produced by National Geospatial–Intelligence Agency (NGA) and FAA. Altitudes are depicted on these charts in the profile view with underscore, overscore, both or none to identify them as minimum, maximum, mandatory or recommended.

1. Minimum altitude will be depicted with the altitude value underscored. Aircraft are required to maintain altitude at or above the depicted value, e.g., 3000.

2. Maximum altitude will be depicted with the altitude value overscored. Aircraft are required to maintain altitude at or below the depicted value, e.g., 4000.

3. Mandatory altitude will be depicted with the altitude value both underscored and overscored. Aircraft are required to maintain altitude at the depicted value, e.g., 5000.

4. Recommended altitude will be depicted with no overscore or underscore. These altitudes are depicted for descent planning, e.g., 6000.

NOTE–
1. Pilots are cautioned to adhere to altitudes as prescribed because, in certain instances, they may be used as the basis for vertical separation of aircraft by ATC. When a depicted altitude is specified in the ATC clearance, that altitude becomes mandatory as defined above.

2. The ILS glide slope is intended to be intercepted at the published glide slope intercept altitude. This point marks the PFAF and is depicted by the “lightning bolt” symbol on U.S. Government charts. Intercepting the glide slope at this altitude marks the beginning of the final approach segment and ensures required obstacle clearance during descent from the glide slope intercept altitude to the lowest published decision altitude for the approach. Interception and tracking of the glide slope prior to the published glide slope intercept altitude does not necessarily ensure that minimum, maximum, and/or mandatory altitudes published for any preceding fixes will be complied with during the descent. If the pilot chooses to track the glide slope prior to the glide slope intercept altitude, they remain responsible for complying with published altitudes for any preceding stepdown fixes encountered during the subsequent descent.

3. Approaches used for simultaneous (parallel) independent and simultaneous close parallel operations procedurally require descending on the glideslope from the altitude at which the approach clearance is issued (refer to 5-4-15 and 5-4-16). For simultaneous close parallel (PRM) approaches, the Attention All Users Page (AAUP) may publish a note which indicates that descending on the glideslope/glidepath meets all crossing restrictions. However, if no such note is published, and for simultaneous independent approaches (4300 and greater runway separation) where an AAUP is not published, pilots are cautioned to monitor their descent on the glideslope/path outside of the PFAF to ensure compliance with published crossing restrictions during simultaneous operations.

4. When parallel approach courses are less than 2500 feet apart and reduced in-trail spacing is authorized for simultaneous dependent operations, a chart note will indicate that simultaneous operations require use of vertical guidance and that the pilot should maintain last assigned altitude until established on glide slope. These approaches procedurally require utilization of the ILS glide slope for wake turbulence mitigation. Pilots should not confuse these simultaneous dependent operations with (SOIA) simultaneous close parallel PRM approaches, where PRM appears in the approach title.
c. Minimum Safe/Sector Altitudes (MSA) are published for emergency use on IAP charts. For conventional navigation systems, the MSA is normally based on the primary omnidirectional facility on which the IAP is predicated. The MSA depiction on the approach chart contains the facility identifier of the NAVID used to determine the MSA altitudes. For RNAV approaches, the MSA is based on the runway waypoint (RWY WP) for straight–in approaches, or the airport waypoint (APT WP) for circling approaches. For GPS approaches, the MSA center will be the missed approach waypoint (MAWP). MSAs are expressed in feet above mean sea level and normally have a 25 NM radius; however, this radius may be expanded to 30 NM if necessary to encompass the airport landing surfaces. Ideally, a single sector altitude is established and depicted on the plan view of approach charts; however, when necessary to obtain relief from obstructions, the area may be further sectored and as many as four MSAs established. When established, sectors may be no less than 90° in spread. MSAs provide 1,000 feet clearance over all obstructions but do not necessarily assure acceptable navigation signal coverage.

d. Terminal Arrival Area (TAA)

1. The TAA provides a transition from the en route structure to the terminal environment with little required pilot/air traffic control interface for aircraft equipped with Area Navigation (RNAV) systems. A TAA provides minimum altitudes with standard obstacle clearance when operating within the TAA boundaries. TAAs are primarily used on RNAV approaches but may be used on an ILS approach when RNAV is the sole means for navigation to the IF; however, they are not normally used in areas of heavy concentration of air traffic.

2. The basic design of the RNAV procedure underlying the TAA is normally the “T” design (also called the “Basic T”). The “T” design incorporates two IAFs plus a dual purpose IF/IAF that functions as both an intermediate fix and an initial approach fix. The T configuration continues from the IF/IAF to the final approach fix (FAF) and then to the missed approach point (MAP). The two base leg IAFs are typically aligned in a straight-line perpendicular to the intermediate course connecting at the IF/IAF. A Hold-in-Lieu Procedure Turn (HILPT) is anchored at the IF/IAF and depicted on U.S. Government publications using the “hold–in–lieu–of–PT” holding pattern symbol. When the HILPT is necessary for course alignment and/or descent, the dual purpose IF/IAF serves as an IF during the entry into the pattern. Following entry into the HILPT pattern and when flying a route or sector labeled “NoPT,” the dual-purpose fix serves as an IF, marking the beginning of the Intermediate Segment. See FIG 5–4–1 and FIG 5–4–2 for the Basic “T” TAA configuration.
FIG 5−4−1
Basic “T” Design

FIG 5−4−2
Basic “T” Design
3. The standard TAA based on the “T” design consists of three areas defined by the Initial Approach Fix (IAF) legs and the intermediate segment course beginning at the IF/IAF. These areas are called the straight-in, left-base, and right-base areas. (See FIG 5−4−3). TAA area lateral boundaries are identified by magnetic courses TO the IF/IAF. The straight-in area can be further divided into pie-shaped sectors with the boundaries identified by magnetic courses TO the IF/IAF, and may contain stepdown sections defined by arcs based on RNAV distances from the IF/IAF. (See FIG 5−4−4). The right/left-base areas can only be subdivided using arcs based on RNAV distances from the IAFs for those areas.

4. Entry from the terminal area onto the procedure is normally accomplished via a no procedure turn (NoPT) routing or via a course reversal maneuver. The published procedure will be annotated “NoPT” to indicate when the course reversal is not authorized when flying within a particular TAA sector. Otherwise, the pilot is expected to execute the course reversal under the provisions of 14 CFR Section 91.175. The pilot may elect to use the course reversal pattern when it is not required by the procedure, but must receive clearance from air traffic control before beginning the procedure.

(a) ATC should not clear an aircraft to the left base leg or right base leg IAF within a TAA at an intercept angle exceeding 90 degrees. Pilots must not execute the HILPT course reversal when the sector or procedure segment is labeled “NoPT.”

(b) ATC may clear aircraft direct to the fix labeled IF/IAF if the course to the IF/IAF is within the straight-in sector labeled “NoPT” and the intercept angle does not exceed 90 degrees. Pilots are expected to proceed direct to the IF/IAF and accomplish a straight-in approach. Do not execute HILPT course reversal. Pilots are also expected to fly the straight−in approach when ATC provides radar vectors and monitoring to the IF/IAF and issues a “straight-in” approach clearance; otherwise, the pilot is expected to execute the HILPT course reversal.

REFERENCE—AIM Paragraph 5−4−6 Approach Clearance

(c) On rare occasions, ATC may clear the aircraft for an approach at the airport without specifying the approach procedure by name or by a specific approach (for example, “cleared RNAV Runway 34 approach”) without specifying a particular IAF.
either case, the pilot should proceed direct to the IAF or to the IF/IAF associated with the sector that the aircraft will enter the TAA and join the approach course from that point and if required by that sector (i.e., sector is not labeled "NoPT").

NOTE—
If approaching with a TO bearing that is on a sector boundary, the pilot is expected to proceed in accordance with a “NoPT” routing unless otherwise instructed by ATC.

5. Altitudes published within the TAA replace the MSA altitude. However, unlike MSA altitudes the TAA altitudes are operationally usable altitudes. These altitudes provide at least 1,000 feet of obstacle clearance, more in mountainous areas. It is important that the pilot knows which area of the TAA the aircraft will enter in order to comply with the minimum altitude requirements. The pilot can determine which area of the TAA the aircraft will enter by determining the magnetic bearing of the aircraft TO the fix labeled IF/IAF. The bearing should then be compared to the published lateral boundary bearings that define the TAA areas. Do not use magnetic bearing to the right-base or left-base IAFs to determine position.

(a) An ATC clearance direct to an IAF or to the IF/IAF without an approach clearance does not authorize a pilot to descend to a lower TAA altitude. If a pilot desires a lower altitude without an approach clearance, request the lower TAA altitude from ATC. Pilots not sure of the clearance should confirm their clearance with ATC or request a specific clearance.

Pilots entering the TAA with two-way radio communications failure (14 CFR Section 91.185, IFR Operations: Two-way Radio Communications Failure), must maintain the highest altitude prescribed by Section 91.185(c)(2) until arriving at the appropriate IAF.

(b) Once cleared for the approach, pilots may descend in the TAA sector to the minimum altitude depicted within the defined area/subdivision, unless instructed otherwise by air traffic control. Pilots should plan their descent within the TAA to permit a normal descent from the IF/IAF to the FAF. In FIG 5−4−4, pilots within the left or right-base areas are expected to maintain a minimum altitude of 6,000 feet until within 17 NM of the associated IAF. After crossing the 17 NM arc, descent is authorized to the lower charted altitudes. Pilots approaching from the northwest are expected to maintain a minimum altitude of 6,000 feet, and when within 22 NM of the IF/IAF, descend to a minimum altitude of 2,000 feet MSL until crossing the IF/IAF.
6. U.S. Government charts depict TAAs using icons located in the plan view outside the depiction of the actual approach procedure. (See FIG 5−4−5). Use of icons is necessary to avoid obscuring any portion of the “T” procedure (altitudes, courses, minimum altitudes, etc.). The icon for each TAA area will be located and oriented on the plan view with respect to the direction of arrival to the approach procedure, and will show all TAA minimum altitudes and sector/radius subdivisions. The IAF for each area of the TAA is included on the icon where it appears on the approach to help the pilot orient the icon to the approach procedure. The IAF name and the distance of the TAA area boundary from the IAF are included on the outside arc of the TAA area icon.

FIG 5−4−5

RNAV (GPS) Approach Chart
7. TAAs may be modified from the standard size and shape to accommodate operational or ATC requirements. Some areas may be eliminated, while the other areas are expanded. The “T” design may be modified by the procedure designers where required by terrain or ATC considerations. For instance, the “T” design may appear more like a regularly or irregularly shaped “Y,” upside down “L,” or an “I.”

(a) FIG 5-4-6 depicts a TAA without a left base leg and right base leg. In this generalized example, pilots approaching on a bearing TO the IF/IAF from 271 clockwise to 0089 are expected to execute a course reversal because the amount of turn required at the IF/IAF exceeds 90 degrees. The term “NoPT” will be annotated on the boundary of the TAA icon for the other portion of the TAA.

(b) FIG 5-4-7 depicts another TAA modification that pilots may encounter. In this generalized example, the left base area and part of the straight-in area have been eliminated. Pilots operating within the TAA between 210 clockwise to 360 bearing TO the IF/IAF are expected to proceed direct to the IF/IAF and then execute the course reversal in order to properly align the aircraft for entry onto the intermediate segment or to avoid an excessive descent rate. Aircraft operating in areas 001 clockwise to 090 bearing TO the IF/IAF are expected to proceed direct to the right base IAF and not execute course reversal maneuver. Aircraft cleared direct the IF/IAF by ATC in this sector will be expected to accomplish HILTP. Aircraft operating in areas 091 clockwise to 209 bearing TO the IF/IAF are expected to proceed direct to the IF/IAF and not execute the course reversal. These two areas are annotated “NoPT” at the TAA boundary of the icon in these areas when displayed on the approach chart’s plan view.
(c) Fig 5-4-8 depicts a TAA with right base leg and part of the straight-in area eliminated.
8. When an airway does not cross the lateral TAA boundaries, a feeder route will be established from an airway fix or NAVAID to the TAA boundary to provide a transition from the en route structure to the appropriate IAF. Each feeder route will terminate at the TAA boundary and will be aligned along a path pointing to the associated IAF. Pilots should descend to the TAA altitude after crossing the TAA boundary and cleared for the approach by ATC. (See FIG 5–4–9).

![FIG 5–4–9](image)

Examples of a TAA with Feeders from an Airway

9. Each waypoint on the “T” is assigned a pronounceable 5–letter name, except the missed approach waypoint. These names are used for ATC communications, RNAV databases, and aeronautical navigation products. The missed approach waypoint is assigned a pronounceable name when it is not located at the runway threshold.
e. Minimum Vectoring Altitudes (MVAs) are established for use by ATC when radar ATC is exercised. MVA charts are prepared by air traffic facilities at locations where there are numerous different minimum IFR altitudes. Each MVA chart has sectors large enough to accommodate vectoring of aircraft within the sector at the MVA. Each sector boundary is at least 3 miles from the obstruction determining the MVA. To avoid a large sector with an excessively high MVA due to an isolated prominent obstruction, the obstruction may be enclosed in a buffer area whose boundaries are at least 3 miles from the obstruction. This is done to facilitate vectoring around the obstruction. (See FIG 5–4–10.)

1. The minimum vectoring altitude in each sector provides 1,000 feet above the highest obstacle in nonmountainous areas and 2,000 feet above the highest obstacle in designated mountainous areas. Where lower MVAs are required in designated mountainous areas to achieve compatibility with terminal routes or to permit vectoring to an IAP, 1,000 feet of obstacle clearance may be authorized with the use of Airport Surveillance Radar (ASR). The minimum vectoring altitude will provide at least 300 feet above the floor of controlled airspace.

NOTE—

OROCA is an off-route altitude which provides obstruction clearance with a 1,000 foot buffer in nonmountainous terrain areas and a 2,000 foot buffer in designated mountainous areas within the U.S. This altitude may not provide signal coverage from ground–based navigational aids, air traffic control radar, or communications coverage.

2. Because of differences in the areas considered for MVA, and those applied to other minimum altitudes, and the ability to isolate specific obstacles, some MVAs may be lower than the nonradar Minimum En Route Altitudes (MEAs), Minimum Obstruction Clearance Altitudes (MOCAs) or other minimum altitudes depicted on charts for a given location. While being radar vectored, IFR altitude assignments by ATC will be at or above MVA.

f. Circling. Circling minimums charted on an RNAV (GPS) approach chart may be lower than the LNAV/VNAV line of minima, but never lower than the LNAV line of minima (straight-in approach). Pilots may safely perform the circling maneuver at the circling published line of minima if the approach and circling maneuver is properly performed according to aircraft category and operational limitations.
FIG 5–4–11
Example of LNAV and Circling Minima Lower Than LNAV/VNAV DA.
Harrisburgh International RNAV (GPS) RWY 13

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV DA</td>
<td></td>
<td>558/24</td>
<td>250 (300 – ½)</td>
<td></td>
</tr>
<tr>
<td>LNAV/VNAV DA</td>
<td></td>
<td>1572 – 5</td>
<td>1264 (1300 – 5)</td>
<td></td>
</tr>
<tr>
<td>LNAV MDA</td>
<td>1180 / 24</td>
<td>1180 / 40</td>
<td>1180 / 2</td>
<td>1180 / 2 ¼</td>
</tr>
<tr>
<td></td>
<td>872 (900 – ½)</td>
<td>872 (900 – ¾)</td>
<td>872 (900 – 2)</td>
<td>872 (900 – 2 ¼)</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>1180 – 1</td>
<td>1180 – 1 ¼</td>
<td>1180 – 2 ½</td>
<td>1180 – 2 ¾</td>
</tr>
<tr>
<td></td>
<td>870 (900 – 1)</td>
<td>870 (900 – 1 ¼)</td>
<td>870 (900 – 2 ½)</td>
<td>870 (900 – 2 ¾)</td>
</tr>
</tbody>
</table>

FIG 5–4–12
Explanation of LNAV and/or Circling Minima Lower than LNAV/VNAV DA

g. FIG 5–4–12 provides a visual representation of an obstacle evaluation and calculation of LNAV MDA, Circling MDA, LNAV/VNAV DA.

1. **No vertical guidance (LNAV).** A line is drawn horizontal at obstacle height and 250 feet added for Required Obstacle Clearance (ROC). The controlling obstacle used to determine LNAV MDA can be different than the controlling obstacle used in determining ROC for circling MDA. Other factors may force a number larger than 250 ft to be added to the LNAV OCS. The number is rounded up to the next higher 20 foot increment.

2. **Circling MDA.** The circling MDA will provide 300 foot obstacle clearance within the area considered for obstacle clearance and may be lower than the LNAV/VNAV DA, but never lower than the straight in LNAV MDA. This may occur when different controlling obstacles are used or when other controlling factors force the LNAV MDA to be higher than 250 feet above the LNAV OCS. In FIG 5–4–11, the required obstacle clearance for both the LNAV and Circle resulted in the same MDA, but lower than the LNAV/VNAV DA. FIG 5–4–12 provides an illustration of this type of situation.
3. **Vertical guidance (LNAV/VNAV).** A line is drawn horizontal at obstacle height until reaching the obstacle clearance surface (OCS). At the OCS, a vertical line is drawn until reaching the glide path. This is the DA for the approach. This method places the offending obstacle in front of the LNAV/VNAV DA so it can be seen and avoided. In some situations, this may result in the LNAV/VNAV DA being higher than the LNA V and/or Circling MDA.

h. **Visual Descent Points (VDPs)** are being incorporated in nonprecision approach procedures. The VDP is a defined point on the final approach course of a nonprecision straight-in approach procedure from which normal descent from the MDA to the runway touchdown point may be commenced, provided visual reference required by 14 CFR Section 91.175(c)(3) is established. The VDP will normally be identified by DME on VOR and LOC procedures and by along-track distance to the next waypoint for RNA V procedures. The VDP is identified on the profile view of the approach chart by the symbol: V.

1. VDPs are intended to provide additional guidance where they are implemented. No special technique is required to fly a procedure with a VDP. The pilot should not descend below the MDA prior to reaching the VDP and acquiring the necessary visual reference.

2. Pilots not equipped to receive the VDP should fly the approach procedure as though no VDP had been provided.

i. **Visual Segment of a Published Instrument Approach Procedure.** Instrument procedures designers perform a visual area obstruction evaluation off the approach end of each runway authorized for instrument landing, straight-in, or circling. Restrictions to instrument operations are imposed if penetrations of the obstruction clearance surfaces exist. These restrictions vary based on the severity of the penetrations, and may include increasing required visibility, denying VDPs, prohibiting night instrument operations to the runway, and/or provide a “Fly Visual” option to the landing surface.

1. In isolated cases, due to procedure design peculiarities, an IAP may contain a published visual flight path. These procedures are annotated “Fly Visual to Airport” or “Fly Visual.” A dashed arrow indicating the visual flight path will be included in the profile and plan views with an approximate heading and distance to the end of the runway. The depicted ground track associated with the visual segment should be flown as a “DR” course. When executing the visual segment, the flight visibility must not be less than that prescribed in the IAP, the pilot must remain clear of clouds and proceed to the airport maintaining visual contact with the ground. Altitude on the visual flight path is at the discretion of the pilot.

2. Since missed approach obstacle clearance is assured only if the missed approach is commenced at the published MAP or above the DA/MDA, the pilot should have preplanned climb out options based on aircraft performance and terrain features. Obstacle clearance is the sole responsibility of the pilot when the approach is continued beyond the MAP.

NOTE—
The FAA Administrator retains the authority to approve instrument approach procedures where the pilot may not necessarily have one of the visual references specified in CFR 14, part 91.175 and related rules. It is not a function of procedure design to ensure compliance with part 91.175. The annotation “Fly Visual to Airport” provides relief from part 91.175 requirements that the pilot have distinctly visible and identifiable visual references prior to descent below MDA/DA.

j. **Charting of Close in Obstacles on Instrument Procedure Charts.** Obstacles that are close to the airport may be depicted in either the planview of the instrument approach chart or the airport sketch. Obstacles are charted in only one of the areas, based on space available and distance from the runway. These obstacles could be in the visual segment of the instrument approach procedure. On nonprecision approaches, these obstacles should be considered when determining where to begin descent from the MDA (see “Pilot Operational Considerations When Flying Nonprecision Approaches” in this paragraph).

k. **Vertical Descent Angle (VDA) on Nonprecision Approaches.** FAA policy is to publish VDAs on all nonprecision approaches. Published along with VDA is the threshold crossing height (TCH) that was used to compute the angle. The descent angle may be computed from either the final approach fix (FAF), or a stepdown fix, to the runway threshold at the published TCH. A stepdown fix is only used as the start point when an angle computed from the FAF would place the aircraft below the stepdown fix altitude. The descent angle and TCH information are charted on the profile view of the instrument approach chart following the fix the angle was based
on. The optimum descent angle is 3.00 degrees; and whenever possible the approach will be designed using this angle.

1. The VDA provides the pilot with information not previously available on nonprecision approaches. It provides a means for the pilot to establish a stabilized descent from the FAF or stepdown fix to the MDA. Stabilized descent is a key factor in the reduction of controlled flight into terrain (CFIT) incidents. However, pilots should be aware that the published angle is for information only—it is strictly advisory in nature. There is no implicit additional obstacle protection below the MDA. Pilots must still respect the published minimum descent altitude (MDA) unless the visual cues stated 14 CFR Section 91.175 are present and they can visually acquire and avoid obstacles once below the MDA. The presence of a VDA does not guarantee obstacle protection in the visual segment and does not change any of the requirements for flying a nonprecision approach.

2. Additional protection for the visual segment below the MDA is provided if a VDP is published and descent below the MDA is started at or after the VDP. Protection is also provided if a Visual Glide Slope Indicator (VGSI); e.g., VASI or PAPI, is installed and the aircraft remains on the VGSI glide path angle from the MDA. In either case, a chart note will indicate if the VDP or VGSI are not coincident with the VDA. On RNAV approach charts, a small shaded arrowhead shaped symbol (see the legend of the U.S. Terminal Procedures books, page H1) from the end of the VDA to the runway indicates that the 34:1 visual surface is clear.

3. Pilots may use the published angle and estimated/actual airspeed to find a target rate of descent from the rate of descent table published in the back of the U.S. Terminal Procedures Publication. This rate of descent can be flown with the Vertical Velocity Indicator (VVI) in order to use the VDA as an aid to flying a stabilized descent. No special equipment is required.

4. Since one of the reasons for publishing a circling only instrument landing procedure is that the descent rate required exceeds the maximum allowed for a straight in approach, circling only procedures may have VDAs which are considerably steeper than the standard 3 degree angle on final. In this case, the VDA provides the crew with information about the descent rate required to land straight in from the FAF or step down fix to the threshold. This is not intended to imply that landing straight ahead is recommended, or even possible, since the descent rate may exceed the capabilities of many aircraft. The pilot must determine how to best maneuver the aircraft within the circling obstacle clearance area in order to land.

5. In rare cases the LNAV minima may have a lower HAT than minima with a glide path due to the location of the obstacles. This should be a clear indication to the pilot that obstacles exist below the MDA which the pilot must see in order to ensure adequate clearance. In those cases, the glide path may be treated as a VDA and used to descend to the LNAV MDA as long as all the rules for a nonprecision approach are applied at the MDA. However, the pilot must keep in mind the information in this paragraph and in paragraph 5−4−5 l. Pilot Operational Considerations When Flying Nonprecision Approaches. The missed approach point (MAP) on a nonprecision approach is not designed with any consideration to where the aircraft must begin descent to execute a safe landing. It is developed based on terrain, obstructions, NAVAID location and possibly air traffic considerations. Because the MAP may be located anywhere from well prior to the runway threshold to past the opposite end of the runway, the descent from the Minimum Descent Altitude (MDA) to the runway threshold cannot be determined based on the MAP location. Descent from MDA at the MAP when the MAP is located close to the threshold would require an excessively steep descent gradient to land in the normal touchdown zone. Any turn from the final approach course to the runway heading may also be a factor in when to begin the descent.

1. Pilots are cautioned that descent to a straight-in landing from the MDA at the MAP may be inadvisable or impossible, on a nonprecision approach, even if current weather conditions meet the published ceiling and visibility. Aircraft speed, height above the runway, descent rate, amount of turn and runway length are some of the factors which must be considered by the pilot to determine if a landing can be accomplished.

2. Visual descent points (VDPs) provide pilots with a reference for the optimal location to begin descent from the MDA, based on the designed vertical descent angle (VDA) for the approach procedure, assuming required visual references are
available. Approaches without VDPs have not been assessed for terrain clearance below the MDA, and may not provide a clear vertical path to the runway at the normally expected descent angle. Therefore, pilots must be especially vigilant when descending below the MDA at locations without VDPs. This does not necessarily prevent flying the normal angle; it only means that obstacle clearance in the visual segment could be less and greater care should be exercised in looking for obstacles in the visual segment. Use of visual glide slope indicator (VGSI) systems can aid the pilot in determining if the aircraft is in a position to make the descent from the MDA. However, when the visibility is close to minimums, the VGSI may not be visible at the start descent point for a “normal” glidepath, due to its location down the runway.

3. Accordingly, pilots are advised to carefully review approach procedures, prior to initiating the approach, to identify the optimum position(s), and any unacceptable positions, from which a descent to landing can be initiated (in accordance with 14 CFR Section 91.175(c)).

m. Area Navigation (RNAV) Instrument Approach Charts. Reliance on RNAV systems for instrument operations is becoming more commonplace as new systems such as GPS and augmented GPS such as the Wide Area Augmentation System (WAAS) are developed and deployed. In order to support full integration of RNAV procedures into the National Airspace System (NAS), the FAA developed a new charting format for IAPs (See FIG 5−4−5). This format avoids unnecessary duplication and proliferation of instrument approach charts. The original stand alone GPS charts, titled simply “GPS,” are being converted to the newer format as the procedures are revised. One reason for the revision is the addition of WAAS based minima to the approach chart. The reformatted approach chart is titled “RNAV (GPS) RWY XX.” Up to four lines of minima are included on these charts. Ground Based Augmentation System (GBAS) Landing System (GLS) was a placeholder for future WAAS and LAAS minima, and the minima was always listed as N/A. The GLS minima line has now been replaced by the WAAS LPV (Localizer Performance with Vertical Guidance) minima on most RNAV (GPS) charts. LNAV/VNAV (lateral navigation/vertical navigation) was added to support both WAAS electronic vertical guidance and Barometric VNAV. LPV and LNAV/VNAV are both APV procedures as described in paragraph 5−4−5a7. The original GPS minima, titled “S−XX,” for straight in runway XX, is retitled LNAV (lateral navigation). Circling minima may also be published. A new type of nonprecision WAAS minima will also be published on this chart and titled LP (localizer performance). LP will be published in locations where vertically guided minima cannot be provided due to terrain and obstacles and therefore, no LPV or LNAV/VNAV minima will be published. GBAS procedures are published on a separate chart and the GLS minima line is to be used only for GBAS. ATC clearance for the RNAV procedure authorizes a properly certified pilot to utilize any minimums for which the aircraft is certified (for example, a WAAS equipped aircraft utilizes the LPV or LP minima but a GPS only aircraft may not). The RNAV chart includes information formatted for quick reference by the pilot or flight crew at the top of the chart. This portion of the chart, developed based on a study by the Department of Transportation, Volpe National Transportation System Center, is commonly referred to as the pilot briefing.

1. The minima lines are:

(a) GLS. “GLS” is the acronym for GBAS Landing System. The U.S. version of GBAS has traditionally been referred to as LAAS. The worldwide community has adopted GBAS as the official term for this type of navigation system. To coincide with international terminology, the FAA is also adopting the term GBAS to be consistent with the international community. This line was originally published as a placeholder for both WAAS and LAAS minima and marked as N/A since no minima was published. As the concepts for GBAS and WAAS procedure publication have evolved, GLS will now be used only for GBAS minima, which will be on a separate approach chart. Most RNAV(GPS) approach charts have had the GLS minima line replaced by a WAAS LPV line of minima.

(b) LPV. “LPV” is the acronym for localizer performance with vertical guidance. RNAV (GPS) approaches to LPV lines of minima take advantage of the improved accuracy of WAAS lateral and vertical guidance to provide an approach that is very similar to a Category I Instrument Landing System (ILS). The approach to LPV line of minima is designed for angular guidance with increasing sensitivity as the aircraft gets closer to the runway. The sensitivities are nearly identical to those of the ILS at similar
distances. This was done intentionally to allow the skills required to proficiently fly an ILS to readily transfer to flying RNAV (GPS) approaches to the LPV line of minima. Just as with an ILS, the LPV has vertical guidance and is flown to a DA. Aircraft can fly this minima line with a statement in the Aircraft Flight Manual that the installed equipment supports LPV approaches. This includes Class 3 and 4 TSO–C146 GPS/WAAS equipment.

(e) LNAV/VNAV. LNAV/VNAV identifies APV minimums developed to accommodate an RNAV IAP with vertical guidance, usually provided by approach certified Baro–VNAV, but with lateral and vertical integrity limits larger than a precision approach or LPV. LNAV stands for Lateral Navigation; VNAV stands for Vertical Navigation. This minima line can be flown by aircraft with a statement in the Aircraft Flight Manual that the installed equipment supports GPS approaches and has an approach–approved barometric VNAV, or if the aircraft has been demonstrated to support LNAV/VNAV approaches. This includes Class 2, 3 and 4 TSO–C146 GPS/WAAS equipment. Aircraft using LNAV/VNAV minimums will descend to landing via an internally generated descent path based on satellite or other approach approved VNAV systems. Since electronic vertical guidance is provided, the minima will be published as a DA. Other navigation systems may be specifically authorized to use this line of minima. (See Section A, Terms/Landing Minima Data, of the U.S. Terminal Procedures books.)

(d) LP. “LP” is the acronym for localizer performance. Approaches to LP lines of minima take advantage of the improved accuracy of WAAS to provide approaches, with lateral guidance and angular guidance. Angular guidance does not refer to a glideslope angle but rather to the increased lateral sensitivity as the aircraft gets closer to the runway, similar to localizer approaches. However, the LP line of minima is a Minimum Descent Altitude (MDA) rather than a DA (H). Procedures with LP lines of minima will not be published with another approach that contains approved vertical guidance (LNAV/VNAV or LPV). It is possible to have LP and LNAV published on the same approach chart but LP will only be published if it provides lower minima than an LNAV line of minima. LP is not a fail–down mode for LPV. LP will only be published if terrain, obstructions, or some other reason prevent publishing a vertically guided procedure. WAAS avionics may provide GNSS–based advisory vertical guidance during an approach to an LP line of minima. Barometric altimeter information remains the primary altitude reference for complying with any altitude restrictions. WAAS equipment may not support LP, even if it supports LPV, if it was approved before TSO–C145b and TSO–C146b. Receivers approved under previous TSOs may require an upgrade by the manufacturer in order to be used to fly to LP minima. Receivers approved for LP must have a statement in the approved Flight Manual or Supplemental Flight Manual including LP as one of the approved approach types.

(e) LNAV. This minima is for lateral navigation only, and the approach minimum altitude will be published as a minimum descent altitude (MDA). LNAV provides the same level of service as the present GPS stand alone approaches. LNAV minimums support the following navigation systems: WAAS, when the navigation solution will not support vertical navigation; and, GPS navigation systems which are presently authorized to conduct GPS approaches.

NOTE—
GPS receivers approved for approach operations in accordance with: AC 20–138, Airworthiness Approval of Positioning and Navigation Systems, qualify for this minima. WAAS navigation equipment must be approved in accordance with the requirements specified in TSO–C145(b) or TSO–C146(b) and installed in accordance with Advisory Circular AC 20–138.

2. Other systems may be authorized to utilize these approaches. See the description in Section A of the U.S. Terminal Procedures books for details. Operational approval must also be obtained for Baro–VNAV systems to operate to the LNAV/VNAV minimums. Baro–VNAV may not be authorized on some approaches due to other factors, such as no local altimeter source being available. Baro–VNAV is not authorized on LPV procedures. Pilots are directed to their local Flight Standards District Office (FSDO) for additional information.

NOTE—
RNAV and Baro–VNAV systems must have a manufacturer supplied electronic database which must include the waypoints, altitudes, and vertical data for the procedure to be flown. The system must be able to retrieve the procedure by name from the aircraft navigation database, not just as a manually entered series of waypoints.
3. ILS or RNAV (GPS) charts.

(a) Some RNAV (GPS) charts will also contain an ILS line of minima to make use of the ILS precision final in conjunction with the RNAV GPS capabilities for the portions of the procedure prior to the final approach segment and for the missed approach. Obstacle clearance for the portions of the procedure other than the final approach segment is still based on GPS criteria.

NOTE—
Some GPS receiver installations inhibit GPS navigation whenever ANY ILS frequency is tuned. Pilots flying aircraft with receivers installed in this manner must wait until they are on the intermediate segment of the procedure prior to the PF AF (PF AF is the active waypoint) to tune the ILS frequency and must tune the ILS back to a VOR frequency in order to fly the GPS based missed approach.

(b) Charting. There are charting differences between ILS, RNAV (GPS), and GLS approaches.

1. The LAAS procedure is titled “GLS RWY XX” on the approach chart.
2. The VDB provides information to the airborne receiver where the guidance is synthesized.
3. The LAAS procedure is identified by a four alpha–numeric character field referred to as the RPI or approach ID and is similar to the IDENT feature of the ILS.
4. The RPI is charted.
5. Most RNAV(GPS) approach charts have had the GLS (NA) minima line replaced by an LPV line of minima.
6. Since the concepts for LAAS and WAAS procedure publication have evolved, GLS will now be used only for LAAS minima, which will be on a separate approach chart.

4. Required Navigation Performance (RNP)

(a) Pilots are advised to refer to the “TERMS/LANDING MINIMUMS DATA” (Section A) of the U.S. Government Terminal Procedures books for aircraft approach eligibility requirements by specific RNP level requirements.

(b) Some aircraft have RNP approval in their AFM without a GPS sensor. The lowest level of sensors that the FAA will support for RNP service is DME/DME. However, necessary DME signal may not be available at the airport of intended operations. For those locations having an RNAV chart published with LNAV/VNAV minimums, a procedure note may be provided such as “DME/DME RNP−0.3 NA.” This means that RNP aircraft dependent on DME/DME to achieve RNP−0.3 are not authorized to conduct this approach. Where DME facility availability is a factor, the note may read “DME/DME RNP−0.3 Authorized; ABC and XYZ Required.” This means that ABC and XYZ facilities have been determined by flight inspection to be required in the navigation solution to assure RNP−0.3. VOR/DME updating must not be used for approach procedures.

5. Chart Terminology

(a) Decision Altitude (DA) replaces the familiar term Decision Height (DH). DA conforms to the international convention where altitudes relate to MSL and heights relate to AGL. DA will eventually be published for other types of instrument approach procedures with vertical guidance, as well. DA indicates to the pilot that the published descent profile is flown to the DA (MSL), where a missed approach will be initiated if visual references for landing are not established. Obstacle clearance is provided to allow a momentary descent below DA while transitioning from the final approach to the missed approach. The aircraft is expected to follow the missed instructions while continuing along the published final approach course to at least the published runway threshold waypoint or MAP (if not at the threshold) before executing any turns.

(b) Minimum Descent Altitude (MDA) has been in use for many years, and will continue to be used for the LNAV only and circling procedures.

(c) Threshold Crossing Height (TCH) has been traditionally used in “precision” approaches as the height of the glide slope above threshold. With publication of LNAV/VNAV minimums and RNAV descent angles, including graphically depicted descent profiles, TCH also applies to the height of the “descent angle,” or glidepath, at the threshold. Unless otherwise required for larger type aircraft which may be using the IAP, the typical TCH is 30 to 50 feet.

6. The MINIMA FORMAT will also change slightly.

(a) Each line of minima on the RNAV IAP is titled to reflect the level of service available; e.g., GLS, LPV, LNAV/VNAV, LP, and LNAV. CIRCLING minima will also be provided.

5−4−22 Arrival Procedures
(b) The minima title box indicates the nature of the minimum altitude for the IAP. For example:

1) DA will be published next to the minima line title for minimums supporting vertical guidance such as for GLS, LPV or LNAV/VNAV.

2) MDA will be published as the minima line on approaches with lateral guidance only, LNAV, or LP. Descent below the MDA must meet the conditions stated in 14 CFR Section 91.175.

3) Where two or more systems, such as LPV and LNAV/VNAV, share the same minima, each line of minima will be displayed separately.

7. Chart Symbology changed slightly to include:

(a) Descent Profile. The published descent profile and a graphical depiction of the vertical path to the runway will be shown. Graphical depiction of the RNAV vertical guidance will differ from the traditional depiction of an ILS glide slope (feather) through the use of a shorter vertical track beginning at the decision altitude.

(1) It is FAA policy to design IAPs with minimum altitudes established at fixes/waypoints to achieve optimum stabilized (constant rate) descents within each procedure segment. This design can enhance the safety of the operations and contribute toward reduction in the occurrence of controlled flight into terrain (CFIT) accidents. Additionally, the National Transportation Safety Board (NTSB) recently emphasized that pilots could benefit from publication of the appropriate IAP descent angle for a stabilized descent on final approach. The RNAV IAP format includes the descent angle to the hundredth of a degree; e.g., 3.00 degrees. The angle will be provided in the graphically depicted descent profile.

(2) The stabilized approach may be performed by reference to vertical navigation information provided by WAAS or LNAV/VNAV systems; or for LNAV–only systems, by the pilot determining the appropriate aircraft attitude/groundspeed combination to attain a constant rate descent which best emulates the published angle. To aid the pilot, U.S. Government Terminal Procedures Publication charts publish an expanded Rate of Descent Table on the inside of the back hard cover for use in planning and executing precision descents under known or approximate groundspeed conditions.

(b) Visual Descent Point (VDP). A VDP will be published on most RNAV IAPs. VDPs apply only to aircraft utilizing LP or LNAV minima, not LPV or LNAV/VNAV minimums.

(c) Missed Approach Symbology. In order to make missed approach guidance more readily understood, a method has been developed to display missed approach guidance in the profile view through the use of quick reference icons. Due to limited space in the profile area, only four or fewer icons can be shown. However, the icons may not provide representation of the entire missed approach procedure. The entire set of textual missed approach instructions are provided at the top of the approach chart in the pilot briefing. (See FIG 5–4–5).

(d) Waypoints. All RNAV or GPS stand-alone IAPs are flown using data pertaining to the particular IAP obtained from an onboard database, including the sequence of all WPs used for the approach and missed approach, except that step down waypoints may not be included in some TSO–C129 receiver databases. Included in the database, in most receivers, is coding that informs the navigation system of which WPs are fly–over (FO) or fly–by (FB). The navigation system may provide guidance appropriately – including leading the turn prior to a fly–by WP; or causing overflight of a fly–over WP. Where the navigation system does not provide such guidance, the pilot must accomplish the turn lead or waypoint overflight manually. Chart symbology for the FB WP provides pilot awareness of expected actions. Refer to the legend of the U.S. Terminal Procedures books.

(e) TAAs are described in paragraph 5–4–5d, Terminal Arrival Area (TAA). When published, the RNAV chart depicts the TAA areas through the use of “icons” representing each TAA area associated with the RNAV procedure (See FIG 5–4–5). These icons are depicted in the plan view of the approach chart, generally arranged on the chart in accordance with their position relative to the aircraft’s arrival from the en route structure. The WP, to which navigation is appropriate and expected within each specific TAA area, will be named and depicted on the associated TAA icon. Each depicted named WP is the IAF for arrivals from within that area. TAAs may not be used
on all RNAV procedures because of airspace congestion or other reasons.

(f) **Hot and Cold Temperature Limitations.**
A minimum and maximum temperature limitation is published on procedures which authorize Baro–VNAV operation. These temperatures represent the airport temperature above or below which Baro–VNAV is not authorized to LNAV/VNAV minimums. As an example, the limitation will read: “Uncompensated Baro–VNAV NA below –8°C (+18°F) or above 47°C (117°F).” This information will be found in the upper left hand box of the pilot briefing. When the temperature is above the high temperature or below the low temperature limit, Baro–VNAV may be used to provide a stabilized descent to the LNAV MDA; however, extra caution should be used in the visual segment to ensure a vertical correction is not required. If the VSI is aligned with the published glidepath, and the aircraft instruments indicate on glidepath, an above or below glidepath indication on the VSI may indicate that temperature error is causing deviations to the glidepath. These deviations should be considered if the approach is continued below the MDA.

NOTE–
Many systems which apply Baro–VNAV temperature compensation only correct for cold temperature. In this case, the high temperature limitation still applies. Also, temperature compensation may require activation by maintenance personnel during installation in order to be functional, even though the system has the feature. Some systems may have a temperature correction capability, but correct the Baro–altimeter all the time, rather than just on the final, which could create conflicts with other aircraft if the feature were activated. Pilots should be aware of compensation capabilities of the system prior to disregarding the temperature limitations.

NOTE–
Temperature limitations do not apply to flying the LNAV/ VNAV line of minima using approach certified WAAS receivers when LPV or LNAV/VNAV are annunciated to be available.

(g) **WAAS Channel Number/Approach ID.**
The WAAS Channel Number is an optional equipment capability that allows the use of a 5–digit number to select a specific final approach segment without using the menu method. The Approach ID is an airport unique 4–character combination for verifying the selection and extraction of the correct final approach segment information from the aircraft database. It is similar to the ILS ident, but displayed visually rather than aurally. The Approach ID consists of the letter W for WAAS, the runway number, and a letter other than L, C or R, which could be confused with Left, Center and Right, e.g., W35A. Approach IDs are assigned in the order that WAAS approaches are built to that runway number at that airport. The WAAS Channel Number and Approach ID are displayed in the upper left corner of the approach procedure pilot briefing.

(h) At locations where outages of WAAS vertical guidance may occur daily due to initial system limitations, a negative W symbol (W) will be placed on RNAV (GPS) approach charts. Many of these outages will be very short in duration, but may result in the disruption of the vertical portion of the approach. The W symbol indicates that NOTAMs or Air Traffic advisories are not provided for outages which occur in the WAAS LNAV/VNAV or LPV vertical service. Use LNAV or circling minima for flight planning at these locations, whether as a destination or alternate. For flight operations at these locations, when the WAAS avionics indicate that LNAV/VNAV or LPV service is available, then vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the procedure, reversion to LNAV minima may be required. As the WAAS coverage is expanded, the W will be removed.

(h) At locations where outages of WAAS vertical guidance may occur daily due to initial system limitations, a negative W symbol (W) will be placed on RNAV (GPS) approach charts. Many of these outages will be very short in duration, but may result in the disruption of the vertical portion of the approach. The W symbol indicates that NOTAMs or Air Traffic advisories are not provided for outages which occur in the WAAS LNAV/VNAV or LPV vertical service. Use LNAV or circling minima for flight planning at these locations, whether as a destination or alternate. For flight operations at these locations, when the WAAS avionics indicate that LNAV/VNAV or LPV service is available, then vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the procedure, reversion to LNAV minima may be required. As the WAAS coverage is expanded, the W will be removed.

NOTE–
Properly trained and approved, as required, TSO-C145() and TSO-C146() equipped users (WAAS users) with and using approved baro-VNAV equipment may plan for LNAV/VNAV DA at an alternate airport. Specifically authorized WAAS users with and using approved baro-VNAV equipment may also plan for RNP 0.3 DA at the alternate airport as long as the pilot has verified RNP availability through an approved prediction program.

5–4–6. **Approach Clearance**

a. An aircraft which has been cleared to a holding fix and subsequently “cleared . . . approach” has not received new routing. Even though clearance for the approach may have been issued prior to the aircraft reaching the holding fix, ATC would expect the pilot to proceed via the holding fix (his/her last assigned route), and the feeder route associated with that fix (if a feeder route is published on the approach chart) to the initial approach fix (IAF) to commence the approach. WHEN CLEARED FOR THE APPROACH, THE PUBLISHED OFF AIRWAY
Arrival Procedures

1. Maintain the last altitude assigned by ATC until the aircraft is established on a published segment of a transition route, or approach procedure segment, or other published route, for which a lower altitude is published on the chart. If already on an established route, or approach or arrival segment, you may descend to whatever minimum altitude is listed for that route or segment.

2. Continue on the vector heading until intercepting the next published ground track applicable to the approach clearance.

3. Once reaching the final approach fix via the published segments, the pilot may continue on approach to a landing.

4. If proceeding to an IAF with a published course reversal (procedure turn or hold-in-lieu of PT pattern), except when cleared for a straight in approach by ATC, the pilot must execute the procedure turn/hold-in-lieu of PT, and complete the approach.

5. If cleared to an IAF/IF via a NoPT route, or no procedure turn/hold-in-lieu of PT is published, continue with the published approach.

6. In addition to the above, RNAV aircraft may be issued a clearance direct to the IAF/IF at intercept angles not greater than 90 degrees for both conventional and RNAV instrument approaches. Controllers may issue a heading or a course direct to a fix between the IF and FAF at intercept angles not greater than 30 degrees for both conventional and RNAV instrument approaches. In all cases, controllers will assign altitudes that ensure obstacle clearance and will permit a normal descent to the FAF. When clearing aircraft direct to the IF, ATC will radar monitor the aircraft until the IF and will advise the pilot to expect clearance direct to the IF at least 5 miles from the fix. ATC must issue a straight-in approach clearance when clearing an aircraft direct to an IAF/IF with a procedure turn or hold-in-lieu of a procedure turn, and ATC does not want the aircraft to execute the course reversal.

NOTE— Refer to 14 CFR 91.175 (i).

7. RNAV aircraft may be issued a clearance direct to the FAF that is also charted as an IAF; in which case the pilot is expected to execute the depicted procedure turn or hold-in-lieu of procedure turn. ATC will not issue a straight-in approach clearance. If the pilot desires a straight-in approach, they must request vectors to the final approach course outside of the FAF or fly a published “NoPT” route. When visual approaches are in use, ATC may clear an aircraft direct to the FAF.

NOTE—

1. In anticipation of a clearance by ATC to any fix published on an instrument approach procedure, pilots of RNAV aircraft are advised to select an appropriate IAF or feeder fix when loading an instrument approach procedure into the RNAV system.

2. Selection of “Vectors-to-Final” or “Vectors” option for an instrument approach may prevent approach fixes located outside of the FAF from being loaded into an RNAV system. Therefore, the selection of these options is discouraged due to increased workload for pilots to reprogram the navigation system.
f. An RF leg is defined as a constant radius circular path around a defined turn center that starts and terminates at a fix. An RF leg may be published as part of a procedure. Since not all aircraft have the capability to fly these leg types, pilots are responsible for knowing if they can conduct an RNAV approach with an RF leg. Requirements for RF legs will be indicated on the approach chart in the notes section or at the applicable initial approach fix. Controllers will clear RNAV-equipped aircraft for instrument approach procedures containing RF legs:

1. Via published transitions, or
2. On a heading or course direct to the IAF when a hold-in-lieu of procedure turn is published, and the pilot will execute the procedure, or
3. On a heading or course direct to the IAF/IF, at intercept angles no greater than 90 degrees and the distance to the waypoint beginning the RF leg is 6NM or greater, or
4. With radar monitoring, on a heading or course direct to any waypoint 3 miles or more from the waypoint that begins the RF leg, at an intercept angle not greater than 30 degrees. (See FIG 5−4−13.)

EXAMPLE−
1. Controllers will not clear aircraft direct to THIRD because that waypoint begins the RF leg, and aircraft cannot be vectored or cleared to TURNN or vectored to intercept the approach segment at any point between THIRD and FORTH because this is the RF leg.
2. Controllers can clear Aircraft 1 direct to SCOND because the distance to THIRD, where the RF leg begins is 3NM or greater and the intercept angle will be 30 degrees or less and is radar monitored. Controllers can clear Aircraft 2 direct to FIRST because the intercept angle is 90 degrees or less, and the distance from FIRST to THIRD is 6NM or greater.

5−4−7. Instrument Approach Procedures

a. Aircraft approach category means a grouping of aircraft based on a speed of V_{REF}, if specified, or if V_{REF} is not specified, 1.3 V_{SO} at the maximum certified landing weight. V_{REF}, V_{SO}, and the maximum certified landing weight are those values as established for the aircraft by the certification authority of the country of registry. A pilot must use the minima corresponding to the category determined during certification or higher. Helicopters may use Category A minima. If it is necessary to operate at a speed in excess of the upper limit of the speed range for an aircraft’s category, the minimums for the higher category must be used. For example, an airplane which fits into Category B, but is circling to land at a speed of 145 knots, must use the approach Category D minimums. As an additional example, a Category A airplane (or helicopter) which is operating at 130 knots on a straight−in approach must use the approach Category C minimums. See the following category limits:

1. Category A: Speed less than 91 knots.
2. Category B: Speed 91 knots or more but less than 121 knots.
3. Category C: Speed 121 knots or more but less than 141 knots.
4. Category D: Speed 141 knots or more but less than 166 knots.
5. Category E: Speed 166 knots or more.

NOTE−
V_{REF} in the above definition refers to the speed used in establishing the approved landing distance under the airworthiness regulations constituting the type certification basis of the airplane, regardless of whether that speed for a particular airplane is 1.3 V_{SO}, 1.23 V_{SR}, or some higher speed required for airplane controllability. This speed, at the maximum certificated landing weight, determines the lowest applicable approach category for all approaches regardless of actual landing weight.

b. When operating on an unpublished route or while being radar vectored, the pilot, when an approach clearance is received, must, in addition to complying with the minimum altitudes for IFR operations (14 CFR Section 91.177), maintain the last assigned altitude unless a different altitude is assigned by ATC, or until the aircraft is established on a segment of a published route or IAP. After the aircraft is so established, published altitudes apply to descent within each succeeding route or approach segment unless a different altitude is assigned by ATC. Notwithstanding this pilot responsibility, for aircraft operating on unpublished routes or while being radar vectored, ATC will, except when conducting a radar approach, issue an IFR approach clearance only after the aircraft is established on a segment of a published route or IAP, or assign an altitude to maintain until the aircraft is established on a segment of a published route or instrument approach procedure. For this purpose, the procedure turn of a published IAP must not be considered a
segment of that IAP until the aircraft reaches the initial fix or navigation facility upon which the procedure turn is predicated.

EXAMPLE—
Cross Redding VOR at or above five thousand, cleared VOR runway three four approach.

or

Five miles from outer marker, turn right heading three three zero, maintain two thousand until established on the localizer, cleared ILS runway three six approach.

NOTE—
The altitude assigned will assure IFR obstruction clearance from the point at which the approach clearance is issued until established on a segment of a published route or IAP. If uncertain of the meaning of the clearance, immediately request clarification from ATC.

c. Several IAPs, using various navigation and approach aids may be authorized for an airport. ATC may advise that a particular approach procedure is being used, primarily to expedite traffic. If issued a clearance that specifies a particular approach procedure, notify ATC immediately if a different one is desired. In this event it may be necessary for ATC to withhold clearance for the different approach until such time as traffic conditions permit. However, a pilot involved in an emergency situation will be given priority. If the pilot is not familiar with the specific approach procedure, ATC should be advised and they will provide detailed information on the execution of the procedure.

REFERENCE—
AIM, Advance Information on Instrument Approach, Paragraph 5–4–4

d. The name of an instrument approach, as published, is used to identify the approach, even though a component of the approach aid, such as the glideslope on an Instrument Landing System, is inoperative or unreliable. The controller will use the name of the approach as published, but must advise the aircraft at the time an approach clearance is issued that the inoperative or unreliable approach aid component is unusable, except when the title of the published approach procedures otherwise allows, for example, ILS or LOC.

e. Except when being radar vectored to the final approach course, when cleared for a specifically prescribed IAP; i.e., “cleared ILS runway one niner approach” or when “cleared approach” i.e., execution of any procedure prescribed for the airport, pilots must execute the entire procedure commencing at an IAF or an associated feeder route as described on the IAP chart unless an appropriate new or revised ATC clearance is received, or the IFR flight plan is canceled.

f. Pilots planning flights to locations which are private airfields or which have instrument approach procedures based on private navigation aids should obtain approval from the owner. In addition, the pilot must be authorized by the FAA to fly special instrument approach procedures associated with private navigation aids (see paragraph 5–4–8). Owners of navigation aids that are not for public use may elect to turn off the signal for whatever reason they may have; e.g., maintenance, energy conservation, etc. Air traffic controllers are not required to question pilots to determine if they have permission to land at a private airfield or to use procedures based on privately owned navigation aids, and they may not know the status of the navigation aid. Controllers presume a pilot has obtained approval from the owner and the FAA for use of special instrument approach procedures and is aware of any details of the procedure if an IFR flight plan was filed to that airport.

g. Pilots should not rely on radar to identify a fix unless the fix is indicated as “RADAR” on the IAP. Pilots may request radar identification of an OM, but the controller may not be able to provide the service due either to workload or not having the fix on the video map.

h. If a missed approach is required, advise ATC and include the reason (unless initiated by ATC). Comply with the missed approach instructions for the instrument approach procedure being executed, unless otherwise directed by ATC.

REFERENCE—
AIM, Missed Approach, Paragraph 5–4–21
AIM, Missed Approach, Paragraph 5–5–5

5–4–8. Special Instrument Approach Procedures

Instrument Approach Procedure (IAP) charts reflect the criteria associated with the U.S. Standard for Terminal Instrument [Approach] Procedures (TERPs), which prescribes standardized methods for use in developing IAPs. Standard IAPs are published in the Federal Register (FR) in accordance with Title 14 of the Code of Federal Regulations, Part 97, and are available for use by appropriately qualified pilots operating properly equipped and airworthy aircraft in accordance with operating rules and
procedures acceptable to the FAA. Special IAPs are also developed using TERPS but are not given public notice in the FR. The FAA authorizes only certain individual pilots and/or pilots in individual organizations to use special IAPs, and may require additional crew training and/or aircraft equipment or performance, and may also require the use of landing aids, communications, or weather services not available for public use. Additionally, IAPs that service private use airports or heliports are generally special IAPs.

5−4−9. Procedure Turn and Hold−in−lieu−of Procedure Turn

a. A procedure turn is the maneuver prescribed when it is necessary to reverse direction to establish the aircraft inbound on an intermediate or final approach course. The procedure turn or hold−in−lieu−of−PT is a required maneuver when it is depicted on the approach chart, unless cleared by ATC for a straight−in approach. Additionally, the procedure turn or hold−in−lieu−of−PT is not permitted when the symbol “No PT” is depicted on the initial segment being used, when a RADAR VECTOR to the final approach course is provided, or when conducting a timed approach from a holding fix. The altitude prescribed for the procedure turn is a minimum altitude until the aircraft is established on the inbound course. The maneuver must be completed within the distance specified in the profile view. For a hold−in−lieu−of−PT, the holding pattern direction must be flown as depicted and the specified leg length/timing must not be exceeded.

NOTE−
The pilot may elect to use the procedure turn or hold−in−lieu−of−PT when it is not required by the procedure, but must first receive an amended clearance from ATC. If the pilot is uncertain whether the ATC clearance intends for a procedure turn to be conducted or to allow for a straight−in approach, the pilot must immediately request clarification from ATC (14 CFR Section 91.123).

b. On U.S. Government charts, a barbed arrow indicates the maneuvering side of the outbound course on which the procedure turn is made. Headings are provided for course reversal using the 45 degree type procedure turn. However, the point at which the turn may be commenced and the type and rate of turn is left to the discretion of the pilot (limited by the charted remain within xx NM distance). Some of the options are the 45 degree procedure turn, the racetrack pattern, the teardrop procedure turn, or the 80 degree ↔ 260 degree course reversal. Racetrack entries should be conducted on the maneuvering side where the majority of protected airspace resides. If an entry places the pilot on the non−maneuvering side of the PT, correction to intercept the outbound course ensures remaining within protected airspace. Some procedure turns are specified by procedural track. These turns must be flown exactly as depicted.

2. Descent to the procedure turn (PT) completion altitude from the PT fix altitude (when one has been published or assigned by ATC) must not begin until crossing over the PT fix or abeam and proceeding outbound. Some procedures contain a note in the chart profile view that says “Maintain (altitude) or above until established outbound for procedure turn” (See FIG 5−4−14). Newer procedures will simply depict an “at or above” altitude at the PT fix without a chart note (See FIG 5−4−15). Both are there to ensure required obstacle clearance is provided in the procedure turn entry zone (See FIG 5−4−16). Absence of a chart note or specified minimum altitude adjacent to the PT fix is an indication that descent to the procedure turn altitude can commence immediately upon crossing over the PT fix, regardless of the direction of flight. This is because the minimum altitudes in the PT entry zone and the PT maneuvering zone are the same.
FIG 5-4-13
Example of an RNAV Approach with RF Leg

FIG 5-4-14

FIG 5-4-15

Arrival Procedures
3. When the approach procedure involves a procedure turn, a maximum speed of not greater than 200 knots (IAS) should be observed from first overheading the course reversal IAF through the procedure turn maneuver to ensure containment within the obstruction clearance area. Pilots should begin the outbound turn immediately after passing the procedure turn fix. The procedure turn maneuver must be executed within the distance specified in the profile view. The normal procedure turn distance is 10 miles. This may be reduced to a minimum of 5 miles where only Category A or helicopter aircraft are to be operated or increased to as much as 15 miles to accommodate high performance aircraft.

4. A teardrop procedure or penetration turn may be specified in some procedures for a required course reversal. The teardrop procedure consists of departure from an initial approach fix on an outbound course followed by a turn toward and intercepting the inbound course at or prior to the intermediate fix or point. Its purpose is to permit an aircraft to reverse direction and lose considerable altitude within reasonably limited airspace. Where no fix is available to mark the beginning of the intermediate segment, it must be assumed to commence at a point 10 miles prior to the final approach fix. When the facility is located on the airport, an aircraft is considered to be on final approach upon completion of the penetration turn. However, the final approach segment begins on the final approach course 10 miles from the facility.
5. A holding pattern in lieu of procedure turn may be specified for course reversal in some procedures. In such cases, the holding pattern is established over an intermediate fix or a final approach fix. The holding pattern distance or time specified in the profile view must be observed. For a hold–in–lieu–of–PT, the holding pattern direction must be flown as depicted and the specified leg length/timing must not be exceeded. Maximum holding airspeed limitations as set forth for all holding patterns apply. The holding pattern maneuver is completed when the aircraft is established on the inbound course after executing the appropriate entry. If cleared for the approach prior to returning to the holding fix, and the aircraft is at the prescribed altitude, additional circuits of the holding pattern are not necessary nor expected by ATC. If pilots elect to make additional circuits to lose excessive altitude or to become better established on course, it is their responsibility to so advise ATC upon receipt of their approach clearance.

NOTE—
Some approach charts have an arrival holding pattern depicted at the IAF using a “thin line” holding symbol. It is charted where holding is frequently required prior to starting the approach procedure so that detailed holding instructions are not required. The arrival holding pattern is not authorized unless assigned by Air Traffic Control. Holding at the same fix may also be depicted on the enroute chart. A hold–in–lieu of procedure turn is depicted by a “thick line” symbol, and is part of the instrument approach procedure as described in paragraph 5–4–9. (See U. S. Terminal Procedures booklets page E1 for both examples.)

6. A procedure turn is not required when an approach can be made directly from a specified intermediate fix to the final approach fix. In such cases, the term “NoPT” is used with the appropriate course and altitude to denote that the procedure turn is not required. If a procedure turn is desired, and when cleared to do so by ATC, descent below the procedure turn altitude should not be made until the aircraft is established on the inbound course, since some NoPT altitudes may be lower than the procedure turn altitudes.

b. Limitations on Procedure Turns

1. In the case of a radar initial approach to a final approach fix or position, or a timed approach from a holding fix, or where the procedure specifies NoPT, no pilot may make a procedure turn unless, when final approach clearance is received, the pilot so advises ATC and a clearance is received to execute a procedure turn.

2. When a teardrop procedure turn is depicted and a course reversal is required, this type turn must be executed.

3. When a holding pattern replaces a procedure turn, the holding pattern must be followed, except when RADAR VECTORING is provided or when NoPT is shown on the approach course. The recommended entry procedures will ensure the aircraft remains within the holding pattern’s protected airspace. As in the procedure turn, the descent from the minimum holding pattern altitude to the final approach fix altitude (when lower) may not commence until the aircraft is established on the inbound course. Where a holding pattern is established in–lieu–of a procedure turn, the maximum holding pattern airspeeds apply.

REFERENCE—
AIM, Holding, Paragraph 5–3–8j2.

4. The absence of the procedure turn barb in the plan view indicates that a procedure turn is not authorized for that procedure.

5–4–10. Timed Approaches from a Holding Fix

a. TIMED APPROACHES may be conducted when the following conditions are met:

1. A control tower is in operation at the airport where the approaches are conducted.

2. Direct communications are maintained between the pilot and the center or approach controller until the pilot is instructed to contact the tower.

3. If more than one missed approach procedure is available, none require a course reversal.

4. If only one missed approach procedure is available, the following conditions are met:

 (a) Course reversal is not required; and,

 (b) Reported ceiling and visibility are equal to or greater than the highest prescribed circling minimums for the IAP.

5. When cleared for the approach, pilots must not execute a procedure turn. (14 CFR Section 91.175.)

b. Although the controller will not specifically state that “timed approaches are in progress,” the
assigning of a time to depart the final approach fix inbound (nonprecision approach) or the outer marker or fix used in lieu of the outer marker inbound (precision approach) is indicative that timed approach procedures are being utilized, or in lieu of holding, the controller may use radar vectors to the Final Approach Course to establish a mileage interval between aircraft that will ensure the appropriate time sequence between the final approach fix/outer marker or fix used in lieu of the outer marker and the airport.

c. Each pilot in an approach sequence will be given advance notice as to the time they should leave the holding point on approach to the airport. When a time to leave the holding point has been received, the pilot should adjust the flight path to leave the fix as closely as possible to the designated time. (See FIG 5–4–17.)
EXAMPLE—

At 12:03 local time, in the example shown, a pilot holding, receives instructions to leave the fix inbound at 12:07. These instructions are received just as the pilot has completed turn at the outbound end of the holding pattern and is proceeding inbound towards the fix. Arriving back over the fix, the pilot notes that the time is 12:04 and that there are 3 minutes to lose in order to leave the fix at the assigned time. Since the time remaining is more than two minutes, the pilot plans to fly a race track pattern rather than a 360 degree turn, which would use up 2 minutes. The turns at the ends of the race track pattern will consume approximately 2 minutes. Three minutes to go, minus 2 minutes required for the turns, leaves 1 minute for level flight. Since two portions of level flight will be required to get back to the fix inbound, the pilot halves the 1 minute remaining
and plans to fly level for 30 seconds outbound before starting the turn back to the fix on final approach. If the winds were negligible at flight altitude, this procedure would bring the pilot inbound across the fix precisely at the specified time of 12:07. However, if expecting headwind on final approach, the pilot should shorten the 30 second outbound course somewhat, knowing that the wind will carry the aircraft away from the fix faster while outbound and decrease the ground speed while returning to the fix. On the other hand, compensating for a tailwind on final approach, the pilot should lengthen the calculated 30 second outbound heading somewhat, knowing that the wind would tend to hold the aircraft closer to the fix while outbound and increase the ground speed while returning to the fix.

5–4–11. Radar Approaches

a. The only airborne radio equipment required for radar approaches is a functioning radio transmitter and receiver. The radar controller vectors the aircraft to align it with the runway centerline. The controller continues the vectors to keep the aircraft on course until the pilot can complete the approach and landing by visual reference to the surface. There are two types of radar approaches: Precision (PAR) and Surveillance (ASR).

b. A radar approach may be given to any aircraft upon request and may be offered to pilots of aircraft in distress or to expedite traffic, however, an ASR might not be approved unless there is an ATC operational requirement, or in an unusual or emergency situation. Acceptance of a PAR or ASR by a pilot does not waive the prescribed weather minimums for the airport or for the particular aircraft operator concerned. The decision to make a radar approach when the reported weather is below the established minimums rests with the pilot.

c. PAR and ASR minimums are published on separate pages in the FAA Terminal Procedures Publication (TPP).

1. A PRECISION APPROACH (PAR) is one in which a controller provides highly accurate navigational guidance in azimuth and elevation to a pilot. Pilots are given headings to fly, to direct them to, and keep their aircraft aligned with the extended centerline of the landing runway. They are told to anticipate glidepath interception approximately 10 to 30 seconds before it occurs and when to start descent. The published Decision Height will be given only if the pilot requests it. If the aircraft is observed to deviate above or below the glidepath, the pilot is given the relative amount of deviation by use of terms “slightly” or “well” and is expected to adjust the aircraft’s rate of descent/ascent to return to the glidepath. Trend information is also issued with respect to the elevation of the aircraft and may be modified by the terms “rapidly” and “slowly”; e.g., “well above glidepath, coming down rapidly.” Range from touchdown is given at least once each mile. If an aircraft is observed by the controller to proceed outside of specified safety zone limits in azimuth and/or elevation and continue to operate outside these prescribed limits, the pilot will be directed to execute a missed approach or to fly a specified course unless the pilot has the runway environment (runway, approach lights, etc.) in sight. Navigational guidance in azimuth and elevation is provided the pilot until the aircraft reaches the published Decision Height (DH). Advisory course and glidepath information is furnished by the controller until the aircraft passes over the landing threshold, at which point the pilot is advised of any deviation from the runway centerline. Radar service is automatically terminated upon completion of the approach.

2. A SURVEILLANCE APPROACH (ASR) is one in which a controller provides navigational guidance in azimuth only. The pilot is furnished headings to fly to align the aircraft with the extended centerline of the landing runway. Since the radar information used for a surveillance approach is considerably less precise than that used for a precision approach, the accuracy of the approach will not be as great and higher minimums will apply. Guidance in elevation is not possible but the pilot will be advised when to commence descent to the Minimum Descent Altitude (MDA) or, if appropriate, to an intermediate step-down fix Minimum Crossing Altitude and subsequently to the prescribed MDA. In addition, the pilot will be advised of the location of the Missed Approach Point (MAP) prescribed for the procedure and the aircraft’s position each mile on final from the runway, airport or heliport or MAP, as appropriate. If requested by the pilot, recommended altitudes will be issued at each mile, based on the descent gradient established for the procedure, down to the last mile that is at or above the MDA. Normally, navigational guidance will be provided until the aircraft reaches the MAP. Controllers will terminate guidance and instruct the pilot to execute a missed approach unless at the MAP the pilot has the runway,
airport or heliport in sight or, for a helicopter point-in-space approach, the prescribed visual reference with the surface is established. Also, if, at any time during the approach the controller considers that safe guidance for the remainder of the approach cannot be provided, the controller will terminate guidance and instruct the pilot to execute a missed approach. Similarly, guidance termination and missed approach will be effected upon pilot request and, for civil aircraft only, controllers may terminate guidance when the pilot reports the runway, airport/heliport or visual surface route (point-in-space approach) in sight or otherwise indicates that continued guidance is not required. Radar service is automatically terminated at the completion of a radar approach.

NOTE—

1. The published MDA for straight-in approaches will be issued to the pilot before beginning descent. When a surveillance approach will terminate in a circle-to-land maneuver, the pilot must furnish the aircraft approach category to the controller. The controller will then provide the pilot with the appropriate MDA.

2. ASR APPROACHES ARE NOT AVAILABLE WHEN AN ATC FACILITY IS USING CENRAP.

3. A NO–GYRO APPROACH is available to a pilot under radar control who experiences circumstances wherein the directional gyro or other stabilized compass is inoperative or inaccurate. When this occurs, the pilot should so advise ATC and request a No–Gyro vector or approach. Pilots of aircraft not equipped with a directional gyro or other stabilized compass who desire radar handling may also request a No–Gyro vector or approach. The pilot should make all turns at standard rate and should execute the turn immediately upon receipt of instructions. For example, “TURN RIGHT,” “STOP TURN.” When a surveillance or precision approach is made, the pilot will be advised after the aircraft has been turned onto final approach to make turns at half standard rate.

5–4–12. Radar Monitoring of Instrument Approaches

a. PAR facilities operated by the FAA and the military services at some joint-use (civil and military) and military installations monitor aircraft on instrument approaches and issue radar advisories to the pilot when weather is below VFR minimums (1,000 and 3), at night, or when requested by a pilot. This service is provided only when the PAR Final Approach Course coincides with the final approach of the navigational aid and only during the operational hours of the PAR. The radar advisories serve only as a secondary aid since the pilot has selected the navigational aid as the primary aid for the approach.

b. Prior to starting final approach, the pilot will be advised of the frequency on which the advisories will be transmitted. If, for any reason, radar advisories cannot be furnished, the pilot will be so advised.

c. Advisory information, derived from radar observations, includes information on:

1. Passing the final approach fix inbound (nonprecision approach) or passing the outer marker or fix used in lieu of the outer marker inbound (precision approach).

NOTE—

At this point, the pilot may be requested to report sighting the approach lights or the runway.

2. Trend advisories with respect to elevation and/or azimuth radar position and movement will be provided.

NOTE—

Whenever the aircraft nears the PAR safety limit, the pilot will be advised that the aircraft is well above or below the glidepath or well left or right of course. Glidepath information is given only to those aircraft executing a precision approach, such as ILS. Altitude information is not transmitted to aircraft executing other than precision approaches because the descent portions of these approaches generally do not coincide with the depicted PAR glidepath.
3. If, after repeated advisories, the aircraft proceeds outside the PAR safety limit or if a radical deviation is observed, the pilot will be advised to execute a missed approach unless the prescribed visual reference with the surface is established.

d. Radar service is automatically terminated upon completion of the approach.

5–4–13. ILS/RNAV/GLS Approaches to Parallel Runways

a. ATC procedures permit ILS/RNAV/GLS instrument approach operations to dual or triple parallel runway configurations. ILS/RNAV/GLS approaches to parallel runways are grouped into three classes: Simultaneous Parallel Dependent Approaches; Simultaneous (Parallel) Independent Approaches; and Simultaneous Close Parallel PRM Approaches. (See FIG 5–4–18.) RNAV approach procedures that are approved for simultaneous operations require GPS as the sensor for position updating. VOR/DME, DME/DME and IRU RNAV updating is not authorized.

b. Parallel approach operations demand heightened pilot situational awareness. A thorough Approach Procedure Chart review should be conducted with, as a minimum, emphasis on the following approach chart information: name and number of the approach, localizer frequency, inbound localizer/azimuth course, glide slope intercept altitude, glideslope crossing altitude at the final approach fix, decision height, missed approach instructions, special notes/procedures, and the assigned runway location/proximity to adjacent runways. Pilots will be advised that simultaneous dependent approaches, simultaneous approaches, or simultaneous close parallel PRM approaches are in use. This information may be provided through the ATIS.

c. The close proximity of adjacent aircraft conducting simultaneous (parallel) independent approaches and simultaneous close parallel PRM approaches mandates strict pilot compliance with all ATC clearances. ATC assigned airspeeds, altitudes, and headings must be complied with in a timely manner. Autopilot coupled approaches require pilot knowledge of procedures necessary to comply with ATC instructions. Simultaneous (parallel) independent approaches and simultaneous close parallel PRM approaches necessitate precise approach course tracking to minimize final monitor controller intervention, and unwanted No Transgression Zone (NTZ) penetration. In the unlikely event of a breakout, ATC will not assign altitudes lower than the minimum vectoring altitude. Pilots should notify ATC immediately if there is a degradation of aircraft or navigation systems.

d. Strict radio discipline is mandatory during simultaneous (parallel) independent and simultaneous close parallel PRM approach operations. This includes an alert listening watch and the avoidance of lengthy, unnecessary radio transmissions. Attention must be given to proper call sign usage to prevent the inadvertent execution of clearances intended for another aircraft. Use of abbreviated call signs must be avoided to preclude confusion of aircraft with similar sounding call signs. Pilots must be alert to unusually long periods of silence or any unusual background sounds in their radio receiver. A stuck microphone may block the issuance of ATC instructions on the tower frequency by the final monitor controller during simultaneous (parallel) independent and simultaneous close parallel PRM approaches. In the case of PRM approaches, the use of a second frequency by the monitor controller mitigates the “stuck mike” or other blockage on the tower frequency.

REFERENCE—AIM, Chapter 4, Section 2, Radio Communications Phraseology and Techniques, gives additional communications information.

e. Use of Traffic Collision Avoidance Systems (TCAS) provides an additional element of safety to parallel approach operations. Pilots should follow recommended TCAS operating procedures presented in approved flight manuals, original equipment manufacturer recommendations, professional newsletters, and FAA publications.
Simultaneous Parallel Approaches
(Parallel Runways and Approach Courses and Offset Approach Courses between 2.5 and 3.0 degrees)
5–4–14. Simultaneous (Parallel) Dependent ILS/RNAV/GLS Approaches
(See FIG 5–4–19.)

FIG 5–4–19
Simultaneous (Parallel) Dependent Approaches

a. Simultaneous (parallel) dependent approaches are an ATC procedure permitting approaches to airports having parallel runway centerlines separated by between 2,500 feet and 9,000 feet. Integral parts of a total system are ILS, radar, communications, ATC procedures, and required airborne equipment. RNAV equipment in the aircraft or GLS equipment on the ground and in the aircraft may replace the required airborne and ground based ILS equipment.

b. A simultaneous (parallel) dependent approach differs from a simultaneous (parallel) independent approach in that, the minimum distance between parallel runway centerlines is reduced; there is no requirement for radar monitoring or advisories; and a staggered separation of aircraft on the adjacent final course is required.

c. A minimum of 1.5 NM radar separation (diagonal) is required between successive aircraft on the adjacent final approach course when runway centerlines are at least 2,500 feet but no more than 4,300 feet apart. When runway centerlines are more than 4,300 feet but no more than 9,000 feet apart a minimum of 2 NM diagonal radar separation is provided. Aircraft on the same final approach course within 10 NM of the runway end are provided a minimum of 3 NM radar separation, reduced to 2.5 NM in certain circumstances. In addition, a minimum of 1,000 feet vertical or a minimum of three miles radar separation is provided between aircraft during turn on to the parallel final approach course.

d. Whenever parallel approaches are in progress, pilots are informed by ATC or via the ATIS that approaches to both runways are in use. The charted IAP also notes which runways may be used simultaneously. In addition, the radar controller will have the interphone capability of communicating with the tower controller where separation responsibility has not been delegated to the tower.

NOTE—
ATC will specifically identify these operations as being dependent when advertised on the ATIS.

EXAMPLE—
Simultaneous dependent ILS runway 19R and 19L in progress.
e. At certain airports, simultaneous (parallel) dependent approaches are permitted to runways spaced less than 2500 feet apart. In this case, ATC will stagger aircraft on the parallel approaches with the leaders always arriving on the same runway. The trailing aircraft is permitted diagonal separation of not less than 1.5 NM, instead of the single runway separation normally utilized for runways spaced less than 2500 feet apart. For wake turbulence mitigation reasons: a) 1.5 NM spacing is only permitted when the leader is either in the large or small wake turbulence category, and b) all aircraft must descend on the glideslope from the altitude at which they were cleared for the approach during these operations. When 1.5 NM reduced separation is authorized, the IAP briefing strip which indicates that simultaneous operations require the use of vertical guidance and that the pilot should maintain last assigned altitude until intercepting the glideslope. No special pilot training is required to participate in these operations.

NOTE—

Either simultaneous dependent ILS approaches or SOIA LDA PRM and ILS PRM approaches may be conducted to these runways depending on weather conditions and traffic volume. Pilots should use caution so as not to confuse these operations. Use SOIA procedures only when the ATIS advertises PRM approaches are in use, refer to AIM paragraph 5-4-16. SFO is the only airport where both procedures are presently conducted.
5–4–15. Simultaneous (Parallel) Independent ILS/RNAV/GLS Approaches

(See FIG 5–4–20.)

FIG 5–4–20
Simultaneous (Parallel) Independent ILS/RNAV/GLS Approaches

a. System. An approach system permitting simultaneous ILS/RNAV/GLS approaches to parallel runways with centerlines separated by 4,300 to 9,000 feet (9,200' for airports above 5,000') utilizing NTZ final monitor controllers. Simultaneous (parallel) independent approaches require NTZ radar monitoring to ensure separation between aircraft on the adjacent parallel approach course. Aircraft position is tracked by final monitor controllers who will issue instructions to aircraft observed deviating from the assigned final approach course. Staggered radar separation procedures are not utilized. Integral parts of a total system are ILS, radar, communications, ATC procedures, and required airborne equipment. The Approach Procedure Chart permitting simultaneous approaches will contain a note identifying the other runways or approaches that may be used simultaneously. When advised that simultaneous approaches are in progress, pilots must advise approach control immediately of malfunctioning or inoperative receivers, or if a simultaneous approach is not desired.

NOTE—
ATC does not use the word independent or parallel when advertising these operations on the ATIS.

EXAMPLE—
Simultaneous ILS 24L and ILS 24R approaches in progress.

b. Radar Services. These services are is provided for each simultaneous (parallel) independent approach.

1. During turn on to parallel final approach, aircraft will be provided 3 miles radar separation or a minimum of 1,000 feet vertical separation. The assigned altitude must be maintained until intercepting the glide path, unless cleared otherwise by ATC. Aircraft will not be vectored to intercept the final approach course at an angle greater than thirty degrees.
2. The final monitor controller will have the capability of overriding the tower controller on the tower frequency.

3. Pilots will be instructed to contact the tower frequency prior to the point where NTZ monitoring begins.

4. Aircraft observed to overshoot the turn–on or to continue on a track which will penetrate the NTZ will be instructed to return to the correct final approach course immediately. The final monitor controller may cancel the approach clearance, and issue missed approach or other instructions to the deviating aircraft.

PHRASEOLOGY—

"(Aircraft call sign) YOU HAVE CROSSED THE FINAL APPROACH COURSE. TURN (left/right) IMMEDIATELY AND RETURN TO THE FINAL APPROACH COURSE."

or

"(aircraft call sign) TURN (left/right) AND RETURN TO THE FINAL APPROACH COURSE."

5. If a deviating aircraft fails to respond to such instructions or is observed penetrating the NTZ, the aircraft on the adjacent final approach course (if threatened), will be issued a breakout instruction.

PHRASEOLOGY—

"TRAFFIC ALERT (aircraft call sign) TURN (left/right) IMMEDIATELY HEADING (degrees), (climb/descend) AND MAINTAIN (altitude)."

6. Radar monitoring will automatically be terminated when visual separation is applied, the aircraft reports the approach lights or runway in sight, or the aircraft is 1 mile or less from the runway threshold. Final monitor controllers will not advise pilots when radar monitoring is terminated.

NOTE—

Simultaneous independent approaches conducted to runways spaced greater than 9,000 feet (or 9,200’ at airports above 5,000’) do not require an NTZ. However, from a pilot's perspective, the same alerts relative to deviating aircraft will be provided by ATC as are provided when an NTZ is being monitored. Pilots may not be aware as to whether or not an NTZ is being monitored.
5–4–16. Simultaneous Close Parallel ILS PRM/RNAV PRM/GLS PRM Approaches and Simultaneous Offset Instrument Approaches (SOIA)

(See FIG 5–4–21.)

PRM Approaches
Simultaneous Close Parallel

FIG 5–4–21

RUNWAY CENTERLINES SPACED LESS THAN 4300 ft BUT AT LEAST 3000 ft APART

NTZ RADAR MONITORING REQUIRED.

PRM TRAINING AND PROCEDURES REQUIRED.

HIGH UPDATE RATE PRM RADAR SENSOR REQUIRED FOR CERTAIN RUNWAY SPACING.

Intersection or waypoint established where 3200' altitude intercepts glide slope or vertical path. NTZ begins.

Radar monitoring provided to .5 NM beyond departure end to ensure separation during simultaneous missed approaches

Intercept glide slope or vertical path at 2200'

Radar monitoring provided to ensure lateral or vertical separation between aircraft on parallel final approach courses prior to the beginning of the NTZ

a. System.

1. PRM is an acronym for the high update rate Precision Runway Monitor surveillance system which is required to monitor the No Transgression Zone (NTZ) for specific parallel runway separations used to conduct simultaneous close parallel approaches. PRM is also published in the title as part of the approach name for IAPs used to conduct Simultaneous Close Parallel approaches. “PRM” alerts pilots that specific airborne equipment, training, and procedures are applicable.

Because Simultaneous Close Parallel PRM Approaches are independent, the NTZ and normal operating zone (NOZ) airspace between the final approach courses is monitored by two monitor controllers, one for each approach course. The NTZ monitoring system consists of high resolution ATC radar displays, automated tracking software which provides monitor controllers with aircraft identification, position, speed and a ten-second projected position, as well as visual and aural NTZ penetration alerts. A PRM high update rate surveillance sensor is a component of this system only for specific runway spacing. Additional procedures for simultaneous independent approaches are described in Paragraph 5–4–15, Simultaneous (Parallel) Independent ILS/RNAV/GLS Approaches. Simultaneous Close Parallel PRM approaches, whether conducted utilizing a high update rate PRM surveillance sensor or not, must meet all of the following requirements: pilot training, PRM in the approach title, NTZ monitoring utilizing a final monitor aid, publication on an AAUP, and use of a secondary PRM communication frequency.

Simultaneous close parallel ILS PRM approaches are depicted on a separate Approach Procedure Chart titled ILS PRM Rwy XXX (Simultaneous Close Parallel).
NOTE—
ATC does not use the word “independent” when advertising these operations on the ATIS.

EXAMPLE—
Simultaneous ILS PRM 33L and ILS PRM 33R approaches in progress.

(a) In the discussion below, RNAV PRM and GLS PRM approaches may be substituted for one or both of the ILS PRM approaches in a simultaneous close parallel operation, or, in the case of SOIA, may be substituted for an ILS PRM and/or LDA PRM approach. RNAV PRM or GLS PRM approaches utilize the same applicable chart notations and the same fixes, crossing altitudes, and missed approach procedures as the ILS PRM or LDA PRM approach it overlays. Vertical guidance for an RNAV PRM or GLS PRM approach must be used when substituting for an ILS PRM or LDA PRM approach.

(b) RNAV PRM and GLS PRM approaches may be substituted for:

1. one or both of the ILS PRM approaches in a simultaneous close parallel operation, or

2. the ILS PRM and/or LDA PRM approach in a Simultaneous Offset Instrument Approach (SOIA) operation.

(c) The pilot may request to fly the RNAV PRM or GLS PRM approach in lieu of either the ILS PRM and LDA PRM approaches. ATIS may advertise RNAV or GLS PRM approaches to the effected runway or runways in the event of the loss of ground based NAVAIDS. The Attention All Users Page will address ILS PRM, LDA PRM, RNAV PRM, or GLS PRM approaches as applicable. In the remainder of this section:

1. The RNAV PRM or GLS PRM approaches may be substituted when reference is made to an ILS, LOC, or SOIA offset LDA PRM approach.

2. The RNAV PRM or GLS PRM Missed Approach Point (MAP) in SOIA operations may be substituted when reference is made to the LDA PRM MAP.

2. Flight Management System (FMS) coding of the offset RNAV PRM and GLS PRM approaches in a SOIA operation is different than other RNAV and GLS approach coding in that it does not match the initial procedure published on the charted IAP. In the SOIA design of the offset approach, the lateral course terminates at the fictitious threshold point (FTP), which is an extension of the final approach course to a point near the runway threshold. The FTP is designated in the approach coding as the MAP so that vertical guidance is available to the pilot to the runway threshold, just as vertical guidance is provided by the LDA glideslope. RNAV and GLS lateral guidance, in contrast, is discontinued at the charted MAP and replaced by visual maneuvering to accomplish runway alignment in the same manner as LDA course guidance is discontinued at the MAP.

As a result of this RNAV and GLS approach coding, when executing a missed approach at and after passing the charted MAP, a heading must initially be flown, either hand-flown or using autopilot “heading mode,” before engaging LNAV. If the pilot engages LNAV immediately, the aircraft will continue to track toward the FTP instead of commencing a turn toward the missed approach holding fix. Notes on the charted IAP and in the AAUP make specific reference to this procedure.

Because the SOIA LDA approach is coded in the FMS in same manner as the RNAV GPS approach, this same procedure should be utilized when conducting the LDA PRM missed approach at or inside of the LDA MAP.

Some FMSs do not code waypoints inside of the FAF as part of the approach. Therefore, the depicted MAP on the charted IAP may not be included in the offset approach coding. Pilots utilizing those FMSs may identify the location of the waypoint by noting its distance from the FTP as published on the charted IAP. In those same FMSs, the straight-in SOIA approach will not display a waypoint inside the PFAF. The same procedures may be utilized to identify the uncoded waypoint. In this case, the location is determined by noting its distance from the runway waypoint as published on the charted IAP.

Because the FTP is coded as the MAP, the FMS map display will depict the initial missed approach course as beginning at the FTP. This depiction does not match the charted initial missed approach procedure on the IAP. Pilots are reminded that charted IAP guidance is to be followed, not the map display. Once the aircraft completes the initial turn when commencing
a missed approach, the remainder of the procedure coding is standard and can be utilized as with any other IAP.

b. Simultaneous Offset Instrument Approach (SOIA).

1. SOIA is an acronym for Simultaneous Offset Instrument Approach, a procedure used to conduct simultaneous approaches to runways spaced less than 3,000 feet, but at least 750 feet apart. The SOIA procedure utilizes an ILS PRM approach to one runway and an offset Localizer Type Directional Aid (LDA) PRM approach with glide slope to the adjacent runway. In SOIA operations, aircraft are paired, with the aircraft conducting the ILS PRM approach always positioned slightly ahead of the aircraft conducting the LDA PRM approach.

2. The ILS PRM approach plates used in SOIA operations are identical to other ILS PRM approach plates, with an additional note, which provides the separation between the two runways used for simultaneous approaches. The LDA PRM approach plate displays the required notations for closely spaced approaches as well as depicting the visual segment of the approach.

3. Controllers monitor the SOIA ILS PRM and LDA PRM approaches in exactly the same manner as is done for ILS PRM approaches. The procedures and system requirements for SOIA ILS PRM and LDA PRM approaches are identical with those used for simultaneous close parallel ILS PRM approaches until near the LDA PRM approach missed approach point (MAP) — where visual acquisition of the ILS aircraft by the aircraft conducting the LDA PRM approach occurs. Since the ILS PRM and LDA PRM approaches are identical except for the visual segment in the SOIA concept, an understanding of the procedures for conducting ILS PRM approaches is essential before conducting a SOIA ILS PRM or LDA PRM operation.

4. In SOIA, the approach course separation (instead of the runway separation) meets established close parallel approach criteria. Refer to FIG 5−4−22 for the generic SOIA approach geometry. A visual segment of the LDA PRM approach is established between the LDA MAP and the runway threshold. Aircraft transition in visual conditions from the LDA course, beginning at the LDA MAP, to align with the runway and can be stabilized by 500 feet above ground level (AGL) on the extended runway centerline. Aircraft will be “paired” in SOIA operations, with the ILS aircraft ahead of the LDA aircraft prior to the LDA aircraft reaching the LDA MAP. A cloud ceiling for the approach is established so that the LDA aircraft has nominally 30 seconds to acquire the leading ILS aircraft prior to the LDA aircraft reaching the LDA MAP. If visual acquisition is not accomplished, a missed approach must be executed at the LDA MAP.

c. Requirements and Procedures.

Besides system requirements and pilot procedures as identified in subparagraph a1 above, all pilots must have completed special training before accepting a clearance to conduct ILS PRM or LDA PRM Simultaneous Close Parallel Approaches.

1. Pilot Training Requirement. Pilots must complete special pilot training, as outlined below, before accepting a clearance for a simultaneous close parallel ILS PRM or LDA PRM approach.

 (a) For operations under 14 CFR Parts 121, 129, and 135, pilots must comply with FAA−approved company training as identified in their Operations Specifications. Training, at a minimum, must require pilots to view the FAA video “ILS PRM AND SOIA APPROACHES: INFORMATION FOR AIR CARRIER PILOTS.” Refer to https://www.faa.gov/training_testing/training/prm/ or search key words FAA PRM for additional information and to view or download the video.

 (b) For operations under Part 91:

 (1) Pilots operating transport category aircraft must be familiar with PRM operations as contained in this section of the AIM. In addition, pilots operating transport category aircraft must view the FAA video “ILS PRM AND SOIA APPROACHES: INFORMATION FOR AIR CARRIER PILOTS.” Refer to https://www.faa.gov/training_testing/training/prm/ or search key words FAA PRM for additional information and to view or download the video.

 (2) Pilots not operating transport category aircraft must be familiar with PRM and SOIA operations as contained in this section of the AIM. The FAA strongly recommends that pilots not involved in transport category aircraft operations view the FAA video, “ILS PRM AND SOIA AP-
Arrival Procedures

PROACHES: INFORMATION FOR GENERAL AVIATION PILOTS.” Refer to https://www.faa.gov/training_testing/training/prm/ or search key words FAA PRM for additional information and to view or download the video.

NOTE–
Either simultaneous dependent ILS approaches, or SOIA LDA PRM and ILS PRM approaches may be conducted depending on weather conditions and traffic volume. Pilots should use caution so as not to confuse these operations. Use SOIA procedures only when the ATIS advertises PRM approaches are in use. For simultaneous (parallel) dependent approaches see paragraph 5–4–14 SFO is the only airport where both procedures are presently conducted.

2. ATC Directed Breakout. An ATC directed “breakout” is defined as a vector off the ILS or LDA approach course of a threatened aircraft in response to another aircraft penetrating the NTZ.

3. Dual Communications. The aircraft flying the ILS PRM or LDA PRM approach must have the capability of enabling the pilot/s to listen to two communications frequencies simultaneously.

(a) During turn on to parallel final approach, aircraft will be provided 3 miles radar separation or a minimum or 1,000 feet vertical separation. The assigned altitude must be maintained until intercepting the glide path, unless cleared otherwise by ATC. Aircraft will not be vectored to intercept the final approach course at an angle greater than thirty degrees.

(b) The final monitor controller will have the capability of overriding the tower controller on the tower frequency.

(c) Pilots will be instructed to contact the tower frequency prior to the point where NTZ monitoring begins. Pilots will begin monitoring the secondary PRM frequency at that time (see Dual VHF Communications Required below).

(d) To ensure separation is maintained, and in order to avoid an imminent situation during simultaneous close parallel ILS PRM or SOIA ILS PRM and LDA PRM approaches, pilots must immediately comply with PRM monitor controller instructions.

(e) Aircraft observed to overshoot the turn-on or to continue on a track which will penetrate the NTZ will be instructed to return to the correct final approach course immediately. The final monitor controller may cancel the approach clearance, and issue missed approach or other instructions to the deviating aircraft.

PHRASEOLOGY–
“(Aircraft call sign) YOU HAVE CROSSED THE FINAL APPROACH COURSE. TURN (left/right) IMMEDIATELY AND RETURN TO THE LOCALIZER FINAL APPROACH COURSE,”
or
“(aircraft call sign) TURN (left/right) AND RETURN TO THE LOCALIZER FINAL APPROACH COURSE.”

(f) If a deviating aircraft fails to respond to such instructions or is observed penetrating the NTZ, the aircraft on the adjacent final approach course (if threatened) will be issued a breakout instruction.

PHRASEOLOGY–
“TRAFFIC ALERT (aircraft call sign) TURN (left/right) IMMEDIATELY HEADING (degrees), (climb/descend) AND MAINTAIN (altitude).”

(g) Radar monitoring will automatically be terminated when visual separation is applied or the aircraft reports the approach lights or runway in sight. Otherwise, monitoring continues to at least .5 NM beyond the furthest DER. Final monitor controllers will not advise pilots when radar monitoring is terminated.

5. At airports that conduct PRM operations, (ILS PRM, and the case of airports where SOIAs are conducted, ILS PRM and LDA PRM approaches) the Attention All Users Page (AAUP) informs pilots who are unable to participate that they will be afforded appropriate arrival services as operational conditions permit and must notify the controlling ARTCC as soon as practical, but at least 100 miles from destination.
SOIA Approach Geometry

NOTE—

SAP The SAP is a design point along the extended centerline of the intended landing runway on the glide slope at 500 feet above the landing threshold. It is used to verify a sufficient distance is provided for the visual maneuver after the missed approach point (MAP) to permit the pilots to conform to approved, stabilized approach criteria.

MAP The point along the offset course where the course separation with the adjacent straight-in approach course reaches 3,000 feet. The altitude of the glide slope at that point determines the approach minimum descent altitude and is where the NTZ terminates. Maneuvering inside the MAP is done in visual conditions.

Visual Segment The angle formed at the intersection of the extended runway centerlines served by the offset approach and a line drawn between the LDA MAP and the SAP. The size of the angle is determined by the FAA SOIA computer design program, and is dependent on whether CAT D aircraft use the LDA and the spacing between the runways.

Offset Angle Distance from MAP to runway threshold in statute miles (light credit applies).

Procedure Aircraft conducting the offset approach must see the runway landing environment and, if less than standard radar separation exists between the aircraft on the adjacent straight-in course, the LDA aircraft conducting the offset approach must visually acquire the ILS aircraft and report it in sight to ATC prior to the MAP.

CC Clear of Clouds.
d. **Attention All Users Page (AAUP).** Multiple PRM approach charts at the same airport have a single AAUP associated with them that must be referred to in preparation for conducting the approach.

Bullet points are published which summarize the PRM procedures which apply to each approach and must be briefed before conducting a PRM approach. The following information may be summarized in the bullet points or published in more detail in the Expanded Procedures section of the AAUP. Briefing on the Expanded Procedures is optional.

1. **ATIS.** When the ATIS broadcast advises ILS PRM approaches are in progress (or ILS PRM and LDA PRM approaches in the case of SOIA), pilots should brief to fly the ILS PRM or LDA PRM approach. If later advised to expect the ILS or LDA approach (should one be published), the ILS PRM or LDA PRM chart may be used after completing the following briefing items. The pilot may also request to fly the RNAV (GPS) PRM in lieu of either the ILS PRM or LDAPRM approach. In the event of the loss of ground based NA V AIDS, the ATIS may advertise RNAV (GPS) PRM approaches to the effected runway or runways.

 (a) Minimums and missed approach procedures are unchanged.

 (b) PRM Monitor frequency no longer required.

 (c) ATC may assign a lower altitude for glide slope intercept.

NOTE—

In the case of the LDA PRM approach, this briefing procedure only applies if an LDA-DME approach is also published.

In the case of the SOIA ILS PRM and LDA PRM procedure, the AAUP describes the weather conditions in which simultaneous approaches are authorized:

Simultaneous approach weather minimums are X,XXX feet (ceiling), x miles (visibility).

2. **Dual VHF Communications Required.** To avoid blocked transmissions, each runway will have two frequencies, a primary and a PRM monitor frequency. The tower controller will transmit on both frequencies. The monitor controller’s transmissions, if needed, will override both frequencies. Pilots will ONLY transmit on the tower controller’s frequency, but will listen to both frequencies. Select the PRM monitor frequency audio only when instructed by ATC to contact the tower. The volume levels should be set about the same on both radios so that the pilots will be able to hear transmissions on at least one frequency if the other is blocked. Site specific procedures take precedence over the general information presented in this paragraph. Refer to the AAUP for applicable procedures at specific airports.

NOTE—

At SFO, pilots conducting SOIA operations select the monitor frequency audio when communicating with the final radar controller. In this special case, the monitor controller’s transmissions, if required, override the final controller’s frequency.

3. **Breakouts.** Breakouts differ from other types of abandoned approaches in that they can happen anywhere and unexpectedly. Pilots directed by ATC to break off an approach must assume that an aircraft is blundering toward them and a breakout must be initiated immediately.

 (a) **Hand-fly breakouts.** All breakouts are to be hand-flown to ensure the maneuver is accomplished in the shortest amount of time.

 (b) **ATC Directed “Breakouts.”** ATC directed breakouts will consist of a turn and a climb or descent. Pilots must always initiate the breakout in response to an air traffic controller’s instruction. Controllers will give a descending breakout only when there are no other reasonable options available, but in no case will the descent be below the minimum vectoring altitude (MVA) which provides at least 1,000 feet required obstruction clearance. The AAUP may provide the MVA in the final approach segment as X,XXX feet at (Name) Airport.

NOTE—

“TRAFFIC ALERT.” If an aircraft enters the “NO TRANSGRESSION ZONE (NTZ),” the controller will breakout the threatened aircraft on the adjacent approach. The phraseology for the breakout will be:

PHRASEOLOGY—

TRAFFIC ALERT, (aircraft call sign) TURN (left/right) IMMEDIATELY, HEADING (degrees), CLIMB/DESCEND AND MAINTAIN (altitude).

4. **ILS PRM Glideslope Navigation.** The pilot may find crossing altitudes published along the final approach course. If the approach geometry warrants it, the pilot is advised on the AAUP that descending on the ILS or LDA glideslope ensures complying with any charted crossing restrictions.
5. SOIA and ILS PRM differences as noted on the AAUP.

(a) ILS PRM, LDA Traffic (only published on the AAUP when the ILS PRM approach is used in conjunction with an LDA PRM approach to the adjacent runway). To provide better situational awareness, and because traffic on the LDA may be visible on the ILS aircraft’s TCAS, pilots are reminded of the fact that aircraft will be maneuvering behind them to align with the adjacent runway. While conducting the ILS PRM approach to Runway XXX, other aircraft may be conducting the offset LDA PRM approach to Runway XXX. These aircraft will approach from the (left/right) rear and will realign with Runway XXX after making visual contact with the ILS traffic. Under normal circumstances, these aircraft will not pass the ILS traffic.

(b) SOIA LDA PRM Items. The AAUP section for the SOIA LDA PRM approach contains most information found in the ILS PRM section. It replaces certain information as seen below and provides pilots with the procedures to be used in the visual segment of the LDA PRM approach from the LDA MAP until landing.

(c) SOIA LDA PRM Navigation (replaces ILS PRM (4) and (a) above). The pilot may find crossing altitudes published along the final approach course. The pilot is advised that descending on the LDA glideslope ensures complying with any charted crossing restrictions. Remain on the LDA course until passing XXXXX (LDA MAP name) intersection prior to maneuvering to align with the centerline of Runway XXX.

(d) SOIA (Name) Airport Visual Segment (replaces ILS PRM (4) above). Pilot procedures for navigating beyond the LDA MAP are spelled out. If ATC advises that there is traffic on the adjacent ILS, pilots are authorized to continue past the LDA MAP to align with runway centerline when:

(1) the ILS traffic is in sight and is expected to remain in sight,

(2) ATC has been advised that “traffic is in sight.” (ATC is not required to acknowledge this transmission),

(3) the runway environment is in sight. Otherwise, a missed approach must be executed. Between the LDA MAP and the runway threshold, pilots conducting the LDA PRM approach are responsible for separating themselves visually from traffic conducting the ILS PRM approach to the adjacent runway, which means maneuvering the aircraft as necessary to avoid that traffic until landing, and providing wake turbulence avoidance, if applicable. Pilots maintaining visual separation should advise ATC, as soon as practical, if visual contact with the aircraft conducting the ILS PRM approach is lost and execute a missed approach unless otherwise instructed by ATC.

e. Differences between Simultaneous ILS and ILS PRM or LDA PRM approaches of importance to the pilot.

1. Runway Spacing. Prior to simultaneous close parallel approaches, most ATC directed breakouts were the result of two aircraft in-trail on the same final approach course getting too close together. Two aircraft going in the same direction did not mandate quick reaction times. With PRM closely spaced approaches, two aircraft could be alongside each other, navigating on courses that are separated by less than 4,300 feet. In the unlikely event that an aircraft “blunders” off its course and makes a worst-case turn of 30 degrees toward the adjacent final approach course, closing speeds of 135 feet per second could occur that constitute the need for quick reaction. A blunder has to be recognized by the monitor controller, and breakout instructions issued to the endangered aircraft. The pilot will not have any warning that a breakout is imminent because the blundering aircraft will be on another frequency. It is important that, when a pilot receives breakout instructions, he/she assumes that a blundering aircraft is about to or has penetrated the NTZ and is heading toward his/her approach course. The pilot must initiate a breakout as soon as safety allows. While conducting PRM approaches, pilots must maintain an increased sense of awareness in order to immediately react to an ATC instruction (breakout) and maneuver as instructed by ATC, away from a blundering aircraft.

2. Communications. To help in avoiding communication problems caused by stuck microphones and two parties talking at the same time, two frequencies for each runway will be in use during ILS PRM and LDA PRM approach operations, the primary tower frequency and the PRM monitor frequency. The tower controller transmits and receives in a normal fashion on the primary frequency and also transmits on the PRM monitor frequency. The monit-
or controller’s transmissions override on both frequencies. The pilots flying the approach will listen to both frequencies but only transmit on the primary tower frequency. If the PRM monitor controller initiates a breakout and the primary frequency is blocked by another transmission, the breakout instruction will still be heard on the PRM monitor frequency.

NOTE—At some airports, the override capability may be on other than the tower frequency (KSFO overrides the final radar controller frequency). Pilots should carefully review the dual communications requirements on the AAUP prior to accepting a PRM approach.

3. **Breakouts.** The probability is extremely low that an aircraft will “blunder” from its assigned approach course and enter the NTZ, causing ATC to “breakout” the aircraft approaching on the adjacent ILS or LDA course. However, because of the close proximity of the final approach courses, it is essential that pilots follow the ATC breakout instructions precisely and expeditiously. The controller’s “breakout” instructions provide conflict resolution for the threatened aircraft, with the turn portion of the “breakout” being the single most important element in achieving maximum protection. A descending breakout will only be issued when it is the only controller option. In no case will the controller descend an aircraft below the MVA, which will provide at least 1,000 feet clearance above obstacles. The pilot is not expected to exceed 1,000 feet per minute rate of descent in the event a descending breakout is issued.

4. **Hand-flown Breakouts.** The use of the autopilot is encouraged while flying an ILS PRM or LDA PRM approach, but the autopilot must be disengaged in the rare event that a breakout is issued. Simulation studies of breakouts have shown that a hand-flown breakout can be initiated consistently faster than a breakout performed using the autopilot.

5. **TCAS.** The ATC breakout instruction is the primary means of conflict resolution. TCAS, if installed, provides another form of conflict resolution in the unlikely event other separation standards would fail. TCAS is not required to conduct a closely spaced approach.

The TCAS provides only vertical resolution of aircraft conflicts, while the ATC breakout instruction provides both vertical and horizontal guidance for conflict resolutions. Pilots should always immediately follow the TCAS Resolution Advisory (RA), whenever it is received. Should a TCAS RA be received before, during, or after an ATC breakout instruction is issued, the pilot should follow the RA, even if it conflicts with the climb/descent portion of the breakout maneuver. If following an RA requires deviating from an ATC clearance, the pilot must advise ATC as soon as practical. While following an RA, it is extremely important that the pilot also comply with the turn portion of the ATC breakout instruction unless the pilot determines safety to be a factor. Adhering to these procedures assures the pilot that acceptable “breakout” separation margins will always be provided, even in the face of a normal procedural or system failure.

5–4–17. **Simultaneous Converging Instrument Approaches**

a. ATC may conduct instrument approaches simultaneously to converging runways; i.e., runways having an included angle from 15 to 100 degrees, at airports where a program has been specifically approved to do so.

b. The basic concept requires that dedicated, separate standard instrument approach procedures be developed for each converging runway included. Missed Approach Points must be at least 3 miles apart and missed approach procedures ensure that missed approach protected airspace does not overlap.

c. Other requirements are: radar availability, nonintersecting final approach courses, precision approach capability for each runway and, if runways intersect, controllers must be able to apply visual separation as well as intersecting runway separation criteria. Intersecting runways also require minimums of at least 700 foot ceilings and 2 miles visibility. Straight in approaches and landings must be made.

d. Whenever simultaneous converging approaches are in progress, aircraft will be informed by the controller as soon as feasible after initial contact or via ATIS. Additionally, the radar controller will have direct communications capability with the tower controller where separation responsibility has not been delegated to the tower.

5–4–18. **RNP AR Instrument Approach Procedures**

These procedures require authorization analogous to the special authorization required for Category II or III ILS procedures. Authorization required (AR) procedures are to be conducted by aircrews meeting
special training requirements in aircraft that meet the specified performance and functional requirements.

a. **Unique characteristics of RNP AR Approaches**

1. **RNP value.** Each published line of minima has an associated RNP value. The indicated value defines the lateral and vertical performance requirements. A minimum RNP type is documented as part of the RNP AR authorization for each operator and may vary depending on aircraft configuration or operational procedures (e.g., GPS inoperative, use of flight director vice autopilot).

2. **Curved path procedures.** Some RNP approaches have a curved path, also called a radius–to–a–fix (RF) leg. Since not all aircraft have the capability to fly these arcs, pilots are responsible for knowing if they can conduct an RNP approach with an arc or not. Aircraft speeds, winds and bank angles have been taken into consideration in the development of the procedures.

3. **RNP required for extraction or not.** Where required, the missed approach procedure may use RNP values less than RNP–1. The reliability of the navigation system has to be very high in order to conduct these approaches. Operation on these procedures generally requires redundant equipment, as no single point of failure can cause loss of both approach and missed approach navigation.

4. **Non–standard speeds or climb gradients.** RNP AR approaches are developed based on standard approach speeds and a 200 ft/NM climb gradient in the missed approach. Any exceptions to these standards will be indicated on the approach procedure, and the operator should ensure they can comply with any published restrictions before conducting the operation.

5. **Temperature Limits.** For aircraft using barometric vertical navigation (without temperature compensation) to conduct the approach, low and high–temperature limits are identified on the procedure. Cold temperatures reduce the glidepath angle while high temperatures increase the glidepath angle. Aircraft using baro VNAV with temperature compensation or aircraft using an alternate means for vertical guidance (e.g., SBAS) may disregard the temperature restrictions. The charted temperature limits are evaluated for the final approach segment only. Regardless of charted temperature limits or temperature compensation by the FMS, the pilot may need to manually compensate for cold temperature on minimum altitudes and the decision altitude.

6. **Aircraft size.** The achieved minimums may be dependent on aircraft size. Large aircraft may require higher minimums due to gear height and/or wingspan. Approach procedure charts will be annotated with applicable aircraft size restrictions.
b. Types of RNP AR Approach Operations

1. RNP Stand–alone Approach Operations. RNP AR procedures can provide access to runways regardless of the ground–based NAVAID infrastructure, and can be designed to avoid obstacles, terrain, airspace, or resolve environmental constraints.

2. RNP Parallel Approach (RPA) Operations. RNP AR procedures can be used for parallel approaches where the runway separation is adequate (See FIG 5–4–23). Parallel approach procedures can be used either simultaneously or as stand–alone operations. They may be part of either independent or dependent operations depending on the ATC ability to provide radar monitoring.

3. RNP Parallel Approach Runway Transitions (RPAT) Operations. RPAT approaches begin as a parallel IFR approach operation using simultaneous independent or dependent procedures. (See FIG 5–4–24). Visual separation standards are used in the final segment of the approach after the final approach fix, to permit the RPAT aircraft to transition in visual conditions along a predefined lateral and vertical path to align with the runway centerline.

4. RNP Converging Runway Operations. At airports where runways converge, but may or may not intersect, an RNP AR approach can provide a precise curved missed approach path that conforms to aircraft separation minimums for simultaneous operations (See FIG 5–4–25). By flying this curved missed approach path with high accuracy and containment provided by RNP, dual runway operations may continue to be used to lower ceiling and visibility values than currently available. This type of operation allows greater capacity at airports where it can be applied.
5−4−19. Side−step Maneuver

a. ATC may authorize a standard instrument approach procedure which serves either one of parallel runways that are separated by 1,200 feet or less followed by a straight−in landing on the adjacent runway.

b. Aircraft that will execute a side−step maneuver will be cleared for a specified approach procedure and landing on the adjacent parallel runway. Example, “cleared ILS runway 7 left approach, side−step to runway 7 right.” Pilots are expected to commence the side−step maneuver as soon as possible after the runway or runway environment is in sight. Compliance with minimum altitudes associated with stepdown fixes is expected even after the side−step maneuver is initiated.

NOTE−
Side−step minima are flown to a Minimum Descent Altitude (MDA) regardless of the approach authorized.

c. Landing minimums to the adjacent runway will be based on nonprecision criteria and therefore higher than the precision minimums to the primary runway, but will normally be lower than the published circling minimums.

5−4−20. Approach and Landing Minimums

a. Landing Minimums. The rules applicable to landing minimums are contained in 14 CFR Section 91.175. TBL 5−4−1 may be used to convert RVR to ground or flight visibility. For converting RVR values that fall between listed values, use the next higher RVR value; do not interpolate. For example, when converting 1800 RVR, use 2400 RVR with the resultant visibility of 1/2 mile.

b. Obstacle Clearance. Final approach obstacle clearance is provided from the start of the final segment to the runway or missed approach point, whichever occurs last. Side−step obstacle protection is provided by increasing the width of the final approach obstacle clearance area.

<table>
<thead>
<tr>
<th>TBL 5−4−1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RVR</th>
<th>Visibility (statute miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>1/4</td>
</tr>
<tr>
<td>2400</td>
<td>1/2</td>
</tr>
<tr>
<td>3200</td>
<td>3/8</td>
</tr>
<tr>
<td>4000</td>
<td>3/4</td>
</tr>
<tr>
<td>4500</td>
<td>7/8</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
</tr>
<tr>
<td>6000</td>
<td>1 1/4</td>
</tr>
</tbody>
</table>

1. Circling approach protected areas are defined by the tangential connection of arcs drawn from each runway end (see FIG 5−4−26). Circling approach protected areas developed prior to late 2012 used fixed radius distances, dependent on aircraft approach category, as shown in the table on page B2 of the U.S. TPP. The approaches using standard circling approach areas can be identified by the absence of the “negative C” symbol on the circling line of minima. Circling approach protected areas developed after late 2012 use the radius distance shown in the table on page B2 of the U.S. TPP, dependent on aircraft approach category, and the altitude of the circling MDA, which accounts for true airspeed increase with altitude. The approaches using expanded circling approach areas can be identified by the presence of the “negative C” symbol on the circling line of minima (see FIG 5−4−27). Because of obstacles near the airport, a portion of the circling area may be restricted by a procedural note; for example, “Circling NA E of RWY 17−35.” Obstacle clearance is provided at the published minimums (MDA) for the pilot who makes a straight−in approach, side−steps, or circles. Once below the MDA the pilot must see and avoid obstacles. Executing the missed approach after starting to maneuver usually places the aircraft beyond the MAP. The aircraft is clear of obstacles when at or above the MDA while inside the circling area, but simply joining the missed approach ground track from the circling maneuver may not provide vertical obstacle clearance once the aircraft exits the circling area. Additional climb inside the circling area may be required before joining the missed approach track. See Paragraph 5−4−21, Missed Approach, for additional considerations when starting a missed approach at other than the MAP.
NOTE—
Circling approach area radii vary according to approach category and MSL circling altitude due to TAS changes – see FIG 5–4–27.

FIG 5–4–26
Final Approach Obstacle Clearance

FIG 5–4–27
Standard and Expanded Circling Approach Radii in the U.S. TPP

STANDARD CIRCLING APPROACH MANEUVERING RADIUS
Circling approach protected areas developed prior to late 2012 used the radius distances shown in the following table, expressed in nautical miles (NM), dependent on aircraft approach category. The approaches using standard circling approach areas can be identified by the absence of the [symbol](#) on the circling line of minima.

<table>
<thead>
<tr>
<th>Circling MDA in feet MSL</th>
<th>Approach Category and Circling Radius (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAT A</td>
</tr>
<tr>
<td>All Altitudes</td>
<td>1.3</td>
</tr>
</tbody>
</table>

EXPANDED CIRCLING APPROACH MANEUVERING AIRSPACE RADIUS
Circling approach protected areas developed after late 2012 use the radius distance shown in the following table, expressed in nautical miles (NM), dependent on aircraft approach category, and the altitude of the circling MDA, which accounts for true airspeed increase with altitude. The approaches using expanded circling approach areas can be identified by the presence of the [symbol](#) on the circling line of minima.

<table>
<thead>
<tr>
<th>Circling MDA in feet MSL</th>
<th>Approach Category and Circling Radius (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAT A</td>
</tr>
<tr>
<td>1000 or less</td>
<td>1.3</td>
</tr>
<tr>
<td>1001-3000</td>
<td>1.3</td>
</tr>
<tr>
<td>3001-5000</td>
<td>1.3</td>
</tr>
<tr>
<td>5001-7000</td>
<td>1.3</td>
</tr>
<tr>
<td>7001-9000</td>
<td>1.4</td>
</tr>
<tr>
<td>9001 and above</td>
<td>1.4</td>
</tr>
</tbody>
</table>
2. Precision Obstacle Free Zone (POFZ). A volume of airspace above an area beginning at the runway threshold, at the threshold elevation, and centered on the extended runway centerline. The POFZ is 200 feet (60m) long and 800 feet (240m) wide. The POFZ must be clear when an aircraft on a vertically guided final approach is within 2 nautical miles of the runway threshold and the reported ceiling is below 250 feet or visibility less than $3/4$ statute mile (SM) (or runway visual range below 4,000 feet). If the POFZ is not clear, the MINIMUM authorized height above touchdown (HAT) and visibility is 250 feet and $3/4$ SM. The POFZ is considered clear even if the wing of the aircraft holding on a taxiway waiting for runway clearance penetrates the POFZ; however, neither the fuselage nor the tail may infringe on the POFZ. The POFZ is applicable at all runway ends including displaced thresholds.

3. **Straight-in Minimums** are shown on the IAP when the final approach course is within 30 degrees of the runway alignment (15 degrees for GPS IAPs) and a normal descent can be made from the IFR altitude shown on the IAP to the runway surface. When either the normal rate of descent or the runway alignment factor of 30 degrees (15 degrees for GPS IAPs) is exceeded, a straight-in minimum is not published and a circling minimum applies. The fact that a straight-in minimum is not published does not preclude pilots from landing straight-in if they have the active runway in sight and have sufficient time to make a normal approach for landing. Under such conditions and when ATC has cleared them for landing on that runway, pilots are not expected to circle even though only circling minimums are published. If they desire to circle, they should advise ATC.

4. **Side-Step Maneuver Minimums.** Landing minimums for a side-step maneuver to the adjacent runway will normally be higher than the minimums to the primary runway.
e. Published Approach Minimums. Approach minimums are published for different aircraft categories and consist of a minimum altitude (DA, DH, MDA) and required visibility. These minimums are determined by applying the appropriate TERPS criteria. When a fix is incorporated in a nonprecision final segment, two sets of minimums may be published: one for the pilot that is able to identify the fix, and a second for the pilot that cannot. Two sets of minimums may also be published when a second altimeter source is used in the procedure. When a nonprecision procedure incorporates both a stepdown fix in the final segment and a second altimeter source, two sets of minimums are published to account for the stepdown fix and a note addresses minimums for the second altimeter source.

f. Circling Minimums. In some busy terminal areas, ATC may not allow circling and circling minimums will not be published. Published circling minimums provide obstacle clearance when pilots remain within the appropriate area of protection. Pilots should remain at or above the circling altitude until the aircraft is continuously in a position from which a descent to a landing on the intended runway can be made at a normal rate of descent using normal maneuvers. Circling may require maneuvers at low altitude, at low airspeed, and in marginal weather conditions. Pilots must use sound judgment, have an in-depth knowledge of their capabilities, and fully understand the aircraft performance to determine the exact circling maneuver since weather, unique airport design, and the aircraft position, altitude, and airspeed must all be considered. The following basic rules apply:

1. Maneuver the shortest path to the base or downwind leg, as appropriate, considering existing weather conditions. There is no restriction from passing over the airport or other runways.

2. It should be recognized that circling maneuvers may be made while VFR or other flying is in progress at the airport. Standard left turns or specific instruction from the controller for maneuvering must be considered when circling to land.

3. At airports without a control tower, it may be desirable to fly over the airport to observe wind and turn indicators and other traffic which may be on the runway or flying in the vicinity of the airport.

4. The missed approach point (MAP) varies depending upon the approach flown. For vertically guided approaches, the MAP is at the decision altitude/decision height. Non–vertically guided and circling procedures share the same MAP and the pilot determines this MAP by timing from the final approach fix, by a fix, a NAVAID, or a waypoint. Circling from a GLS, an ILS without a localizer line of minima or an RNAV (GPS) approach without an LNAV line of minima is prohibited.

g. Instrument Approach at a Military Field. When instrument approaches are conducted by civil aircraft at military airports, they must be conducted in accordance with the procedures and minimums approved by the military agency having jurisdiction over the airport.

5–4–21. Missed Approach

a. When a landing cannot be accomplished, advise ATC and, upon reaching the missed approach point defined on the approach procedure chart, the pilot must comply with the missed approach instructions for the procedure being used or with an alternate missed approach procedure specified by ATC.

b. Obstacle protection for missed approach is predicated on the missed approach being initiated at the decision altitude/height (DA/H) or at the missed approach point and not lower than minimum descent altitude (MDA). A climb gradient of at least 200 feet per nautical mile is required, (except for Copter approaches, where a climb of at least 400 feet per nautical mile is required), unless a higher climb gradient is published in the notes section of the approach procedure chart. When higher than standard climb gradients are specified, the end point of the non–standard climb will be specified at either an altitude or a fix. Pilots must preplan to ensure that the aircraft can meet the climb gradient (expressed in feet per nautical mile) required by the procedure in the event of a missed approach, and be aware that flying at a higher than anticipated ground speed increases the climb rate requirement (feet per minute). Tables for the conversion of climb gradients (feet per nautical mile) to climb rate (feet per minute), based on ground speed, are included on page D1 of the U.S. Terminal Procedures booklets. Reasonable buffers are provided for normal maneuvers. However, no
consideration is given to an abnormally early turn. Therefore, when an early missed approach is executed, pilots should, unless otherwise cleared by ATC, fly the IAP as specified on the approach plate to the missed approach point at or above the MDA or DH before executing a turning maneuver.

c. If visual reference is lost while circling-to-land from an instrument approach, the missed approach specified for that particular procedure must be followed (unless an alternate missed approach procedure is specified by ATC). To become established on the prescribed missed approach course, the pilot should make an initial climbing turn toward the landing runway and continue the turn until established on the missed approach course. Inasmuch as the circling maneuver may be accomplished in more than one direction, different patterns will be required to become established on the prescribed missed approach course, depending on the aircraft position at the time visual reference is lost. Adherence to the procedure will help assure that an aircraft will remain laterally within the circling and missed approach obstruction clearance areas. Refer to paragraph h concerning vertical obstruction clearance when starting a missed approach at other than the MAP. (See FIG 5–4–29.)

d. At locations where ATC radar service is provided, the pilot should conform to radar vectors when provided by ATC in lieu of the published missed approach procedure. (See FIG 5–4–30.)

e. Some locations may have a preplanned alternate missed approach procedure for use in the event the primary NAVAID used for the missed approach procedure is unavailable. To avoid confusion, the alternate missed approach instructions are not published on the chart. However, the alternate missed approach holding pattern will be depicted on the instrument approach chart for pilot situational awareness and to assist ATC by not having to issue detailed holding instructions. The alternate missed approach may be based on NAVAIDs not used in the approach procedure or the primary missed approach. When the alternate missed approach procedure is implemented by NOTAM, it becomes a mandatory part of the procedure. The NOTAM will specify both the textual instructions and any additional equipment requirements necessary to complete the procedure. Air traffic may also issue instructions for the alternate missed approach when necessary, such as when the primary missed approach NAVAID fails during the approach. Pilots may reject an ATC clearance for an alternate missed approach that requires equipment not necessary for the published approach procedure when the alternate missed approach is issued after beginning the approach. However, when the alternate missed approach is issued prior to beginning the approach the pilot must either accept the entire procedure (including the alternate missed approach), request a different approach procedure, or coordinate with ATC for alternative action to be taken, i.e., proceed to an alternate airport, etc.

f. When approach has been missed, request clearance for specific action; i.e., to alternative airport, another approach, etc.

g. Pilots must ensure that they have climbed to a safe altitude prior to proceeding off the published missed approach, especially in nonradar environments. Abandoning the missed approach prior to reaching the published altitude may not provide adequate terrain clearance. Additional climb may be required after reaching the holding pattern before proceeding back to the IAF or to an alternate.
A clearance for an instrument approach procedure includes a clearance to fly the published missed approach procedure, unless otherwise instructed by ATC. The published missed approach procedure provides obstacle clearance only when the missed approach is conducted on the missed approach segment from or above the missed approach point, and assumes a climb rate of 200 feet/NM or higher, as published. If the aircraft initiates a missed approach at a point other than the missed approach point (see paragraph 5−4−5b), from below MDA or DA (H), or on a circling approach, obstacle clearance is not necessarily provided by following the published missed approach procedure, nor is separation assured from other air traffic in the vicinity.

In the event a balked (rejected) landing occurs at a position other than the published missed approach point, the pilot should contact ATC as soon as possible to obtain an amended clearance. If unable to contact ATC for any reason, the pilot should attempt to re−intercept a published segment of the missed approach and comply with route and altitude instructions. If unable to contact ATC, and in the pilot’s judgment it is no longer appropriate to fly the published missed approach procedure, then consider either maintaining visual conditions if practicable and reattempt a landing, or a circle−climb over the airport. Should a missed approach become necessary when operating to an airport that is not served by an operating control tower, continuous contact with an air traffic facility may not be possible. In this case, the pilot should execute the appropriate go−around/missed approach procedure without delay and contact ATC when able to do so.

Prior to initiating an instrument approach procedure, the pilot should assess the actions to be taken in the event of a balked (rejected) landing beyond the missed approach point or below the MDA or DA (H) considering the anticipated weather conditions and available aircraft performance. 14 CFR 91.175(e) authorizes the pilot to fly an appropriate missed approach procedure that ensures obstruction clearance, but it does not necessarily consider separation from other air traffic. The pilot must consider other factors such as the aircraft’s geographical location with respect to the prescribed missed approach point, direction of flight, and/or minimum turning altitudes in the prescribed missed approach procedure. The pilot must also consider aircraft performance, visual
climb restrictions, charted obstacles, published obstacle departure procedure, takeoff visual climb requirements as expressed by nonstandard takeoff minima, other traffic expected to be in the vicinity, or other factors not specifically expressed by the approach procedures.

An EFVS is an installed airborne system which uses an electronic means to provide a display of the forward external scene topography (the applicable natural or manmade features of a place or region especially in a way to show their relative positions and elevation) through the use of imaging sensors, such as forward looking infrared, millimeter wave radiometry, millimeter wave radar, and/or low light level image intensifying. The EFVS imagery is displayed along with the additional flight information and aircraft flight symbology required by 14 CFR 91.175 (m) on a head–up display (HUD), or an equivalent display, in the same scale and alignment as the external view and includes the display element, sensors, computers and power supplies, indications, and controls. The display is typically presented to the pilot by means of an approved HUD.

a. Basic Strategy Using EFVS. When flying an instrument approach procedure (IAP), if the runway environment cannot be visually acquired at decision altitude (DA) or minimum descent altitude (MDA) using natural vision, then a pilot may use an EFVS to continue descending down to 100 feet above the Touchdown Zone Elevation (TDZE), provided all of the visibility requirements of 14 CFR part 91.175 (l) are met. The primary reference for maneuvering the aircraft is based on what the pilot sees through the EFVS. At 100 feet above the TDZE, a pilot can continue to descend only when the visual reference requirements for descent below 100 feet can be seen using natural vision. In other words, a pilot may not continue to rely on the EFVS sensor image to identify the required visual references below 100 feet above the TDZE. Supporting information is provided by the flight path vector (FPV), flight path angle (FPA) reference cue, onboard navigation system, and other imagery and flight symbology displayed on the EFVS. The FPV and FPA reference cue, along with the EFVS imagery of the Touchdown Zone (TDZ), provide the primary vertical path reference for the pilot when vertical guidance from a precision approach or approach with vertical guidance is not available.

1. Straight–In Instrument Approach Procedures. An EFVS may be used to descend below DA or MDA from any straight–in IAP, other than Category II or Category III approaches, provided all of the requirements of 14 CFR part 91.175 (l) are met. This includes straight–in precision approaches, approaches with vertical guidance (for example, LPV or LNAV/VNAV), and non–precision approaches (for example, VOR, NDB, LOC, RNAV, GPS, LDA, SDF, etc.).

2. Circling Approach Procedure. An IAP with a circle–to–land maneuver or circle–to–land minimums does not meet criteria for straight–in landing minimums. While the regulations do not prohibit EFVS from being used during any phase of flight, they do prohibit it from being used for operational credit on anything but a straight–in IAP with straight–in landing minima. EFVS must only be used during a circle–to–land maneuver provided the visual references required throughout the circling maneuver are distinctly visible using natural vision. An EFVS cannot be used to satisfy the requirement that an identifiable part of the airport be distinctly visible to the pilot during a circling maneuver at or above MDA or while descending below MDA from a circling maneuver.

3. Enhanced Flight Visibility. Flight visibility is determined by using natural vision, and enhanced flight visibility (EFV) is determined by using an EFVS. 14 CFR part 91.175 (l) requires that the EFV observed by using an EFVS cannot be less than the visibility prescribed in the IAP to be used in order to continue to descend below the DA or MDA.

b. EFVS Operations At or Below DA or MDA Down to 100 Feet Above the TDZE. The visual segment of an IAP begins at DA or MDA and continues to the runway. There are two means of operating in the visual segment—one is by using natural vision and the other is by using an EFVS. If the pilot determines that the EFV observed by using the EFVS is less than the minimum visibility prescribed in the IAP being flown, the pilot acquires the required visual references prescribed in 14 CFR part 91.175 (l)(3) using the EFVS, then the pilot can continue the approach to 100 feet above the TDZE. To continue the approach, the pilot uses the EFVS image to visually acquire the runway environment (the approach
light system (ALS), if installed, or both the runway threshold and the TDZ), confirm lateral alignment, maneuver to the extended runway centerline earlier than would otherwise be possible, and continue a normal descent from the DA or MDA to 100 feet above the TDZE.

1. Required Visual References. In order to descend below DA or MDA, the following visual references (specified in 14 CFR part 91.175 (l)(3)) for the runway of intended landing must be distinctly visible and identifiable to the pilot using the EFVS:

 (a) The ALS (if installed), or

 (b) The following visual references in both (b)(1) and (b)(2) below:

 (1) The runway threshold, identified by at least one of the following: the beginning of the runway landing surface, the threshold lights, or the runway end identifier lights (REIL).

 (2) The TDZ, identified by at least one of the following: the runway TDZ landing surface, the TDZ lights, the TDZ markings, or the runway lights.

2. Comparison of Visual Reference Requirements for EFVS and Natural Vision. The EFVS visual reference requirements of 14 CFR part 91.175 (l)(3) comprise a more stringent standard than the visual reference requirements prescribed under 14 CFR part 91.175 (c)(3) when using natural vision. The more stringent standard is needed because an EFVS might not display the color of the lights used to identify specific portions of the runway or might not be able to consistently display the runway markings. The main differences for EFVS operations are that the visual glide slope indicator (VGSI) lights cannot be used as a visual reference, and specific visual references from both the threshold and TDZ must be distinctly visible and identifiable. However, when using natural vision, only one of the specified visual references must be visible and identifiable.

3. Visual References and Offset Approaches. Pilots must be especially knowledgeable of the approach conditions and approach course alignment when considering whether to rely on EFVS during a non−precision approach with an offset final approach course. Depending upon the combination of crosswind correction and the lateral field of view provided by a particular EFVS, the required visual references may or may not be within the pilot’s view looking through the EFVS display. Pilots conducting any non−precision approach must verify lateral alignment with the runway centerline when determining when to descend from MDA.

4. When to Go Around. Any pilot operating an aircraft with an EFVS installed should be aware that the requirements of 14 CFR part 91.175 (c) for using natural vision and the requirements of 14 CFR part 91.175 (l) for using an EFVS are different. A pilot would, therefore, first have to determine whether an approach will be commenced using natural vision or using an EFVS. While these two sets of requirements provide a parallel decisionmaking process, the requirements for when a missed approach must be executed differ. Using EFVS, a missed approach must be initiated at or below DA or MDA down to 100 feet above TDZE whenever the pilot determines that:

 (a) The EFV is less than the visibility minima prescribed for the IAP being used;

 (b) The required visual references for the runway of intended landing are no longer distinctly visible and identifiable to the pilot using the EFVS imagery;

 (c) The aircraft is not continuously in a position from which a descent to a landing can be made on the intended runway, at a normal rate of descent, using normal maneuvers; or

 (d) For operations under 14 CFR parts 121 and 135, the descent rate of the aircraft would not allow touchdown to occur within the TDZ of the runway of intended landing.

5. Missed Approach Considerations. It should be noted that a missed approach after passing the DA, or beyond the missed approach point (MAP), involves additional risk until established on the published missed approach segment. Initiating a go−around after passing the published MAP may result in loss of obstacle clearance. As with any approach, pilot planning should include contingencies between the published MAP and touchdown with reference to obstacle clearance, aircraft performance, and alternate escape plans.

 c. EFVS Operations At and Below 100 Feet Above the TDZE. At and below 100 feet above the TDZE, the regulations do not require the EFVS to be turned off or the display to be stowed in order to continue to a landing. A pilot may continue the approach
below this altitude using an EFVS as long as the required visual references can be seen through the display using natural vision. An operator may not continue to descend beyond this point by relying solely on the sensor image displayed on the EFVS.

1. Required Visual References. In order to descend below 100 feet above the TDZE, the flight visibility—assessed using natural vision—must be sufficient for the following visual references to be distinctly visible and identifiable to the pilot without reliance on the EFVS to continue to a landing:

(a) The lights or markings of the threshold, or
(b) The lights or markings of the TDZ.

It is important to note that from 100 feet above the TDZE and below, the flight visibility does not have to be equal to or greater than the visibility prescribed for the IAP in order to continue descending. It only has to be sufficient for the visual references required by 14 CFR part 91.175 (l)(4) to be distinctly visible and identifiable to the pilot without reliance on the EFVS.

2. Comparison of Visual Reference Requirements for EFVS and Natural Vision. Again, the visual reference requirements for EFVS in 14 CFR part 91.175 (l)(4) are more stringent than those required for natural vision in 14 CFR part 91.175 (c)(3). The main differences for EFVS operations are that the ALS and red terminating bars or red side row bars, the REIL, and the VASI cannot be used as visual references. Only very specific visual references from the threshold or the TDZ can be used (that is, the lights or markings of the threshold or the lights or markings of the TDZ).

3. When to Go Around. A missed approach must be initiated when the pilot determines that:

(a) The flight visibility is no longer sufficient to distinctly see and identify the required visual references listed in 14 CFR part 91.175 (l)(4) using natural vision;
(b) The aircraft is not continuously in a position from which a descent to a landing can be made on the intended runway, at a normal rate of descent, using normal maneuvers; or
(c) For operations under 14 CFR parts 121 and 135, the descent rate of the aircraft would not allow touchdown to occur within the TDZ of the runway of intended landing.

While touchdown within the TDZ is not specifically addressed in the regulations for operators other than 14 CFR parts 121 and 135 operators, continued operations below DA or MDA where touchdown in the TDZ is not assured, where a high sink rate occurs, or where the decision to conduct a missed approach procedure is not executed in a timely manner, all create a significant risk to the operation.

4. Missed Approach Considerations. As noted earlier, a missed approach initiated after the DA or MAP involves additional risk. At 100 feet or less above the runway, it is likely that an aircraft is significantly below the TERPS missed approach obstacle clearance surface. Prior planning is recommended and should include contingencies between the published MAP and touchdown with reference to obstacle clearance, aircraft performance, and alternate escape plans.

d. Light Emitting Diode (LED) Airport Lighting Impact on EFVS Operations. The FAA has recently begun to replace incandescent lamps with LEDs at some airports in threshold lights, taxiway edge lights, taxiway centerline lights, low intensity runway edge lights, windcone lights, beacons, and some obstruction lighting. Pilots should be aware that LED lights cannot be sensed by current EFVS systems.

5–4–23. Visual Approach

a. A visual approach is conducted on an IFR flight plan and authorizes a pilot to proceed visually and clear of clouds to the airport. The pilot must have either the airport or the preceding identified aircraft in sight. This approach must be authorized and controlled by the appropriate air traffic control facility. Reported weather at the airport must have a ceiling at or above 1,000 feet and visibility 3 miles or greater. ATC may authorize this type approach when it will be operationally beneficial. Visual approaches are an IFR procedure conducted under IFR in visual meteorological conditions. Cloud clearance requirements of 14 CFR Section 91.155 are not applicable, unless required by operation specifications.

b. Operating to an Airport Without Weather Reporting Service. ATC will advise the pilot when weather is not available at the destination airport. ATC may initiate a visual approach provided there is a reasonable assurance that weather at the airport is a
ceiling at or above 1,000 feet and visibility 3 miles or greater (e.g., area weather reports, PIREPs, etc.).

c. Operating to an Airport With an Operating Control Tower. Aircraft may be authorized to conduct a visual approach to one runway while other aircraft are conducting IFR or VFR approaches to another parallel, intersecting, or converging runway. When operating to airports with parallel runways separated by less than 2,500 feet, the succeeding aircraft must report sighting the preceding aircraft unless standard separation is being provided by ATC. When operating to parallel runways separated by at least 2,500 feet but less than 4,300 feet, controllers will clear/vector aircraft to the final at an angle not greater than 30 degrees unless radar, vertical, or visual separation is provided during the turn–on. The purpose of the 30 degree intercept angle is to reduce the potential for overshoots of the final and to preclude side–by–side operations with one or both aircraft in a belly–up configuration during the turn–on. Once the aircraft are established within 30 degrees of final, or on the final, these operations may be conducted simultaneously. When the parallel runways are separated by 4,300 feet or more, or intersecting/converging runways are in use, ATC may authorize a visual approach after advising all aircraft involved that other aircraft are conducting operations to the other runway. This may be accomplished through use of the ATIS.

d. Separation Responsibilities. If the pilot has the airport in sight but cannot see the aircraft to be followed, ATC may clear the aircraft for a visual approach; however, ATC retains both separation and wake vortex separation responsibility. When visually following a preceding aircraft, acceptance of the visual approach clearance constitutes acceptance of pilot responsibility for maintaining a safe approach interval and adequate wake turbulence separation.

e. A visual approach is not an IAP and therefore has no missed approach segment. If a go around is necessary for any reason, aircraft operating at controlled airports will be issued an appropriate advisory/clearance/instruction by the tower. At uncontrolled airports, aircraft are expected to remain clear of clouds and complete a landing as soon as possible. If a landing cannot be accomplished, the aircraft is expected to remain clear of clouds and contact ATC as soon as possible for further clearance.

Separation from other IFR aircraft will be maintained under these circumstances.

f. Visual approaches reduce pilot/controller workload and expedite traffic by shortening flight paths to the airport. It is the pilot’s responsibility to advise ATC as soon as possible if a visual approach is not desired.

g. Authorization to conduct a visual approach is an IFR authorization and does not alter IFR flight plan cancellation responsibility.

REFERENCE—
AIM, Canceling IFR Flight Plan, Paragraph 5–1–15

h. Radar service is automatically terminated, without advising the pilot, when the aircraft is instructed to change to advisory frequency.

a. CVFPs are charted visual approaches established for environmental/noise considerations, and/or when necessary for the safety and efficiency of air traffic operations. The approach charts depict prominent landmarks, courses, and recommended altitudes to specific runways. CVFPs are designed to be used primarily for turbojet aircraft.

b. These procedures will be used only at airports with an operating control tower.

c. Most approach charts will depict some NAVAID information which is for supplemental navigational guidance only.

d. Unless indicating a Class B airspace floor, all depicted altitudes are for noise abatement purposes and are recommended only. Pilots are not prohibited from flying other than recommended altitudes if operational requirements dictate.

e. When landmarks used for navigation are not visible at night, the approach will be annotated “PROCEDURE NOT AUTHORIZED AT NIGHT.”

f. CVFPs usually begin within 20 flying miles from the airport.

g. Published weather minimums for CVFPs are based on minimum vectoring altitudes rather than the recommended altitudes depicted on charts.

h. CVFPs are not instrument approaches and do not have missed approach segments.

i. ATC will not issue clearances for CVFPs when the weather is less than the published minimum.
j. ATC will clear aircraft for a CVFP after the pilot reports sighting a charted landmark or a preceding aircraft. If instructed to follow a preceding aircraft, pilots are responsible for maintaining a safe approach interval and wake turbulence separation.

k. Pilots should advise ATC if at any point they are unable to continue an approach or lose sight of a preceding aircraft. Missed approaches will be handled as a go–around.

5–4–25. Contact Approach

a. Pilots operating in accordance with an IFR flight plan, provided they are clear of clouds and have at least 1 mile flight visibility and can reasonably expect to continue to the destination airport in those conditions, may request ATC authorization for a contact approach.

b. Controllers may authorize a contact approach provided:

 1. The contact approach is specifically requested by the pilot. ATC cannot initiate this approach.

 EXAMPLE—
 Request contact approach.

 2. The reported ground visibility at the destination airport is at least 1 statute mile.

 3. The contact approach will be made to an airport having a standard or special instrument approach procedure.

 4. Approved separation is applied between aircraft so cleared and between these aircraft and other IFR or special VFR aircraft.

 EXAMPLE—
 Cleared contact approach (and, if required) at or below (altitude) (routing) if not possible (alternative procedures) and advise.

c. A contact approach is an approach procedure that may be used by a pilot (with prior authorization from ATC) in lieu of conducting a standard or special IAP to an airport. It is not intended for use by a pilot on an IFR flight clearance to operate to an airport not having a published and functioning IAP. Nor is it intended for an aircraft to conduct an instrument approach to one airport and then, when “in the clear,” discontinue that approach and proceed to another airport. In the execution of a contact approach, the pilot assumes the responsibility for obstruction clearance. If radar service is being received, it will automatically terminate when the pilot is instructed to change to advisory frequency.

5–4–26. Landing Priority

A clearance for a specific type of approach (ILS, RNAV, GLS, ADF, VOR or Visual Approach) to an aircraft operating on an IFR flight plan does not mean that landing priority will be given over other traffic. ATCTs handle all aircraft, regardless of the type of flight plan, on a “first–come, first–served” basis. Therefore, because of local traffic or runway in use, it may be necessary for the controller in the interest of safety, to provide a different landing sequence. In any case, a landing sequence will be issued to each aircraft as soon as possible to enable the pilot to properly adjust the aircraft’s flight path.

5–4–27. Overhead Approach Maneuver

a. Pilots operating in accordance with an IFR flight plan in Visual Meteorological Conditions (VMC) may request ATC authorization for an overhead maneuver. An overhead maneuver is not an instrument approach procedure. Overhead maneuver patterns are developed at airports where aircraft have an operational need to conduct the maneuver. An aircraft conducting an overhead maneuver is considered to be VFR and the IFR flight plan is cancelled when the aircraft reaches the initial point on the initial approach portion of the maneuver. (See FIG 5–4–31.) The existence of a standard overhead maneuver pattern does not eliminate the possible requirement for an aircraft to conform to conventional rectangular patterns if an overhead maneuver cannot be approved. Aircraft operating to an airport without a functioning control tower must initiate cancellation of an IFR flight plan prior to executing the overhead maneuver. Cancellation of the IFR flight plan must be accomplished after crossing the landing threshold on the initial portion of the maneuver or after landing. Controllers may authorize an overhead maneuver and issue the following to arriving aircraft:

 1. Pattern altitude and direction of traffic. This information may be omitted if either is standard.

 PHRASEOLOGY—
 PATTERN ALTITUDE (altitude). RIGHT TURNS.
2. Request for a report on initial approach.

PHRASEOLOGY—
REPORT INITIAL.

3. “Break” information and a request for the pilot to report. The “Break Point” will be specified if nonstandard. Pilots may be requested to report “break” if required for traffic or other reasons.

PHRASEOLOGY—
BREAK AT (specified point).
REPORT BREAK.
Section 6. National Security and Interception Procedures

5–6–1. National Security

b. All aircraft entering domestic U.S. airspace from points outside must provide for identification prior to entry. To facilitate early aircraft identification of all aircraft in the vicinity of U.S. and international airspace boundaries, Air Defense Identification Zones (ADIZ) have been established.

REFERENCE—
AIM, ADIZ Boundaries and Designated Mountainous Areas, Paragraph 5–6–5

c. Operational requirements for aircraft operations associated with an ADIZ are as follows:

1. Flight Plan. Except as specified in subparagraphs d and e below, an IFR or DVFR flight plan must be filed with an appropriate aeronautical facility as follows:

 (a) Generally, for all operations that enter an ADIZ.

 (b) For operations that will enter or exit the U.S. and which will operate into, within or across the Contiguous U.S. ADIZ regardless of true airspeed.

 (c) The flight plan must be filed before departure except for operations associated with the Alaskan ADIZ when the airport of departure has no facility for filing a flight plan, in which case the flight plan may be filed immediately after takeoff or when within range of the aeronautical facility.

2. Two-way Radio. For the majority of operations associated with an ADIZ, an operating two-way radio is required. See 14 CFR Section 99.1 for exceptions.

3. Transponder Requirements. Unless otherwise authorized by ATC, each aircraft conducting operations into, within, or across the Contiguous U.S. ADIZ must be equipped with an operable radar beacon transponder having altitude reporting capability (Mode C), and that transponder must be turned on and set to reply on the appropriate code or as assigned by ATC.

4. Position Reporting.

 (a) For IFR flight. Normal IFR position reporting.

 (b) For DVFR flights:

 (1) The pilot reports to an appropriate aeronautical facility before penetration: the time, position, and altitude at which the aircraft passed the last reporting point before penetration and the estimated time of arrival over the next appropriate reporting point along the flight route;

 (2) If there is no appropriate reporting point along the flight route, the pilot reports at least 15 minutes before penetration: the estimated time, position, and altitude at which the pilot will penetrate; or

 (3) If the departure airport is within an ADIZ or so close to the ADIZ boundary that it prevents the pilot from complying with paragraphs (b)(1) or (2) of this section, the pilot must report immediately after departure: the time of departure, the altitude, and the estimated time of arrival over the first reporting point along the flight route.

 (c) For inbound aircraft of foreign registry. The pilot must report to the aeronautical facility at least one hour prior to ADIZ penetration.

5. Aircraft Position Tolerances.

 (a) Over land, the tolerance is within plus or minus five minutes from the estimated time over a reporting point or point of penetration and within 10 NM from the centerline of an intended track over an estimated reporting point or penetration point.

 (b) Over water, the tolerance is plus or minus five minutes from the estimated time over a reporting point or point of penetration and within 20 NM from the centerline of the intended track over an estimated reporting point or point of penetration (to include the Aleutian Islands).

6. Land–Based ADIZ. Land–Based ADIZ are activated and deactivated over U.S. metropolitan areas as needed, with dimensions, activation dates and other relevant information disseminated via NOTAM.

 (a) In addition to requirements outlined in subparagraphs c1 through c3, pilots operating within
a Land–Based ADIZ must report landing or leaving the Land–Based ADIZ if flying too low for radar coverage.

(b) Pilots unable to comply with all requirements must remain clear of Land–Based ADIZ. Pilots entering a Land–Based ADIZ without authorization or who fail to follow all requirements risk interception by military fighter aircraft.

d. Except when applicable under 14 CFR Section 99.7, 14 CFR Part 99 does not apply to aircraft operations:

1. Within the 48 contiguous states and the District of Columbia, or within the State of Alaska, and remains within 10 miles of the point of departure;

2. Over any island, or within three nautical miles of the coastline of any island, in the Hawaii ADIZ; or

3. Associated with any ADIZ other than the Contiguous U.S. ADIZ, when the aircraft true airspeed is less than 180 knots.

e. Authorizations to deviate from the requirements of Part 99 may also be granted by the ARTCC, on a local basis, for some operations associated with an ADIZ.

f. An airfiled VFR Flight Plan makes an aircraft subject to interception for positive identification when entering an ADIZ. Pilots are, therefore, urged to file the required DVFR flight plan either in person or by telephone prior to departure.

g. Special Security Instructions.

1. Each person operating an aircraft in an ADIZ or Defense Area must, in addition to the applicable rules of part 99, comply with special security instructions issued by the Administrator in the interest of national security, pursuant to agreement between the FAA and the Department of Defense, or between the FAA and a U.S. Federal security or intelligence agency.

2. Defense Area means any airspace of the contiguous United States that is not an ADIZ in which the control of aircraft is required for reasons of national security.

h. Emergency Security Control of Air Traffic (ESCAT).

1. During defense emergency or air defense emergency conditions, additional special security instructions may be issued in accordance with 32 CFR 245 Plan for the Emergency Security Control of Air Traffic (ESCAT).

2. Under the provisions of 32 CFR 245, the military will direct the action to be taken in regard to landing, grounding, diversion, or dispersal of aircraft and the control of air navigation aids in the defense of the U.S. during emergency conditions.

3. At the time a portion or all of ESCAT is implemented, ATC facilities will broadcast appropriate instructions received from the Air Traffic Control System Command Center (ATCSCC) over available ATC frequencies. Depending on instructions received from the ATCSCC, VFR flights may be directed to land at the nearest available airport, and IFR flights will be expected to proceed as directed by ATC.

4. Pilots on the ground may be required to file a flight plan and obtain an approval (through FAA) prior to conducting flight operation.

5. In view of the above, all pilots should monitor an ATC or FSS frequency at all times while conducting flight operations.

5–6–2. Interception Procedures

a. General.

1. In conjunction with the FAA, Air Defense Sectors monitor air traffic and could order an intercept in the interest of national security or defense. Intercepts during peacetime operations are vastly different than those conducted under increased states of readiness. The interceptors may be fighters or rotary wing aircraft. The reasons for aircraft intercept include, but are not limited to:

(a) Identify an aircraft;

(b) Track an aircraft;

(c) Inspect an aircraft;

(d) Divert an aircraft;

(e) Establish communications with an aircraft.

2. When specific information is required (i.e., markings, serial numbers, etc.) the interceptor
pilot(s) will respond only if, in their judgment, the request can be conducted in a safe manner. Intercept procedures are described in some detail in the paragraphs below. In all situations, the interceptor pilot will consider safety of flight for all concerned throughout the intercept procedure. The interceptor pilot(s) will use caution to avoid startling the intercepted crew or passengers and understand that maneuvers considered normal for interceptor aircraft may be considered hazardous to other aircraft.

3. All aircraft operating in US national airspace are highly encouraged to maintain a listening watch on VHF/UHF guard frequencies (121.5 or 243.0 MHz). If subjected to a military intercept, it is incumbent on civilian aviators to understand their responsibilities and to comply with ICAO standard signals relayed from the intercepting aircraft. Specifically, aviators are expected to contact air traffic control without delay (if able) on the local operating frequency or on VHF/UHF guard. Noncompliance may result in the use of force.

b. Fighter intercept phases (See FIG 5−6−1).

1. Approach Phase.
As standard procedure, intercepted aircraft are approached from behind. Typically, interceptor aircraft will be employed in pairs, however, it is not uncommon for a single aircraft to perform the intercept operation. Safe separation between interceptors and intercepted aircraft is the responsibility of the intercepting aircraft and will be maintained at all times.

2. Identification Phase.
Interceptor aircraft will initiate a controlled closure toward the aircraft of interest, holding at a distance no closer than deemed necessary to establish positive identification and to gather the necessary information. The interceptor may also fly past the intercepted aircraft while gathering data at a distance considered safe based on aircraft performance characteristics.

3. Post Intercept Phase.
An interceptor may attempt to establish communications via standard ICAO signals. In time-critical situations where the interceptor is seeking an immediate response from the intercepted aircraft or if the intercepted aircraft remains non-compliant to instruction, the interceptor pilot may initiate a divert maneuver. In this maneuver, the interceptor flies across the intercepted aircraft’s flight path (minimum 500 feet separation and commencing from slightly below the intercepted aircraft altitude) in the general direction the intercepted aircraft is expected to turn. The interceptor will rock its wings (daytime) or flash external lights/select afterburners (night) while crossing the intercepted aircraft’s flight path. The interceptor will roll out in the direction the intercepted aircraft is expected to turn before returning to verify the aircraft of interest is complying. The intercepted aircraft is expected to execute an immediate turn to the direction of the intercepting aircraft. If the aircraft of interest does not comply, the interceptor may conduct a second climbing turn across the intercepted aircraft’s flight path (minimum 500 feet separation and commencing from slightly below the intercepted aircraft altitude) while expending flares as a warning signal to the intercepted aircraft to comply immediately and to turn in the direction indicated and to leave the area. The interceptor is responsible to maintain safe separation during these and all intercept maneuvers. Flight safety is paramount.

NOTE−
1. NORAD interceptors will take every precaution to preclude the possibility of the intercepted aircraft experiencing jet wash/wake turbulence; however, there is a potential that this condition could be encountered.
2. During Night/IMC, the intercept will be from below flight path.
FIG 5–6–1
Intercept Procedures

Identification

Diversion with Flares Dispensed (if req'd)

Aircraft complying
c. Other Sources of Weather Information

1. Telephone Information Briefing Service (TIBS) (FSS); and in Alaska, Transcribed Weather Broadcast (TWEB) locations, and telephone access to the TWEB (TEL–TWEB) provide continuously updated recorded weather information for short or local flights. Separate paragraphs in this section give additional information regarding these services.

REFERENCE—
AIM, Telephone Information Briefing Service (TIBS), Paragraph 7−1−8.
AIM, Transcribed Weather Broadcast (TWEB) (Alaska Only), Paragraph 7−1−9.

2. Weather and aeronautical information are also available from numerous private industry sources on an individual or contract pay basis. Information on how to obtain this service should be available from local pilot organizations.

3. The Direct User Access Terminal System (DUATS) can be accessed by pilots with a current medical certificate toll-free in the 48 contiguous States via personal computer. Pilots can receive alpha-numeric preflight weather data and file domestic VFR and IFR flight plans. The following are the contract DUATS vendors:

 Computer Sciences Corporation (CSC)
 15000 Conference Center Drive
 Chantilly, VA 22021−3808
 Internet Access: http://www.duats.com
 Telnet Access (modem terminal−style):
 (800) 767−9989 or
telnet://direct.duats.com
 For customer service: (800) 345−3828

 Data Transformation Corporation (DTC)
 108−D Greentree Road
 Turnersville, NJ 08012
 Internet Access: http://www.duat.com
 For customer service: (800)243−3828

 d. Inflight weather information is available from any FSS within radio range. The common frequency for all FSSs is 122.2. Discrete frequencies for individual stations are listed in the A/FD.

1. Information on In-Flight Weather broadcasts.

REFERENCE—
AIM, Inflight Weather Broadcasts, Paragraph 7−1−10

2. En Route Flight Advisory Service (EFAS) is provided to serve the nonroutine weather needs of pilots in flight.

REFERENCE—
AIM, En Route Flight Advisory Service (EFAS), Paragraph 7−1−5 gives details on this service.

7−1−3. Use of Aviation Weather Products

a. Air carriers and operators certificated under the provisions of 14 CFR Part 119 are required to use the aeronautical weather information systems defined in the Operations Specifications issued to that certificate holder by the FAA. These systems may utilize basic FAA/National Weather Service (NWS) weather services, contractor− or operator−proprietary weather services and/or Enhanced Weather Information System (EWINS) when approved in the Operations Specifications. As an integral part of this system approval, the procedures for collecting, producing and disseminating aeronautical weather information, as well as the crew member and dispatcher training to support the use of system weather products, must be accepted or approved.

b. Operators not certificated under the provisions of 14 CFR Part 119 are encouraged to use FAA/NWS products through Flight Service Stations, Direct User Access Terminal System (DUATS), and/or Flight Information Services−Broadcast (FIS−B).

c. The suite of available aviation weather product types is expanding, with the development of new sensor systems, algorithms and forecast models. The FAA and NWS, supported by various weather research laboratories and corporations under contract to the Government, develop and implement new aviation weather product types. The FAA’s NextGen Aviation Weather Research Program (AWRP) facilitates collaboration between the NWS, the FAA, and various industry and research representatives. This collaboration ensures that user needs and technical readiness requirements are met before experimental products mature to operational application.

d. The AWRP manages the transfer of aviation weather R&D to operational use through technical review panels and conducting safety assessments to ensure that newly developed aviation weather products meet regulatory requirements and enhance safety.

e. The AWRP review and decision−making process applies criteria to weather products at various stages. The stages are composed of the following:

1. Sponsorship of user needs.
2. R & D and controlled testing.
3. Experimental application.
4. Operational application.

f. Pilots and operators should be aware that weather services provided by entities other than FAA, NWS or their contractors (such as the DUAT/DUATS and Lockheed Martin Flight Services) may not meet FAA/NWS quality control standards. Hence, operators and pilots contemplating using such services should request and/or review an appropriate description of services and provider disclosure. This should include, but is not limited to, the type of weather product (e.g., current weather or forecast weather), the currency of the product (i.e., product issue and valid times), and the relevance of the product. Pilots and operators should be cautious when using unfamiliar products, or products not supported by FAA/NWS technical specifications.

NOTE—
When in doubt, consult with a FAA Flight Service Station Specialist.

g. In addition, pilots and operators should be aware there are weather services and products available from government organizations beyond the scope of the AWRP process mentioned earlier in this section. For example, governmental agencies such as the NWS and the Aviation Weather Center (AWC), or research organizations such as the National Center for Atmospheric Research (NCAR) display weather “model data” and “experimental” products which require training and/or expertise to properly interpret and use. These products are developmental prototypes that are subject to ongoing research and can change without notice. Therefore, some data on display by government organizations, or government data on display by independent organizations may be unsuitable for flight planning purposes. Operators and pilots contemplating using such services should request and/or review an appropriate description of services and provider disclosure. This should include, but is not limited to, the type of weather product (for example, current weather or forecast weather), the currency of the product (i.e., product issue and valid times), and the relevance of the product. Pilots and operators should be cautious when using unfamiliar weather products.

NOTE—
When in doubt, consult with a FAA Flight Service Station Specialist.

h. With increased access to weather products via the public Internet, the aviation community has access to an overwhelming amount of weather information and data that support self-briefing. FAA AC 00-45 (current edition) describes the weather products distributed by the NWS. Pilots and operators using the public Internet to access weather from a third party vendor should request and/or review an appropriate description of services and provider disclosure. This should include, but is not limited to, the type of weather product (for example, current weather or forecast weather), the currency of the product (i.e., product issue and valid times), and the relevance of the product. Pilots and operators should be cautious when using unfamiliar weather products and when in doubt, consult with a Flight Service Specialist.

i. The development of new weather products, coupled with the termination of some legacy textual and graphical products may create confusion between regulatory requirements and the new products. All flight-related, aviation weather decisions must be based on all available pertinent weather products. As every flight is unique and the weather conditions for that flight vary hour by hour, day to day, multiple weather products may be necessary to meet aviation weather regulatory requirements. Many new weather products now have a Precautionary Use Statement that details the proper use or application of the specific product.

j. The FAA has identified three distinct types of weather information available to pilots and operators.

1. Observations. Raw weather data collected by some type of sensor suite including surface and airborne observations, radar, lightning, satellite imagery, and profilers.

2. Analysis. Enhanced depiction and/or interpretation of observed weather data.

3. Forecasts. Predictions of the development and/or movement of weather phenomena based on meteorological observations and various mathematical models.

k. Not all sources of aviation weather information are able to provide all three types of weather information. The FAA has determined that operators and pilots may utilize the following approved sources of aviation weather information:

1. Federal Government. The FAA and NWS collect raw weather data, analyze the observations,
and produce forecasts. The FAA and NWS disseminate meteorological observations, analyses, and forecasts through a variety of systems. In addition, the Federal Government is the only approval authority for sources of weather observations; for example, contract towers and airport operators may be approved by the Federal Government to provide weather observations.

2. Enhanced Weather Information System (EWINS). An EWINS is an FAA authorized, proprietary system for tracking, evaluating, reporting, and forecasting the presence or lack of adverse weather phenomena. The FAA authorizes a certificate holder to use an EWINS to produce flight movement forecasts, adverse weather phenomena forecasts, and other meteorological advisories. For more detailed information regarding EWINS, see the Aviation Weather Services Advisory Circular 00−45 and the Flight Standards Information Management System 8900.1.

3. Commercial Weather Information Providers. In general, commercial providers produce proprietary weather products based on NWS/FAA products with formatting and layout modifications but no material changes to the weather information itself. This is also referred to as “repackaging.” In addition, commercial providers may produce analyses, forecasts, and other proprietary weather products that substantially alter the information contained in government−produced products. However, those proprietary weather products that substantially alter government−produced weather products or information, may only be approved for use by 14 CFR Part 121 and Part 135 certificate holders if the commercial provider is EWINS qualified.

NOTE—Commercial weather information providers contracted by FAA to provide weather observations, analyses, and forecasts (e.g., contract towers) are included in the Federal Government category of approved sources by virtue of maintaining required technical and quality assurance standards under Federal Government oversight.

1. As a point of clarification, Advisory Circular 00−62, Internet Communications of Aviation Weather and NOTAMS, describes the process for a weather information provider to become a Qualified Internet Communications Provider (QICP) and only applies to 14 CFR Part 121 and Part 135 certificate holders. Therefore, pilots conducting operations under 14 CFR Part 91 may access weather products via the public Internet.

7−1−4. Preflight Briefing

a. Flight Service Stations (FSSs) are the primary source for obtaining preflight briefings and inflight weather information. Flight Service Specialists are qualified and certificated by the NWS as Pilot Weather Briefers. They are not authorized to make original forecasts, but are authorized to translate and interpret available forecasts and reports directly into terms describing the weather conditions which you can expect along your flight route and at your destination. Available aviation weather reports, forecasts and aviation weather charts are displayed at each FSS, for pilot use. Pilots should feel free to use these self briefing displays where available, or to ask for a briefing or assistance from the specialist on duty. Three basic types of preflight briefings are available to serve your specific needs. These are: Standard Briefing, Abbreviated Briefing, and Outlook Briefing. You should specify to the briefer the type of briefing you want, along with your appropriate background information. This will enable the briefer to tailor the information to your intended flight. The following paragraphs describe the types of briefings available and the information provided in each briefing.

REFERENCE—AIM, Preflight Preparation, Paragraph 5−1−1, for items that are required.

b. Standard Briefing. You should request a Standard Briefing any time you are planning a flight and you have not received a previous briefing or have not received preliminary information through mass dissemination media; e.g., TIBS, TWEB (Alaska only), etc. International data may be inaccurate or incomplete. If you are planning a flight outside of U.S. controlled airspace, the briefer will advise you to check data as soon as practical after entering foreign airspace, unless you advise that you have the international cautionary advisory. The briefer will automatically provide the following information in the sequence listed, except as noted, when it is applicable to your proposed flight.

1. Adverse Conditions. Significant meteorological and/or aeronautical information that might influence the pilot to alter or cancel the proposed flight; for example, hazardous weather conditions,
airport closures, air traffic delays, etc. Pilots should be especially alert for current or forecast weather that could reduce flight minimums below VFR or IFR conditions. Pilots should also be alert for any reported or forecast icing if the aircraft is not certified for operating in icing conditions. Flying into areas of icing or weather below minimums could have disastrous results.

2. VFR Flight Not Recommended. When VFR flight is proposed and sky conditions or visibilities are present or forecast, surface or aloft, that, in the briefer’s judgment, would make flight under VFR doubtful, the briefer will describe the conditions, describe the affected locations, and use the phrase “VFR flight not recommended.” This recommendation is advisory in nature. The final decision as to whether the flight can be conducted safely rests solely with the pilot. Upon receiving a “VFR flight not recommended” statement, the non–IFR rated pilot will need to make a “go or no go” decision. This decision should be based on weighing the current and forecast weather conditions against the pilot’s experience and ratings. The aircraft’s equipment, capabilities and limitations should also be considered.

NOTE—Pilots flying into areas of minimal VFR weather could encounter unforecasted lowering conditions that place the aircraft outside the pilot’s ratings and experience level. This could result in spatial disorientation and/or loss of control of the aircraft.

3. Synopsis. A brief statement describing the type, location and movement of weather systems and/or air masses which might affect the proposed flight.

NOTE—These first 3 elements of a briefing may be combined in any order when the briefer believes it will help to more clearly describe conditions.

4. Current Conditions. Reported weather conditions applicable to the flight will be summarized from all available sources; e.g., METARs/ SPECIs, PIREPs, RAREPs. This element will be omitted if the proposed time of departure is beyond 2 hours, unless the information is specifically requested by the pilot.

5. En Route Forecast. Forecast en route conditions for the proposed route are summarized in logical order; i.e., departure/climbout, en route, and descent. (Heights are MSL, unless the contractions “AGL” or “CIG” are denoted indicating that heights are above ground.)

6. Destination Forecast. The destination forecast for the planned ETA. Any significant changes within 1 hour before and after the planned arrival are included.

7. Winds Aloft. Forecast winds aloft will be provided using degrees of the compass. The briefer will interpolate wind directions and speeds between levels and stations as necessary to provide expected conditions at planned altitudes. (Heights are MSL.) Temperature information will be provided on request.

8. Notices to Airmen (NOTAMs).

(a) Available NOTAM (D) information pertinent to the proposed flight, including special use airspace (SUA) NOTAMs for restricted areas, aerial refueling, and night vision goggles (NVG).

NOTE—Other SUA NOTAMs (D), such as military operations area (MOA), military training route (MTR), and warning area NOTAMs, are considered “upon request” briefing items as indicated in paragraph 7–1–4b10(a).

(b) Prohibited Areas P–40, P–49, P–56, and the special flight rules area (SFRA) for Washington, DC.

(c) FSS briefers do not provide FDC NOTAM information for special instrument approach procedures unless specifically asked. Pilots authorized by the FAA to use special instrument approach procedures must specifically request FDC NOTAM information for these procedures.

NOTE—NOTAM information may be combined with current conditions when the briefer believes it is logical to do so.

NOTE—NOTAM (D) information and FDC NOTAMs which have been published in the Notices to Airmen Publication are not included in pilot briefings unless a review of this publication is specifically requested by the pilot. For complete flight information you are urged to review the printed NOTAMs in the Notices to Airmen Publication and the A/FD in addition to obtaining a briefing.

9. ATC Delays. Any known ATC delays and flow control advisories which might affect the proposed flight.

10. Pilots may obtain the following from flight service station briefers upon request:

(a) Information on SUA and SUA–related airspace, except those listed in paragraph 7–1–4b8.
of information that may provide this specific guidance include manufacturer’s manuals, training programs, and reference guides.

(b) FIS should not serve as the sole source of aviation weather and other operational information. ATC, FSSs, and, if applicable, AOCC VHF/HF voice remain as a redundant method of communicating aviation weather, NOTAMs, and other operational information to aircraft in flight. FIS augments these traditional ATC/FSS/AOCC services and, for some products, offers the advantage of being displayed as graphical information. By using FIS for orientation, the usefulness of information received from conventional means may be enhanced. For example, FIS may alert the pilot to specific areas of concern that will more accurately focus requests made to FSS or AOCC for inflight updates or similar queries made to ATC.

(c) The airspace and aeronautical environment is constantly changing. These changes occur quickly and without warning. Critical operational decisions should be based on use of the most current and appropriate data available. When differences exist between FIS and information obtained by voice communication with ATC, FSS, and/or AOCC (if applicable), pilots are cautioned to use the most recent data from the most authoritative source.

(d) FIS aviation weather products (for example, graphical ground-based radar precipitation depictions) are not appropriate for tactical (typical timeframe of less than 3 minutes) avoidance of severe weather such as negotiating a path through a weather hazard area. FIS supports strategic (typical timeframe of 20 minutes or more) weather decisionmaking such as route selection to avoid a weather hazard area in its entirety. The misuse of information beyond its applicability may place the pilot and aircraft in jeopardy. In addition, FIS should never be used in lieu of an individual preflight weather and flight planning briefing.

(e) DLSP offer numerous MET and AI products with information that can be layered on top of each other. Pilots need to be aware that too much information can have a negative effect on their cognitive work load. Pilots need to manage the amount of information to a level that offers the most pertinent information to that specific flight without creating a cockpit distraction. Pilots may need to adjust the amount of information based on numerous factors including, but not limited to, the phase of flight, single pilot operation, autopilot availability, class of airspace, and the weather conditions encountered.

(f) FIS NOTAM products, including Temporary Flight Restriction (TFR) information, are advisory-use information and are intended for situational awareness purposes only. Cockpit displays of this information are not appropriate for tactical navigation – pilots should stay clear of any geographic area displayed as a TFR NOTAM. Pilots should contact FSSs and/or ATC while en route to obtain updated information and to verify the cockpit display of NOTAM information.

(g) FIS supports better pilot decisionmaking by increasing situational awareness. Better decision-making is based on using information from a variety of sources. In addition to FIS, pilots should take advantage of other weather/NAS status sources, including, briefings from Flight Service Stations, FAA’s en route “Flight Watch” service, data from other air traffic control facilities, airline operation control centers, pilot reports, as well as their own observations.

(h) FAA’s Flight Information Service-Broadcast (FIS-B).

(1) FIS–B is a ground–based broadcast service provided through the FAA’s Automatic Dependent Surveillance–Broadcast (ADS-B) Services Universal Access Transceiver (UAT) network. The service provides users with a 978 MHz data link capability when operating within range and line–of–sight of a transmitting ground station. FIS–B enables users of properly–equipped aircraft to receive and display a suite of broadcast weather and aeronautical information products.

(2) The following list represents the initial suite of text and graphical products available through FIS–B and provided free–of–charge. Detailed information concerning FIS–B meteorological products can be found in Advisory Circular 00–45, Aviation Weather Services, and AC 00-63, Use of Cockpit Displays of Digital Weather and Aeronautical Information. Information on Special Use Airspace (SUA), Temporary Flight Restriction (TFR), and Notice to Airmen (NOTAM) products can be found in Chapters 3, 4 and 5 of this manual.
[a] Text: Aviation Routine Weather Report (METAR) and Special Aviation Report (SPECI);

[b] Text: Pilot Weather Report (PIREP);

c Text: Winds and Temperatures Aloft;

[d] Text: Terminal Aerodrome Forecast (TAF) and amendments;

[e] Text: Notice to Airmen (NOTAM) Distant and Flight Data Center;

[f] Text/Graphic: Airmen’s Meteorological Conditions (AIRMET);

[g] Text/Graphic: Significant Meteorological Conditions (SIGMET);

[h] Text/Graphic: Convective SIGMET;

[i] Text/Graphic: Special Use Airspace (SUA);

[j] Text/Graphic: Temporary Flight Restriction (TFR) NOTAM; and

[k] Graphic: NEXRAD Composite Reflectivity Products (Regional and National).

(3) Users of FIS–B should familiarize themselves with the operational characteristics and limitations of the system, including: system architecture; service environment; product lifecycles; modes of operation; and indications of system failure.

(4) FIS–B products are updated and transmitted at specific intervals based primarily on product issuance criteria. Update intervals are defined as the rate at which the product data is available from the source for transmission. Transmission intervals are defined as the amount of time within which a new or updated product transmission must be completed and/or the rate or repetition interval at which the product is rebroadcast. Update and transmission intervals for each product are provided in TBL 7–1–1.

(5) Where applicable, FIS–B products include a look–ahead range expressed in nautical miles (NM) for three service domains: Airport Surface; Terminal Airspace; and Enroute/Gulf–of–Mexico (GOMEX). TBL 7–1–2 provides service domain availability and look–ahead ranging for each FIS–B product.

(6) Prior to using this capability, users should familiarize themselves with the operation of FIS–B avionics by referencing the applicable User’s Guides. Guidance concerning the interpretation of information displayed should be obtained from the appropriate avionics manufacturer.

(7) FIS–B malfunctions not attributed to aircraft system failures or covered by active NOTAM should be reported by radio or telephone to the nearest FSS facility.

b. Non–FAA FIS Systems. Several commercial vendors also provide customers with FIS data over both the aeronautical spectrum and on other frequencies using a variety of data link protocols. In some cases, the vendors provide only the communications system that carries customer messages, such as the Aircraft Communications Addressing and Reporting System (ACARS) used by many air carrier and other operators.

1. Operators using non–FAA FIS data for inflight weather and other operational information should ensure that the products used conform to FAA/NWS standards. Specifically, aviation weather and NAS status information should meet the following criteria:

(a) The products should be either FAA/NWS “accepted” aviation weather reports or products, or based on FAA/NWS accepted aviation weather reports or products. If products are used which do not meet this criteria, they should be so identified. The operator must determine the applicability of such products to their particular flight operations.

(b) In the case of a weather product which is the result of the application of a process which alters the form, function or content of the base FAA/NWS accepted weather product(s), that process, and any limitations to the application of the resultant product, should be described in the vendor’s user guidance material.

2. An example would be a NEXRAD radar composite/mosaic map, which has been modified by changing the scaling resolution. The methodology of assigning reflectivity values to the resultant image components should be described in the vendor’s guidance material to ensure that the user can accurately interpret the displayed data.
TBL 7–1–1

FIS–B Over UAT Product Update and Transmission Intervals

<table>
<thead>
<tr>
<th>Product</th>
<th>FIS-B Over UAT Service Update Intervals<sup>1</sup></th>
<th>FIS-B Service Transmission Intervals<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRMET</td>
<td>As Available</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Convective SIGMET</td>
<td>As Available</td>
<td>5 minutes</td>
</tr>
<tr>
<td>METARs/SPECIs</td>
<td>1 minute/As Available</td>
<td>5 minutes</td>
</tr>
<tr>
<td>NEXRAD Composite Reflectivity (CONUS)</td>
<td>15 minutes</td>
<td>15 minutes</td>
</tr>
<tr>
<td>NEXRAD Composite Reflectivity (Regional)</td>
<td>5 minutes</td>
<td>2.5 minutes</td>
</tr>
<tr>
<td>NOTAMs-D/FDC/TFR</td>
<td>As Available</td>
<td>10 minutes</td>
</tr>
<tr>
<td>PIREP</td>
<td>As Available</td>
<td>10 minutes</td>
</tr>
<tr>
<td>SIGMET</td>
<td>As Available</td>
<td>5 minutes</td>
</tr>
<tr>
<td>SUA Status</td>
<td>As Available</td>
<td>10 minutes</td>
</tr>
<tr>
<td>TAF/AMEND</td>
<td>8 Hours/As Available</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Temperatures Aloft</td>
<td>12 Hours</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Winds Aloft</td>
<td>12 Hours</td>
<td>10 minutes</td>
</tr>
</tbody>
</table>

¹ The *Update Interval* is the rate at which the product data is available from the source.

² The *Transmission Interval* is the amount of time within which a new or updated product transmission must be completed and the rate or repetition interval at which the product is rebroadcast.
7–1–12. Weather Observing Programs

a. Manual Observations. With only a few exceptions, these reports are from airport locations staffed by FAA or NWS personnel who manually observe, perform calculations, and enter these observations into the (WMSCR) communication system. The format and coding of these observations are contained in Paragraph 7–1–30, Key to Aviation Routine Weather Report (METAR) and Aerodrome Forecasts (TAF).

1. Automated weather reporting systems are increasingly being installed at airports. These systems consist of various sensors, a processor, a computer-generated voice subsystem, and a transmitter to broadcast local, minute-by-minute weather data directly to the pilot.

 NOTE—
 When the barometric pressure exceeds 31.00 inches Hg., see Paragraph 7–2–2, Procedures, for the altimeter setting procedures.

2. The AWOS observations will include the prefix “AUTO” to indicate that the data are derived from an automated system. Some AWOS locations will be augmented by certified observers who will provide weather and obstruction to vision information in the remarks of the report when the reported visibility is less than 7 miles. These sites, along with the hours of augmentation, are to be published in the A/FD. Augmentation is identified in the observation as “OBSERVER WEATHER.” The AWOS wind speed, direction and gusts, temperature, dew point,
of light is emitted from the projector and is measured by the receiver. Any obscuring matter such as rain, snow, dust, fog, haze or smoke reduces the light intensity arriving at the receiver. The resultant intensity measurement is then converted to an RVR value by the signal data converter. These values are displayed by readout equipment in the associated air traffic facility and updated approximately once every minute for controller issuance to pilots.

c. The signal data converter receives information on the high intensity runway edge light setting in use (step 3, 4, or 5); transmission values from the transmissometer and the sensing of day or night conditions. From the three data sources, the system will compute appropriate RVR values.

d. An RVR transmissometer established on a 250 foot baseline provides digital readouts to a minimum of 600 feet, which are displayed in 200 foot increments to 3,000 feet and in 500 foot increments from 3,000 feet to a maximum value of 6,000 feet.

e. RVR values for Category IIIa operations extend down to 700 feet RVR; however, only 600 and 800 feet are reportable RVR increments. The 800 RVR reportable value covers a range of 701 feet to 900 feet and is therefore a valid minimum indication of Category IIIa operations.

f. Approach categories with the corresponding minimum RVR values. (See TBL 7−1−6.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Visibility (RVR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonprecision</td>
<td>2,400 feet</td>
</tr>
<tr>
<td>Category I</td>
<td>1,800 feet*</td>
</tr>
<tr>
<td>Category II</td>
<td>1,000 feet</td>
</tr>
<tr>
<td>Category IIIa</td>
<td>700 feet</td>
</tr>
<tr>
<td>Category IIIb</td>
<td>150 feet</td>
</tr>
<tr>
<td>Category IIIc</td>
<td>0 feet</td>
</tr>
</tbody>
</table>

* 1,400 feet with special equipment and authorization

g. Ten minute maximum and minimum RVR values for the designated RVR runway are reported in the body of the aviation weather report when the prevailing visibility is less than one mile and/or the RVR is 6,000 feet or less. ATCTs report RVR when the prevailing visibility is 1 mile or less and/or the RVR is 6,000 feet or less.

h. Details on the requirements for the operational use of RVR are contained in FAA AC 97−1, “Runway Visual Range (RVR).” Pilots are responsible for compliance with minimums prescribed for their class of operations in the appropriate CFRs and/or operations specifications.

i. RVR values are also measured by forward scatter meters mounted on 14−foot frangible fiberglass poles. A full RVR system consists of:

1. Forward scatter meter with a transmitter, receiver and associated items.
2. A runway light intensity monitor (RLIM).
3. An ambient light sensor (ALS).
4. A data processor unit (DPU).
5. Controller display (CD).

j. The forward scatter meter is mounted on a 14−foot frangible pole. Infrared light is emitted from the transmitter and received by the receiver. Any obscuring matter such as rain, snow, dust, fog, haze or smoke increases the amount of scattered light reaching the receiver. The resulting measurement along with inputs from the runway light intensity monitor and the ambient light sensor are forwarded to the DPU which calculates the proper RVR value. The RVR values are displayed locally and remotely on controller displays.

k. The runway light intensity monitors both the runway edge and centerline light step settings (steps 1 through 5). Centerline light step settings are used for CAT IIIb operations. Edge Light step settings are used for CAT I, II, and IIIa operations.

l. New Generation RVRs can measure and display RVR values down to the lowest limits of Category IIIb operations (150 feet RVR). RVR values are displayed in 100 feet increments and are reported as follows:

1. 100−feet increments for products below 800 feet.
2. 200−feet increments for products between 800 feet and 3,000 feet.
3. 500−feet increments for products between 3,000 feet and 6,500 feet.
4. 25−meter increments for products below 150 meters.
5. 50−meter increments for products between 150 meters and 800 meters.
6. 100-meter increments for products between 800 meters and 1,200 meters.
7. 200-meter increments for products between 1,200 meters and 2,000 meters.

7–1–16. Reporting of Cloud Heights

a. Ceiling, by definition in the CFRs and as used in aviation weather reports and forecasts, is the height above ground (or water) level of the lowest layer of clouds or obscuring phenomenon that is reported as “broken,” “overcast,” or “obscuration,” e.g., an aerodrome forecast (TAF) which reads “BKN030” refers to height above ground level. An area forecast which reads “BKN030” indicates that the height is above mean sea level.

REFERENCE—
AIM, Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR), Paragraph 7–1–30 defines “broken,” “overcast,” and “obscuration.”

b. Pilots usually report height values above MSL, since they determine heights by the altimeter. This is taken in account when disseminating and otherwise applying information received from pilots. (“Ceiling” heights are always above ground level.) In reports disseminated as PIREPs, height references are given the same as received from pilots, that is, above MSL.

c. In area forecasts or inflight advisories, ceilings are denoted by the contraction “CIG” when used with sky cover symbols as in “LWRG TO CIG OVC005,” or the contraction “AGL” after, the forecast cloud height value. When the cloud base is given in height above MSL, it is so indicated by the contraction “MSL” or “ASL” following the height value. The heights of clouds tops, freezing level, icing, and turbulence are always given in heights above ASL or MSL.

7–1–17. Reporting Prevailing Visibility

a. Surface (horizontal) visibility is reported in METAR reports in terms of statute miles and increments thereof; e.g., 1/16, 1/8, 3/16, 1/4, 5/16, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 1 1/8, etc. (Visibility reported by an unaugmented automated site is reported differently than in a manual report, i.e., ASOS/AWSS: 0, 1/16, 1/8, 1/4, 1/2, 3/4, 1, 1 1/4, 1 1/2, 1 3/4, 2, 2 1/2, 3, 4, 5, etc., AWOS: M1/4, 1/4, 1/2, 3/4, 1, 1 1/4, 1 1/2, 1 3/4, 2, 2 1/2, 3, 4, 5, etc.) Visibility is determined through the ability to see and identify preselected and prominent objects at a known distance from the usual point of observation. Visibilities which are determined to be less than 7 miles, identify the obscuring atmospheric condition; e.g., fog, haze, smoke, etc., or combinations thereof.

b. Prevailing visibility is the greatest visibility equaled or exceeded throughout at least one half of the horizon circle, not necessarily contiguous. Segments of the horizon circle which may have a significantly different visibility may be reported in the remarks section of the weather report; i.e., the southeastern quadrant of the horizon circle may be determined to be 2 miles in mist while the remaining quadrants are determined to be 3 miles in mist.

c. When the prevailing visibility at the usual point of observation, or at the tower level, is less than 4 miles, certificated tower personnel will take visibility observations in addition to those taken at the usual point of observation. The lower of these two values will be used as the prevailing visibility for aircraft operations.

7–1–18. Estimating Intensity of Rain and Ice Pellets

a. Rain

1. Light. From scattered drops that, regardless of duration, do not completely wet an exposed surface up to a condition where individual drops are easily seen.

2. Moderate. Individual drops are not clearly identifiable; spray is observable just above pavements and other hard surfaces.

3. Heavy. Rain seemingly falls in sheets; individual drops are not identifiable; heavy spray to height of several inches is observed over hard surfaces.

b. Ice Pellets

1. Light. Scattered pellets that do not completely cover an exposed surface regardless of duration. Visibility is not affected.

2. Moderate. Slow accumulation on ground. Visibility reduced by ice pellets to less than 7 statute miles.

3. Heavy. Rapid accumulation on ground. Visibility reduced by ice pellets to less than 3 statute miles.
7–1–19. Estimating Intensity of Snow or Drizzle (Based on Visibility)

a. **Light.** Visibility more than 1/2 statute mile.

b. **Moderate.** Visibility from more than 1/4 statute mile to 1/2 statute mile.

c. **Heavy.** Visibility 1/4 statute mile or less.

7–1–20. Pilot Weather Reports (PIREPs)

a. FAA air traffic facilities are required to solicit PIREPs when the following conditions are reported or forecast: ceilings at or below 5,000 feet; visibility at or below 5 miles (surface or aloft); thunderstorms and related phenomena; icing of light degree or greater; turbulence of moderate degree or greater; wind shear and reported or forecast volcanic ash clouds.

b. Pilots are urged to cooperate and promptly volunteer reports of these conditions and other atmospheric data such as: cloud bases, tops and layers; flight visibility; precipitation; visibility restrictions such as haze, smoke and dust; wind at altitude; and temperature aloft.

c. PIREPs should be given to the ground facility with which communications are established; i.e., EFAS, FSS, ARTCC, or terminal ATC. One of the primary duties of EFAS facilities, radio call “FLIGHT WATCH,” is to serve as a collection point for the exchange of PIREPs with en route aircraft.

d. If pilots are not able to make PIREPs by radio, reporting upon landing of the inflight conditions encountered to the nearest FSS or Weather Forecast Office will be helpful. Some of the uses made of the reports are:

1. The ATCT uses the reports to expedite the flow of air traffic in the vicinity of the field and for hazardous weather avoidance procedures.

2. The FSS uses the reports to brief other pilots, to provide inflight advisories, and weather avoidance information to en route aircraft.

3. The ARTCC uses the reports to expedite the flow of en route traffic, to determine most favorable altitudes, and to issue hazardous weather information within the center’s area.

4. The NWS uses the reports to verify or amend conditions contained in aviation forecast and advisories. In some cases, pilot reports of hazardous conditions are the triggering mechanism for the issuance of advisories. They also use the reports for pilot weather briefings.

5. The NWS, other government organizations, the military, and private industry groups use PIREPs for research activities in the study of meteorological phenomena.

6. All air traffic facilities and the NWS forward the reports received from pilots into the weather distribution system to assure the information is made available to all pilots and other interested parties.

e. The FAA, NWS, and other organizations that enter PIREPs into the weather reporting system use the format listed in TBL 7–1–7. Items 1 through 6 are included in all transmitted PIREPs along with one or more of items 7 through 13. Although the PIREP should be as complete and concise as possible, pilots should not be overly concerned with strict format or phraseology. The important thing is that the information is relayed so other pilots may benefit from your observation. If a portion of the report needs clarification, the ground station will request the information. Completed PIREPs will be transmitted to weather circuits as in the following examples:
PIREP Element Code Chart

<table>
<thead>
<tr>
<th>PIREP ELEMENT</th>
<th>PIREP CODE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3-letter station identifier</td>
<td>XXX</td>
<td>Nearest weather reporting location to the reported phenomenon</td>
</tr>
<tr>
<td>2. Report type</td>
<td>UA or UUA</td>
<td>Routine or Urgent PIREP</td>
</tr>
<tr>
<td>3. Location</td>
<td>/OV</td>
<td>In relation to a VOR</td>
</tr>
<tr>
<td>4. Time</td>
<td>/TM</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>5. Altitude</td>
<td>/FL</td>
<td>Essential for turbulence and icing reports</td>
</tr>
<tr>
<td>6. Type Aircraft</td>
<td>/TP</td>
<td>Essential for turbulence and icing reports</td>
</tr>
<tr>
<td>7. Sky cover</td>
<td>/SK</td>
<td>Cloud height and coverage (sky clear, few, scattered, broken, or overcast)</td>
</tr>
<tr>
<td>8. Weather</td>
<td>/WX</td>
<td>Flight visibility, precipitation, restrictions to visibility, etc.</td>
</tr>
<tr>
<td>9. Temperature</td>
<td>/TA</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>10. Wind</td>
<td>/WV</td>
<td>Direction in degrees magnetic north and speed in knots</td>
</tr>
<tr>
<td>11. Turbulence</td>
<td>/TB</td>
<td>See AIM paragraph 7–1–23</td>
</tr>
<tr>
<td>12. Icing</td>
<td>/IC</td>
<td>See AIM paragraph 7–1–22</td>
</tr>
<tr>
<td>13. Remarks</td>
<td>/RM</td>
<td>For reporting elements not included or to clarify previously reported items</td>
</tr>
</tbody>
</table>

EXAMPLE–

1. KCMH UA /OV APE 230010/TM 1516/FL085/TP BE20/KBK BKN065/WX FV03SM HZ FU/FA 20/TB LGT

NOTE–

1. One zero miles southwest of Appleton VOR; time 1516 UTC; altitude eight thousand five hundred; aircraft type BE200; bases of the broken cloud layer is six thousand five hundred; flight visibility 3 miles with haze and smoke; air temperature 20 degrees Celsius; light turbulence.

EXAMPLE–

NOTE–

2. From 15 miles north of Beckley VOR to Charleston VOR; time 1815 UTC; altitude 12,000 feet; type aircraft, BE-99; in clouds; rain; temperature minus 8 Celsius; wind 290 degrees magnetic at 30 knots; light to moderate turbulence; light rime icing during climb northwestbound from Roanoke, VA, between 8,000 and 10,000 feet at 1750 UTC.

7–1–21. PIREPs Relating to Airframe Icing

- a. The effects of ice on aircraft are cumulative—thrust is reduced, drag increases, lift lessens, and weight increases. The results are an increase in stall speed and a deterioration of aircraft performance. In extreme cases, 2 to 3 inches of ice can form on the leading edge of the airfoil in less than 5 minutes. It takes but 1/2 inch of ice to reduce the lifting power of some aircraft by 50 percent and increases the frictional drag by an equal percentage.

 b. A pilot can expect icing when flying in visible precipitation, such as rain or cloud droplets, and the temperature is between +02 and −10 degrees Celsius. When icing is detected, a pilot should do one of two things, particularly if the aircraft is not equipped with deicing equipment; get out of the area of precipitation; or go to an altitude where the temperature is above freezing. This “warmer” altitude may not always be a lower altitude. Proper preflight action includes obtaining information on the freezing level and the above freezing levels in precipitation areas. Report icing to ATC, and if operating IFR, request new routing or altitude if icing will be a hazard. Be sure to give the type of aircraft to ATC when reporting icing. The following describes how to report icing conditions.

 1. Trace. Ice becomes perceptible. Rate of accumulation slightly greater than sublimation. Deicing/anti-icing equipment is not utilized unless encountered for an extended period of time (over 1 hour).
b. There is no useful correlation between the external visual appearance of thunderstorms and the severity or amount of turbulence or hail within them. The visible thunderstorm cloud is only a portion of a turbulent system whose updrafts and downdrafts often extend far beyond the visible storm cloud. Severe turbulence can be expected up to 20 miles from severe thunderstorms. This distance decreases to about 10 miles in less severe storms.

c. Weather radar, airborne or ground based, will normally reflect the areas of moderate to heavy precipitation (radar does not detect turbulence). The frequency and severity of turbulence generally increases with the radar reflectivity which is closely associated with the areas of highest liquid water content of the storm. NO FLIGHT PATH THROUGH AN AREA OF STRONG OR VERY STRONG RADAR ECHOES SEPARATED BY 20–30 MILES OR LESS MAY BE CONSIDERED FREE OF SEVERE TURBULENCE.

d. Turbulence beneath a thunderstorm should not be minimized. This is especially true when the relative humidity is low in any layer between the surface and 15,000 feet. Then the lower altitudes may be characterized by strong out flowing winds and severe turbulence.

e. The probability of lightning strikes occurring to aircraft is greatest when operating at altitudes where temperatures are between minus 5 degrees Celsius and plus 5 degrees Celsius. Lightning can strike aircraft flying in the clear in the vicinity of a thunderstorm.

f. METAR reports do not include a descriptor for severe thunderstorms. However, by understanding severe thunderstorm criteria, i.e., 50 knot winds or 3/4 inch hail, the information is available in the report to know that one is occurring.

g. Current weather radar systems are able to objectively determine precipitation intensity. These precipitation intensity areas are described as “light,” “moderate,” “heavy,” and “extreme.”

REFERENCE—
Pilot/Controller Glossary, Precipitation Radar Weather Descriptions.

EXAMPLE—
1. Alert provided by an ATC facility to an aircraft: (aircraft identification) EXTREME precipitation between ten o’clock and two o’clock, one five miles. Precipitation area is two five miles in diameter.

2. Alert provided by an FSS: (aircraft identification) EXTREME precipitation two zero miles west of Atlanta V−O−R, two five miles wide, moving east at two zero knots, tops flight level three niner zero.

7–1–29. Thunderstorm Flying

a. Thunderstorm Avoidance. Never regard any thunderstorm lightly, even when radar echoes are of light intensity. Avoiding thunderstorms is the best policy. Following are some Do’s and Don’ts of thunderstorm avoidance:

1. Don’t land or takeoff in the face of an approaching thunderstorm. A sudden gust front of low level turbulence could cause loss of control.

2. Don’t attempt to fly under a thunderstorm even if you can see through to the other side. Turbulence and wind shear under the storm could be hazardous.

3. Don’t attempt to fly under the anvil of a thunderstorm. There is a potential for severe and extreme clear air turbulence.

4. Don’t fly without airborne radar into a cloud mass containing scattered embedded thunderstorms. Scattered thunderstorms not embedded usually can be visually circumnavigated.

5. Don’t trust the visual appearance to be a reliable indicator of the turbulence inside a thunderstorm.

6. Don’t assume that ATC will offer radar navigation guidance or deviations around thunderstorms.

7. Don’t use data-linked weather next generation weather radar (NEXRAD) mosaic imagery as the sole means for negotiating a path through a thunderstorm area (tactical maneuvering).

8. Do remember that the data-linked NEXRAD mosaic imagery shows where the weather was, not where the weather is. The weather conditions may be 15 to 20 minutes older than the age indicated on the display.

9. Do listen to chatter on the ATC frequency for Pilot Weather Reports (PIREP) and other aircraft requesting to deviate or divert.

10. Do ask ATC for radar navigation guidance or to approve deviations around thunderstorms, if needed.
11. Do use data-linked weather NEXRAD mosaic imagery (for example, Flight Information Service-Broadcast (FIS-B)) for route selection to avoid thunderstorms entirely (strategic maneuvering).

12. Do advise ATC, when switched to another controller, that you are deviating for thunderstorms before accepting to rejoin the original route.

13. Do ensure that after an authorized weather deviation, before accepting to rejoin the original route, that the route of flight is clear of thunderstorms.

14. Do avoid by at least 20 miles any thunderstorm identified as severe or giving an intense radar echo. This is especially true under the anvil of a large cumulonimbus.

15. Do circumnavigate the entire area if the area has 6/10 thunderstorm coverage.

16. Do remember that vivid and frequent lightning indicates the probability of a severe thunderstorm.

17. Do regard as extremely hazardous any thunderstorm with tops 35,000 feet or higher whether the top is visually sighted or determined by radar.

18. Do give a PIREP for the flight conditions.

19. Do divert and wait out the thunderstorms on the ground if unable to navigate around an area of thunderstorms.

20. Do contact Flight Service/Flight Watch for assistance in avoiding thunderstorms. Flight Service/Flight Watch specialists have NEXRAD mosaic radar imagery and NEXRAD single site radar with unique features such as base and composite reflectivity, echo tops, and VAD wind profiles.

b. If you cannot avoid penetrating a thunderstorm, following are some Do’s before entering the storm:

1. Tighten your safety belt, put on your shoulder harness (if installed), if and secure all loose objects.

2. Plan and hold the course to take the aircraft through the storm in a minimum time.

3. To avoid the most critical icing, establish a penetration altitude below the freezing level or above the level of -15°C.

4. Verify that pitot heat is on and turn on carburetor heat or jet engine anti-ice. Icing can be rapid at any altitude and cause almost instantaneous power failure and/or loss of airspeed indication.

5. Establish power settings for turbulence penetration airspeed recommended in the aircraft manual.

6. Turn up cockpit lights to highest intensity to lessen temporary blindness from lightning.

7. If using automatic pilot, disengage Altitude Hold Mode and Speed Hold Mode. The automatic altitude and speed controls will increase maneuvers of the aircraft thus increasing structural stress.

8. If using airborne radar, tilt the antenna up and down occasionally. This will permit the detection of other thunderstorm activity at altitudes other than the one being flown.

c. Following are some Do’s and Don’ts during the thunderstorm penetration:

1. Do keep your eyes on your instruments. Looking outside the cockpit can increase danger of temporary blindness from lightning.

2. Don’t change power settings; maintain settings for the recommended turbulence penetration airspeed.

3. Do maintain constant attitude. Allow the altitude and airspeed to fluctuate.

4. Don’t turn back once you are in the thunderstorm. A straight course through the storm most likely will get the aircraft out of the hazards most quickly. In addition, turning maneuvers increase stress on the aircraft.
4. Protect your aircraft while on the ground, if possible, from sleet and freezing rain by taking advantage of aircraft hangars.

5. Take full advantage of the opportunities available at airports for deicing. Do not refuse deicing services simply because of cost.

6. Always consider canceling or delaying a flight if weather conditions do not support a safe operation.

c. If you haven’t already developed a set of Standard Operating Procedures for cold weather operations, they should include:

1. Procedures based on information that is applicable to the aircraft operated, such as AFM limitations and procedures;

2. Concise and easy to understand guidance that outlines best operational practices;

3. A systematic procedure for recognizing, evaluating and addressing the associated icing risk, and offer clear guidance to mitigate this risk;

4. An aid (such as a checklist or reference cards) that is readily available during normal day–to–day aircraft operations.

d. There are several sources for guidance relating to airframe icing, including:

2. http://www.ibac.org/is–bao/isbao.htm

6. AC 135–9, FAR Part 135 Icing Limitations.

7. AC 120–60, Ground Deicing and Anti–icing Program.

8. AC 135–16, Ground Deicing and Anti–icing Training and Checking.

The FAA Approved Deicing Program Updates is published annually as a Flight Standards Information Bulletin for Air Transportation and contains detailed information on deicing and anti–icing procedures and holdover times. It may be accessed at the following web site by selecting the current year’s information bulletins:

http://www.faa.gov/library/manuals/examiners_inspectors/8400/fsat

7–5–15. Avoid Flight in the Vicinity of Exhaust Plumes (Smoke Stacks and Cooling Towers)

a. Flight Hazards Exist Around Exhaust Plumes. Exhaust plumes are defined as visible or invisible emissions from power plants, industrial production facilities, or other industrial systems that release large amounts of vertically directed unstable gases (effluent). High temperature exhaust plumes can cause significant air disturbances such as turbulence and vertical shear. Other identified potential hazards include, but are not necessarily limited to: reduced visibility, oxygen depletion, engine particulate contamination, exposure to gaseous oxides, and/or icing. Results of encountering a plume may include airframe damage, aircraft upset, and/or engine damage/failure. These hazards are most critical during low altitude flight in calm and cold air, especially in and around approach and departure corridors or airport traffic areas.

Whether plumes are visible or invisible, the total extent of their turbulent affect is difficult to predict. Some studies do predict that the significant turbulent effects of an exhaust plume can extend to heights of over 1,000 feet above the height of the top of the stack or cooling tower. Any effects will be more pronounced in calm stable air where the plume is very hot and the surrounding area is still and cold. Fortunately, studies also predict that any amount of crosswind will help to dissipate the effects. However, the size of the tower or stack is not a good indicator of the predicted effect the plume may produce. The major effects are related to the heat or size of the plume effluent, the ambient air temperature, and the wind speed affecting the plume. Smaller aircraft can expect to feel an effect at a higher altitude than heavier aircraft.

b. When able, a pilot should steer clear of exhaust plumes by flying on the upwind side of smokestacks or cooling towers. When a plume is visible via smoke or a condensation cloud, remain clear and realize a plume may have both visible and invisible characteristics. Exhaust stacks without visible plumes may still be in full operation, and airspace in the vicinity should be treated with caution.
As with mountain wave turbulence or clear air turbulence, an invisible plume may be encountered unexpectedly. Cooling towers, power plant stacks, exhaust fans, and other similar structures are depicted in FIG 7–5–2.

Pilots are encouraged to exercise caution when flying in the vicinity of exhaust plumes. Pilots are also encouraged to reference the Airport/Facility Directory where amplifying notes may caution pilots and identify the location of structure(s) emitting exhaust plumes.

The best available information on this phenomenon must come from pilots via the PIREP reporting procedures. All pilots encountering hazardous plume conditions are urgently requested to report time, location, and intensity (light, moderate, severe, or extreme) of the element to the FAA facility with which they are maintaining radio contact. If time and conditions permit, elements should be reported according to the standards for other PIREPs and position reports (see Paragraph 7–1–23, PIREPS Relating to Turbulence).

FIG 7–5–2
Plumes
ATC will not interpret a casual remark to mean that "I wish to report a near midair collision.""

d. **Where to File Reports.** Pilots and/or flight crew members involved in NMAC occurrences are urged to report each incident immediately:

1. By radio or telephone to the nearest FAA ATC facility or FSS.
2. In writing, in lieu of the above, to the nearest Flight Standards District Office (FSDO).

e. **Items to be Reported.**

1. Date and time (UTC) of incident.
2. Location of incident and altitude.
3. Identification and type of reporting aircraft, aircrew destination, name and home base of pilot.
4. Identification and type of other aircraft, aircrew destination, name and home base of pilot.
5. Type of flight plans; station altimeter setting used.
6. Detailed weather conditions at altitude or flight level.
7. Approximate courses of both aircraft: indicate if one or both aircraft were climbing or descending.
8. Reported separation in distance at first sighting, proximity at closest point horizontally and vertically, and length of time in sight prior to evasive action.
9. Degree of evasive action taken, if any (from both aircraft, if possible).
10. Injuries, if any.

f. **Investigation.** The FSDO in whose area the incident occurred is responsible for the investigation and reporting of NMACs.

g. **Existing radar, communication, and weather data will be examined in the conduct of the investigation.** When possible, all cockpit crew members will be interviewed regarding factors involving the NMAC incident. Air traffic controllers will be interviewed in cases where one or more of the involved aircraft was provided ATC service. Both flight and ATC procedures will be evaluated. When the investigation reveals a violation of an FAA regulation, enforcement action will be pursued.

7−6−4. Unidentified Flying Object (UFO) Reports

a. Persons wanting to report UFO/unexplained phenomena activity should contact a UFO/unexplained phenomena reporting data collection center, such as the National UFO Reporting Center, etc.

b. If concern is expressed that life or property might be endangered, report the activity to the local law enforcement department.

7−6−5. Safety Alerts For Operators (SAFO) and Information For Operators (InFO)

a. SAFOs contain important safety information that is often time-critical. A SAFO may contain information and/or recommended (non-regulatory) action to be taken by the respective operators or parties identified in the SAFO. The audience for SAFOs varies with each subject and may include: Air carrier certificate holders, air operator certificate holders, general aviation operators, directors of safety, directors of operations, directors of maintenance, fractional ownership program managers, training center managers, accountable managers at repair stations, and other parties as applicable.

b. InFOs are similar to SAFOs, but contain valuable information for operators that should help them meet administrative requirements or certain regulatory requirements with relatively low urgency or impact in safety.

c. The SAFO and InFO system provides a means to rapidly distribute this information to operators and can be found at:

 - http://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo
 - http://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/info

 or search keyword FAA SAFO or FAA INFO. Free electronic subscription is available on the “ALL SAFOS” or “ALL InFOs” page of the website.
PILOT/CONTROLLER GLOSSARY

PURPOSE

a. This Glossary was compiled to promote a common understanding of the terms used in the Air Traffic Control system. It includes those terms which are intended for pilot/controller communications. Those terms most frequently used in pilot/controller communications are printed in *bold italics*. The definitions are primarily defined in an operational sense applicable to both users and operators of the National Airspace System. Use of the Glossary will preclude any misunderstandings concerning the system’s design, function, and purpose.

b. Because of the international nature of flying, terms used in the Lexicon, published by the International Civil Aviation Organization (ICAO), are included when they differ from FAA definitions. These terms are followed by “[ICAO].” For the reader’s convenience, there are also cross references to related terms in other parts of the Glossary and to other documents, such as the Code of Federal Regulations (CFR) and the Aeronautical Information Manual (AIM).

c. This Glossary will be revised, as necessary, to maintain a common understanding of the system.

EXPLANATION OF CHANGES

d. Terms Added:
 ATTENTION ALL USERS PAGE (AAUP)
 RUNWAY ENTRANCE LIGHTS (REL)
 RUNWAY STATUS LIGHTS (RWSL)
 SIMULTANEOUS CLOSE PARALLEL APPROACHES
 SIMULTANEOUS (CONVERGING) DEPENDENT APPROACHES
 SIMULTANEOUS (CONVERGING) INDEPENDENT APPROACHES
 SIMULTANEOUS (PARALLEL) DEPENDENT APPROACHES
 TAKE-OFF HOLD LIGHTS (THL)

e. Terms Deleted:
 AZIMUTH (MLS)
 PARALLEL MLS APPROACHES (See PARALLEL ILS APPROACHES)
 SIMULTANEOUS MLS APPROACHES (See SIMULTANEOUS ILS APPROACHES)

f. Terms Modified:
 AERONAUTICAL CHART
 AREA NAVIGATION (RNAV) GLOBAL POSITIONING SYSTEM (GPS) PRECISION
 RUNWAY MONITOR (PRM) APPROACH
 AUTOLAND APPROACH
 BREAKOUT
 CLOSE PARALLEL RUNWAYS
 COUPLED APPROACH
 DECISION ALTITUDE/DECISION HEIGHT [ICAO Annex 6]
 DECISION HEIGHT
 FINAL APPROACH FIX
 FINAL MONITOR AID (FMA)
 FINAL MONITOR CONTROLLER
 GATE HOLD PROCEDURES
GENERAL AVIATION
GLIDESLOPE INTERCEPT ALTITUDE
ILS PRM APPROACH
LOCALIZER OFFSET
LOCALIZER TYPE DIRECTIONAL AID
LOCALIZER TYPE DIRECTIONAL AID (LDA) PRECISION RUNWAY MONITOR (PRM) APPROACH
MLS CATEGORIES
NO TRANSGRESSION ZONE (NTZ)
NONRADAR
PRECISION APPROACH PROCEDURE
PRECISION RUNWAY MONITOR (PRM) SYSTEM
PRM
RADAR SERVICE
SIMULTANEOUS OFFSET INSTRUMENT APPROACH (SOIA)
THRESHOLD CROSSING HEIGHT

* Editorial/format changes were made where necessary. Revision bars were not used due to the insignificant nature of the changes.
AAI—
(See ARRIVAL AIRCRAFT INTERVAL.)

AAR—
(See AIRPORT ARRIVAL RATE.)

ABBREVIATED IFR FLIGHT PLANS— An authorization by ATC requiring pilots to submit only that information needed for the purpose of ATC. It includes only a small portion of the usual IFR flight plan information. In certain instances, this may be only aircraft identification, location, and pilot request. Other information may be requested if needed by ATC for separation/control purposes. It is frequently used by aircraft which are airborne and desire an instrument approach or by aircraft which are on the ground and desire a climb to VFR-on-top.
(See VFR-ON-TOP.)
(Refer to AIM.)

ABEAM— An aircraft is “abeam” a fix, point, or object when that fix, point, or object is approximately 90 degrees to the right or left of the aircraft track. Abeam indicates a general position rather than a precise point.

ABORT— To terminate a preplanned aircraft maneuver; e.g., an aborted takeoff.

ACC [ICAO]—
(See ICAO term AREA CONTROL CENTER.)

ACCELERATE-STOP DISTANCE AVAILABLE—
The runway plus stopway length declared available and suitable for the acceleration and deceleration of an airplane aborting a takeoff.

ACCELERATE-STOP DISTANCE AVAILABLE [ICAO]— The length of the take-off run available plus the length of the stopway if provided.

ACDO—
(See AIR CARRIER DISTRICT OFFICE.)

ACKNOWLEDGE— Let me know that you have received and understood this message.

ACL—
(See AIRCRAFT LIST.)

ACLS—
(See AUTOMATIC CARRIER LANDING SYSTEM.)

ACL—
(See ACTUAL CALCULATED LANDING TIME.)

ACROBATIC FLIGHT— An intentional maneuver involving an abrupt change in an aircraft’s attitude, an abnormal attitude, or abnormal acceleration not necessary for normal flight.
(See ICAO term ACROBATIC FLIGHT.)
(Refer to 14 CFR Part 91.)

ACROBATIC FLIGHT [ICAO]— Maneuvers intentionally performed by an aircraft involving an abrupt change in its attitude, an abnormal attitude, or an abnormal variation in speed.

ACTIVE RUNWAY—
(See RUNWAY IN USE/ACTIVE RUNWAY/DUTY RUNWAY.)

ACTUAL CALCULATED LANDING TIME— ACLT is a flight’s frozen calculated landing time. An actual time determined at freeze calculated landing time (FCLT) or meter list display interval (MLDI) for the adapted vertex for each arrival aircraft based upon runway configuration, airport acceptance rate, airport arrival delay period, and other metered arrival aircraft. This time is either the vertex time of arrival (VTA) of the aircraft or the tentative calculated landing time (TCLT)/ACLT of the previous aircraft plus the arrival aircraft interval (AAI), whichever is later. This time will not be updated in response to the aircraft’s progress.

ACTUAL NAVIGATION PERFORMANCE (ANP)—
(See REQUIRED NAVIGATION PERFORMANCE.)

ADDITIONAL SERVICES— Advisory information provided by ATC which includes but is not limited to the following:

a. Traffic advisories.

b. Vectors, when requested by the pilot, to assist aircraft receiving traffic advisories to avoid observed traffic.

c. Altitude deviation information of 300 feet or more from an assigned altitude as observed on a verified (reading correctly) automatic altitude readout (Mode C).

d. Advisories that traffic is no longer a factor.
e. Weather and chaff information.
f. Weather assistance.
g. Bird activity information.
h. Holding pattern surveillance. Additional services are provided to the extent possible contingent only upon the controller’s capability to fit them into the performance of higher priority duties and on the basis of limitations of the radar, volume of traffic, frequency congestion, and controller workload. The controller has complete discretion for determining if he/she is able to provide or continue to provide a service in a particular case. The controller’s reason not to provide or continue to provide a service in a particular case is not subject to question by the pilot and need not be made known to him/her.
 (See TRAFFIC ADVISORIES.)
 (Refer to AIM.)

ADF—
 (See AUTOMATIC DIRECTION FINDER.)

ADIZ—
 (See AIR DEFENSE IDENTIFICATION ZONE.)

ADLY—
 (See ARRIVAL DELAY.)

ADMINISTRATOR— The Federal Aviation Administrator or any person to whom he/she has delegated his/her authority in the matter concerned.

ADR—
 (See AIRPORT DEPARTURE RATE.)

ADS [ICAO]—
 (See ICAO term AUTOMATIC DEPENDENT SURVEILLANCE.)

ADS−B—
 (See AUTOMATIC DEPENDENT SURVEILLANCE−BROADCAST.)

ADS−C—
 (See AUTOMATIC DEPENDENT SURVEILLANCE−CONTRACT.)

ADVISE INTENTIONS— Tell me what you plan to do.

ADVISORY— Advice and information provided to assist pilots in the safe conduct of flight and aircraft movement.
 (See ADVISORY SERVICE.)

ADVISORY FREQUENCY— The appropriate frequency to be used for Airport Advisory Service.
 (See LOCAL AIRPORT ADVISORY.)
 (See UNICOM.)
 (Refer to ADVISORY CIRCULAR NO. 90-42.)
 (Refer to AIM.)

ADVISORY SERVICE— Advice and information provided by a facility to assist pilots in the safe conduct of flight and aircraft movement.
 (See ADDITIONAL SERVICES.)
 (See EN ROUTE FLIGHT ADVISORY SERVICE.)
 (See LOCAL AIRPORT ADVISORY.)
 (See RADAR ADVISORY.)
 (See SAFETY ALERT.)
 (See TRAFFIC ADVISORIES.)
 (Refer to AIM.)

AERIAL REFUELING— A procedure used by the military to transfer fuel from one aircraft to another during flight.
 (Refer to VFR/IFR Wall Planning Charts.)

AERODROME— A defined area on land or water (including any buildings, installations and equipment) intended to be used either wholly or in part for the arrival, departure, and movement of aircraft.

AERODROME BEACON [ICAO]— Aeronautical beacon used to indicate the location of an aerodrome from the air.

AERODROME CONTROL SERVICE [ICAO]— Air traffic control service for aerodrome traffic.

AERODROME CONTROL TOWER [ICAO]— A unit established to provide air traffic control service to aerodrome traffic.

AERODROME ELEVATION [ICAO]— The elevation of the highest point of the landing area.

AERODROME TRAFFIC CIRCUIT [ICAO]— The specified path to be flown by aircraft operating in the vicinity of an aerodrome.

AERONAUTICAL BEACON— A visual NAVAID displaying flashes of white and/or colored light to indicate the location of an airport, a heliport, a landmark, a certain point of a Federal airway in mountainous terrain, or an obstruction.
 (See AIRPORT ROTATING BEACON.)
 (Refer to AIM.)

AERONAUTICAL CHART— A map used in air navigation containing all or part of the following:
topographic features, hazards and obstructions, navigation aids, navigation routes, designated airspace, and airports. Commonly used aeronautical charts are:

a. **Sectional Aeronautical Charts (1:500,000)**—Designed for visual navigation of slow or medium speed aircraft. Topographic information on these charts features the portrayal of relief and a judicious selection of visual check points for VFR flight. Aeronautical information includes visual and radio aids to navigation, airports, controlled airspace, restricted areas, obstructions, and related data.

b. **VFR Terminal Area Charts (1:250,000)**—Depict Class B airspace which provides for the control or segregation of all the aircraft within Class B airspace. The chart depicts topographic information and aeronautical information which includes visual and radio aids to navigation, airports, controlled airspace, restricted areas, obstructions, and related data.

c. **World Aeronautical Charts (WAC) (1:1,000,000)**—Provide a standard series of aeronautical charts covering land areas of the world at a size and scale convenient for navigation by moderate speed aircraft. Topographic information includes cities and towns, principal roads, railroads, distinctive landmarks, drainage, and relief. Aeronautical information includes visual and radio aids to navigation, airports, airways, restricted areas, obstructions, and other pertinent data.

d. **En Route Low Altitude Charts**—Provide aeronautical information for en route instrument navigation (IFR) in the low altitude stratum. Information includes the portrayal of airways, limits of controlled airspace, position identification and frequencies of radio aids, selected airports, minimum en route and minimum obstruction clearance altitudes, airway distances, reporting points, restricted areas, and related data. Area charts, which are a part of this series, furnish terminal data at a larger scale in congested areas.

e. **En Route High Altitude Charts**—Provide aeronautical information for en route instrument navigation (IFR) in the high altitude stratum. Information includes the portrayal of jet routes, identification and frequencies of radio aids, selected airports, distances, time zones, special use airspace, and related information.

f. **Instrument Approach Procedures (IAP) Charts**—Portray the aeronautical data which is required to execute an instrument approach to an airport. These charts depict the procedures, including all related data, and the airport diagram. Each procedure is designated for use with a specific type of electronic navigation system including NDB, TACAN, VOR, ILS RNAV and GLS. These charts are identified by the type of navigational aid(s)/equipment required to provide final approach guidance.

g. **Instrument Departure Procedure (DP) Charts**—Designed to expedite clearance delivery and to facilitate transition between takeoff and en route operations. Each DP is presented as a separate chart and may serve a single airport or more than one airport in a given geographical location.

h. **Standard Terminal Arrival (STAR) Charts**—Designed to expedite air traffic control arrival procedures and to facilitate transition between en route and instrument approach operations. Each STAR procedure is presented as a separate chart and may serve a single airport or more than one airport in a given geographical location.

i. **Airport Taxi Charts**—Designed to expedite the efficient and safe flow of ground traffic at an airport. These charts are identified by the official airport name; e.g., Ronald Reagan Washington National Airport.

(See ICAO term AERONAUTICAL CHART.)

AERONAUTICAL CHART [ICAO]—A representation of a portion of the earth, its culture and relief, specifically designated to meet the requirements of air navigation.

AERONAUTICAL INFORMATION MANUAL (AIM)—A primary FAA publication whose purpose is to instruct airmen about operating in the National Airspace System of the U.S. It provides basic flight information, ATC Procedures and general instructional information concerning health, medical facts, factors affecting flight safety, accident and hazard reporting, and types of aeronautical charts and their use.
AERONAUTICAL INFORMATION PUBLICATION (AIP) [ICAO]—A publication issued by or with the authority of a State and containing aeronautical information of a lasting character essential to air navigation.

A/FD—
(See AIRPORT/FACILITY DIRECTORY.)

AFFIRMATIVE—Yes.

AFIS—
(See AUTOMATIC FLIGHT INFORMATION SERVICE — ALASKA FSSs ONLY.)

AFP—
(See AIRSPACE FLOW PROGRAM.)

AIM—
(See AERONAUTICAL INFORMATION MANUAL.)

AIP [ICAO]—
(See ICAO term AERONAUTICAL INFORMATION PUBLICATION.)

AIR CARRIER DISTRICT OFFICE—An FAA field office serving an assigned geographical area, staffed with Flight Standards personnel serving the aviation industry and the general public on matters related to the certification and operation of scheduled air carriers and other large aircraft operations.

AIR DEFENSE EMERGENCY—A military emergency condition declared by a designated authority. This condition exists when an attack upon the continental U.S., Alaska, Canada, or U.S. installations in Greenland by hostile aircraft or missiles is considered probable, is imminent, or is taking place.
(Refer to AIM.)

AIR DEFENSE IDENTIFICATION ZONE (ADIZ)—The area of airspace over land or water, extending upward from the surface, within which the ready identification, the location, and the control of aircraft are required in the interest of national security.

b. Coastal Air Defense Identification Zone. An ADIZ over the coastal waters of the United States.

c. Distant Early Warning Identification Zone (DEWIZ). An ADIZ over the coastal waters of the State of Alaska.

d. Land–Based Air Defense Identification Zone. An ADIZ over U.S. metropolitan areas, which is activated and deactivated as needed, with dimensions, activation dates and other relevant information disseminated via NOTAM.

Note: ADIZ locations and operating and flight plan requirements for civil aircraft operations are specified in 14 CFR Part 99.
(Refer to AIM.)

AIR NAVIGATION FACILITY—Any facility used in, available for use in, or designed for use in, aid of air navigation, including landing areas, lights, any apparatus or equipment for disseminating weather information, for signaling, for radio-directional finding, or for radio or other electrical communication, and any other structure or mechanism having a similar purpose for guiding or controlling flight in the air or the landing and takeoff of aircraft.
(See NAVIGATIONAL AID.)

AIR ROUTE SURVEILLANCE RADAR—Air route traffic control center (ARTCC) radar used primarily to detect and display an aircraft’s position while en route between terminal areas. The ARSR enables controllers to provide radar air traffic control service when aircraft are within the ARSR coverage. In some instances, ARSR may enable an ARTCC to provide terminal radar services similar to but usually more limited than those provided by a radar approach control.

AIR ROUTE TRAFFIC CONTROL CENTER—A facility established to provide air traffic control service to aircraft operating on IFR flight plans within controlled airspace and principally during the en route phase of flight. When equipment capabilities and controller workload permit, certain advisory/assistance services may be provided to VFR aircraft.
(See EN ROUTE AIR TRAFFIC CONTROL SERVICES.)
(Refer to AIM.)

AIR TAXI—Used to describe a helicopter/VTOL aircraft movement conducted above the surface but normally not above 100 feet AGL. The aircraft may proceed either via hover taxi or flight at speeds more than 20 knots. The pilot is solely responsible for selecting a safe airspeed/altitude for the operation being conducted.
(See HOVER TAXI.)
(Refer to AIM.)
AIR TRAFFIC— Aircraft operating in the air or on an airport surface, exclusive of loading ramps and parking areas.

(See ICAO term AIR TRAFFIC.)

AIR TRAFFIC [ICAO]— All aircraft in flight or operating on the maneuvering area of an aerodrome.

AIR TRAFFIC CLEARANCE— An authorization by air traffic control for the purpose of preventing collision between known aircraft, for an aircraft to proceed under specified traffic conditions within controlled airspace. The pilot-in-command of an aircraft may not deviate from the provisions of a visual flight rules (VFR) or instrument flight rules (IFR) air traffic clearance except in an emergency or unless an amended clearance has been obtained. Additionally, the pilot may request a different clearance from that which has been issued by air traffic control (ATC) if information available to the pilot makes another course of action more practicable or if aircraft equipment limitations or company procedures forbid compliance with the clearance issued. Controllers should, in such instances and to the extent of operational practicality and safety, honor the pilot’s request. 14 CFR Part 91.3(a) states: “The pilot in command of an aircraft is directly responsible for, and is the final authority as to, the operation of that aircraft.” THE PILOT IS RESPONSIBLE TO REQUEST AN AMENDED CLEARANCE if ATC issues a clearance that would cause a pilot to deviate from a rule or regulation, or in the pilot’s opinion, would place the aircraft in jeopardy.

(See ATC INSTRUCTIONS.)
(See ICAO term AIR TRAFFIC CONTROL CLEARANCE.)

AIR TRAFFIC CONTROL— A service operated by appropriate authority to promote the safe, orderly and expeditious flow of air traffic.

(See ICAO term AIR TRAFFIC CONTROL SERVICE.)

AIR TRAFFIC CONTROL CLEARANCE [ICAO]— Authorization for an aircraft to proceed under conditions specified by an air traffic control unit.

Note 1: For convenience, the term air traffic control clearance is frequently abbreviated to clearance when used in appropriate contexts.

Note 2: The abbreviated term clearance may be prefixed by the words taxi, takeoff, departure, en route, approach or landing to indicate the particular portion of flight to which the air traffic control clearance relates.

AIR TRAFFIC CONTROL SERVICE—
(See AIR TRAFFIC CONTROL.)

AIR TRAFFIC CONTROL SERVICE [ICAO]— A service provided for the purpose of:

a. Preventing collisions:
 1. Between aircraft; and
 2. On the maneuvering area between aircraft and obstructions.

b. Expediting and maintaining an orderly flow of air traffic.

AIR TRAFFIC CONTROL SPECIALIST— A person authorized to provide air traffic control service.

(See AIR TRAFFIC CONTROL.)
(See FLIGHT SERVICE STATION.)
(See ICAO term CONTROLLER.)

AIR TRAFFIC CONTROL SYSTEM COMMAND CENTER (ATCSCC) — An Air Traffic Tactical Operations facility responsible for monitoring and managing the flow of air traffic throughout the NAS, producing a safe, orderly, and expeditious flow of traffic while minimizing delays. The following functions are located at the ATCSCC:

a. Central Altitude Reservation Function (CARF). Responsible for coordinating, planning, and approving special user requirements under the Altitude Reservation (ALTRV) concept.
(See ALTITUDE RESERVATION.)

(Refer to 14 CFR Part 93.)
(Refer to AIRPORT/FACILITY DIRECTORY.)
c. U.S. Notice to Airmen (NOTAM) Office. Responsible for collecting, maintaining, and distributing NOTAMs for the U.S. civilian and military, as well as international aviation communities.
(See NOTICE TO AIRMEN.)

d. Weather Unit. Monitor all aspects of weather for the U.S. that might affect aviation including cloud cover, visibility, winds, precipitation, thunderstorms, icing, turbulence, and more. Provide forecasts based on observations and on discussions with meteorologists from various National Weather Service offices, FAA facilities, airlines, and private weather services.

AIR TRAFFIC SERVICE– A generic term meaning:
 a. Flight Information Service.
 b. Alerting Service.
 c. Air Traffic Advisory Service.
 d. Air Traffic Control Service:
 1. Area Control Service,
 2. Approach Control Service, or
 3. Airport Control Service.

AIR TRAFFIC SERVICE (ATS) ROUTES − The term “ATS Route” is a generic term that includes “VOR Federal airways,” “colored Federal airways,” “jet routes,” and “RNAV routes.” The term “ATS route” does not replace these more familiar route names, but serves only as an overall title when listing the types of routes that comprise the United States route structure.

AIRBORNE– An aircraft is considered airborne when all parts of the aircraft are off the ground.

AIRBORNE DELAY– Amount of delay to be encountered in airborne holding.

AIRCRAFT– Device(s) that are used or intended to be used for flight in the air, and when used in air traffic control terminology, may include the flight crew.
(See ICAO term AIRCRAFT.)

AIRCRAFT [ICAO]– Any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth’s surface.

AIRCRAFT APPROACH CATEGORY– A grouping of aircraft based on a speed of 1.3 times the stall speed in the landing configuration at maximum gross landing weight. An aircraft must fit in only one category. If it is necessary to maneuver at speeds in excess of the upper limit of a speed range for a category, the minimums for the category for that speed must be used. For example, an aircraft which falls in Category A, but is circling to land at a speed in excess of 91 knots, must use the approach Category B minimums when circling to land. The categories are as follows:
 a. Category A– Speed less than 91 knots.
 b. Category B– Speed 91 knots or more but less than 121 knots.
 c. Category C– Speed 121 knots or more but less than 141 knots.
 d. Category D– Speed 141 knots or more but less than 166 knots.
 e. Category E– Speed 166 knots or more.
(Refer to 14 CFR Part 97.)

AIRCRAFT CLASSES– For the purposes of Wake Turbulence Separation Minima, ATC classifies aircraft as Heavy, Large, and Small as follows:
 a. Heavy– Aircraft capable of takeoff weights of 300,000 pounds or more whether or not they are operating at this weight during a particular phase of flight.
 b. Large– Aircraft of more than 41,000 pounds, maximum certificated takeoff weight, up to but not including 300,000 pounds.
 c. Small– Aircraft of 41,000 pounds or less maximum certificated takeoff weight.
(Refer to AIM.)

AIRCRAFT CONFLICT– Predicted conflict, within URET, of two aircraft, or between aircraft and airspace. A Red alert is used for conflicts when the predicted minimum separation is 5 nautical miles or less. A Yellow alert is used when the predicted minimum separation is between 5 and approximately 12 nautical miles. A Blue alert is used for conflicts between an aircraft and predefined airspace.
(See USER REQUEST EVALUATION TOOL.)

AIRCRAFT LIST (ACL)– A view available with URET that lists aircraft currently in or predicted to be in a particular sector’s airspace. The view contains textual flight data information in line format and may be sorted into various orders based on the specific needs of the sector team.
(See USER REQUEST EVALUATION TOOL.)
AIRCRAFT SURGE LAUNCH AND RECOVERY—Procedures used at USAF bases to provide increased launch and recovery rates in instrument flight rules conditions. ASLAR is based on:

a. Reduced separation between aircraft which is based on time or distance. Standard arrival separation applies between participants including multiple flights until the DRAG point. The DRAG point is a published location on an ASLAR approach where aircraft landing second in a formation slows to a predetermined airspeed. The DRAG point is the reference point at which MARSA applies as expanding elements effect separation within a flight or between subsequent participating flights.

b. ASLAR procedures shall be covered in a Letter of Agreement between the responsible USAF military ATC facility and the concerned Federal Aviation Administration facility. Initial Approach Fix spacing requirements are normally addressed as a minimum.

AIRMEN’S METEOROLOGICAL INFORMATION—
(See AIRMET.)

AIRMET—In-flight weather advisories issued only to amend the area forecast concerning weather phenomena which are of operational interest to all aircraft and potentially hazardous to aircraft having limited capability because of lack of equipment, instrumentation, or pilot qualifications. AIRMETs concern weather of less severity than that covered by SIGMETs or Convective SIGMETs. AIRMETs cover moderate icing, moderate turbulence, sustained winds of 30 knots or more at the surface, widespread areas of ceilings less than 1,000 feet and/or visibility less than 3 miles, and extensive mountain obscurement.
(See AWW.)
(See CONVECTIVE SIGMET.)
(See CWA.)
(See SIGMET.)
(Refer to AIM.)

AIRPORT—An area on land or water that is used or intended to be used for the landing and takeoff of aircraft and includes its buildings and facilities, if any.

AIRPORT ADVISORY AREA—The area within ten miles of an airport without a control tower or where the tower is not in operation, and on which a Flight Service Station is located.
(See LOCAL AIRPORT ADVISORY.)
(Refer to AIM.)

AIRPORT ARRIVAL RATE (AAR)—A dynamic input parameter specifying the number of arriving aircraft which an airport or airspace can accept from the ARTCC per hour. The AAR is used to calculate the desired interval between successive arrival aircraft.

AIRPORT DEPARTURE RATE (ADR)—A dynamic parameter specifying the number of aircraft which can depart an airport and the airspace can accept per hour.

AIRPORT ELEVATION—The highest point of an airport’s usable runways measured in feet from mean sea level.
(See TOUCHDOWN ZONE ELEVATION.)
(See ICAO term AERODROME ELEVATION.)

AIRPORT/FACILITY DIRECTORY—A publication designed primarily as a pilot’s operational manual containing all airports, seaplane bases, and heliports open to the public including communications data, navigational facilities, and certain special notices and procedures. This publication is issued in seven volumes according to geographical area.

AIRPORT LIGHTING—Various lighting aids that may be installed on an airport. Types of airport lighting include:

a. Approach Light System (ALS)—An airport lighting facility which provides visual guidance to landing aircraft by radiating light beams in a directional pattern by which the pilot aligns the aircraft with the extended centerline of the runway on his/her final approach for landing. Condenser-Discharge Sequential Flashing Lights/Sequenced Flashing Lights may be installed in conjunction with the ALS at some airports. Types of Approach Light Systems are:

1. ALSF-1—Approach Light System with Sequenced Flashing Lights in ILS Cat-I configuration.
2. ALSF-2—Approach Light System with Sequenced Flashing Lights in ILS Cat-II configuration. The ALSF-2 may operate as an SSALR when weather conditions permit.
3. SSALF—Simplified Short Approach Light System with Sequenced Flashing Lights.
5. MALSF– Medium Intensity Approach Light System with Sequenced Flashing Lights.
7. RLLS– Runway Lead-in Light System Consists of one or more series of flashing lights installed at or near ground level that provides positive visual guidance along an approach path, either curving or straight, where special problems exist with hazardous terrain, obstructions, or noise abatement procedures.
8. RAIL– Runway Alignment Indicator Lights– Sequenced Flashing Lights which are installed only in combination with other light systems.
9. ODALS– Omnidirectional Approach Lighting System consists of seven omnidirectional flashing lights located in the approach area of a nonprecision runway. Five lights are located on the runway centerline extended with the first light located 300 feet from the threshold and extending at equal intervals up to 1,500 feet from the threshold. The other two lights are located, one on each side of the runway threshold, at a lateral distance of 40 feet from the runway edge, or 75 feet from the runway edge when installed on a runway equipped with a VASI.

(Refer to FAAO JO 6850.2, VISUAL GUIDANCE LIGHTING SYSTEMS.)

b. Runway Lights/Runway Edge Lights– Lights having a prescribed angle of emission used to define the lateral limits of a runway. Runway lights are uniformly spaced at intervals of approximately 200 feet, and the intensity may be controlled or preset.
c. Touchdown Zone Lighting– Two rows of transverse light bars located symmetrically about the runway centerline normally at 100 foot intervals. The basic system extends 3,000 feet along the runway.
d. Runway Centerline Lighting– Flush centerline lights spaced at 50-foot intervals beginning 75 feet from the landing threshold and extending to within 75 feet of the opposite end of the runway.
e. Threshold Lights– Fixed green lights arranged symmetrically left and right of the runway centerline, identifying the runway threshold.
f. Runway End Identifier Lights (REIL)– Two synchronized flashing lights, one on each side of the runway threshold, which provide rapid and positive identification of the approach end of a particular runway.
g. Visual Approach Slope Indicator (VASI)– An airport lighting facility providing vertical visual approach slope guidance to aircraft during approach to landing by radiating a directional pattern of high intensity red and white focused light beams which indicate to the pilot that he/she is “on path” if he/she sees red/white, “above path” if white/white, and “below path” if red/red. Some airports serving large aircraft have three-bar VASIs which provide two visual glide paths to the same runway.
h. Precision Approach Path Indicator (PAPI)– An airport lighting facility, similar to VASI, providing vertical approach slope guidance to aircraft during approach to landing. PAPIs consist of a single row of either two or four lights, normally installed on the left side of the runway, and have an effective visual range of about 5 miles during the day and up to 20 miles at night. PAPIs radiate a directional pattern of high intensity red and white focused light beams which indicate that the pilot is “on path” if the pilot sees an equal number of white lights and red lights, with white to the left of the red; “above path” if the pilot sees more white than red lights; and “below path” if the pilot sees more red than white lights.
i. Boundary Lights– Lights defining the perimeter of an airport or landing area.
(Refer to AIM.)

AIRPORT MARKING AIDS– Markings used on runway and taxiway surfaces to identify a specific runway, a runway threshold, a centerline, a hold line, etc. A runway should be marked in accordance with its present usage such as:
b. Nonprecision instrument.
c. Precision instrument.
(Refer to AIM.)

AIRPORT REFERENCE POINT (ARP)– The approximate geometric center of all usable runway surfaces.

AIRPORT RESERVATION OFFICE– Office responsible for monitoring the operation of slot controlled airports. It receives and processes requests for unscheduled operations at slot controlled airports.

AIRPORT ROTATING BEACON– A visual NAVAID operated at many airports. At civil airports,
alternating white and green flashes indicate the location of the airport. At military airports, the beacons flash alternately white and green, but are differentiated from civil beacons by dualpeaked (two quick) white flashes between the green flashes.
(See INSTRUMENT FLIGHT RULES.)
(See SPECIAL VFR OPERATIONS.)
(See ICAO term AERODROME BEACON.)
(Refer to AIM.)

AIRPORT STREAM FILTER (ASF)− An on/off filter that allows the conflict notification function to be inhibited for arrival streams into single or multiple airports to prevent nuisance alerts.

AIRPORT SURFACE DETECTION EQUIPMENT (ASDE)− Surveillance equipment specifically designed to detect aircraft, vehicular traffic, and other objects, on the surface of an airport, and to present the image on a tower display. Used to augment visual observation by tower personnel of aircraft and/ or vehicular movements on runways and taxiways. There are three ASDE systems deployed in the NAS:

a. ASDE−3− a Surface Movement Radar.

b. ASDE−X− a system that uses a X−band Surface Movement Radar and multilateration. Data from these two sources are fused and presented on a digital display.

c. ASDE−3X− an ASDE−X system that uses the ASDE−3 Surface Movement Radar.

AIRPORT SURVEILLANCE RADAR− Approach control radar used to detect and display an aircraft’s position in the terminal area. ASR provides range and azimuth information but does not provide elevation data. Coverage of the ASR can extend up to 60 miles.

AIRPORT TAXI CHARTS−
(See AERONAUTICAL CHART.)

AIRPORT TRAFFIC CONTROL SERVICE− A service provided by a control tower for aircraft operating on the movement area and in the vicinity of an airport.
(See MOVEMENT AREA.)
(See TOWER.)
(See ICAO term AERODROME CONTROL SERVICE.)

AIRPORT TRAFFIC CONTROL TOWER−
(See TOWER.)

AIRSPACE CONFLICT− Predicted conflict of an aircraft and active Special Activity Airspace (SAA).

AIRSPACE FLOW PROGRAM (AFP)− AFP is a Traffic Management (TM) process administered by the Air Traffic Control System Command Center (ATCSCC) where aircraft are assigned an Expect Departure Clearance Time (EDCT) in order to manage capacity and demand for a specific area of the National Airspace System (NAS). The purpose of the program is to mitigate the effects of en route constraints. It is a flexible program and may be implemented in various forms depending upon the needs of the air traffic system.

AIRSPACE HIERARCHY− Within the airspace classes, there is a hierarchy and, in the event of an overlap of airspace: Class A preempts Class B, Class B preempts Class C, Class C preempts Class D, Class D preempts Class E, and Class E preempts Class G.

AIRSPEED− The speed of an aircraft relative to its surrounding air mass. The unqualified term “airspeed” means one of the following:

a. Indicated Airspeed− The speed shown on the aircraft airspeed indicator. This is the speed used in pilot/controller communications under the general term “airspeed.”
 (Refer to 14 CFR Part 1.)

b. True Airspeed− The airspeed of an aircraft relative to undisturbed air. Used primarily in flight planning and en route portion of flight. When used in pilot/controller communications, it is referred to as “true airspeed” and not shortened to “airspeed.”

AIRSTART− The starting of an aircraft engine while the aircraft is airborne, preceded by engine shutdown during training flights or by actual engine failure.

AIRWAY− A Class E airspace area established in the form of a corridor, the centerline of which is defined by radio navigational aids.
(See FEDERAL AIRWAYS.)
(See ICAO term AIRWAY.)
(Refer to 14 CFR Part 71.)
(Refer to AIM.)

AIRWAY [ICAO]− A control area or portion thereof established in the form of corridor equipped with radio navigational aids.

AIRWAY BEACON− Used to mark airway segments in remote mountain areas. The light flashes Morse Code to identify the beacon site.
 (Refer to AIM.)

AIT−
(See AUTOMATED INFORMATION TRANSFER.)
ALERFA (Alert Phase) [ICAO]− A situation wherein apprehension exists as to the safety of an aircraft and its occupants.

ALERT− A notification to a position that there is an aircraft-to-aircraft or aircraft-to-airspace conflict, as detected by Automated Problem Detection (APD).

ALERT AREA−
(See SPECIAL USE AIRSPACE.)

ALERT NOTICE− A request originated by a flight service station (FSS) or an air route traffic control center (ARTCC) for an extensive communication search for overdue, unreported, or missing aircraft.

ALERTING SERVICE− A service provided to notify appropriate organizations regarding aircraft in need of search and rescue aid and assist such organizations as required.

ALNOT−
(See ALERT NOTICE.)

ALONG−TRACK DISTANCE (ATD)− The distance measured from a point-in-space by systems using area navigation reference capabilities that are not subject to slant range errors.

ALPHANUMERIC DISPLAY− Letters and numerals used to show identification, altitude, beacon code, and other information concerning a target on a radar display.
(See AUTOMATED RADAR TERMINAL SYSTEMS.)

ALTERNATE AERODROME [ICAO]− An aerodrome to which an aircraft may proceed when it becomes either impossible or inadvisable to proceed to or to land at the aerodrome of intended landing.
Note: The aerodrome from which a flight departs may also be an en-route or a destination alternate aerodrome for the flight.

ALTERNATE AIRPORT− An airport at which an aircraft may land if a landing at the intended airport becomes inadvisable.
(See ICAO term ALTERNATE AERODROME.)

ALTIMETER SETTING− The barometric pressure reading used to adjust a pressure altimeter for variations in existing atmospheric pressure or to the standard altimeter setting (29.92).
(Refer to 14 CFR Part 91.)
(Refer to AIM.)

ALTITUDE− The height of a level, point, or object measured in feet Above Ground Level (AGL) or from Mean Sea Level (MSL).
(See FLIGHT LEVEL.)

a. MSL Altitude− Altitude expressed in feet measured from mean sea level.

b. AGL Altitude− Altitude expressed in feet measured above ground level.

c. Indicated Altitude− The altitude as shown by an altimeter. On a pressure or barometric altimeter it is altitude as shown uncorrected for instrument error and uncompensated for variation from standard atmospheric conditions.
(See ICAO term ALTITUDE.)

ALTITUDE [ICAO]− The vertical distance of a level, a point or an object considered as a point, measured from mean sea level (MSL).

ALTITUDE READOUT− An aircraft’s altitude, transmitted via the Mode C transponder feature, that is visually displayed in 100-foot increments on a radar scope having readout capability.
(See ALPHANUMERIC DISPLAY.)
(See AUTOMATED RADAR TERMINAL SYSTEMS.)
(Refer to AIM.)

ALTITUDE RESERVATION− Airspace utilization under prescribed conditions normally employed for the mass movement of aircraft or other special user requirements which cannot otherwise be accomplished. ALTRVs are approved by the appropriate FAA facility.
(See AIR TRAFFIC CONTROL SYSTEM COMMAND CENTER.)

ALTITUDE RESTRICTION− An altitude or altitudes, stated in the order flown, which are to be maintained until reaching a specific point or time. Altitude restrictions may be issued by ATC due to traffic, terrain, or other airspace considerations.

ALTITUDE RESTRICTIONS ARE CANCELED− Adherence to previously imposed altitude restrictions is no longer required during a climb or descent.

ALTRV−
(See ALTITUDE RESERVATION.)

AMVER−
(See AUTOMATED MUTUAL-ASSISTANCE VESSEL RESCUE SYSTEM.)

APB−
(See AUTOMATED PROBLEM DETECTION BOUNDARY.)
APD–
(See AUTOMATED PROBLEM DETECTION.)

APDIA–
(See AUTOMATED PROBLEM DETECTION INHIBITED AREA.)

APPROACH CLEARANCE– Authorization by ATC for a pilot to conduct an instrument approach. The type of instrument approach for which a clearance and other pertinent information is provided in the approach clearance when required.
(See CLEARED APPROACH.)
(See INSTRUMENT APPROACH PROCEDURE.)
(Refer to AIM.)
(Refer to 14 CFR Part 91.)

APPROACH CONTROL FACILITY– A terminal ATC facility that provides approach control service in a terminal area.
(See APPROACH CONTROL SERVICE.)
(See RADAR APPROACH CONTROL FACILITY.)

APPROACH CONTROL SERVICE– Air traffic control service provided by an approach control facility for arriving and departing VFR/IFR aircraft and, on occasion, en route aircraft. At some airports not served by an approach control facility, the ARTCC provides limited approach control service.
(See ICAO term APPROACH CONTROL SERVICE.)
(Refer to AIM.)

APPROACH CONTROL SERVICE [ICAO]– Air traffic control service for arriving or departing controlled flights.

APPROACH GATE– An imaginary point used within ATC as a basis for vectoring aircraft to the final approach course. The gate will be established along the final approach course 1 mile from the final approach fix on the side away from the airport and will be no closer than 5 miles from the landing threshold.

APPROACH LIGHT SYSTEM–
(See AIRPORT LIGHTING.)

APPROACH SEQUENCE– The order in which two or more aircraft are cleared to approach to land at the aerodrome.

APPROACH SPEED– The recommended speed contained in aircraft manuals used by pilots when making an approach to landing. This speed will vary for different segments of an approach as well as for aircraft weight and configuration.

APPROPRIATE ATS AUTHORITY [ICAO]– The relevant authority designated by the State responsible for providing air traffic services in the airspace concerned. In the United States, the “appropriate ATS authority” is the Program Director for Air Traffic Planning and Procedures, ATP-1.

APPROPRIATE AUTHORITY–
a. Regarding flight over the high seas: the relevant authority is the State of Registry.
b. Regarding flight over other than the high seas: the relevant authority is the State having sovereignty over the territory being overflown.

APPROPRIATE OBSTACLE CLEARANCE MINIMUM ALTITUDE– Any of the following:
(See MINIMUM EN ROUTE IFR ALTITUDE.)
(See MINIMUM IFR ALTITUDE.)
(See MINIMUM OBSTRUCTION CLEARANCE ALTITUDE.)
(See MINIMUM VECTORING ALTITUDE.)

APPROPRIATE TERRAIN CLEARANCE MINIMUM ALTITUDE– Any of the following:
(See MINIMUM EN ROUTE IFR ALTITUDE.)
(See MINIMUM IFR ALTITUDE.)
(See MINIMUM OBSTRUCTION CLEARANCE ALTITUDE.)
(See MINIMUM VECTORING ALTITUDE.)

APRON– A defined area on an airport or heliport intended to accommodate aircraft for purposes of loading or unloading passengers or cargo, refueling, parking, or maintenance. With regard to seaplanes, a ramp is used for access to the apron from the water.
(See ICAO term APRON.)

APRON [ICAO]– A defined area, on a land aerodrome, intended to accommodate aircraft for purposes of loading or unloading passengers, mail or cargo, refueling, parking or maintenance.

ARC– The track over the ground of an aircraft flying at a constant distance from a navigational aid by reference to distance measuring equipment (DME).
AREA CONTROL CENTER [ICAO]− An air traffic control facility primarily responsible for ATC services being provided IFR aircraft during the en route phase of flight. The U.S. equivalent facility is an air route traffic control center (ARTCC).

AREA NAVIGATION (RNAV)− A method of navigation which permits aircraft operation on any desired flight path within the coverage of ground- or space-based navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

Note: Area navigation includes performance-based navigation as well as other operations that do not meet the definition of performance-based navigation.

AREA NAVIGATION (RNAV) APPROACH CONFIGURATION:

a. STANDARD T− An RNAV approach whose design allows direct flight to any one of three initial approach fixes (IAF) and eliminates the need for procedure turns. The standard design is to align the procedure on the extended centerline with the missed approach point (MAP) at the runway threshold, the final approach fix (FAF), and the initial approach/intermediate fix (IAF/IF). The other two IAFs will be established perpendicular to the IF.

b. MODIFIED T− An RNAV approach design for single or multiple runways where terrain or operational constraints do not allow for the standard T. The “T” may be modified by increasing or decreasing the angle from the corner IAF(s) to the IF or by eliminating one or both corner IAFs.

c. STANDARD I− An RNAV approach design for a single runway with both corner IAFs eliminated. Course reversal or radar vectoring may be required at busy terminals with multiple runways.

d. TERMINAL ARRIVAL AREA (TAA)− The TAA is controlled airspace established in conjunction with the Standard or Modified T and I RNAV approach configurations. In the standard TAA, there are three areas: straight-in, left base, and right base. The arc boundaries of the three areas of the TAA are published portions of the approach and allow aircraft to transition from the en route structure direct to the nearest IAF. TAAs will also eliminate or reduce feeder routes, departure extensions, and procedure turns or course reversal.

1. STRAIGHT-IN AREA− A 30NM arc centered on the IF bounded by a straight line extending through the IF perpendicular to the intermediate course.

2. LEFT BASE AREA− A 30NM arc centered on the right corner IAF. The area shares a boundary with the straight-in area except that it extends out for 30NM from the IAF and is bounded on the other side by a line extending from the IF through the FAF to the arc.

3. RIGHT BASE AREA− A 30NM arc centered on the left corner IAF. The area shares a boundary with the straight-in area except that it extends out for 30NM from the IAF and is bounded on the other side by a line extending from the IF through the FAF to the arc.

AREA NAVIGATION (RNAV) GLOBAL POSITIONING SYSTEM (GPS) PRECISION RUNWAY MONITORING (PRM) APPROACH – A GPS approach, which requires vertical guidance, used in lieu of an ILS PRM approach to conduct approaches to parallel runways whose extended centerlines are separated by less than 4,300 feet and at least 3,000 feet, where simultaneous close parallel approaches are permitted. Also used in lieu of an ILS PRM and/or LDA PRM approach to conduct Simultaneous Offset Instrument Approach (SOIA) operations.

ARINC− An acronym for Aeronautical Radio, Inc., a corporation largely owned by a group of airlines. ARINC is licensed by the FCC as an aeronautical station and contracted by the FAA to provide communications support for air traffic control and meteorological services in portions of international airspace.

ARMY AVIATION FLIGHT INFORMATION BULLETIN− A bulletin that provides air operation data covering Army, National Guard, and Army Reserve aviation activities.

ARO− (See AIRPORT RESERVATION OFFICE.)

ARRESTING SYSTEM− A safety device consisting of two major components, namely, engaging or catching devices and energy absorption devices for the purpose of arresting both tailhook and/or nontailhook-equipped aircraft. It is used to prevent aircraft from overrunning runways when the aircraft cannot be stopped after landing or during aborted
takeoff. Arresting systems have various names; e.g., arresting gear, hook device, wire barrier cable.

(See ABORT.)
(Refer to AIM.)

ARRIVAL AIRCRAFT INTERVAL– An internally generated program in hundredths of minutes based upon the AAR. AAI is the desired optimum interval between successive arrival aircraft over the vertex.

ARRIVAL CENTER– The ARTCC having jurisdiction for the impacted airport.

ARRIVAL DELAY– A parameter which specifies a period of time in which no aircraft will be metered for arrival at the specified airport.

ARRIVAL SECTOR– An operational control sector containing one or more meter fixes.

ARRIVAL SECTOR ADVISORY LIST– An ordered list of data on arrivals displayed at the PVD/MDM of the sector which controls the meter fix.

ARRIVAL SEQUENCING PROGRAM– The automated program designed to assist in sequencing aircraft destined for the same airport.

ARRIVAL TIME– The time an aircraft touches down on arrival.

ARSR–
(See AIR ROUTE SURVEILLANCE RADAR.)

ARTCC–
(See AIR ROUTE TRAFFIC CONTROL CENTER.)

ARTS–
(See AUTOMATED RADAR TERMINAL SYSTEMS.)

ASDA–
(See ACCELERATE-STOP DISTANCE AVAILABLE.)

ASDA [ICAO]–
(See ICAO Term ACCELERATE-STOP DISTANCE AVAILABLE.)

ASDE–
(See AIRPORT SURFACE DETECTION EQUIPMENT.)

ASF–
(See AIRPORT STREAM FILTER.)

ASLAR–
(See AIRCRAFT SURGE LAUNCH AND RECOVERY.)

ASP–
(See ARRIVAL SEQUENCING PROGRAM.)

ASR–
(See AIRPORT SURVEILLANCE RADAR.)

ASR APPROACH–
(See SURVEILLANCE APPROACH.)

ASSOCIATED– A radar target displaying a data block with flight identification and altitude information.

(See UNASSOCIATED.)

ATC–
(See AIR TRAFFIC CONTROL.)

ATC ADVISES– Used to prefix a message of noncontrol information when it is relayed to an aircraft by other than an air traffic controller.

(See ADVISORY.)

ATC ASSIGNED AIRSPACE– Airspace of defined vertical/lateral limits, assigned by ATC, for the purpose of providing air traffic segregation between the specified activities being conducted within the assigned airspace and other IFR air traffic.

(See SPECIAL USE AIRSPACE.)

ATC CLEARANCE–
(See AIR TRAFFIC CLEARANCE.)

ATC CLEARS– Used to prefix an ATC clearance when it is relayed to an aircraft by other than an air traffic controller.

ATC INSTRUCTIONS– Directives issued by air traffic control for the purpose of requiring a pilot to take specific actions; e.g., “Turn left heading two five zero,” “Go around,” “Clear the runway.”

(Refer to 14 CFR Part 91.)

ATC PREFERRED ROUTE NOTIFICATION– URET notification to the appropriate controller of the need to determine if an ATC preferred route needs to be applied, based on destination airport.

(See ROUTE ACTION NOTIFICATION.)
(See USER REQUEST EVALUATION TOOL.)

ATC PREFERRED ROUTES– Preferred routes that are not automatically applied by Host.

ATC REQUESTS– Used to prefix an ATC request when it is relayed to an aircraft by other than an air traffic controller.
ATC SECURITY SERVICES – Communications and security tracking provided by an ATC facility in support of the DHS, the DOD, or other Federal security elements in the interest of national security. Such security services are only applicable within designated areas. ATC security services do not include ATC basic radar services or flight following.

ATC SECURITY SERVICES POSITION – The position responsible for providing ATC security services as defined. This position does not provide ATC, IFR separation, or VFR flight following services, but is responsible for providing security services in an area comprising airspace assigned to one or more ATC operating sectors. This position may be combined with control positions.

ATC SECURITY TRACKING – The continuous tracking of aircraft movement by an ATC facility in support of the DHS, the DOD, or other security elements for national security using radar (i.e., radar tracking) or other means (e.g., manual tracking) without providing basic radar services (including traffic advisories) or other ATC services not defined in this section.

ATCAA−
(See ATC ASSIGNED AIRSPACE.)

ATCRBS−
(See RADAR.)

ATCSCC−
(See AIR TRAFFIC CONTROL SYSTEM COMMAND CENTER.)

ATCT−
(See TOWER.)

ATD−
(See ALONG−TRACK DISTANCE.)

ATIS−
(See AUTOMATIC TERMINAL INFORMATION SERVICE.)

ATIS [ICAO]−
(See ICAO Term AUTOMATIC TERMINAL INFORMATION SERVICE.)

ATS ROUTE [ICAO]− A specified route designed for channeling the flow of traffic as necessary for the provision of air traffic services.

Note: The term “ATS Route” is used to mean variously, airway, advisory route, controlled or uncontrolled route, arrival or departure, etc.

ATTENTION ALL USERS PAGE (AAUP)- The AAUP provides the pilot with additional information relative to conducting a specific operation, for example, PRM approaches and RNAV departures.

AUTOLAND APPROACH–An autoland system aids by providing control of aircraft systems during a precision instrument approach to at least decision altitude and possibly all the way to touchdown, as well as in some cases, through the landing rollout. The autoland system is a sub-system of the autopilot system from which control surface management occurs. The aircraft autopilot sends instructions to the autoland system and monitors the autoland system performance and integrity during its execution.

AUTOMATED INFORMATION TRANSFER– A precoordinated process, specifically defined in facility directives, during which a transfer of altitude control and/or radar identification is accomplished without verbal coordination between controllers using information communicated in a full data block.

AUTOMATED MUTUAL-ASSISTANCE VESSEL RESCUE SYSTEM– A facility which can deliver, in a matter of minutes, a surface picture (SURPIC) of vessels in the area of a potential or actual search and rescue incident, including their predicted positions and their characteristics.

(See FAAO JO 7110.65, Para 10−6−4, INFLIGHT CONTINGENCIES.)

AUTOMATED PROBLEM DETECTION (APD)– An Automation Processing capability that compares trajectories in order to predict conflicts.

AUTOMATED PROBLEM DETECTION BOUNDARY (APB)– The adapted distance beyond a facilities boundary defining the airspace within which URET performs conflict detection.

(See USER REQUEST EVALUATION TOOL.)

AUTOMATED PROBLEM DETECTION INHIBITED AREA (APDIA)– Airspace surrounding a terminal area within which APD is inhibited for all flights within that airspace.

AUTOMATED RADAR TERMINAL SYSTEMS (ARTS)– A generic term for several tracking systems included in the Terminal Automation Systems (TAS). ARTS plus a suffix roman numeral denotes a major modification to that system.

a. ARTS IIIA. The Radar Tracking and Beacon Tracking Level (RT&BTL) of the modular, programmable automated radar terminal system.
ARTS IIIA detects, tracks, and predicts primary as well as secondary radar-derived aircraft targets. This more sophisticated computer-driven system upgrades the existing ARTS III system by providing improved tracking, continuous data recording, and fail-safe capabilities.

b. Common ARTS. Includes ARTS IIIE, ARTS IIIE; and ARTS IIIE with ACD (see DTAS) which combines functionalities of the previous ARTS systems.

c. Programmable Indicator Data Processor (PIDP). The PIDP is a modification to the AN/TPX-42 interrogator system currently installed in fixed RAPCONs. The PIDP detects, tracks, and predicts secondary radar aircraft targets. These are displayed by means of computer-generated symbols and alphanumeric characters depicting flight identification, aircraft altitude, ground speed, and flight plan data. Although primary radar targets are not tracked, they are displayed coincident with the secondary radar targets as well as with the other symbols and alphanumerics. The system has the capability of interfacing with ARTCCs.

AUTOMATED WEATHER SYSTEM—Any of the automated weather sensor platforms that collect weather data at airports and disseminate the weather information via radio and/or landline. The systems currently consist of the Automated Surface Observing System (ASOS), Automated Weather Sensor System (AWSS) and Automated Weather Observation System (AWOS).

AUTOMATED UNICOM—Provides completely automated weather, radio check capability and airport advisory information on an Automated UNICOM system. These systems offer a variety of features, typically selectable by microphone clicks, on the UNICOM frequency. Availability will be published in the Airport/Facility Directory and approach charts.

AUTOMATIC ALTITUDE REPORT—
(See ALTITUDE READOUT.)

AUTOMATIC ALTITUDE REPORTING—That function of a transponder which responds to Mode C interrogations by transmitting the aircraft’s altitude in 100-foot increments.

AUTOMATIC CARRIER LANDING SYSTEM—U.S. Navy final approach equipment consisting of precision tracking radar coupled to a computer data link to provide continuous information to the aircraft, monitoring capability to the pilot, and a backup approach system.

AUTOMATIC DEPENDENT SURVEILLANCE (ADS) [ICAO]—A surveillance technique in which aircraft automatically provide, via a data link, data derived from on-board navigation and position fixing systems, including aircraft identification, four dimensional position and additional data as appropriate.

AUTOMATIC DEPENDENT SURVEILLANCE—BROADCAST (ADS-B) —A surveillance system in which an aircraft or vehicle to be detected is fitted with cooperative equipment in the form of a data link transmitter. The aircraft or vehicle periodically broadcasts its GPS-derived position and other information such as velocity over the data link, which is received by a ground-based transmitter/receiver (transceiver) for processing and display at an air traffic control facility.

(See GLOBAL POSITIONING SYSTEM.)
(See GROUND-BASED TRANSCEIVER.)

AUTOMATIC DEPENDENT SURVEILLANCE—CONTRACT (ADS-C) —A data link position reporting system, controlled by a ground station, that establishes contracts with an aircraft’s avionics that occur automatically whenever specific events occur, or specific time intervals are reached.

AUTOMATIC DIRECTION FINDER—An aircraft radio navigation system which senses and indicates the direction to a L/MF nondirectional radio beacon (NDB) ground transmitter. Direction is indicated to the pilot as a magnetic bearing or as a relative bearing to the longitudinal axis of the aircraft depending on the type of indicator installed in the aircraft. In certain applications, such as military, ADF operations may be based on airborne and ground transmitters in the VHF/UHF frequency spectrum.

(See BEARING.)
(See NONDIRECTIONAL BEACON.)

AUTOMATIC FLIGHT INFORMATION SERVICE (AFIS) —ALASKA FSSs ONLY—The continuous broadcast of recorded non-control information at airports in Alaska where a FSS provides local airport advisory service. The AFIS broadcast automates the repetitive transmission of essential but routine information such as weather, wind, altimeter, favored runway, breaking action, airport NOTAMs, and other applicable information. The information is continuously broadcast over a
discrete VHF radio frequency (usually the ASOS/AWSS/AWOS frequency.)

AUTOMATIC TERMINAL INFORMATION SERVICE— The continuous broadcast of recorded noncontrol information in selected terminal areas. Its purpose is to improve controller effectiveness and to relieve frequency congestion by automating the repetitive transmission of essential but routine information; e.g., “Los Angeles information Alfa. One three zero zero Coordinated Universal Time. Weather, measured ceiling two thousand overcast, visibility three, haze, smoke, temperature seven one, dew point five seven, wind two five zero at five, altimeter two niner niner six. I-L-S Runway Two Five Left approach in use, Runway Two Five Right closed, advise you have Alfa.”
(See ICAO term AUTOMATIC TERMINAL INFORMATION SERVICE.)
(Refer to AIM.)

AUTOMATIC TERMINAL INFORMATION SERVICE [ICAO]— The provision of current, routine information to arriving and departing aircraft by means of continuous and repetitive broadcasts throughout the day or a specified portion of the day.

AUTOROTATION— A rotorcraft flight condition in which the lifting rotor is driven entirely by action of the air when the rotorcraft is in motion.

a. Autorotative Landing/Touchdown Autorotation. Used by a pilot to indicate that the landing will be made without applying power to the rotor.

b. Low Level Autorotation. Commences at an altitude well below the traffic pattern, usually below 100 feet AGL and is used primarily for tactical military training.

c. 180 degrees Autorotation. Initiated from a downwind heading and is commenced well inside the normal traffic pattern. “Go around” may not be possible during the latter part of this maneuver.

AVAILABLE LANDING DISTANCE (ALD)— The portion of a runway available for landing and roll-out for aircraft cleared for LAHSO. This distance is measured from the landing threshold to the hold-short point.

AVIATION WEATHER SERVICE— A service provided by the National Weather Service (NWS) and FAA which collects and disseminates pertinent weather information for pilots, aircraft operators, and ATC. Available aviation weather reports and forecasts are displayed at each NWS office and FAA FSS.

(See EN ROUTE FLIGHT ADVISORY SERVICE.)
(See TRANSCRIBED WEATHER BROADCAST.)
(See WEATHER ADVISORY.)
(Refer to AIM.)

AWW—
(See SEVERE WEATHER FORECAST ALERTS.)
BACK-TAXI—A term used by air traffic controllers to taxi an aircraft on the runway opposite to the traffic flow. The aircraft may be instructed to back-taxi to the beginning of the runway or at some point before reaching the runway end for the purpose of departure or to exit the runway.

BASE LEG—
(See TRAFFIC PATTERN.)

BEACON—
(See AERONAUTICAL BEACON.)
(See AIRPORT ROTATING BEACON.)
(See AIRWAY BEACON.)
(See MARKER BEACON.)
(See NONDIRECTIONAL BEACON.)
(See RADAR.)

BEARING—The horizontal direction to or from any point, usually measured clockwise from true north, magnetic north, or some other reference point through 360 degrees.
(See NONDIRECTIONAL BEACON.)

BELOW MINIMUMS—Weather conditions below the minimums prescribed by regulation for the particular action involved; e.g., landing minimums, takeoff minimums.

BLAST FENCE—A barrier that is used to divert or dissipate jet or propeller blast.

BLAST PAD—A surface adjacent to the ends of a runway provided to reduce the erosive effect of jet blast and propeller wash.

BLIND SPEED—The rate of departure or closing of a target relative to the radar antenna at which cancellation of the primary radar target by moving target indicator (MTI) circuits in the radar equipment causes a reduction or complete loss of signal.
(See ICAO term BLIND VELOCITY.)

BLIND SPOT—An area from which radio transmissions and/or radar echoes cannot be received. The term is also used to describe portions of the airport not visible from the control tower.

BLIND TRANSMISSION—
(See TRANSMITTING IN THE BLIND.)

BLIND VELOCITY [ICAO]—The radial velocity of a moving target such that the target is not seen on primary radars fitted with certain forms of fixed echo suppression.

BLIND ZONE—
(See BLIND SPOT.)

BLOCKED—Phraseology used to indicate that a radio transmission has been distorted or interrupted due to multiple simultaneous radio transmissions.

BOTTOM ALTITUDE—In reference to published altitude restrictions on a STAR or STAR runway transition, the lowest altitude authorized.

BOUNDARY LIGHTS—
(See AIRPORT LIGHTING.)

BRAKING ACTION (GOOD, FAIR, POOR, OR NIL)—A report of conditions on the airport movement area providing a pilot with a degree/quality of braking that he/she might expect. Braking action is reported in terms of good, fair, poor, or nil.
(See RUNWAY CONDITION READING.)

BRAKING ACTION ADVISORIES—When tower controllers have received runway braking action reports which include the terms “fair,” “poor,” or “nil,” or whenever weather conditions are conducive to deteriorating or rapidly changing runway braking conditions, the tower will include on the ATIS broadcast the statement, “Braking action advisories are in effect” on the ATIS broadcast. During the time braking action advisories are in effect, ATC will issue the latest braking action report for the runway in use to each arriving and departing aircraft. Pilots should be prepared for deteriorating braking conditions and should request current runway condition information if not volunteered by controllers. Pilots should also be prepared to provide a descriptive runway condition report to controllers after landing.

BREAKOUT—A technique to direct aircraft out of the approach stream. In the context of simultaneous (independent) parallel operations, a breakout is used to direct threatened aircraft away from a deviating aircraft.

BROADCAST—Transmission of information for which an acknowledgement is not expected.
(See ICAO term BROADCAST.)
BROADCAST [ICAO]– A transmission of information relating to air navigation that is not addressed to a specific station or stations.
CALCULATED LANDING TIME—A term that may be used in place of tentative or actual calculated landing time, whichever applies.

CALL FOR RELEASE—Wherein the overlying ARTCC requires a terminal facility to initiate verbal coordination to secure ARTCC approval for release of a departure into the en route environment.

CALL UP—Initial voice contact between a facility and an aircraft, using the identification of the unit being called and the unit initiating the call.
(Refer to AIM.)

CANADIAN MINIMUM NAVIGATION PERFORMANCE SPECIFICATION AIRSPACE—That portion of Canadian domestic airspace within which MNPS separation may be applied.

CARDINAL ALTITUDES—“Odd” or “Even” thousand-foot altitudes or flight levels; e.g., 5,000, 6,000, 7,000, FL 250, FL 260, FL 270.
(See ALTITUDE.)
(See FLIGHT LEVEL.)

CARDINAL FLIGHT LEVELS—(See CARDINAL ALTITUDES.)

CAT—(See CLEAR-AIR TURBULENCE.)

CATCH POINT—A fix/waypoint that serves as a transition point from the high altitude waypoint navigation structure to an arrival procedure (STAR) or the low altitude ground-based navigation structure.

CEILING—The heights above the earth’s surface of the lowest layer of clouds or obscuring phenomena that is reported as “broken,” “overcast,” or “obscuration,” and not classified as “thin” or “partial.”
(See ICAO term CEILING.)

CEILING [ICAO]—The height above the ground or water of the base of the lowest layer of cloud below 6,000 meters (20,000 feet) covering more than half the sky.

CENRAP—(See CENTER RADAR ARTS PRESENTATION/PROCESSING.)

CENRAP-PLUS—(See CENTER RADAR ARTS PRESENTATION/PROCESSING-PLUS.)

CENTER—(See AIR ROUTE TRAFFIC CONTROL CENTER.)

CENTER’S AREA—The specified airspace within which an air route traffic control center (ARTCC) provides air traffic control and advisory service.
(See AIR ROUTE TRAFFIC CONTROL CENTER.)
(Refer to AIM.)

CENTER RADAR ARTS PRESENTATION/PROCESSING—A computer program developed to provide a back-up system for airport surveillance radar in the event of a failure or malfunction. The program uses air route traffic control center radar for the processing and presentation of data on the ARTS IIA or IIIA displays.

CENTER RADAR ARTS PRESENTATION/PROCESSING-PLUS—A computer program developed to provide a back-up system for airport surveillance radar in the event of a terminal secondary radar system failure. The program uses a combination of Air Route Traffic Control Center Radar and terminal airport surveillance radar primary targets displayed simultaneously for the processing and presentation of data on the ARTS IIA or IIIA displays.

CENTER TRACON AUTOMATION SYSTEM (CTAS)—A computerized set of programs designed to aid Air Route Traffic Control Centers and TRACONs in the management and control of air traffic.

CENTER WEATHER ADVISORY—An unscheduled weather advisory issued by Center Weather Service Unit meteorologists for ATC use to alert pilots of existing or anticipated adverse weather conditions within the next 2 hours. A CWA may modify or redefine a SIGMET.
(See AWW.)
(See AIRMET.)
(See CONVECTIVE SIGMET.)
(See SIGMET.)
(Refer to AIM.)
CENTRAL EAST PACIFIC— An organized route system between the U.S. West Coast and Hawaii.

CEP—
(See CENTRAL EAST PACIFIC.)

CERAP—
(See COMBINED CENTER-RAPCON.)

CERTIFIED TOWER RADAR DISPLAY (CTRD)—
A FAA radar display certified for use in the NAS.

CFR—
(See CALL FOR RELEASE.)

CHAFF— Thin, narrow metallic reflectors of various lengths and frequency responses, used to reflect radar energy. These reflectors when dropped from aircraft and allowed to drift downward result in large targets on the radar display.

CHARTED VFR FLYWAYS— Charted VFR Flyways are flight paths recommended for use to bypass areas heavily traversed by large turbine-powered aircraft. Pilot compliance with recommended flyways and associated altitudes is strictly voluntary. VFR Flyway Planning charts are published on the back of existing VFR Terminal Area charts.

CHARTED VISUAL FLIGHT PROCEDURE APPROACH— An approach conducted while operating on an instrument flight rules (IFR) flight plan which authorizes the pilot of an aircraft to proceed visually and clear of clouds to the airport via visual landmarks and other information depicted on a charted visual flight procedure. This approach must be authorized and under the control of the appropriate air traffic control facility. Weather minimums required are depicted on the chart.

CHASE— An aircraft flown in proximity to another aircraft normally to observe its performance during training or testing.

CHASE AIRCRAFT—
(See CHASE.)

CIRCLE-TO-LAND MANEUVER— A maneuver initiated by the pilot to align the aircraft with a runway for landing when a straight-in landing from an instrument approach is not possible or is not desirable. At tower controlled airports, this maneuver is made only after ATC authorization has been obtained and the pilot has established required visual reference to the airport.

CIRCLE TO RUNWAY (RUNWAY NUMBER)—
Used by ATC to inform the pilot that he/she must circle to land because the runway in use is other than the runway aligned with the instrument approach procedure. When the direction of the circling maneuver in relation to the airport/runway is required, the controller will state the direction (eight cardinal compass points) and specify a left or right downwind or base leg as appropriate; e.g., “Cleared VOR Runway Three Six Approach circle to Runway Two Two,” or “Circle northwest of the airport for a right downwind to Runway Two Two.”

CIRCLING APPROACH—
(See CIRCLE-TO-LAND MANEUVER.)

CIRCLING MANEUVER—
(See CIRCLE-TO-LAND MANEUVER.)

CIRCLING MINIMA—
(See LANDING MINIMUMS.)

CLASS A AIRSPACE—
(See CONTROLLED AIRSPACE.)

CLASS B AIRSPACE—
(See CONTROLLED AIRSPACE.)

CLASS C AIRSPACE—
(See CONTROLLED AIRSPACE.)

CLASS D AIRSPACE—
(See CONTROLLED AIRSPACE.)

CLASS E AIRSPACE—
(See CONTROLLED AIRSPACE.)

CLASS G AIRSPACE— That airspace not designated as Class A, B, C, D or E.

CLEAR AIR TURBULENCE (CAT)— Turbulence encountered in air where no clouds are present. This term is commonly applied to high-level turbulence associated with wind shear. CAT is often encountered in the vicinity of the jet stream.

CLEAR OF THE RUNWAY—
a. Taxiing aircraft, which is approaching a runway, is clear of the runway when all parts of the
aircraft are held short of the applicable runway holding position marking.

b. A pilot or controller may consider an aircraft, which is exiting or crossing a runway, to be clear of the runway when all parts of the aircraft are beyond the runway edge and there are no restrictions to its continued movement beyond the applicable runway holding position marking.

c. Pilots and controllers shall exercise good judgement to ensure that adequate separation exists between all aircraft on runways and taxiways at airports with inadequate runway edge lines or holding position markings.

CLEARANCE—
(See AIR TRAFFIC CLEARANCE.)

CLEARANCE LIMIT— The fix, point, or location to which an aircraft is cleared when issued an air traffic clearance.
(See ICAO term CLEARANCE LIMIT.)

CLEARANCE LIMIT [ICAO]— The point to which an aircraft is granted an air traffic control clearance.

CLEARANCE VOID IF NOT OFF BY (TIME)— Used by ATC to advise an aircraft that the departure clearance is automatically canceled if takeoff is not made prior to a specified time. The pilot must obtain a new clearance or cancel his/her IFR flight plan if not off by the specified time.
(See ICAO term CLEARANCE VOID TIME.)

CLEARANCE VOID TIME [ICAO]— A time specified by an air traffic control unit at which a clearance ceases to be valid unless the aircraft concerned has already taken action to comply therewith.

CLEARED APPROACH— ATC authorization for an aircraft to execute any standard or special instrument approach procedure for that airport. Normally, an aircraft will be cleared for a specific instrument approach procedure.
(See CLEARED (Type of) APPROACH.)
(See INSTRUMENT APPROACH PROCEDURE.)
(Refer to 14 CFR Part 91.)
(Refer to AIM.)

CLEARED (Type of) APPROACH— ATC authorization for an aircraft to execute a specific instrument approach procedure to an airport; e.g., “Cleared ILS Runway Three Six Approach.”
(See APPROACH CLEARANCE.)
(See INSTRUMENT APPROACH PROCEDURE.)
(Refer to 14 CFR Part 91.)
(Refer to AIM.)

CLEARED AS FILED— Means the aircraft is cleared to proceed in accordance with the route of flight filed in the flight plan. This clearance does not include the altitude, DP, or DP Transition.
(See REQUEST FULL ROUTE CLEARANCE.)
(Refer to AIM.)

CLEARED FOR TAKEOFF— ATC authorization for an aircraft to depart. It is predicated on known traffic and known physical airport conditions.

CLEARED FOR THE OPTION— ATC authorization for an aircraft to make a touch-and-go, low approach, missed approach, stop and go, or full stop landing at the discretion of the pilot. It is normally used in training so that an instructor can evaluate a student’s performance under changing situations.
(See OPTION APPROACH.)
(Refer to AIM.)

CLEARED THROUGH— ATC authorization for an aircraft to make intermediate stops at specified airports without refiling a flight plan while en route to the clearance limit.

CLEARED TO LAND— ATC authorization for an aircraft to land. It is predicated on known traffic and known physical airport conditions.

CLEARWAY— An area beyond the takeoff runway under the control of airport authorities within which terrain or fixed obstacles may not extend above specified limits. These areas may be required for certain turbine-powered operations and the size and upward slope of the clearway will differ depending on when the aircraft was certificated.
(Refer to 14 CFR Part 1.)

CLIMB TO VFR— ATC authorization for an aircraft to climb to VFR conditions within Class B, C, D, and E surface areas when the only weather limitation is restricted visibility. The aircraft must remain clear of clouds while climbing to VFR.
(See SPECIAL VFR CONDITIONS.)
(Refer to AIM.)

CLIMBOUT— That portion of flight operation between takeoff and the initial cruising altitude.
CLIMB VIA— An abbreviated ATC clearance that requires compliance with the procedure lateral path, associated speed restrictions, and altitude restrictions along the cleared route or procedure.

CLOSE PARALLEL RUNWAYS— Two parallel runways whose extended centerlines are separated by less than 4,300 feet and at least 3000 feet (750 feet for SOIA operations) that are authorized to conduct simultaneous independent approach operations. PRM and simultaneous close parallel appear in approach title. Dual communications, special pilot training, an Attention All Users Page (AAUP), NTZ monitoring by displays that have aural and visual alerting algorithms are required. A high update rate surveillance sensor is required for certain runway or approach course spacing.

CLOSED RUNWAY— A runway that is unusable for aircraft operations. Only the airport management/military operations office can close a runway.

CLOSED TRAFFIC— Successive operations involving takeoffs and landings or low approaches where the aircraft does not exit the traffic pattern.

CLOUD— A cloud is a visible accumulation of minute water droplets and/or ice particles in the atmosphere above the Earth’s surface. Cloud differs from ground fog, fog, or ice fog only in that the latter are, by definition, in contact with the Earth’s surface.

CLT—
(See CALCULATED LANDING TIME.)

CLUTTER— In radar operations, clutter refers to the reception and visual display of radar returns caused by precipitation, chaff, terrain, numerous aircraft targets, or other phenomena. Such returns may limit or preclude ATC from providing services based on radar.
(See CHAFF.)
(See GROUND CLUTTER.)
(See PRECIPITATION.)
(See TARGET.)
(See ICAO term RADAR CLUTTER.)

CMNPS—
(See CANADIAN MINIMUM NAVIGATION PERFORMANCE SPECIFICATION AIRSPACE.)

COASTAL FIX— A navigation aid or intersection where an aircraft transitions between the domestic route structure and the oceanic route structure.

CODES— The number assigned to a particular multiple pulse reply signal transmitted by a transponder.
(See DISCRETE CODE.)

COMBINED CENTER-RAPCON— An air traffic facility which combines the functions of an ARTCC and a radar approach control facility.
(See AIR ROUTE TRAFFIC CONTROL CENTER.)
(See RADAR APPROACH CONTROL FACILITY.)

COMMON POINT— A significant point over which two or more aircraft will report passing or have reported passing before proceeding on the same or diverging tracks. To establish/maintain longitudinal separation, a controller may determine a common point not originally in the aircraft’s flight plan and then clear the aircraft to fly over the point.
(See SIGNIFICANT POINT.)

COMMON PORTION—
(See COMMON ROUTE.)

COMMON ROUTE— That segment of a North American Route between the inland navigation facility and the coastal fix.

OR

COMMON ROUTE— Typically the portion of a RNAV STAR between the en route transition end point and the runway transition start point; however, the common route may only consist of a single point that joins the en route and runway transitions.

COMMON TRAFFIC ADVISORY FREQUENCY (CTAF)— A frequency designed for the purpose of carrying out airport advisory practices while operating to or from an airport without an operating control tower. The CTAF may be a UNICOM, Multicom, FSS, or tower frequency and is identified in appropriate aeronautical publications.
(Refer to AC 90-42, Traffic Advisory Practices at Airports Without Operating Control Towers.)

COMPASS LOCATOR— A low power, low or medium frequency (L/MF) radio beacon installed at the site of the outer or middle marker of an instrument landing system (ILS). It can be used for navigation at
distances of approximately 15 miles or as authorized in the approach procedure.

a. Outer Compass Locator (LOM)− A compass locator installed at the site of the outer marker of an instrument landing system.
 (See OUTER MARKER.)

b. Middle Compass Locator (LMM)− A compass locator installed at the site of the middle marker of an instrument landing system.
 (See MIDDLE MARKER.)
 (See ICAO term LOCATOR.)

COMPASS ROSE− A circle, graduated in degrees, printed on some charts or marked on the ground at an airport. It is used as a reference to either true or magnetic direction.

COMPLY WITH RESTRICTIONS− An ATC instruction that requires an aircraft being vectored back onto an arrival or departure procedure to comply with all altitude and/or speed restrictions depicted on the procedure. This term may be used in lieu of repeating each remaining restriction that appears on the procedure.

COMPOSITE FLIGHT PLAN− A flight plan which specifies VFR operation for one portion of flight and IFR for another portion. It is used primarily in military operations.
 (Refer to AIM.)

COMPOSITE ROUTE SYSTEM− An organized oceanic route structure, incorporating reduced lateral spacing between routes, in which composite separation is authorized.

COMPOSITE SEPARATION− A method of separating aircraft in a composite route system where, by management of route and altitude assignments, a combination of half the lateral minimum specified for the area concerned and half the vertical minimum is applied.

COMPULSORY REPORTING POINTS− Reporting points which must be reported to ATC. They are designated on aeronautical charts by solid triangles or filed in a flight plan as fixes selected to define direct routes. These points are geographical locations which are defined by navigation aids/fixes. Pilots should discontinue position reporting over compulsory reporting points when informed by ATC that their aircraft is in “radar contact.”

CONFIDENCE MANEUVER− A confidence maneuver consists of one or more turns, a climb or descent, or other maneuver to determine if the pilot in command (PIC) is able to receive and comply with ATC instructions.

CONFLICT ALERT− A function of certain air traffic control automated systems designed to alert radar controllers to existing or pending situations between tracked targets (known IFR or VFR aircraft) that require his/her immediate attention/action.
 (See MODE C INTRUDER ALERT.)

CONFLICT RESOLUTION− The resolution of potential conflicts between aircraft that are radar identified and in communication with ATC by ensuring that radar targets do not touch. Pertinent traffic advisories shall be issued when this procedure is applied.
 Note: This procedure shall not be provided utilizing mosaic radar systems.

CONFORMANCE− The condition established when an aircraft’s actual position is within the conformance region constructed around that aircraft at its position, according to the trajectory associated with the aircraft’s Current Plan.

CONFORMANCE REGION− A volume, bounded laterally, vertically, and longitudinally, within which an aircraft must be at a given time in order to be in conformance with the Current Plan Trajectory for that aircraft. At a given time, the conformance region is determined by the simultaneous application of the lateral, vertical, and longitudinal conformance bounds for the aircraft at the position defined by time and aircraft’s trajectory.

CONSOLAN− A low frequency, long-distance NAV AID used principally for transoceanic navigations.

CONTACT−
 a. Establish communication with (followed by the name of the facility and, if appropriate, the frequency to be used).
 b. A flight condition wherein the pilot ascertains the attitude of his/her aircraft and navigates by visual reference to the surface.
 (See CONTACT APPROACH.)
 (See RADAR CONTACT.)

CONTACT APPROACH− An approach wherein an aircraft on an IFR flight plan, having an air traffic control authorization, operating clear of clouds with
at least 1 mile flight visibility and a reasonable expectation of continuing to the destination airport in those conditions, may deviate from the instrument approach procedure and proceed to the destination airport by visual reference to the surface. This approach will only be authorized when requested by the pilot and the reported ground visibility at the destination airport is at least 1 statute mile.

(Refer to AIM.)

CONTAMINATED RUNWAY—A runway is considered contaminated whenever standing water, ice, snow, slush, frost in any form, heavy rubber, or other substances are present. A runway is contaminated with respect to rubber deposits or other friction-degrading substances when the average friction value for any 500-foot segment of the runway within the ALD fails below the recommended minimum friction level and the average friction value in the adjacent 500-foot segments falls below the maintenance planning friction level.

CONTERMINOUS U.S.—The 48 adjoining States and the District of Columbia.

CONTINENTAL UNITED STATES—The 49 States located on the continent of North America and the District of Columbia.

CONTINUE—When used as a control instruction should be followed by another word or words clarifying what is expected of the pilot. Example: “continue taxi,” “continue descent,” “continue inbound,” etc.

CONTROL AREA [ICAO]—A controlled airspace extending upwards from a specified limit above the earth.

CONTROL SECTOR—An airspace area of defined horizontal and vertical dimensions for which a controller or group of controllers has air traffic control responsibility, normally within an air route traffic control center or an approach control facility. Sectors are established based on predominant traffic flows, altitude strata, and controller workload. Pilot-communications during operations within a sector are normally maintained on discrete frequencies assigned to the sector.

(See DISCRETE FREQUENCY.)

CONTROL SLASH—A radar beacon slash representing the actual position of the associated aircraft. Normally, the control slash is the one closest to the interrogating radar beacon site. When ARTCC radar is operating in narrowband (digitized) mode, the control slash is converted to a target symbol.

CONTROLLED AIRSPACE—An airspace of defined dimensions within which air traffic control service is provided to IFR flights and to VFR flights in accordance with the airspace classification.

a. Controlled airspace is a generic term that covers Class A, Class B, Class C, Class D, and Class E airspace.

b. Controlled airspace is also that airspace within which all aircraft operators are subject to certain pilot qualifications, operating rules, and equipment requirements in 14 CFR Part 91 (for specific operating requirements, please refer to 14 CFR Part 91). For IFR operations in any class of controlled airspace, a pilot must file an IFR flight plan and receive an appropriate ATC clearance. Each Class B, Class C, and Class D airspace area designated for an airport contains at least one primary airport around which the airspace is designated (for specific designations and descriptions of the airspace classes, please refer to 14 CFR Part 71).

c. Controlled airspace in the United States is designated as follows:

1. CLASS A—Generally, that airspace from 18,000 feet MSL up to and including FL 600, including the airspace overlying the waters within 12 nautical miles of the coast of the 48 contiguous States and Alaska. Unless otherwise authorized, all persons must operate their aircraft under IFR.

2. CLASS B—Generally, that airspace from the surface to 10,000 feet MSL surrounding the nation’s busiest airports in terms of airport operations or passenger enplanements. The configuration of each Class B airspace area is individually tailored and consists of a surface area and two or more layers (some Class B airspaces areas resemble upside-down wedding cakes), and is designed to contain all published instrument procedures once an aircraft enters the airspace. An ATC clearance is required for all aircraft to operate in the area, and all aircraft that are so cleared receive separation services within the airspace. The cloud clearance requirement for VFR operations is “clear of clouds.”

3. CLASS C—Generally, that airspace from the surface to 4,000 feet above the airport elevation (charted in MSL) surrounding those airports that have an operational control tower, are serviced by a radar approach control, and that have a certain
number of IFR operations or passenger enplane-
ments. Although the configuration of each Class C
area is individually tailored, the airspace usually
consists of a surface area with a 5 nautical mile (NM)
radius, a circle with a 10NM radius that extends no
lower than 1,200 feet up to 4,000 feet above the
airport elevation and an outer area that is not charted.
Each person must establish two-way radio commu-
nications with the ATC facility providing air traffic
services prior to entering the airspace and thereafter
maintain those communications while within the
airspace. VFR aircraft are only separated from IFR
aircraft within the airspace.

(See OUTER AREA.)

4. CLASS D— Generally, that airspace from the
surface to 2,500 feet above the airport elevation
charted in MSL) surrounding those airports that
have an operational control tower. The configuration
of each Class D airspace area is individually tailored
and when instrument procedures are published, the
airspace will normally be designed to contain the
procedures. Arrival extensions for instrument
approach procedures may be Class D or Class E
airspace. Unless otherwise authorized, each person
must establish two-way radio communications with
the ATC facility providing air traffic services prior to
entering the airspace and thereafter maintain those
communications while in the airspace. No separation
services are provided to VFR aircraft.

5. CLASS E— Generally, if the airspace is not
Class A, Class B, Class C, or Class D, and it is
controlled airspace, it is Class E airspace. Class E
airspace extends upward from either the surface or a
designated altitude to the overlying or adjacent
controlled airspace. When designated as a surface
area, the airspace will be configured to contain all
instrument procedures. Also in this class are Federal
airways, airspace beginning at either 700 or 1,200
feet AGL used to transition to/from the terminal or en
route environment, en route domestic, and offshore
airspace areas designated below 18,000 feet MSL.
Unless designated at a lower altitude, Class E
airspace begins at 14,500 MSL over the United
States, including that airspace overlying the waters
within 12 nautical miles of the coast of the 48
contiguous States and Alaska, up to, but not
including 18,000 feet MSL, and the airspace above
FL 600.

CONTROLLED AIRSPACE [ICAO]— An airspace
of defined dimensions within which air traffic control
service is provided to IFR flights and to VFR flights
in accordance with the airspace classification.

Note: Controlled airspace is a generic term which
covers ATS airspace Classes A, B, C, D, and E.

CONTROLLED TIME OF ARRIVAL— Arrival time
assigned during a Traffic Management Program. This
time may be modified due to adjustments or user
options.

CONTROLLER—

(See AIR TRAFFIC CONTROL SPECIALIST.)

CONTROLLER [ICAO]— A person authorized to
provide air traffic control services.

CONTROLLER PILOT DATA LINK
COMMUNICATIONS (CPDLC)— A two-way
digital communications system that conveys textual
aertraffic messages between controllers and
pilots using ground or satellite-based radio relay
stations.

CONVECTIVE SIGMET— A weather advisory
concerning convective weather significant to the
safety of all aircraft. Convective SIGMETs are issued
for tornadoes, lines of thunderstorms, embedded
thunderstorms of any intensity level, areas of
thunderstorms greater than or equal to VIP level 4
with an area coverage of 4/10 (40%) or more, and hail
3/4 inch or greater.

(See AIRMET.)

(See AWW.)

(See CWA.)

(See SIGMET.)

(Refer to AIM.)

CONVECTIVE SIGNIFICANT METEOROLOG-
ICAL INFORMATION—

(See CONVECTIVE SIGMET.)

COORDINATES— The intersection of lines of
reference, usually expressed in degrees/minutes/
seconds of latitude and longitude, used to determine
position or location.

COORDINATION FIX— The fix in relation to which
facilities will handoff, transfer control of an aircraft,
or coordinate flight progress data. For terminal
facilities, it may also serve as a clearance for arriving
aircraft.

COPTER—

(See HELICOPTER.)
CORRECTION—An error has been made in the transmission and the correct version follows.

COUPLED APPROACH—An instrument approach performed by the aircraft autopilot, and/or visually depicted on the flight director, which is receiving position information and/or steering commands from onboard navigational equipment. In general, coupled non-precision approaches must be flown manually (autopilot disengaged) at altitudes lower than 50 feet AGL below the minimum descent altitude, and coupled precision approaches must be flown manually (autopilot disengaged) below 50 feet AGL unless authorized to conduct autoland operations. Coupled instrument approaches are commonly flown to the allowable IFR weather minima established by the operator or PIC, or flown VFR for training and safety.

COURSE—
 a. The intended direction of flight in the horizontal plane measured in degrees from north.
 b. The ILS localizer signal pattern usually specified as the front course or the back course.
 c. The intended track along a straight, curved, or segmented MLS path.
 (See BEARING.)
 (See INSTRUMENT LANDING SYSTEM.)
 (See MICROWAVE LANDING SYSTEM.)
 (See RADIAL.)

CPDLC—
 (See CONTROLLER PILOT DATA LINK COMMUNICATIONS.)

CPL [ICAO]—
 (See ICAO term CURRENT FLIGHT PLAN.)

CRITICAL ENGINE—The engine which, upon failure, would most adversely affect the performance or handling qualities of an aircraft.

CROSS (FIX) AT (ALTITUDE)—Used by ATC when a specific altitude restriction at a specified fix is required.

CROSS (FIX) AT OR ABOVE (ALTITUDE)—Used by ATC when an altitude restriction at a specified fix is required. It does not prohibit the aircraft from crossing the fix at a higher altitude than specified; however, the higher altitude may not be one that will violate a succeeding altitude restriction or altitude assignment.
 (See ALTITUDE RESTRICTION.)
 (Refer to AIM.)

CROSSWIND—
 a. When used concerning the traffic pattern, the word means “crosswind leg.”
 (See TRAFFIC PATTERN.)
 b. When used concerning wind conditions, the word means a wind not parallel to the runway or the path of an aircraft.
 (See CROSSWIND COMPONENT.)

CROSSWIND COMPONENT—The wind component measured in knots at 90 degrees to the longitudinal axis of the runway.

CRUISE—Used in an ATC clearance to authorize a pilot to conduct flight at any altitude from the minimum IFR altitude up to and including the altitude specified in the clearance. The pilot may level off at any intermediate altitude within this block of airspace. Climb/descent within the block is to be made at the discretion of the pilot. However, once the pilot starts descent and verbally reports leaving an altitude in the block, he/she may not return to that altitude without additional ATC clearance. Further, it is approval for the pilot to proceed to and make an approach at destination airport and can be used in conjunction with:
 a. An airport clearance limit at locations with a standard/special instrument approach procedure. The CFRs require that if an instrument letdown to an airport is necessary, the pilot shall make the letdown in accordance with a standard/special instrument approach procedure for that airport, or
 b. An airport clearance limit at locations that are within/below/ outside controlled airspace and without a standard/special instrument approach procedure. Such a clearance is NOT AUTHORIZATION for the pilot to descend under IFR conditions below the applicable minimum IFR altitude nor does
it imply that ATC is exercising control over aircraft in Class G airspace; however, it provides a means for the aircraft to proceed to destination airport, descend, and land in accordance with applicable CFRs governing VFR flight operations. Also, this provides search and rescue protection until such time as the IFR flight plan is closed.

(See INSTRUMENT APPROACH PROCEDURE.)

CRUISE CLIMB—A climb technique employed by aircraft, usually at a constant power setting, resulting in an increase of altitude as the aircraft weight decreases.

CRUISING ALTITUDE—An altitude or flight level maintained during en route level flight. This is a constant altitude and should not be confused with a cruise clearance.

(See ALTITUDE.)

CRUISING LEVEL—

(See CRUISING ALTITUDE.)

CRUISING LEVEL [ICAO]—A level maintained during a significant portion of a flight.

CT MESSAGE—An EDCT time generated by the ATCSCC to regulate traffic at arrival airports. Normally, a CT message is automatically transferred from the traffic management system computer to the NAS en route computer and appears as an EDCT. In the event of a communication failure between the traffic management system computer and the NAS, the CT message can be manually entered by the TMC at the en route facility.

CTA—

(See CONTROLLED TIME OF ARRIVAL.)

(See ICAO term CONTROL AREA.)

CTAF—

(See COMMON TRAFFIC ADVISORY FREQUENCY.)

CTAS—

(See CENTER TRACON AUTOMATION SYSTEM.)

CTRD—

(See CERTIFIED TOWER RADAR DISPLAY.)

CURRENT FLIGHT PLAN [ICAO]—The flight plan, including changes, if any, brought about by subsequent clearances.

CURRENT PLAN—The ATC clearance the aircraft has received and is expected to fly.

CVFP APPROACH—

(See CHARTED VISUAL FLIGHT PROCEDURE APPROACH.)

CWA—

(See CENTER WEATHER ADVISORY and WEATHER ADVISORY.)
D

D-ATIS--
(See DIGITAL-AUTOMATIC TERMINAL INFORMATION SERVICE.)

DA [ICAO]--
(See ICAO Term DECISION ALTITUDE/DECISION HEIGHT.)

DAIR--
(See DIRECT ALTITUDE AND IDENTITY READOUT.)

DANGER AREA [ICAO]-- An airspace of defined dimensions within which activities dangerous to the flight of aircraft may exist at specified times.
Note: The term “Danger Area” is not used in reference to areas within the United States or any of its possessions or territories.

DAS--
(See DELAY ASSIGNMENT.)

DATA BLOCK--
(See ALPHANUMERIC DISPLAY.)

DEAD RECKONING-- Dead reckoning, as applied to flying, is the navigation of an airplane solely by means of computations based on airspeed, course, heading, wind direction, and speed, groundspeed, and elapsed time.

DECISION ALTITUDE/DECISION HEIGHT [ICAO Annex 6]- A specified altitude or height (A/H) in the precision approach at which a missed approach must be initiated if the required visual reference to continue the approach has not been established.
1. Decision altitude (DA) is referenced to mean sea level (MSL) on an instrument approach procedure (ILS, GLS, vertically guided RNAV) at which the pilot must decide whether to continue the approach or initiate an immediate missed approach if the pilot does not see the required visual references.

DECISION HEIGHT-- With respect to the operation of aircraft, means the height at which a decision must be made during an ILS, MLS, or PAR instrument approach to either continue the approach or to execute a missed approach.
(See ICAO term DECISION ALTITUDE/DECISION HEIGHT.)

DECODER-- The device used to decipher signals received from ATCRBS transponders to effect their display as select codes.
(See CODES.)
(See RADAR.)

DEFENSE AREA- Any airspace of the contiguous United States that is not an ADIZ in which the control of aircraft is required for reasons of national security.

DEFENSE VISUAL FLIGHT RULES-- Rules applicable to flights within an ADIZ conducted under the visual flight rules in 14 CFR Part 91.
(See AIR DEFENSE IDENTIFICATION ZONE.)
(Refer to 14 CFR Part 91.)
(Refer to 14 CFR Part 99.)

DELAY ASSIGNMENT (DAS)-- Delays are distributed to aircraft based on the traffic management program parameters. The delay assignment is calculated in 15-minute increments and appears as a table in Traffic Flow Management System (TFMS).

DELAY INDEFINITE (REASON IF KNOWN) EXPECT FURTHER CLEARANCE (TIME)-- Used by ATC to inform a pilot when an accurate estimate of the delay time and the reason for the delay cannot immediately be determined; e.g., a disabled aircraft on the runway, terminal or center area saturation, weather below landing minimums, etc.
(See EXPECT FURTHER CLEARANCE (TIME).)

DELAY TIME-- The amount of time that the arrival must lose to cross the meter fix at the assigned meter fix time. This is the difference between ACLT and VTA.
DEPARTURE CENTER— The ARTCC having jurisdiction for the airspace that generates a flight to the impacted airport.

DEPARTURE CONTROL— A function of an approach control facility providing air traffic control service for departing IFR and, under certain conditions, VFR aircraft.

(See APPROACH CONTROL FACILITY.)

(Refer to AIM.)

DEPARTURE SEQUENCING PROGRAM— A program designed to assist in achieving a specified interval over a common point for departures.

DEPARTURE TIME— The time an aircraft becomes airborne.

DESCEND VIA— An abbreviated ATC clearance that requires compliance with a published procedure lateral path and associated speed restrictions and provides a pilot-discretion descent to comply with published altitude restrictions.

DESCENT SPEED ADJUSTMENTS— Speed deceleration calculations made to determine an accurate VTA. These calculations start at the transition point and use arrival speed segments to the vertex.

DESIRED COURSE—

a. True— A predetermined desired course direction to be followed (measured in degrees from true north).

b. Magnetic— A predetermined desired course direction to be followed (measured in degrees from local magnetic north).

DESIRED TRACK— The planned or intended track between two waypoints. It is measured in degrees from either magnetic or true north. The instantaneous angle may change from point to point along the great circle track between waypoints.

DETRESFA (DISTRESS PHASE) [ICAO]— The code word used to designate an emergency phase wherein there is reasonable certainty that an aircraft and its occupants are threatened by grave and imminent danger or require immediate assistance.

DEViations—

a. A departure from a current clearance, such as an off course maneuver to avoid weather or turbulence.

b. Where specifically authorized in the CFRs and requested by the pilot, ATC may permit pilots to deviate from certain regulations.

DH—

(See DECISION HEIGHT.)

DH [ICAO]—

(See ICAO Term DECISION ALTITUDE/ DECISION HEIGHT.)

DIGITAL-AUTOMATIC TERMINAL INFORMATION SERVICE (D-ATIS)— The service provides text messages to aircraft, airlines, and other users outside the standard reception range of conventional ATIS via landline and data link communications to the cockpit. Also, the service provides a computer-synthesized voice message that can be transmitted to all aircraft within range of existing transmitters. The Terminal Data Link System (TDLS) D-ATIS application uses weather inputs from local automated weather sources or manually entered meteorological data together with preprogrammed menus to provide standard information to users. Airports with D-ATIS capability are listed in the Airport/Facility Directory.

DIGITAL TARGET— A computer-generated symbol representing an aircraft’s position, based on a primary return or radar beacon reply, shown on a digital display.

DIGITAL TERMINAL AUTOMATION SYSTEM (DTAS)— A system where digital radar and beacon data is presented on digital displays and the operational program monitors the system performance on a real-time basis.

DIGITIZED TARGET— A computer-generated indication shown on an analog radar display resulting from a primary radar return or a radar beacon reply.

DIRECT— Straight line flight between two navigational aids, fixes, points, or any combination thereof. When used by pilots in describing off-airway routes, points defining direct route segments become compulsory reporting points unless the aircraft is under radar contact.

DIRECT ALTITUDE AND IDENTITY READ-OUT— The DAIR System is a modification to the AN/TPX-42 Interrogator System. The Navy has two adaptations of the DAIR System—Carrier Air Traffic Control Direct Altitude and Identification Readout System for Aircraft Carriers and Radar Air Traffic Control Facility Direct Altitude and Identity Readout System for land-based terminal operations. The DAIR detects, tracks, and predicts secondary radar aircraft targets. Targets are displayed by means of computer-generated symbols and alphanumeric
characters depicting flight identification, altitude, ground speed, and flight plan data. The DAIR System is capable of interfacing with ARTCCs.

DIRECTLY BEHIND— An aircraft is considered to be operating directly behind when it is following the actual flight path of the lead aircraft over the surface of the earth except when applying wake turbulence separation criteria.

DISCRETE BEACON CODE—
(See DISCRETE CODE.)

DISCRETE CODE— As used in the Air Traffic Control Radar Beacon System (ATCRBS), any one of the 4096 selectable Mode 3/A aircraft transponder codes except those ending in zero zero; e.g., discrete codes: 0010, 1201, 2317, 7777; nondiscrete codes: 0100, 1200, 7700. Nondiscrete codes are normally reserved for radar facilities that are not equipped with discrete decoding capability and for other purposes such as emergencies (7700), VFR aircraft (1200), etc.
(See RADAR.)
(Refer to AIM.)

DISCRETE FREQUENCY— A separate radio frequency for use in direct pilot-controller communications in air traffic control which reduces frequency congestion by controlling the number of aircraft operating on a particular frequency at one time. Discrete frequencies are normally designated for each control sector in en route/terminal ATC facilities. Discrete frequencies are listed in the Airport/Facility Directory and the DOD FLIP IFR En Route Supplement.
(See CONTROL SECTOR.)

DISPLACED THRESHOLD— A threshold that is located at a point on the runway other than the designated beginning of the runway.
(See THRESHOLD.)
(Refer to AIM.)

DISTANCE MEASURING EQUIPMENT— Equipment (airborne and ground) used to measure, in nautical miles, the slant range distance of an aircraft from the DME navigational aid.
(See MICROWAVE LANDING SYSTEM.)
(See TACAN.)
(See VORTAC.)

DISTRESS— A condition of being threatened by serious and/or imminent danger and of requiring immediate assistance.

DIVE BRAKES—
(See SPEED BRAKES.)

DIVERSE VECTOR AREA— In a radar environment, that area in which a prescribed departure route is not required as the only suitable route to avoid obstacles. The area in which random radar vectors below the MVA/MIA, established in accordance with the TERPS criteria for diverse departures, obstacles and terrain avoidance, may be issued to departing aircraft.

DIVERSION (DVRSN)— Flights that are required to land at other than their original destination for reasons beyond the control of the pilot/company, e.g., periods of significant weather.

DME—
(See DISTANCE MEASURING EQUIPMENT.)

DME FIX— A geographical position determined by reference to a navigational aid which provides distance and azimuth information. It is defined by a specific distance in nautical miles and a radial, azimuth, or course (i.e., localizer) in degrees magnetic from that aid.
(See DISTANCE MEASURING EQUIPMENT.)
(See FIX.)
(See MICROWAVE LANDING SYSTEM.)

DME SEPARATION— Spacing of aircraft in terms of distances (nautical miles) determined by reference to distance measuring equipment (DME).
(See DISTANCE MEASURING EQUIPMENT.)

DOD FLIP— Department of Defense Flight Information Publications used for flight planning, en route, and terminal operations. FLIP is produced by the National Geospatial–Intelligence Agency (NGA) for world-wide use. United States Government Flight Information Publications (en route charts and instrument approach procedure charts) are incorporated in DOD FLIP for use in the National Airspace System (NAS).

DOMESTIC AIRSPACE— Airspace which overlies the continental land mass of the United States plus Hawaii and U.S. possessions. Domestic airspace extends to 12 miles offshore.

DOWNBURST— A strong downdraft which induces an outburst of damaging winds on or near the ground. Damaging winds, either straight or curved, are highly divergent. The sizes of downbursts vary from 1/2 mile or less to more than 10 miles. An intense downburst often causes widespread damage. Damag-
ing winds, lasting 5 to 30 minutes, could reach speeds as high as 120 knots.

DOWNWIND LEG–
(See TRAFFIC PATTERN.)

DP–
(See INSTRUMENT DEPARTURE PROCEDURE.)

DRAG CHUTE– A parachute device installed on certain aircraft which is deployed on landing roll to assist in deceleration of the aircraft.

DSP–
(See DEPARTURE SEQUENCING PROGRAM.)

DT–
(See DELAY TIME.)

DTAS–
(See DIGITAL TERMINAL AUTOMATION SYSTEM.)

DUE REGARD– A phase of flight wherein an aircraft commander of a State-operated aircraft assumes responsibility to separate his/her aircraft from all other aircraft.
(See also FAAO JO 7110.65, Para 1–2–1, WORD MEANINGS.)

DUTY RUNWAY–
(See RUNWAY IN USE/ACTIVE RUNWAY/DUTY RUNWAY.)

DVA–
(See DIVERSE VECTOR AREA.)

DVFR–
(See DEFENSE VISUAL FLIGHT RULES.)

DVFR FLIGHT PLAN– A flight plan filed for a VFR aircraft which intends to operate in airspace within which the ready identification, location, and control of aircraft are required in the interest of national security.

DVRSN–
(See DIVERSION.)

DYNAMIC– Continuous review, evaluation, and change to meet demands.

DYNAMIC RESTRICTIONS– Those restrictions imposed by the local facility on an “as needed” basis to manage unpredictable fluctuations in traffic demands.
EAS—
(See EN ROUTE AUTOMATION SYSTEM.)

EDCT—
(See EXPECT DEPARTURE CLEARANCE TIME.)

EFC—
(See EXPECT FURTHER CLEARANCE (TIME).)

ELT—
(See EMERGENCY LOCATOR TRANSMITTER.)

EMERGENCY— A distress or an urgency condition.

EMERGENCY LOCATOR TRANSMITTER— A radio transmitter attached to the aircraft structure which operates from its own power source on 121.5 MHz and 243.0 MHz. It aids in locating downed aircraft by radiating a downward sweeping audio tone, 2-4 times per second. It is designed to function without human action after an accident.

(Refer to 14 CFR Part 91.)
(Refer to AIM.)

E-MSAW—
(See EN ROUTE MINIMUM SAFE ALTITUDE WARNING.)

EN ROUTE AIR TRAFFIC CONTROL SERVICES— Air traffic control service provided aircraft on IFR flight plans, generally by centers, when these aircraft are operating between departure and destination terminal areas. When equipment, capabilities, and controller workload permit, certain advisory/assistance services may be provided to VFR aircraft.

(See AIR ROUTE TRAFFIC CONTROL CENTER.)
(Refer to AIM.)

EN ROUTE AUTOMATION SYSTEM (EAS)— The complex integrated environment consisting of situation display systems, surveillance systems and flight data processing, remote devices, decision support tools, and the related communications equipment that form the heart of the automated IFR air traffic control system. It interfaces with automated terminal systems and is used in the control of en route IFR aircraft.

(Refer to AIM.)

EN ROUTE CHARTS—
(See AERONAUTICAL CHART.)

EN ROUTE DESCENT— Descent from the en route cruising altitude which takes place along the route of flight.

EN ROUTE FLIGHT ADVISORY SERVICE— A service specifically designed to provide, upon pilot request, timely weather information pertinent to his/her type of flight, intended route of flight, and altitude. The FSSs providing this service are listed in the Airport/Facility Directory.

(See FLIGHT WATCH.)
(Refer to AIM.)

EN ROUTE HIGH ALTITUDE CHARTS—
(See AERONAUTICAL CHART.)

EN ROUTE LOW ALTITUDE CHARTS—
(See AERONAUTICAL CHART.)

EN ROUTE MINIMUM SAFE ALTITUDE WARNING— A function of the EAS that aids the controller by providing an alert when a tracked aircraft is below or predicted by the computer to go below a predetermined minimum IFR altitude (MIA).

EN ROUTE SPACING PROGRAM (ESP)— A program designed to assist the exit sector in achieving the required in-trail spacing.

EN ROUTE TRANSITION—

a. Conventional STARs/SIDs. The portion of a SID/STAR that connects to one or more en route airway/jet route.

b. RNAV STARs/SIDs. The portion of a STAR preceding the common route or point, or for a SID the portion following, that is coded for a specific en route fix, airway or jet route.

ESP—
(See EN ROUTE SPACING PROGRAM.)

ESTABLISHED—To be stable or fixed on a route, route segment, altitude, heading, etc.

ESTIMATED ELAPSED TIME [ICAO]— The estimated time required to proceed from one significant point to another.

(See ICAO Term TOTAL ESTIMATED ELAPSED TIME.)
ESTIMATED OFF-BLOCK TIME [ICAO]– The estimated time at which the aircraft will commence movement associated with departure.

ESTIMATED POSITION ERROR (EPE)–
(See Required Navigation Performance)

ESTIMATED TIME OF ARRIVAL– The time the flight is estimated to arrive at the gate (scheduled operators) or the actual runway on times for nonscheduled operators.

ESTIMATED TIME EN ROUTE– The estimated flying time from departure point to destination (lift-off to touchdown).

ETA–
(See ESTIMATED TIME OF ARRIVAL.)

ETE–
(See ESTIMATED TIME EN ROUTE.)

EXECUTE MISSED APPROACH– Instructions issued to a pilot making an instrument approach which means continue inbound to the missed approach point and execute the missed approach procedure as described on the Instrument Approach Procedure Chart or as previously assigned by ATC. The pilot may climb immediately to the altitude specified in the missed approach procedure upon making a missed approach. No turns should be initiated prior to reaching the missed approach point. When conducting an ASR or PAR approach, execute the assigned missed approach procedure immediately upon receiving instructions to “execute missed approach.”
(Refer to AIM.)

EXPECT (ALTITUDE) AT (TIME) or (FIX)– Used under certain conditions to provide a pilot with an altitude to be used in the event of two-way communications failure. It also provides altitude information to assist the pilot in planning.
(Refer to AIM.)

EXPECT DEPARTURE CLEARANCE TIME (EDCT)– The runway release time assigned to an aircraft in a traffic management program and shown on the flight progress strip as an EDCT.
(See GROUND DELAY PROGRAM.)

EXPECT FURTHER CLEARANCE (TIME)– The time a pilot can expect to receive clearance beyond a clearance limit.

EXPECT FURTHER CLEARANCE VIA (AIRWAYS, ROUTES OR FIXES)– Used to inform a pilot of the routing he/she can expect if any part of the route beyond a short range clearance limit differs from that filed.

EXPEDITE– Used by ATC when prompt compliance is required to avoid the development of an imminent situation. Expedite climb/descent normally indicates to a pilot that the approximate best rate of climb/descent should be used without requiring an exceptional change in aircraft handling characteristics.
FAF—
(See FINAL APPROACH FIX.)
FAST FILE— An FSS system whereby a pilot files a flight plan via telephone that is recorded and later transcribed for transmission to the appropriate air traffic facility. (Alaska only.)
FAWP— Final Approach Waypoint
FCLT—
(See FREEZE CALCULATED LANDING TIME.)
FEATHERED PROPELLER— A propeller whose blades have been rotated so that the leading and trailing edges are nearly parallel with the aircraft flight path to stop or minimize drag and engine rotation. Normally used to indicate shutdown of a reciprocating or turboprop engine due to malfunction.
FEDERAL AIRWAYS—
(See LOW ALTITUDE AIRWAY STRUCTURE.)
FEEDER FIX— The fix depicted on Instrument Approach Procedure Charts which establishes the starting point of the feeder route.
FEEDER ROUTE— A route depicted on instrument approach procedure charts to designate routes for aircraft to proceed from the en route structure to the initial approach fix (IAF).
(See INSTRUMENT APPROACH PROCEDURE.)
FERRY FLIGHT— A flight for the purpose of:
 a. Returning an aircraft to base.
 b. Delivering an aircraft from one location to another.
 c. Moving an aircraft to and from a maintenance base.— Ferry flights, under certain conditions, may be conducted under terms of a special flight permit.
FIELD ELEVATION—
(See AIRPORT ELEVATION.)
FILED— Normally used in conjunction with flight plans, meaning a flight plan has been submitted to ATC.
FILED EN ROUTE DELAY— Any of the following preplanned delays at points/areas along the route of flight which require special flight plan filing and handling techniques.
 a. Terminal Area Delay. A delay within a terminal area for touch-and-go, low approach, or other terminal area activity.
 b. Special Use Airspace Delay. A delay within a Military Operations Area, Restricted Area, Warning Area, or ATC Assigned Airspace.
 c. Aerial Refueling Delay. A delay within an Aerial Refueling Track or Anchor.
FILED FLIGHT PLAN— The flight plan as filed with an ATS unit by the pilot or his/her designated representative without any subsequent changes or clearances.
FINAL— Commonly used to mean that an aircraft is on the final approach course or is aligned with a landing area.
(See FINAL APPROACH COURSE.)
(See FINAL APPROACH-IFR.)
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)
FINAL APPROACH [ICAO]— That part of an instrument approach procedure which commences at the specified final approach fix or point, or where such a fix or point is not specified.
 a. At the end of the last procedure turn, base turn or inbound turn of a racetrack procedure, if specified; or
 b. At the point of interception of the last track specified in the approach procedure; and ends at a point in the vicinity of an aerodrome from which:
 1. A landing can be made; or
 2. A missed approach procedure is initiated.
FINAL APPROACH COURSE— A bearing/radial/track of an instrument approach leading to a runway or an extended runway centerline all without regard to distance.
FINAL APPROACH FIX— The fix from which the final approach (IFR) to an airport is executed and which identifies the beginning of the final approach segment. It is designated on Government charts by the Maltese Cross symbol for nonprecision approaches and the lightning bolt symbol, designating the PFAF, for precision approaches; or
when ATC directs a lower-than-published glideslope/path or vertical path intercept altitude, it is the resultant actual point of the glideslope/path or vertical path intercept.

(See FINAL APPROACH POINT.)
(See GLIDESLOPE INTERCEPT ALTITUDE.)
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

FINAL APPROACH-IFR—The flight path of an aircraft which is inbound to an airport on a final instrument approach course, beginning at the final approach fix or point and extending to the airport or the point where a circle-to-land maneuver or a missed approach is executed.

(See FINAL APPROACH COURSE.)
(See FINAL APPROACH FIX.)
(See FINAL APPROACH POINT.)
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)
(See ICAO term FINAL APPROACH.)

FINAL APPROACH POINT—The point, applicable only to a nonprecision approach with no depicted FAF (such as an on airport VOR), where the aircraft is established inbound on the final approach course from the procedure turn and where the final approach descent may be commenced. The FAP serves as the FAF and identifies the beginning of the final approach segment.

(See FINAL APPROACH FIX.)
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

FINAL APPROACH SEGMENT—
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

FINAL APPROACH SEGMENT [ICAO]—That segment of an instrument approach procedure in which alignment and descent for landing are accomplished.

FINAL CONTROLLER—The controller providing information and final approach guidance during PAR and ASR approaches utilizing radar equipment.

(See RADAR APPROACH.)

FINAL GUARD SERVICE—A value added service provided in conjunction with LAA/RAA only during periods of significant and fast changing weather conditions that may affect landing and takeoff operations.

FINAL MONITOR AID—A high resolution color display that is equipped with the controller alert system hardware/software used to monitor the no transgression zone (NTZ) during simultaneous parallel approach operations. The display includes alert algorithms providing the target predictors, a color change alert when a target penetrates or is predicted to penetrate the no transgression zone (NTZ), synthesized voice alerts, and digital mapping.

(See RADAR APPROACH.)

FINAL MONITOR CONTROLLER—Air Traffic Control Specialist assigned to radar monitor the flight path of aircraft during simultaneous parallel (approach courses spaced less than 9000 feet/9200 feet above 5000 feet) and simultaneous close parallel approach operations. Each runway is assigned a final monitor controller during simultaneous parallel and simultaneous close parallel ILS approaches.

FIR—
(See FLIGHT INFORMATION REGION.)

FIRST TIER CENTER—the ARTCC immediately adjacent to the impacted center.

FIS—B—
(See FLIGHT INFORMATION SERVICE—BROADCAST.)

FIX—A geographical position determined by visual reference to the surface, by reference to one or more radio NAVAIDs, by celestial plotting, or by another navigational device.

FIX BALANCING—A process whereby aircraft are evenly distributed over several available arrival fixes reducing delays and controller workload.

FLAG—A warning device incorporated in certain airborne navigation and flight instruments indicating that:

a. Instruments are inoperative or otherwise not operating satisfactorily, or
b. Signal strength or quality of the received signal falls below acceptable values.

FLAG ALARM—
(See FLAG.)

FLAMEOUT—An emergency condition caused by a loss of engine power.

FLAMEOUT PATTERN—An approach normally conducted by a single-engine military aircraft experiencing loss or anticipating loss of engine
power or control. The standard overhead approach starts at a relatively high altitude over a runway ("high key") followed by a continuous 180 degree turn to a high, wide position ("low key") followed by a continuous 180 degree turn final. The standard straight-in pattern starts at a point that results in a straight-in approach with a high rate of descent to the runway. Flameout approaches terminate in the type approach requested by the pilot (normally fullstop).

FLIGHT CHECK— A call-sign prefix used by FAA aircraft engaged in flight inspection/certification of navigational aids and flight procedures. The word "recorded" may be added as a suffix; e.g., “Flight Check 320 recorded” to indicate that an automated flight inspection is in progress in terminal areas. (See FLIGHT INSPECTION.) (Refer to AIM.)

FLIGHT FOLLOWING— (See TRAFFIC ADVISORIES.)

FLIGHT INFORMATION REGION— An airspace of defined dimensions within which Flight Information Service and Alerting Service are provided.

a. Flight Information Service. A service provided for the purpose of giving advice and information useful for the safe and efficient conduct of flights.

b. Alerting Service. A service provided to notify appropriate organizations regarding aircraft in need of search and rescue aid and to assist such organizations as required.

FLIGHT INFORMATION SERVICE— A service provided for the purpose of giving advice and information useful for the safe and efficient conduct of flights.

FLIGHT INFORMATION SERVICE— BROADCAST (FIS−B)— A ground broadcast service provided through the ADS−B Broadcast Services network over the UAT data link that operates on 978 MHz. The FIS−B system provides pilots and flight crews of properly equipped aircraft with a cockpit display of certain aviation weather and aeronautical information.

FLIGHT INSPECTION— Inflight investigation and evaluation of a navigational aid to determine whether it meets established tolerances. (See FLIGHT CHECK.) (See NAVIGATIONAL AID.)

FLIGHT LEVEL— A level of constant atmospheric pressure related to a reference datum of 29.92 inches of mercury. Each is stated in three digits that represent hundreds of feet. For example, flight level (FL) 250 represents a barometric altimeter indication of 25,000 feet; FL 255, an indication of 25,500 feet. (See ICAO term FLIGHT LEVEL.)

FLIGHT LEVEL [ICAO]— A surface of constant atmospheric pressure which is related to a specific pressure datum, 1013.2 hPa (1013.2 mb), and is separated from other such surfaces by specific pressure intervals.

Note 1: A pressure type altimeter calibrated in accordance with the standard atmosphere:

a. When set to a QNH altimeter setting, will indicate altitude;

b. When set to a QFE altimeter setting, will indicate height above the QFE reference datum; and

c. When set to a pressure of 1013.2 hPa (1013.2 mb), may be used to indicate flight levels.

Note 2: The terms ‘height’ and ‘altitude,’ used in Note 1 above, indicate altimetric rather than geometric heights and altitudes.

FLIGHT LINE— A term used to describe the precise movement of a civil photogrammetric aircraft along a predetermined course(s) at a predetermined altitude during the actual photographic run.

FLIGHT MANAGEMENT SYSTEMS— A computer system that uses a large data base to allow routes to be preprogrammed and fed into the system by means of a data loader. The system is constantly updated with respect to position accuracy by reference to conventional navigation aids. The sophisticated program and its associated data base ensures that the most appropriate aids are automatically selected during the information update cycle.

FLIGHT MANAGEMENT SYSTEM PROCEDURE— An arrival, departure, or approach procedure developed for use by aircraft with a slant (/) E or slant (/) F equipment suffix.
FLIGHT PATH—A line, course, or track along which an aircraft is flying or intended to be flown.
(See COURSE.)
(See TRACK.)

FLIGHT PLAN—Specified information relating to the intended flight of an aircraft that is filed orally or in writing with an FSS or an ATC facility.
(See FAST FILE.)
(See FILED.)
(Refer to AIM.)

FLIGHT PLAN AREA (FPA)—The geographical area assigned to a flight service station (FSS) for the purpose of establishing primary responsibility for services that may include search and rescue for VFR aircraft, issuance of NOTAMs, pilot briefings, inflight services, broadcast services, emergency services, flight data processing, international operations, and aviation weather services. Large consolidated FSS facilities may combine FPAs into larger areas of responsibility (AOR).
(See FLIGHT SERVICE STATION.)
(See TIE-IN FACILITY.)

FLIGHT RECORDER—A general term applied to any instrument or device that records information about the performance of an aircraft in flight or about conditions encountered in flight. Flight recorders may make records of airspeed, outside air temperature, vertical acceleration, engine RPM, manifold pressure, and other pertinent variables for a given flight.
(See ICAO term FLIGHT RECORDER.)

FLIGHT RECORDER [ICAO]—Any type of recorder installed in the aircraft for the purpose of complementing accident/incident investigation.
Note: See Annex 6 Part I, for specifications relating to flight recorders.

FLIGHT SERVICE STATION (FSS) — An air traffic facility which provides pilot briefings, flight plan processing, en route radio communications, search and rescue services, and assistance to lost aircraft and aircraft in emergency situations. FSS also relays ATC clearances, processes Notices to Airmen, and broadcasts aviation weather and aeronautical information. In addition, at selected locations, FSS provides En Route Flight Advisory Service (Flight Watch) and Airport Advisory Service (AAS) and takes airport weather observations.
(See FLIGHT PLAN AREA.)
(See TIE-IN FACILITY.)

FLIGHT STANDARDS DISTRICT OFFICE—An FAA field office serving an assigned geographical area and staffed with Flight Standards personnel who serve the aviation industry and the general public on matters relating to the certification and operation of air carrier and general aviation aircraft. Activities include general surveillance of operational safety, certification of airmen and aircraft, accident prevention, investigation, enforcement, etc.

FLIGHT TEST—A flight for the purpose of:
 a. Investigating the operation/flight characteristics of an aircraft or aircraft component.
 b. Evaluating an applicant for a pilot certificate or rating.

FLIGHT VISIBILITY—
(See VISIBILITY.)

FLIGHT WATCH—A shortened term for use in air-ground contacts to identify the flight service station providing En Route Flight Advisory Service; e.g., “Oakland Flight Watch.”
(See EN ROUTE FLIGHT ADVISORY SERVICE.)

FLIP—
(See DOD FLIP.)

FLY HEADING (DEGREES)—Informs the pilot of the heading he/she should fly. The pilot may have to turn to, or continue on, a specific compass direction in order to comply with the instructions. The pilot is expected to turn in the shorter direction to the heading unless otherwise instructed by ATC.

FLY-BY WAYPOINT—A fly-by waypoint requires the use of turn anticipation to avoid overshoot of the next flight segment.

FLY-OVER WAYPOINT—A fly-over waypoint precludes any turn until the waypoint is overflown and is followed by an intercept maneuver of the next flight segment.

FLY VISUAL TO AIRPORT—
(See PUBLISHED INSTRUMENT APPROACH PROCEDURE VISUAL SEGMENT.)

FMA—
(See FINAL MONITOR AID.)
FMS—
(See FLIGHT MANAGEMENT SYSTEM.)

FMSP—
(See FLIGHT MANAGEMENT SYSTEM PROEDURE.)

FORMATION FLIGHT— More than one aircraft which, by prior arrangement between the pilots, operate as a single aircraft with regard to navigation and position reporting. Separation between aircraft within the formation is the responsibility of the flight leader and the pilots of the other aircraft in the flight. This includes transition periods when aircraft within the formation are maneuvering to attain separation from each other to effect individual control and during join-up and breakaway.

a. A standard formation is one in which a proximity of no more than 1 mile laterally or longitudinally and within 100 feet vertically from the flight leader is maintained by each wingman.

b. Nonstandard formations are those operating under any of the following conditions:

1. When the flight leader has requested and ATC has approved other than standard formation dimensions.

2. When operating within an authorized altitude reservation (ALTRV) or under the provisions of a letter of agreement.

3. When the operations are conducted in airspace specifically designed for a special activity.
(See ALTITUDE RESERVATION.)
(Refer to 14 CFR Part 91.)

FRC—
(See REQUEST FULL ROUTE CLEARANCE.)

FREEZE/FROZEN— Terms used in referring to arrivals which have been assigned ACLTs and to the lists in which they are displayed.

FREEZE CALCULATED LANDING TIME— A dynamic parameter number of minutes prior to the meter fix calculated time of arrival for each aircraft when the TCLT is frozen and becomes an ACLT (i.e., the VTA is updated and consequently the TCLT is modified as appropriate until FCLT minutes prior to meter fix calculated time of arrival, at which time updating is suspended and an ACLT and a frozen meter fix crossing time (MFT) is assigned).

FREEZE HORIZON—The time or point at which an aircraft’s STA becomes fixed and no longer fluctuates with each radar update. This setting ensures a constant time for each aircraft, necessary for the metering controller to plan his/her delay technique. This setting can be either in distance from the meter fix or a prescribed flying time to the meter fix.

FREEZE SPEED PARAMETER— A speed adapted for each aircraft to determine fast and slow aircraft. Fast aircraft freeze on parameter FCLT and slow aircraft freeze on parameter MLDI.

FRICTION MEASUREMENT— A measurement of the friction characteristics of the runway pavement surface using continuous self-watering friction measurement equipment in accordance with the specifications, procedures and schedules contained in AC 150/5320–12, Measurement, Construction, and Maintenance of Skid Resistant Airport Pavement Surfaces.

FSDO—
(See FLIGHT STANDARDS DISTRICT OFFICE.)

FSPD—
(See FREEZE SPEED PARAMETER.)

FSS—
(See FLIGHT SERVICE STATION.)

FUEL DUMPING— Airborne release of usable fuel. This does not include the dropping of fuel tanks.
(See JETTISONING OF EXTERNAL STORES.)

FUEL REMAINING— A phrase used by either pilots or controllers when relating to the fuel remaining on board until actual fuel exhaustion. When transmitting such information in response to either a controller question or pilot initiated cautionary advisory to air traffic control, pilots will state the APPROXIMATE NUMBER OF MINUTES the flight can continue with the fuel remaining. All reserve fuel SHOULD BE INCLUDED in the time stated, as should an allowance for established fuel gauge system error.

FUEL SIPHONING— Unintentional release of fuel caused by overflow, puncture, loose cap, etc.

FUEL VENTING—
(See FUEL SIPHONING.)

FUSeD TARGET—
(See DIGITAL TARGET)

FUSION [STARS/CARTS]- the combination of all available surveillance sources (airport surveillance radar [ASR], air route surveillance radar [ARSR], ADS-B, etc.) into the display of a single tracked
target for air traffic control separation services. FUSION is the equivalent of the current single-sensor radar display. FUSION performance is characteristic of a single-sensor radar display system. Terminal areas use mono-pulse secondary surveillance radar (ASR 9, Mode S or ASR 11, MSSR).
GATE HOLD PROCEDURES—Procedures at Electronic components emitting signals which provide vertical guidance by reference to airborne instruments during instrument approaches such as ILS.

GBT—
(See GROUND–BASED TRANSCEIVER.)

GCA—
(See GROUND CONTROLLED APPROACH.)

GDP—
(See GROUND DELAY PROGRAM.)

GENERAL AVIATION—That portion of civil aviation that does not include scheduled or unscheduled air carriers or commercial space operations.
(See ICAO term GENERAL AVIATION.)

GENERAL AVIATION [ICAO]—All civil aviation operations other than scheduled air services and nonscheduled air transport operations for remuneration or hire.

GEO MAP—The digitized map markings associated with the ASR-9 Radar System.

GLIDEPATH—
(See GLIDESLOPE.)

GLIDEPATH [ICAO]—A descent profile determined for vertical guidance during a final approach.

GLIDEPATH INTERCEPT ALTITUDE—
(See GLIDESLOPE INTERCEPT ALTITUDE.)

GLIDESLOPE—Provides vertical guidance for aircraft during approach and landing. The glideslope/glidepath is based on the following:

a. Electronic components emitting signals which provide vertical guidance by reference to airborne instruments during instrument approaches such as ILS/MLS, or

b. Visual ground aids, such as VASI, which provide vertical guidance for a VFR approach or for the visual portion of an instrument approach and landing.

c. PAR. Used by ATC to inform an aircraft making a PAR approach of its vertical position (elevation) relative to the descent profile.
(See ICAO term GLIDEPATH.)

GLIDESLOPE INTERCEPT ALTITUDE—The published minimum altitude to intercept the glideslope in the intermediate segment of an instrument approach. Government charts use the lightning bolt symbol to identify this intercept point. This intersection is called the Precise Final Approach fix (PFAF). ATC directs a higher altitude, the resultant intercept becomes the PFAF.
(See FINAL APPROACH FIX.)
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) [ICAO]—GNSS refers collectively to the worldwide positioning, navigation, and timing determination capability available from one or more satellite constellation in conjunction with a network of ground stations.

GLOBAL NAVIGATION SATELLITE SYSTEM MINIMUM EN ROUTE IFR ALTITUDE (GNSS MEA)—The minimum en route IFR altitude on a published ATS route or route segment which assures acceptable Global Navigation Satellite System reception and meets obstacle clearance requirements.
(Refer to 14 CFR Part 91.)
(Refer to 14 CFR Part 95.)

GLOBAL POSITIONING SYSTEM (GPS)—GPS refers to the worldwide positioning, navigation and timing determination capability available from the U.S. satellite constellation. The service provided by GPS for civil use is defined in the GPS Standard Positioning System Performance Standard. GPS is composed of space, control, and user elements.

GNSS [ICAO]—
(See GLOBAL NAVIGATION SATELLITE SYSTEM.)

GNSS MEA—
(See GLOBAL NAVIGATION SATELLITE SYSTEM MINIMUM EN ROUTE IFR ALTITUDE.)
GO AHEAD—Proceed with your message. Not to be used for any other purpose.

GO AROUND—Instructions for a pilot to abandon his/her approach to landing. Additional instructions may follow. Unless otherwise advised by ATC, a VFR aircraft or an aircraft conducting visual approach should overfly the runway while climbing to traffic pattern altitude and enter the traffic pattern via the crosswind leg. A pilot on an IFR flight plan making an instrument approach should execute the published missed approach procedure or proceed as instructed by ATC; e.g., “Go around” (additional instructions if required).

(See LOW APPROACH.)
(See MISSED APPROACH.)

GPD—
(See GRAPHIC PLAN DISPLAY.)

GPS—
(See GLOBAL POSITIONING SYSTEM.)

GRAPHIC PLAN DISPLAY (GPD)—A view available with URET that provides a graphic display of aircraft, traffic, and notification of predicted conflicts. Graphic routes for Current Plans and Trial Plans are displayed upon controller request.

(See USER REQUEST EVALUATION TOOL.)

GROSS NAVIGATION ERROR (GNE) — A lateral deviation from a cleared track, normally in excess of 25 Nautical Miles (NM). More stringent standards (for example, 10NM in some parts of the North Atlantic region) may be used in certain regions to support reductions in lateral separation.

GROUND–BASED TRANSCIEVER (GBT)—The ground–based transmitter/receiver (transceiver) receives automatic dependent surveillance–broadcast messages, which are forwarded to an air traffic control facility for processing and display with other radar targets on the plan position indicator (radar display).

(See AUTOMATIC DEPENDENT SURVEILLANCE–BROADCAST.)

GROUND CLUTTER—A pattern produced on the radar scope by ground returns which may degrade other radar returns in the affected area. The effect of ground clutter is minimized by the use of moving target indicator (MTI) circuits in the radar equipment resulting in a radar presentation which displays only targets which are in motion.

(See CLUTTER.)

GROUND COMMUNICATION OUTLET (GCO)—An unstaffed, remotely controlled, ground/ground communications facility. Pilots at uncontrolled airports may contact ATC and FSS via VHF to a telephone connection to obtain an instrument clearance or close a VFR or IFR flight plan. They may also get an updated weather briefing prior to takeoff. Pilots will use four “key clicks” on the VHF radio to contact the appropriate ATC facility or six “key clicks” to contact the FSS. The GCO system is intended to be used only on the ground.

GROUND CONTROLLED APPROACH—A radar approach system operated from the ground by air traffic control personnel transmitting instructions to the pilot by radio. The approach may be conducted with surveillance radar (ASR) only or with both surveillance and precision approach radar (PAR). Usage of the term “GCA” by pilots is discouraged except when referring to a GCA facility. Pilots should specifically request a “PAR” approach when a precision radar approach is desired or request an “ASR” or “surveillance” approach when a nonprecision radar approach is desired.

(See RADAR APPROACH.)

GROUND DELAY PROGRAM (GDP)—A traffic management process administered by the ATCSCC; when aircraft are held on the ground. The purpose of the program is to support the TM mission and limit airborne holding. It is a flexible program and may be implemented in various forms depending upon the needs of the AT system. Ground delay programs provide for equitable assignment of delays to all system users.

GROUND SPEED—The speed of an aircraft relative to the surface of the earth.

GROUND STOP (GS)—The GS is a process that requires aircraft that meet a specific criteria to remain on the ground. The criteria may be airport specific, airspace specific, or equipment specific; for example, all departures to San Francisco, or all departures entering Yorktown sector, or all Category I and II aircraft going to Charlotte. GSs normally occur with little or no warning.

GROUND VISIBILITY—
(See VISIBILITY.)

GS—
(See GROUND STOP.)
H

HAA—
(See HEIGHT ABOVE AIRPORT.)

HAL—
(See HEIGHT ABOVE LANDING.)

HANDOFF— An action taken to transfer the radar identification of an aircraft from one controller to another if the aircraft will enter the receiving controller’s airspace and radio communications with the aircraft will be transferred.

HAR—
(See HIGH ALTITUDE REDESIGN.)

HAT—
(See HEIGHT ABOVE TOUCHDOWN.)

HAVE NUMBERS— Used by pilots to inform ATC that they have received runway, wind, and altimeter information only.

HAZARDOUS INFLIGHT WEATHER ADVISORY SERVICE— Continuous recorded hazardous inflight weather forecasts broadcasted to airborne pilots over selected VOR outlets defined as an HIWAS BROADCAST AREA.

HAZARDOUS WEATHER INFORMATION— Summary of significant meteorological information (SIGMET/WS), convective significant meteorological information (convective SIGMET/WST), urgent pilot weather reports (urgent PIREP/UUA), center weather advisories (CWA), airmen’s meteorological information (AIRMET/WA) and any other weather such as isolated thunderstorms that are rapidly developing and increasing in intensity, or low ceilings and visibilities that are becoming widespread which is considered significant and are not included in a current hazardous weather advisory.

HEAVY (AIRCRAFT)—
(See AIRCRAFT CLASSES.)

HEIGHT ABOVE AIRPORT— The height of the Minimum Descent Altitude above the published airport elevation. This is published in conjunction with circling minimums.
(See MINIMUM DESCENT ALTITUDE.)

HEIGHT ABOVE LANDING— The height above a designated helicopter landing area used for helicopter instrument approach procedures.
(Refer to 14 CFR Part 97.)

HEIGHT ABOVE TOUCHDOWN— The height of the Decision Height or Minimum Descent Altitude above the highest runway elevation in the touchdown zone (first 3,000 feet of the runway). HAT is published on instrument approach charts in conjunction with all straight-in minimums.
(See DECISION HEIGHT.)
(See MINIMUM DESCENT ALTITUDE.)

HELICOPTER— A heavier-than-air aircraft supported in flight chiefly by the reactions of the air on one or more power-driven rotors on substantially vertical axes.

HELIPAD— A small, designated area, usually with a prepared surface, on a heliport, airport, landing/takeoff area, apron/ramp, or movement area used for takeoff, landing, or parking of helicopters.

HELIPORT— An area of land, water, or structure used or intended to be used for the landing and takeoff of helicopters and includes its buildings and facilities if any.

HELIPORT REFERENCE POINT (HRP)— The geographic center of a heliport.

HERTZ— The standard radio equivalent of frequency in cycles per second of an electromagnetic wave. Kilohertz (kHz) is a frequency of one thousand cycles per second. Megahertz (MHz) is a frequency of one million cycles per second.

HF—
(See HIGH FREQUENCY.)

HF COMMUNICATIONS—
(See HIGH FREQUENCY COMMUNICATIONS.)

HIGH ALTITUDE REDESIGN (HAR)— A level of non-restrictive routing (NRR) service for aircraft that have all waypoints associated with the HAR program in their flight management systems or RNAV equipage.

HIGH FREQUENCY— The frequency band between 3 and 30 MHz.
(See HIGH FREQUENCY COMMUNICATIONS.)
HIGH FREQUENCY COMMUNICATIONS—High radio frequencies (HF) between 3 and 30 MHz used for air-to-ground voice communication in overseas operations.

HIGH SPEED EXIT—
(See HIGH SPEED TAXIWAY.)

HIGH SPEED TAXIWAY—A long radius taxiway designed and provided with lighting or marking to define the path of aircraft, traveling at high speed (up to 60 knots), from the runway center to a point on the center of a taxiway. Also referred to as long radius exit or turn-off taxiway. The high speed taxiway is designed to expedite aircraft turning off the runway after landing, thus reducing runway occupancy time.

HIGH SPEED TURNOFF—
(See HIGH SPEED TAXIWAY.)

HIWAS—
(See HAZARDOUS INFLIGHT WEATHER ADVISORY SERVICE.)

HIWAS AREA—
(See HAZARDOUS INFLIGHT WEATHER ADVISORY SERVICE.)

HIWAS BROADCAST AREA—A geographical area of responsibility including one or more HIWAS outlet areas assigned to a FSS for hazardous weather advisory broadcasting.

HIWAS OUTLET AREA—An area defined as a 150 NM radius of a HIWAS outlet, expanded as necessary to provide coverage.

HOLD FOR RELEASE—Used by ATC to delay an aircraft for traffic management reasons; i.e., weather, traffic volume, etc. Hold for release instructions (including departure delay information) are used to inform a pilot or controller (either directly or through an authorized relay) that an IFR departure clearance is not valid until a release time or additional instructions have been received.
(See ICAO term HOLDING POINT.)

HOLD IN LIEU OF PROCEDURE TURN—A hold in lieu of procedure turn shall be established over a final or intermediate fix when an approach can be made from a properly aligned holding pattern. The hold in lieu of procedure turn permits the pilot to align with the final or intermediate segment of the approach and/or descend in the holding pattern to an altitude that will permit a normal descent to the final approach fix altitude. The hold in lieu of procedure turn is a required maneuver (the same as a procedure turn) unless the aircraft is being radar vectored to the final approach course, when “NoPT” is shown on the approach chart, or when the pilot requests or the controller advises the pilot to make a “straight-in” approach.

HOLD PROCEDURE—A predetermined maneuver which keeps aircraft within a specified airspace while awaiting further clearance from air traffic control. Also used during ground operations to keep aircraft within a specified area or at a specified point while awaiting further clearance from air traffic control.
(See HOLDING FIX.)
(Refer to AIM.)

HOLDING FIX—A specified fix identifiable to a pilot by NAV AIDS or visual reference to the ground used as a reference point in establishing and maintaining the position of an aircraft while holding.
(See FIX.)
(See VISUAL HOLDING.)
(Refer to AIM.)

HOLDING POINT [ICAO]—A specified location, identified by visual or other means, in the vicinity of which the position of an aircraft in flight is maintained in accordance with air traffic control clearances.

HOLDING PROCEDURE—
(See HOLD PROCEDURE.)

HOLD-SHORT POINT—A point on the runway beyond which a landing aircraft with a LAHSO clearance is not authorized to proceed. This point may be located prior to an intersecting runway, taxiway, predetermined point, or approach/departure flight path.

HOLD-SHORT POSITION LIGHTS—Flashing in-pavement white lights located at specified hold-short points.

HOLD-SHORT POSITION MARKING—The painted runway marking located at the hold-short point on all LAHSO runways.

HOLD-SHORT POSITION SIGNS—Red and white holding position signs located alongside the hold-short point.
HOMING—Flight toward a NAVAID, without correcting for wind, by adjusting the aircraft heading to maintain a relative bearing of zero degrees.

(See BEARING.)
(See ICAO term HOMING.)

HOMING [ICAO]—The procedure of using the direction-finding equipment of one radio station with the emission of another radio station, where at least one of the stations is mobile, and whereby the mobile station proceeds continuously towards the other station.

HOVER CHECK—Used to describe when a helicopter/VTOL aircraft requires a stabilized hover to conduct a performance/power check prior to hover taxi, air taxi, or takeoff. Altitude of the hover will vary based on the purpose of the check.

HOVER TAXI—Used to describe a helicopter/VTOL aircraft movement conducted above the surface and in ground effect at airspeeds less than approximately 20 knots. The actual height may vary, and some helicopters may require hover taxi above 25 feet AGL to reduce ground effect turbulence or provide clearance for cargo slingloads.

(See AIR TAXI.)
(See HOVER CHECK.)
(Refer to AIM.)

HOW DO YOU HEAR ME?—A question relating to the quality of the transmission or to determine how well the transmission is being received.

HZ—

(See HERTZ.)
I SAY AGAIN-- The message will be repeated.

IAF--
(See INITIAL APPROACH FIX.)

IAP--
(See INSTRUMENT APPROACH PROCEDURE.)

IAWP-- Initial Approach Waypoint

ICAO--
(See ICAO Term INTERNATIONAL CIVIL AVIATION ORGANIZATION.)

ICING-- The accumulation of airframe ice.

Types of icing are:

- Rime Ice—Rough, milky, opaque ice formed by the instantaneous freezing of small supercooled water droplets.
- Clear Ice—A glossy, clear, or translucent ice formed by the relatively slow freezing or large supercooled water droplets.
- Mixed—A mixture of clear ice and rime ice.

Intensity of icing:

- Trace—Ice becomes perceptible. Rate of accumulation is slightly greater than the rate of sublimation. Deicing/anti-icing equipment is not utilized unless encountered for an extended period of time (over 1 hour).
- Light—The rate of accumulation may create a problem if flight is prolonged in this environment (over 1 hour). Occasional use of deicing/anti-icing equipment removes/prevents accumulation. It does not present a problem if the deicing/anti-icing equipment is used.
- Moderate—The rate of accumulation is such that even short encounters become potentially hazardous and use of deicing/anti-icing equipment or flight diversion is necessary.
- Severe—The rate of accumulation is such that deicing/anti-icing equipment fails to reduce or control the hazard. Immediate flight diversion is necessary.

IDENT-- A request for a pilot to activate the aircraft transponder identification feature. This will help the controller to confirm an aircraft identity or to identify an aircraft.
(Refer to AIM.)

IDENT FEATURE-- The special feature in the Air Traffic Control Radar Beacon System (ATCRBS) equipment. It is used to immediately distinguish one displayed beacon target from other beacon targets.
(See IDENT.)

IF--
(See INTERMEDIATE FIX.)

IFIM--
(See INTERNATIONAL FLIGHT INFORMATION MANUAL.)

IF NO TRANSMISSION RECEIVED FOR (TIME)-- Used by ATC in radar approaches to prefix procedures which should be followed by the pilot in event of lost communications.
(See LOST COMMUNICATIONS.)

IFR--
(See INSTRUMENT FLIGHT RULES.)

IFR AIRCRAFT-- An aircraft conducting flight in accordance with instrument flight rules.

IFR CONDITIONS-- Weather conditions below the minimum for flight under visual flight rules.
(See INSTRUMENT METEOROLOGICAL CONDITIONS.)

IFR DEPARTURE PROCEDURE--
(See IFR TAKEOFF MINIMUMS AND DEPARTURE PROCEDURES.)
(Refer to AIM.)

IFR FLIGHT--
(See IFR AIRCRAFT.)

IFR LANDING MINIMUMS--
(See LANDING MINIMUMS.)

IFR MILITARY TRAINING ROUTES (IR)-- Routes used by the Department of Defense and associated Reserve and Air Guard units for the purpose of conducting low-altitude navigation and tactical training in both IFR and VFR weather conditions below 10,000 feet MSL at airspeeds in excess of 250 knots IAS.

IFR TAKEOFF MINIMUMS AND DEPARTURE PROCEDURES-- Title 14 Code of Federal
Regulations Part 91, prescribes standard takeoff rules for certain civil users. At some airports, obstructions or other factors require the establishment of nonstandard takeoff minimums, departure procedures, or both to assist pilots in avoiding obstacles during climb to the minimum en route altitude. Those airports are listed in FAA/DOD Instrument Approach Procedures (IAPs) Charts under a section entitled “IFR Takeoff Minimums and Departure Procedures.” The FAA/DOD IAP chart legend illustrates the symbol used to alert the pilot to nonstandard takeoff minimums and departure procedures. When departing IFR from such airports or from any airports where there are no departure procedures, DPs, or ATC facilities available, pilots should advise ATC of any departure limitations. Controllers may query a pilot to determine acceptable departure directions, turns, or headings after takeoff. Pilots should be familiar with the departure procedures and must assure that their aircraft can meet or exceed any specified climb gradients.

IF/IAWP—Intermediate Fix/Initial Approach Waypoint. The waypoint where the final approach course of a T approach meets the crossbar of the T. When designated (in conjunction with a TAA) this waypoint will be used as an IAWP when approaching the airport from certain directions, and as an IFWP when beginning the approach from another IAWP.

IFWP—Intermediate Fix Waypoint

ILS—
(See INSTRUMENT LANDING SYSTEM.)

ILS CATEGORIES—1. Category I. An ILS approach procedure which provides for approach to a height above touchdown of not less than 200 feet and with runway visual range of not less than 1,800 feet.—2. Special Authorization Category I. An ILS approach procedure which provides for approach to a height above touchdown of not less than 150 feet and with runway visual range of not less than 1,400 feet, HUD to DH. 3. Category II. An ILS approach procedure which provides for approach to a height above touchdown of not less than 100 feet and with runway visual range of not less than 1,200 feet (with autoland or HUD to touchdown and noted on authorization, RVR 1,000 feet).—4. Special Authorization Category II with Reduced Lighting. An ILS approach procedure which provides for approach to a height above touchdown of not less than 100 feet and with runway visual range of not less than 1,200 feet with autoland or HUD to touchdown and noted on authorization (no touchdown zone and centerline lighting are required).—5. Category III:

 a. IIIA.—An ILS approach procedure which provides for approach without a decision height minimum and with runway visual range of not less than 700 feet.
 b. IIIB.—An ILS approach procedure which provides for approach without a decision height minimum and with runway visual range of not less than 150 feet.
 c. IIIC.—An ILS approach procedure which provides for approach without a decision height minimum and without runway visual range minimum.

ILS PRM APPROACH—An instrument landing system (ILS) approach conducted to parallel runways whose extended centerlines are separated by less than 4,300 feet and at least 3,000 feet where independent closely spaced approaches are permitted. Also used in conjunction with an LDA PRM, RNAV PRM or GLS PRM approach to conduct Simultaneous Offset Instrument Approach (SOIA) operations. No Transgression Zone (NTZ) monitoring is required to conduct these approaches. ATC utilizes an enhanced display with alerting and, with certain runway spacing, a high update rate PRM surveillance sensor. Use of a secondary monitor frequency, pilot PRM training, and publication of an Attention All Users Page are also required for all PRM approaches.
(Refer to AIM)

IM—
(See INNER MARKER.)

IMC—
(See INSTRUMENT METEOROLOGICAL CONDITIONS.)

IMMEDIATELY—Used by ATC or pilots when such action compliance is required to avoid an imminent situation.

INCRFA (Uncertainty Phase) [ICAO]—A situation wherein uncertainty exists as to the safety of an aircraft and its occupants.

INCREASE SPEED TO (SPEED)—
(See SPEED ADJUSTMENT.)

INERTIAL NAVIGATION SYSTEM—An RNAV system which is a form of self-contained navigation.
(See Area Navigation/RNAV.)
INFLIGHT REFUELING—
(See AERIAL REFUELING.)

INFLIGHT WEATHER ADVISORY—
(See WEATHER ADVISORY.)

INFORMATION REQUEST— A request originated by an FSS for information concerning an overdue VFR aircraft.

INITIAL APPROACH FIX— The fixes depicted on instrument approach procedure charts that identify the beginning of the initial approach segment(s).
(See FIX.)
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

INITIAL APPROACH SEGMENT—
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

INITIAL APPROACH SEGMENT [ICAO]— That segment of an instrument approach procedure between the initial approach fix and the intermediate approach fix or, where applicable, the final approach fix or point.

INLAND NAVIGATION FACILITY— A navigation aid on a North American Route at which the common route and/or the noncommon route begins or ends.

INNER MARKER— A marker beacon used with an ILS (CAT II) precision approach located between the middle marker and the end of the ILS runway, transmitting a radiation pattern keyed at six dots per second and indicating to the pilot, both aurally and visually, that he/she is at the designated decision height (DH), normally 100 feet above the touchdown zone elevation, on the ILS CAT II approach. It also marks progress during a CAT III approach.
(See INSTRUMENT LANDING SYSTEM.)
(Refer to AIM.)

INNER MARKER BEACON—
(See INNER MARKER.)

INREQ—
(See INFORMATION REQUEST.)

INS—
(See INERTIAL NAVIGATION SYSTEM.)

INSTRUMENT APPROACH—
(See INSTRUMENT APPROACH PROCEDURE.)

INSTRUMENT APPROACH PROCEDURE— A series of predetermined maneuvers for the orderly transfer of an aircraft under instrument flight conditions from the beginning of the initial approach to a landing or to a point from which a landing may be made visually. It is prescribed and approved for a specific airport by competent authority.
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)
(Refer to 14 CFR Part 91.)
(Refer to AIM.)

a. U.S. civil standard instrument approach procedures are approved by the FAA as prescribed under 14 CFR Part 97 and are available for public use.

b. U.S. military standard instrument approach procedures are approved and published by the Department of Defense.

c. Special instrument approach procedures are approved by the FAA for individual operators but are not published in 14 CFR Part 97 for public use.
(See ICAO term INSTRUMENT APPROACH PROCEDURE.)

INSTRUMENT APPROACH OPERATIONS [ICAO]* An approach and landing using instruments for navigation guidance based on an instrument approach procedure. There are two methods for executing instrument approach operations:

a. A two-dimensional (2D) instrument approach operation, using lateral navigation guidance only; and

b. A three-dimensional (3D) instrument approach operation, using both lateral and vertical navigation guidance.

Note: Lateral and vertical navigation guidance refers to the guidance provided either by:

a) a ground-based radio navigation aid; or
b) computer-generated navigation data from ground-based, space-based, self-contained navigation aids or a combination of these.
(See ICAO term INSTRUMENT APPROACH PROCEDURE.)
completed, to a position at which holding or en route obstacle clearance criteria apply.

(See ICAO term INSTRUMENT APPROACH OPERATIONS)

INSTRUMENT APPROACH PROCEDURES CHARTS—
(See AERONAUTICAL CHART.)

INSTRUMENT DEPARTURE PROCEDURE (DP)— A preplanned instrument flight rule (IFR) departure procedure published for pilot use, in graphic or textual format, that provides obstruction clearance from the terminal area to the appropriate en route structure. There are two types of DP, Obstacle Departure Procedure (ODP), printed either textually or graphically, and, Standard Instrument Departure (SID), which is always printed graphically.

(See IFR TAKEOFF MINIMUMS AND DEPARTURE PROCEDURES.)
(See OBSTACLE DEPARTURE PROCEDURES.)
(See STANDARD INSTRUMENT DEPARTURES.)
(Refer to AIM.)

INSTRUMENT DEPARTURE PROCEDURE (DP) CHARTS—
(See AERONAUTICAL CHART.)

INSTRUMENT FLIGHT RULES— Rules governing the procedures for conducting instrument flight. Also a term used by pilots and controllers to indicate type of flight plan.

(See INSTRUMENT METEOROLOGICAL CONDITIONS.)
(See VISUAL FLIGHT RULES.)
(See VISUAL METEOROLOGICAL CONDITIONS.)
(See ICAO term INSTRUMENT FLIGHT RULES.)
(Refer to AIM.)

INSTRUMENT FLIGHT RULES [ICAO]— A set of rules governing the conduct of flight under instrument meteorological conditions.

INSTRUMENT LANDING SYSTEM— A precision instrument approach system which normally consists of the following electronic components and visual aids:

a. Localizer.
(See LOCALIZER.)
b. Glideslope.
(See GLIDESLOPE.)
c. Outer Marker.
(See OUTER MARKER.)
d. Middle Marker.
(See MIDDLE MARKER.)
e. Approach Lights.
(See AIRPORT LIGHTING.)
(Refer to 14 CFR Part 91.)
(Refer to AIM.)

INSTRUMENT METEOROLOGICAL CONDITIONS— Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling less than the minima specified for visual meteorological conditions.

(See INSTRUMENT FLIGHT RULES.)
(See VISUAL FLIGHT RULES.)
(See VISUAL METEOROLOGICAL CONDITIONS.)

INSTRUMENT RUNWAY— A runway equipped with electronic and visual navigation aids for which a precision or nonprecision approach procedure having straight-in landing minimums has been approved.

(See ICAO term INSTRUMENT RUNWAY.)

INSTRUMENT RUNWAY [ICAO]— One of the following types of runways intended for the operation of aircraft using instrument approach procedures:

a. Nonprecision Approach Runway—An instrument runway served by visual aids and a nonvisual aid providing at least directional guidance adequate for a straight-in approach.

b. Precision Approach Runway, Category I—An instrument runway served by ILS and visual aids intended for operations down to 60 m (200 feet) decision height and down to an RVR of the order of 800 m.

c. Precision Approach Runway, Category II—An instrument runway served by ILS and visual aids intended for operations down to 30 m (100 feet) decision height and down to an RVR of the order of 400 m.

d. Precision Approach Runway, Category III—An instrument runway served by ILS to and along the surface of the runway and:

1. Intended for operations down to an RVR of the order of 200 m (no decision height being applicable) using visual aids during the final phase of landing;
2. Intended for operations down to an RVR of the order of 50 m (no decision height being applicable) using visual aids for taxiing;

3. Intended for operations without reliance on visual reference for landing or taxiing.

Note 1: See Annex 10 Volume I, Part I, Chapter 3, for related ILS specifications.

Note 2: Visual aids need not necessarily be matched to the scale of nonvisual aids provided. The criterion for the selection of visual aids is the conditions in which operations are intended to be conducted.

INTEGRITY- The ability of a system to provide timely warnings to users when the system should not be used for navigation.

INTERMEDIATE APPROACH SEGMENT- (See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

INTERMEDIATE APPROACH SEGMENT [ICAO]- That segment of an instrument approach procedure between either the intermediate approach fix and the final approach fix or point, or between the end of a reversal, race track or dead reckoning track procedure and the final approach fix or point, as appropriate.

INTERMEDIATE FIX- The fix that identifies the beginning of the intermediate approach segment of an instrument approach procedure. The fix is not normally identified on the instrument approach chart as an intermediate fix (IF).

(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

INTERMEDIATE LANDING- On the rare occasion that this option is requested, it should be approved. The departure center, however, must advise the ATCSCC so that the appropriate delay is carried over and assigned at the intermediate airport. An intermediate landing airport within the arrival center will not be accepted without coordination with and the approval of the ATCSCC.

INTERNATIONAL AIRPORT- Relating to international flight, it means:

a. An airport of entry which has been designated by the Secretary of Treasury or Commissioner of Customs as an international airport for customs service.

b. A landing rights airport at which specific permission to land must be obtained from customs authorities in advance of contemplated use.

c. Airports designated under the Convention on International Civil Aviation as an airport for use by international commercial air transport and/or international general aviation.

(See ICAO term INTERNATIONAL AIRPORT.)

(Refer to AIRPORT/FACILITY DIRECTORY.)

(Refer to IFIM.)

INTERNATIONAL AIRPORT [ICAO]- Any airport designated by the Contracting State in whose territory it is situated as an airport of entry and departure for international air traffic, where the formalities incident to customs, immigration, public health, animal and plant quarantine and similar procedures are carried out.

INTERNATIONAL CIVIL AVIATION ORGANIZATION [ICAO]- A specialized agency of the United Nations whose objective is to develop the principles and techniques of international air navigation and to foster planning and development of international civil air transport.

a. Regions include:
 1. African-Indian Ocean Region
 2. Caribbean Region
 3. European Region
 4. Middle East/Asia Region
 5. North American Region
 6. North Atlantic Region
 7. Pacific Region
 8. South American Region

INTERNATIONAL FLIGHT INFORMATION MANUAL- A publication designed primarily as a pilot’s preflight planning guide for flights into foreign airspace and for flights returning to the U.S. from foreign locations.

INTERROGATOR- The ground-based surveillance radar beacon transmitter-receiver, which normally scans in synchronism with a primary radar, transmitting discrete radio signals which repetitiously request all transponders on the mode being used to reply. The replies received are mixed with the primary radar returns and displayed on the same plan position indicator (radar scope). Also, applied to the airborne element of the TACAN/DME system.

(See TRANSPONDER.)

(Refer to AIM.)
INTERSECTING RUNWAYS—Two or more runways which cross or meet within their lengths. (See INTERSECTION.)

INTERSECTION—

a. A point defined by any combination of courses, radials, or bearings of two or more navigational aids.

b. Used to describe the point where two runways, a runway and a taxiway, or two taxiways cross or meet.

INTERSECTION DEPARTURE—A departure from any runway intersection except the end of the runway. (See INTERSECTION.)

INTERSECTION TAKEOFF—(See INTERSECTION DEPARTURE.)

IR—(See IFR MILITARY TRAINING ROUTES.)

ISR—Indicates the confidence level of the track requires 5NM separation. 3NM separation, 1 1/2NM separation, and target resolution cannot be used.
JAMMING—Electronic or mechanical interference which may disrupt the display of aircraft on radar or the transmission/reception of radio communications/navigation.

JET BLAST—Jet engine exhaust (thrust stream turbulence).
(See WAKE TURBULENCE.)

JET ROUTE—A route designed to serve aircraft operations from 18,000 feet MSL up to and including flight level 450. The routes are referred to as “J” routes with numbering to identify the designated route; e.g., J105.
(See Class A AIRSPACE.)
(Refer to 14 CFR Part 71.)

JET STREAM—A migrating stream of high-speed winds present at high altitudes.

JETTISONING OF EXTERNAL STORES—Airborne release of external stores; e.g., tiptanks, ordnance.
(See FUEL DUMPING.)
(Refer to 14 CFR Part 91.)

JOINT USE RESTRICTED AREA—
(See RESTRICTED AREA.)
KNOWN TRAFFIC— With respect to ATC clearances, means aircraft whose altitude, position, and intentions are known to ATC.
LAAS—
(See LOW ALTITUDE ALERT SYSTEM.)

LAHSD—An acronym for “Land and Hold Short Operation.” These operations include landing and holding short of an intersecting runway, a taxiway, a predetermined point, or an approach/departure flightpath.

LAHSO—Land and hold short operations on runways that are dry.

LAHSO-WET—Land and hold short operations on runways that are wet (but not contaminated).

LAND AND HOLD SHORT OPERATIONS—Operations which include simultaneous takeoffs and landings and/or simultaneous landings when a landing aircraft is able and is instructed by the controller to hold-short of the intersecting runway/taxiway or designated hold-short point. Pilots are expected to promptly inform the controller if the hold short clearance cannot be accepted.
(See PARALLEL RUNWAYS.)
(Refer to AIM.)

LANDING AREA—Any locality either on land, water, or structures, including airports/heliports and intermediate landing fields, which is used, or intended to be used, for the landing and takeoff of aircraft whether or not facilities are provided for the shelter, servicing, or for receiving or discharging passengers or cargo.
(See ICAO term LANDING AREA.)

LANDING AREA [ICAO]—That part of a movement area intended for the landing or take-off of aircraft.

LANDING DIRECTION INDICATOR—A device which visually indicates the direction in which landings and takeoffs should be made.
(See TETRAHEDRON.)
(Refer to AIM.)

LANDING DISTANCE AVAILABLE (LDA)—The runway length declared available and suitable for a landing airplane.
(See ICAO term LANDING DISTANCE AVAILABLE.)

LANDING DISTANCE AVAILABLE [ICAO]—The length of runway which is declared available and suitable for the ground run of an aeroplane landing.

LANDING MINIMUMS—The minimum visibility prescribed for landing a civil aircraft while using an instrument approach procedure. The minimum applies with other limitations set forth in 14 CFR Part 91 with respect to the Minimum Descent Altitude (MDA) or Decision Height (DH) prescribed in the instrument approach procedures as follows:
a. Straight-in landing minimums. A statement of MDA and visibility, or DH and visibility, required for a straight-in landing on a specified runway, or
Note: Descent below the MDA or DH must meet the conditions stated in 14 CFR Section 91.175.
(See CIRCLE-TO-LAND MANEUVER.)
(See DECISION HEIGHT.)
(See INSTRUMENT APPROACH PROCEDURE.)
(See MINIMUM DESCENT ALTITUDE.)
(See STRAIGHT-IN LANDING.)
(See VISIBILITY.)
(Refer to 14 CFR Part 91.)

LANDING ROLL—The distance from the point of touchdown to the point where the aircraft can be brought to a stop or exit the runway.

LANDING SEQUENCE—The order in which aircraft are positioned for landing.
(See APPROACH SEQUENCE.)

LAST ASSIGNED ALTITUDE—The last altitude/flight level assigned by ATC and acknowledged by the pilot.
(See MAINTAIN.)
(Refer to 14 CFR Part 91.)

LATERAL NAVIGATION (LNAV)—A function of area navigation (RNAV) equipment which calculates,
displays, and provides lateral guidance to a profile or path.

LATERAL SEPARATION—The lateral spacing of aircraft at the same altitude by requiring operation on different routes or in different geographical locations. (See SEPARATION.)

LDA—
(See LOCALIZER TYPE DIRECTIONAL AID.)
(See LANDING DISTANCE AVAILABLE.)
(See ICAO Term LANDING DISTANCE AVAILABLE.)

LF—
(See LOW FREQUENCY.)

LIGHTED AIRPORT—An airport where runway and obstruction lighting is available. (See AIRPORT LIGHTING.)
(Refer to AIM.)

LIGHT GUN—A handheld directional light signaling device which emits a brilliant narrow beam of white, green, or red light as selected by the tower controller. The color and type of light transmitted can be used to approve or disapprove anticipated pilot actions where radio communication is not available. The light gun is used for controlling traffic operating in the vicinity of the airport and on the airport movement area. (Refer to AIM.)

LIGHT-SPORT AIRCRAFT (LSA)—An FAA-registered aircraft, other than a helicopter or powered-lift, that meets certain weight and performance. Principally it is a single engine aircraft with a maximum of two seats and weighing no more than 1,430 pounds if intended for operation on water, or 1,320 pounds if not. They must be of simple design (fixed landing gear except if intended for operations on water or a glider) piston powered, non-pressurized, with a fixed or ground adjustable propeller). Performance is also limited to a maximum airspeed in level flight of not more than 120 knots CAS, have a maximum never-exceed speed of not more than 120 knots CAS for a glider, and have a maximum stalling speed, without the use of lift-enhancing devices (VS1) of not more than 45 knots CAS. They may be certificated as either Experimental LSA or as a Special LSA aircraft. A minimum of a sport pilot_certificate is required to operate light-sport aircraft.” (Refer to 14 CFR Part 1, §1.1.)

LINE UP AND WAIT (LUAW)—Used by ATC to inform a pilot to taxi onto the departure runway to line up and wait. It is not authorization for takeoff. It is used when takeoff clearance cannot immediately be issued because of traffic or other reasons. (See CLEARED FOR TAKEOFF.)

LOCAL AIRPORT ADVISORY (LAA)—A service provided by facilities, which are located on the landing airport, have a discrete ground-to-air communication frequency or the tower frequency when the tower is closed, automated weather reporting with voice broadcasting, and a continuous ASOS/AWSS/AWOS data display, other continuous direct reading instruments, or manual observations available to the specialist. (See AIRPORT ADVISORY AREA.)

LOCAL TRAFFIC—Aircraft operating in the traffic pattern or within sight of the tower, or aircraft known to be departing or arriving from flight in local practice areas, or aircraft executing practice instrument approaches at the airport. (See TRAFFIC PATTERN.)

LOCALIZER—The component of an ILS which provides course guidance to the runway. (See INSTRUMENT LANDING SYSTEM.)
(See ICAO term LOCALIZER COURSE.)
(Refer to AIM.)

LOCALIZER COURSE [ICAO]—The locus of points, in any given horizontal plane, at which the DDM (difference in depth of modulation) is zero.

LOCALIZER OFFSET—An angular offset of the localizer aligned with 3° of the runway alignment.

LOCALIZER TYPE DIRECTIONAL AID—A localizer with an angular offset that exceeds 3° of the runway alignment used for nonprecision instrument approaches with utility and accuracy comparable to a localizer but which are not part of a complete ILS. (Refer to AIM.)

LOCALIZER TYPE DIRECTIONAL AID (LDA) PRECISION RUNWAY MONITOR (PRM) APPROACH—An approach, which includes a glidslope, used in conjunction with an ILS PRM, RNAV PRM or GLS PRM approach to an adjacent runway to conduct Simultaneous Offset Instrument Approaches (SOIA) to parallel runways whose centerlines are separated by less than 3,000 feet and
at least 750 feet. NTZ monitoring is required to conduct these approaches.

(See SIMULTANEOUS OFFSET INSTRUMENT APPROACH (SOIA).)
(Refer to AIM)

LOCALIZER USABLE DISTANCE— The maximum distance from the localizer transmitter at a specified altitude, as verified by flight inspection, at which reliable course information is continuously received.

(Refer to AIM.)

LOCATOR [ICAO]— An LM/MF NDB used as an aid to final approach.

Note: A locator usually has an average radius of rated coverage of between 18.5 and 46.3 km (10 and 25 NM).

LONG RANGE NAVIGATION—
(See LORAN.)

LONGITUDINAL SEPARATION— The longitudinal spacing of aircraft at the same altitude by a minimum distance expressed in units of time or miles.

(See SEPARATION.)
(Refer to AIM.)

LORAN— An electronic navigational system by which hyperbolic lines of position are determined by measuring the difference in the time of reception of synchronized pulse signals from two fixed transmitters. Loran A operates in the 1750-1950 kHz frequency band. Loran C and D operate in the 100-110 kHz frequency band. In 2010, the U.S. Coast Guard terminated all U.S. LORAN-C transmissions.

(Refer to AIM.)

LOST COMMUNICATIONS— Loss of the ability to communicate by radio. Aircraft are sometimes referred to as NORDO (No Radio). Standard pilot procedures are specified in 14 CFR Part 91. Radar controllers issue procedures for pilots to follow in the event of lost communications during a radar approach when weather reports indicate that an aircraft will likely encounter IFR weather conditions during the approach.

(Refer to 14 CFR Part 91.)
(Refer to AIM.)

LOW ALTITUDE AIRWAY STRUCTURE— The network of airways serving aircraft operations up to but not including 18,000 feet MSL.

(See AIRWAY.)
(Refer to AIM.)

LOW ALTITUDE ALERT, CHECK YOUR ALTITUDE IMMEDIATELY—
(See SAFETY ALERT.)

LOW ALTITUDE ALERT SYSTEM— An automated function of the TPX-42 that alerts the controller when a Mode C transponder equipped aircraft on an IFR flight plan is below a predetermined minimum safe altitude. If requested by the pilot, Low Altitude Alert System monitoring is also available to VFR Mode C transponder equipped aircraft.

LOW APPROACH— An approach over an airport or runway following an instrument approach or a VFR approach including the go-around maneuver where the pilot intentionally does not make contact with the runway.

(Refer to AIM.)

LOW FREQUENCY— The frequency band between 30 and 300 kHz.

(Refer to AIM.)

LPV— A type of approach with vertical guidance (APV) based on WAAS, published on RNAV (GPS) approach charts. This procedure takes advantage of the precise lateral guidance available from WAAS. The minima is published as a decision altitude (DA).

LUAW—
(See LINE UP AND WAIT.)
MAA—
(See MAXIMUM AUTHORIZED ALTITUDE.)

MACH NUMBER— The ratio of true airspeed to the speed of sound; e.g., MACH .82, MACH 1.6.
(See AIRSPEED.)

MACH TECHNIQUE [ICAO]— Describes a control technique used by air traffic control whereby turbojet aircraft operating successively along suitable routes are cleared to maintain appropriate MACH numbers for a relevant portion of the en route phase of flight. The principle objective is to achieve improved utilization of the airspace and to ensure that separation between successive aircraft does not decrease below the established minima.

MAHWP— Missed Approach Holding Waypoint

MAINTAIN—
 a. Concerning altitude/flight level, the term means to remain at the altitude/flight level specified. The phrase “climb and” or “descend and” normally precedes “maintain” and the altitude assignment; e.g., “descend and maintain 5,000.”
 b. Concerning other ATC instructions, the term is used in its literal sense; e.g., maintain VFR.

MAINTENANCE PLANNING FRICTION LEVEL— The friction level specified in AC 150/5320-12, Measurement, Construction, and Maintenance of Skid Resistant Airport Pavement Surfaces, which represents the friction value below which the runway pavement surface remains acceptable for any category or class of aircraft operations but which is beginning to show signs of deterioration. This value will vary depending on the particular friction measurement equipment used.

MAKE SHORT APPROACH— Used by ATC to inform a pilot to alter his/her traffic pattern so as to make a short final approach.
(See TRAFFIC PATTERN.)

MAN PORTABLE AIR DEFENSE SYSTEMS (MANPADS)— MANPADS are lightweight, shoulder-launched, missile systems used to bring down aircraft and create mass casualties. The potential for MANPADS use against airborne aircraft is real and requires familiarity with the subject. Terrorists choose MANPADS because the weapons are low cost, highly mobile, require minimal set-up time, and are easy to use and maintain. Although the weapons have limited range, and their accuracy is affected by poor visibility and adverse weather, they can be fired from anywhere on land or from boats where there is unrestricted visibility to the target.

MANDATORY ALTITUDE— An altitude depicted on an instrument Approach Procedure Chart requiring the aircraft to maintain altitude at the depicted value.

MANPADS—
(See MAN PORTABLE AIR DEFENSE SYSTEMS.)

MAP—
(See MISSED APPROACH POINT.)

MARKER BEACON— An electronic navigation facility transmitting a 75 MHz vertical fan or boneshaped radiation pattern. Marker beacons are identified by their modulation frequency and keying code, and when received by compatible airborne equipment, indicate to the pilot, both aurally and visually, that he/she is passing over the facility.
(See INNER MARKER.)
(See MIDDLE MARKER.)
(See OUTER MARKER.)
(Refer to AIM.)

MARS A—
(See MILITARY AUTHORITY ASSUMES RESPONSIBILITY FOR SEPARATION OF AIRCRAFT.)

MAWP— Missed Approach Waypoint

MAXIMUM AUTHORIZED ALTITUDE— A published altitude representing the maximum usable altitude or flight level for an airspace structure or route segment. It is the highest altitude on a Federal airway, jet route, area navigation low or high route, or other direct route for which an MEA is designated in 14 CFR Part 95 at which adequate reception of navigation aid signals is assured.

MAYDAY— The international radiotelephony distress signal. When repeated three times, it indicates
imminent and grave danger and that immediate assistance is requested.

(See PAN-PAN.)
(Refer to AIM.)

MCA–
(See MINIMUM CROSSING ALTITUDE.)

MDA–
(See MINIMUM DESCENT ALTITUDE.)

MEA–
(See MINIMUM EN ROUTE IFR ALTITUDE.)

MEARTS–
(See MICRO-EN ROUTE AUTOMATED RADAR TRACKING SYSTEM.)

METEOROLOGICAL IMPACT STATEMENT– An unscheduled planning forecast describing conditions expected to begin within 4 to 12 hours which may impact the flow of air traffic in a specific center’s (ARTCC) area.

METER FIX ARC– A semicircle, equidistant from a meter fix, usually in low altitude relatively close to the meter fix, used to help CTAS/HOST calculate a meter time, and determine appropriate sector meter list assignments for aircraft not on an established arrival route or assigned a meter fix.

METER FIX TIME/SLOT TIME– A calculated time to depart the meter fix in order to cross the vertex at the ACLT. This time reflects descent speed adjustment and any applicable time that must be absorbed prior to crossing the meter fix.

METER LIST–
(See ARRIVAL SECTOR ADVISORY LIST.)

METER LIST DISPLAY INTERVAL– A dynamic parameter which controls the number of minutes prior to the flight plan calculated time of arrival at the meter fix for each aircraft, at which time the TCLT is frozen and becomes an ACLT; i.e., the VTA is updated and consequently the TCLT modified as appropriate until frozen at which time updating is suspended and an ACLT is assigned. When frozen, the flight entry is inserted into the arrival sector’s meter list for display on the sector PVD/MDM. MLDI is used if filed true airspeed is less than or equal to freeze speed parameters (FSPD).

METERING– A method of time-regulating arrival traffic flow into a terminal area so as not to exceed a predetermined terminal acceptance rate.

METERING AIRPORTS– Airports adapted for metering and for which optimum flight paths are defined. A maximum of 15 airports may be adapted.

METERING FIX– A fix along an established route from over which aircraft will be metered prior to entering terminal airspace. Normally, this fix should be established at a distance from the airport which will facilitate a profile descent 10,000 feet above airport elevation (AAE) or above.

METERING POSITION(S)– Adapted PVDs/MDMs and associated “D” positions eligible for display of a metering position list. A maximum of four PVDs/MDMs may be adapted.

METERING POSITION LIST– An ordered list of data on arrivals for a selected metering airport displayed on a metering position PVD/MDM.

MFT–
(See METER FIX TIME/SLOT TIME.)

MHA–
(See MINIMUM HOLDING ALTITUDE.)

MIA–
(See MINIMUM IFR ALTITUDES.)

MICROBURST– A small downburst with outbursts of damaging winds extending 2.5 miles or less. In spite of its small horizontal scale, an intense microburst could induce wind speeds as high as 150 knots.
(Refer to AIM.)

MICRO-EN ROUTE AUTOMATED RADAR TRACKING SYSTEM (MEARTS)– An automated radar and radar beacon tracking system capable of employing both short-range (ASR) and long-range (ARSR) radars. This microcomputer driven system provides improved tracking, continuous data recording, and use of full digital radar displays.

MICROWAVE LANDING SYSTEM– A precision instrument approach system operating in the microwave spectrum which normally consists of the following components:

a. Azimuth Station.
b. Elevation Station.
c. Precision Distance Measuring Equipment.
(See MLS CATEGORIES.)

MID RVR–
(See VISIBILITY.)

MIDDLE COMPASS LOCATOR–
(See COMPASS LOCATOR.)
MIDDLE MARKER– A marker beacon that defines a point along the glideslope of an ILS normally located at or near the point of decision height (ILS Category I). It is keyed to transmit alternate dots and dashes, with the alternate dots and dashes keyed at the rate of 95 dot/dash combinations per minute on a 1300 Hz tone, which is received aurally and visually by compatible airborne equipment.

(See INSTRUMENT LANDING SYSTEM.)
(See MARKER BEACON.)
(Refer to AIM.)

MILES-IN-TRAIL− A specified distance between aircraft, normally, in the same stratum associated with the same destination or route of flight.

MILITARY AUTHORITY ASSUMES RESPONSIBILITY FOR SEPARATION OF AIRCRAFT− A condition whereby the military services involved assume responsibility for separation between participating military aircraft in the ATC system. It is used only for required IFR operations which are specified in letters of agreement or other appropriate FAA or military documents.

MILITARY LANDING ZONE– A landing strip used exclusively by the military for training. A military landing zone does not carry a runway designation.

MILITARY OPERATIONS AREA–
(See SPECIAL USE AIRSPACE.)

MILITARY TRAINING ROUTES– Airspace of defined vertical and lateral dimensions established for the conduct of military flight training at airspeeds in excess of 250 knots IAS.

(See IFR MILITARY TRAINING ROUTES.)
(See VFR MILITARY TRAINING ROUTES.)

MINIMA–
(See MINIMUMS.)

MINIMUM CROSSING ALTITUDE– The lowest altitude at certain fixes at which an aircraft must cross when proceeding in the direction of a higher minimum en route IFR altitude (MEA).

(See MINIMUM EN ROUTE IFR ALTITUDE.)

MINIMUM DESCENT ALTITUDE– The lowest altitude, expressed in feet above mean sea level, to which descent is authorized on final approach or during circle-to-land maneuvering in execution of a standard instrument approach procedure where no electronic glideslope is provided.

(See NONPRECISION APPROACH PROCEDURE.)

MINIMUM EN ROUTE IFR ALTITUDE (MEA)– The lowest published altitude between radio fixes which assures acceptable navigational signal coverage and meets obstacle clearance requirements between those fixes. The MEA prescribed for a Federal airway or segment thereof, area navigation low or high route, or other direct route applies to the entire width of the airway, segment, or route between the radio fixes defining the airway, segment, or route.

(Refer to 14 CFR Part 91.)
(Refer to 14 CFR Part 95.)
(Refer to AIM.)

MINIMUM FRICTION LEVEL– The friction level specified in AC 150/5320-12, Measurement, Construction, and Maintenance of Skid Resistant Airport Pavement Surfaces, that represents the minimum recommended wet pavement surface friction value for any turbojet aircraft engaged in LAHSO. This value will vary with the particular friction measurement equipment used.

MINIMUM FUEL– Indicates that an aircraft’s fuel supply has reached a state where, upon reaching the destination, it can accept little or no delay. This is not an emergency situation but merely indicates an emergency situation is possible should any undue delay occur.

(Refer to AIM.)

MINIMUM HOLDING ALTITUDE– The lowest altitude prescribed for a holding pattern which assures navigational signal coverage, communications, and meets obstacle clearance requirements.

MINIMUM IFR ALTITUDES (MIA)– Minimum altitudes for IFR operations as prescribed in 14 CFR Part 91. These altitudes are published on aeronautical charts and prescribed in 14 CFR Part 95 for airways and routes, and in 14 CFR Part 97 for standard instrument approach procedures. If no applicable minimum altitude is prescribed in 14 CFR Part 95 or 14 CFR Part 97, the following minimum IFR altitude applies:

a. In designated mountainous areas, 2,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown; or
b. Other than mountainous areas, 1,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown; or
c. As otherwise authorized by the Administrator or assigned by ATC.
 (See MINIMUM CROSSING ALTITUDE.)
 (See MINIMUM EN ROUTE IFR ALTITUDE.)
 (See MINIMUM OBSTRUCTION CLEARANCE ALTITUDE.)
 (See MINIMUM SAFE ALTITUDE.)
 (See MINIMUM VECTORING ALTITUDE.)
 (Refer to 14 CFR Part 91.)

MINIMUM NAVIGATION PERFORMANCE SPECIFICATION—A set of standards which require aircraft to have a minimum navigation performance capability in order to operate in MNPS designated airspace. In addition, aircraft must be certified by their State of Registry for MNPS operation.

MINIMUM NAVIGATION PERFORMANCE SPECIFICATION AIRSPACE—Designated airspace in which MNPS procedures are applied between MNPS certified and equipped aircraft. Under certain conditions, non-MNPS aircraft can operate in MNPSA. However, standard oceanic separation minima is provided between the non-MNPS aircraft and other traffic. Currently, the only designated MNPSA is described as follows:

 a. Between FL 285 and FL 420;
 b. Between latitudes 27°N and the North Pole;
 c. In the east, the eastern boundaries of the CTAs Santa Maria Oceanic, Shanwick Oceanic, and Reykjavik;
 d. In the west, the western boundaries of CTAs Reykjavik and Gander Oceanic and New York Oceanic excluding the area west of 60°W and south of 38°30’N.

MINIMUM OBSTRUCTION CLEARANCE ALTITUDE (MOCA)—The lowest published altitude in effect between radio fixes on VOR airways, off-airway routes, or route segments which meets obstacle clearance requirements for the entire route segment and which assures acceptable navigational signal coverage only within 25 statute (22 nautical) miles of a VOR.
 (Refer to 14 CFR Part 91.)
 (Refer to 14 CFR Part 95.)

MINIMUM RECEPTION ALTITUDE—The lowest altitude at which an intersection can be determined. (Refer to 14 CFR Part 95.)

MINIMUM SAFE ALTITUDE—

 a. The minimum altitude specified in 14 CFR Part 91 for various aircraft operations.
 b. Altitudes depicted on approach charts which provide at least 1,000 feet of obstacle clearance for emergency use within a specified distance from the navigation facility upon which a procedure is predicated. These altitudes will be identified as Minimum Sector Altitudes or Emergency Safe Altitudes and are established as follows:
 1. Minimum Sector Altitudes. Altitudes depicted on approach charts which provide at least 1,000 feet of obstacle clearance within a 25-mile radius of the navigation facility upon which the procedure is predicated. Sectors depicted on approach charts must be at least 90 degrees in scope. These altitudes are for emergency use only and do not necessarily assure acceptable navigational signal coverage.
 (See ICAO term Minimum Sector Altitude.)
 2. Emergency Safe Altitudes. Altitudes depicted on approach charts which provide at least 1,000 feet of obstacle clearance in nonmountainous areas and 2,000 feet of obstacle clearance in designated mountainous areas within a 100-mile radius of the navigation facility upon which the procedure is predicated and normally used only in military procedures. These altitudes are identified on published procedures as “Emergency Safe Altitudes.”

MINIMUM SAFE ALTITUDE WARNING—A function of the ARTS III computer that aids the controller by alerting him/her when a tracked Mode C equipped aircraft is below or is predicted by the computer to go below a predetermined minimum safe altitude.
 (Refer to AIM.)

MINIMUM SECTOR ALTITUDE [ICAO]—The lowest altitude which may be used under emergency conditions which will provide a minimum clearance of 300 m (1,000 feet) above all obstacles located in an area contained within a sector of a circle of 46 km (25 NM) radius centered on a radio aid to navigation.

MINIMUMS—Weather condition requirements established for a particular operation or type of
MINIMUM VECTORING ALTITUDE (MVA)—The lowest MSL altitude at which an IFR aircraft will be vectored by a radar controller, except as otherwise authorized for radar approaches, departures, and missed approaches. The altitude meets IFR obstacle clearance criteria. It may be lower than the published MEA along an airway or J-route segment. It may be utilized for radar vectoring only upon the controller’s determination that an adequate radar return is being received from the aircraft being controlled. Charts depicting minimum vectoring altitudes are normally available only to the controllers and not to pilots. (Refer to AIM.)

MINUTES-IN-TRAIL—A specified interval between aircraft expressed in time. This method would more likely be utilized regardless of altitude.

MIS—(See METEOROLOGICAL IMPACT STATEMENT.)

MISSED APPROACH—

a. A maneuver conducted by a pilot when an instrument approach cannot be completed to a landing. The route of flight and altitude are shown on instrument approach procedure charts. A pilot executing a missed approach prior to the Missed Approach Point (MAP) must continue along the final approach to the MAP.

b. A term used by the pilot to inform ATC that he/she is executing the missed approach.

c. At locations where ATC radar service is provided, the pilot should conform to radar vectors when provided by ATC in lieu of the published missed approach procedure. (See MISSED APPROACH POINT.) (Refer to AIM.)

MISSED APPROACH POINT—A point prescribed in each instrument approach procedure at which a missed approach procedure shall be executed if the required visual reference does not exist. (See MISSED APPROACH.) (See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

MISSED APPROACH PROCEDURE [ICAO]—The procedure to be followed if the approach cannot be continued.

MISSED APPROACH SEGMENT—(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

MLDI—(See METER LIST DISPLAY INTERVAL.)

MLS—(See MICROWAVE LANDING SYSTEM.)

MLS CATEGORIES—MLS Category I. An MLS approach procedure which provides for an approach to a height above touchdown of not less than 200 feet and a runway visual range of not less than 1,800 feet.

MM—(See MIDDLE MARKER.)

MNPS—(See MINIMUM NAVIGATION PERFORMANCE SPECIFICATION.)

MNPSA—(See MINIMUM NAVIGATION PERFORMANCE SPECIFICATION AIRSPACE.)

MOA—(See MILITARY OPERATIONS AREA.)

MOCA—(See MINIMUM OBSTRUCTION CLEARANCE ALTITUDE.)

MODE—The letter or number assigned to a specific pulse spacing of radio signals transmitted or received by ground interrogator or airborne transponder components of the Air Traffic Control Radar Beacon System (ATCRBS). Mode A (military Mode 3) and Mode C (altitude reporting) are used in air traffic control. (See INTERROGATOR.) (See RADAR.) (See TRANSPONDER.) (See ICAO term MODE.) (Refer to AIM.)

MODE (SSR MODE) [ICAO]—The letter or number assigned to a specific pulse spacing of the
interrogation signals transmitted by an interrogator. There are 4 modes, A, B, C and D specified in Annex 10, corresponding to four different interrogation pulse spacings.

MODE C INTRUDER ALERT—A function of certain air traffic control automated systems designed to alert radar controllers to existing or pending situations between a tracked target (known IFR or VFR aircraft) and an untracked target (unknown IFR or VFR aircraft) that requires immediate attention/action.

(See CONFLICT ALERT.)

MONITOR—(When used with communication transfer) listen on a specific frequency and stand by for instructions. Under normal circumstances do not establish communications.

MONITOR ALERT (MA)—A function of the TFMS that provides traffic management personnel with a tool for predicting potential capacity problems in individual operational sectors. The MA is an indication that traffic management personnel need to analyze a particular sector for actual activity and to determine the required action(s), if any, needed to control the demand.

MONITOR ALERT PARAMETER (MAP)—The number designated for use in monitor alert processing by the TFMS. The MAP is designated for each operational sector for increments of 15 minutes.

MOSAIC/MULTI-SENSOR MODE—Accepts positional data from multiple radar or ADS-B sites. Targets are displayed from a single source within a radar sort box according to the hierarchy of the sources assigned.

MOVEMENT AREA—The runways, taxiways, and other areas of an airport/heliport which are utilized for taxiing/hover taxiing, air taxiing, takeoff, and landing of aircraft, exclusive of loading ramps and parking areas. At those airports/heliports with a tower, specific approval for entry onto the movement area must be obtained from ATC.

(See ICAO term MOVEMENT AREA.)

MOVEMENT AREA [ICAO]—That part of an aerodrome to be used for the takeoff, landing and taxiing of aircraft, consisting of the maneuvering area and the apron(s).

MOVING TARGET INDICATOR—An electronic device which will permit radar scope presentation only from targets which are in motion. A partial remedy for ground clutter.

MRA—
(See MINIMUM RECEPTION ALTITUDE.)

MSA—
(See MINIMUM SAFE ALTITUDE.)

MSAW—
(See MINIMUM SAFE ALTITUDE WARNING.)

MTI—
(See MOVING TARGET INDICATOR.)

MTR—
(See MILITARY TRAINING ROUTES.)

MULTICOM—A mobile service not open to public correspondence used to provide communications essential to conduct the activities being performed by or directed from private aircraft.

MULTIPLE RUNWAYS—The utilization of a dedicated arrival runway(s) for departures and a dedicated departure runway(s) for arrivals when feasible to reduce delays and enhance capacity.

MVA—
(See MINIMUM VECTORING ALTITUDE.)
NAS—
(See NATIONAL AIRSPACE SYSTEM.)

NATIONAL AIRSPACE SYSTEM— The common network of U.S. airspace; air navigation facilities, equipment and services, airports or landing areas; aeronautical charts, information and services; rules, regulations and procedures, technical information, and manpower and material. Included are system components shared jointly with the military.

NATIONAL BEACON CODE ALLOCATION PLAN AIRSPACE— Airspace over United States territory located within the North American continent between Canada and Mexico, including adjacent territorial waters outward to about boundaries of oceanic control areas (CTA)/Flight Information Regions (FIR).
(See FLIGHT INFORMATION REGION.)

NATIONAL FLIGHT DATA CENTER— A facility in Washington D.C., established by FAA to operate a central aeronautical information service for the collection, validation, and dissemination of aeronautical data in support of the activities of government, industry, and the aviation community. The information is published in the National Flight Data Digest.
(See NATIONAL FLIGHT DATA DIGEST.)

NATIONAL FLIGHT DATA DIGEST— A daily (except weekends and Federal holidays) publication of flight information appropriate to aeronautical charts, aeronautical publications, Notices to Airmen, or other media serving the purpose of providing operational flight data essential to safe and efficient aircraft operations.

NATIONAL SEARCH AND RESCUE PLAN— An interagency agreement which provides for the effective utilization of all available facilities in all types of search and rescue missions.

NAVAID—
(See NAVIGATIONAL AID.)

NAVAID CLASSES— VOR, VORTAC, and TACAN aids are classed according to their operational use. The three classes of NAVAIDs are:

a. T— Terminal.
b. L— Low altitude.
c. H— High altitude.

Note: The normal service range for T, L, and H class aids is found in the AIM. Certain operational requirements make it necessary to use some of these aids at greater service ranges than specified. Extended range is made possible through flight inspection determinations. Some aids also have lesser service range due to location, terrain, frequency protection, etc. Restrictions to service range are listed in Airport/Facility Directory.

NAVIGABLE AIRSPACE— Airspace at and above the minimum flight altitudes prescribed in the CFRs including airspace needed for safe takeoff and landing.
(Refer to 14 CFR Part 91.)

NAVIGATION REFERENCE SYSTEM (NRS)— The NRS is a system of waypoints developed for use within the United States for flight planning and navigation without reference to ground based navigational aids. The NRS waypoints are located in a grid pattern along defined latitude and longitude lines. The initial use of the NRS will be in the high altitude environment in conjunction with the High Altitude Redesign initiative. The NRS waypoints are intended for use by aircraft capable of point-to-point navigation.

NAVIGATION SPECIFICATION [ICAO]— A set of aircraft and flight crew requirements needed to support performance-based navigation operations within a defined airspace. There are two kinds of navigation specifications:

a. RNP specification. A navigation specification based on area navigation that includes the requirement for performance monitoring and alerting, designated by the prefix RNP; e.g., RNP 4, RNP APCH.

b. RNAV specification. A navigation specification based on area navigation that does not include the requirement for performance monitoring and alerting, designated by the prefix RNAV; e.g., RNAV 5, RNAV 1.

Note: The Performance-based Navigation Manual (Doc 9613), Volume II contains detailed guidance
on navigation specifications.

NAVIGATIONAL AID—Any visual or electronic device airborne or on the surface which provides point-to-point guidance information or position data to aircraft in flight.

(See AIR NAVIGATION FACILITY.)

NBCAP AIRSPACE—
(See NATIONAL BEACON CODE ALLOCATION PLAN AIRSPACE.)

NDB—
(See NONDIRECTIONAL BEACON.)

NEGATIVE—“No,” or “permission not granted,” or “that is not correct.”

NEGATIVE CONTACT—Used by pilots to inform ATC that:

a. Previously issued traffic is not in sight. It may be followed by the pilot’s request for the controller to provide assistance in avoiding the traffic.

b. They were unable to contact ATC on a particular frequency.

NFDC—
(See NATIONAL FLIGHT DATA CENTER.)

NFDD—
(See NATIONAL FLIGHT DATA DIGEST.)

NIGHT—The time between the end of evening civil twilight and the beginning of morning civil twilight, as published in the Air Almanac, converted to local time.

(See ICAO term NIGHT.)

NIGHT [ICAO]—The hours between the end of evening civil twilight and the beginning of morning civil twilight or such other period between sunset and sunrise as may be specified by the appropriate authority.

Note: Civil twilight ends in the evening when the center of the sun’s disk is 6 degrees below the horizon and begins in the morning when the center of the sun’s disk is 6 degrees below the horizon.

NO GYRO APPROACH—A radar approach/vector provided in case of a malfunctioning gyro-compass or directional gyro. Instead of providing the pilot with headings to be flown, the controller observes the radar track and issues control instructions “turn right/left” or “stop turn” as appropriate.

(Refer to AIM.)

NO GYRO VECTOR—(See NO GYRO APPROACH.)

NO TRANSGRESSION ZONE (NTZ)—The NTZ is a 2,000 foot wide zone, located equidistant between parallel runway or SOIA final approach courses in which flight is normally not allowed.

NONAPPROACH CONTROL TOWER—Authorizes aircraft to land or takeoff at the airport controlled by the tower or to transit the Class D airspace. The primary function of a nonapproach control tower is the sequencing of aircraft in the traffic pattern and on the landing area. Nonapproach control towers also separate aircraft operating under instrument flight rules clearances from approach controls and centers. They provide ground control services to aircraft, vehicles, personnel, and equipment on the airport movement area.

NONCOMMON ROUTE/PORTION—That segment of a North American Route between the inland navigation facility and a designated North American terminal.

NONCOMPOSITE SEPARATION—Separation in accordance with minima other than the composite separation minimum specified for the area concerned.

NONDIRECTIONAL BEACON—An L/MF or UHF radio beacon transmitting nondirectional signals whereby the pilot of an aircraft equipped with direction finding equipment can determine his/her bearing to or from the radio beacon and “home” on or track to or from the station. When the radio beacon is installed in conjunction with the Instrument Landing System marker, it is normally called a Compass Locator.

(See AUTOMATIC DIRECTION FINDER.)
(See COMPASS LOCATOR.)

NONMOVEMENT AREAS—Taxiways and apron (ramp) areas not under the control of air traffic.

NONPRECISION APPROACH—(See NONPRECISION APPROACH PROCEDURE.)

NONPRECISION APPROACH PROCEDURE—A standard instrument approach procedure in which no electronic glideslope is provided; e.g., VOR, TACAN, NDB, LOC, ASR, LDA, or SDF approaches.

NONRADAR—Precedes other terms and generally means without the use of radar, such as:
a. Nonradar Approach. Used to describe instrument approaches for which course guidance on final approach is not provided by ground-based precision or surveillance radar. Radar vectors to the final approach course may or may not be provided by ATC. Examples of nonradar approaches are VOR, NDB, TACAN, ILS, RNAV, and GLS approaches.
 (See FINAL APPROACH COURSE.)
 (See FINAL APPROACH-IFR.)
 (See INSTRUMENT APPROACH PROCEDURE.)
 (See RADAR APPROACH.)

b. Nonradar Approach Control. An ATC facility providing approach control service without the use of radar.
 (See APPROACH CONTROL FACILITY.)
 (See APPROACH CONTROL SERVICE.)

c. Nonradar Arrival. An aircraft arriving at an airport without radar service or at an airport served by a radar facility and radar contact has not been established or has been terminated due to a lack of radar service to the airport.
 (See RADAR ARRIVAL.)
 (See RADAR SERVICE.)

d. Nonradar Route. A flight path or route over which the pilot is performing his/her own navigation. The pilot may be receiving radar separation, radar monitoring, or other ATC services while on a nonradar route.
 (See RADAR ROUTE.)

e. Nonradar Separation. The spacing of aircraft in accordance with established minima without the use of radar; e.g., vertical, lateral, or longitudinal separation.
 (See RADAR SEPARATION.)
 (See ICAO term NONRADAR SEPARATION.)

NONRADAR SEPARATION [ICAO]− The separation used when aircraft position information is derived from sources other than radar.

NON-RESTRICTIVE ROUTING (NRR)− Portions of a proposed route of flight where a user can flight plan the most advantageous flight path with no requirement to make reference to ground-based NAVAIDs.

NOPAC−
 (See NORTH PACIFIC.)

NORDO (No Radio)− Aircraft that cannot or do not communicate by radio when radio communication is required are referred to as “NORDO.”
 (See LOST COMMUNICATIONS.)

NORMAL OPERATING ZONE (NOZ)− The NOZ is the operating zone within which aircraft flight remains during normal independent simultaneous parallel ILS approaches.

NORTH AMERICAN ROUTE− A numerically coded route preplanned over existing airway and route systems to and from specific coastal fixes serving the North Atlantic. North American Routes consist of the following:

 a. Common Route/Portion. That segment of a North American Route between the inland navigation facility and the coastal fix.
 b. Noncommon Route/Portion. That segment of a North American Route between the inland navigation facility and a designated North American terminal.
 c. Inland Navigation Facility. A navigation aid on a North American Route at which the common route and/or the noncommon route begins or ends.
 d. Coastal Fix. A navigation aid or intersection where an aircraft transitions between the domestic route structure and the oceanic route structure.

NORTH AMERICAN ROUTE PROGRAM (NRP)− The NRP is a set of rules and procedures which are designed to increase the flexibility of user flight planning within published guidelines.

NORTH MARK− A beacon data block sent by the host computer to be displayed by the ARTS on a 360 degree bearing at a locally selected radar azimuth and distance. The North Mark is used to ensure correct range/azimuth orientation during periods of CENRAP.

NORTH PACIFIC− An organized route system between the Alaskan west coast and Japan.

NOTAM−
 (See NOTICE TO AIRMEN.)

NOTAM [ICAO]− A notice containing information concerning the establishment, condition or change in any aeronautical facility, service, procedure or hazard, the timely knowledge of which is essential to personnel concerned with flight operations.

 a. I Distribution− Distribution by means of telecommunication.
 b. II Distribution− Distribution by means other than telecommunications.
NOTICE TO AIRMEN—A notice containing information (not known sufficiently in advance to publicize by other means) concerning the establishment, condition, or change in any component (facility, service, or procedure of, or hazard in the National Airspace System) the timely knowledge of which is essential to personnel concerned with flight operations.

a. NOTAM(D)—A NOTAM given (in addition to local dissemination) distant dissemination beyond the area of responsibility of the Flight Service Station. These NOTAMs will be stored and available until canceled.

b. FDC NOTAM—A NOTAM regulatory in nature, transmitted by USNOF and given system wide dissemination.

(See ICAO term NOTAM.)

NOTICES TO AIRMEN PUBLICATION—A publication issued every 28 days, designed primarily for the pilot, which contains current NOTAM information considered essential to the safety of flight as well as supplemental data to other aeronautical publications. The contraction NTAP is used in NOTAM text.

(See NOTICE TO AIRMEN.)

NRR—

(See NON-RESTRICTIVE ROUTING.)

NRS—

(See NAVIGATION REFERENCE SYSTEM.)

NTAP—

(See NOTICES TO AIRMEN PUBLICATION.)

NUMEROUS TARGETS VICINITY (LOCATION)—A traffic advisory issued by ATC to advise pilots that targets on the radar scope are too numerous to issue individually.

(See TRAFFIC ADVISORIES.)
OBSTACLE—An existing object, object of natural growth, or terrain at a fixed geographical location or which may be expected at a fixed location within a prescribed area with reference to which vertical clearance is or must be provided during flight operation.

OBSTACLE DEPARTURE PROCEDURE (ODP)—A preplanned instrument flight rule (IFR) departure procedure printed for pilot use in textual or graphic form to provide obstruction clearance via the least onerous route from the terminal area to the appropriate en route structure. ODPs are recommended for obstruction clearance and may be flown without ATC clearance unless an alternate departure procedure (SID or radar vector) has been specifically assigned by ATC.

(See IFR TAKEOFF MINIMUMS AND DEPARTURE PROCEDURES.)
(See STANDARD INSTRUMENT DEPARTURES.)
(Refer to AIM.)

OBSTACLE FREE ZONE—The OFZ is a three dimensional volume of airspace which protects for the transition of aircraft to and from the runway. The OFZ clearing standard precludes taxiing and parked airplanes and object penetrations, except for frangible NAVAID locations that are fixed by function. Additionally, vehicles, equipment, and personnel may be authorized by air traffic control to enter the area using the provisions of FAAO JO 7110.65, Para 3–1–5, VEHICLES/EQUIPMENT/PERSONNEL ON RUNWAYS. The runway OFZ and when applicable, the inner-approach OFZ, and the inner-transitional OFZ, comprise the OFZ.

a. Runway OFZ. The runway OFZ is a defined volume of airspace centered above the runway. The runway OFZ is the airspace above a surface whose elevation at any point is the same as the elevation of the nearest point on the runway centerline. The runway OFZ extends 200 feet beyond each end of the runway. The width is as follows:

1. For runways serving large airplanes, the greater of:
 (a) 400 feet, or
 (b) 180 feet, plus the wingspan of the most demanding airplane, plus 20 feet per 1,000 feet of airport elevation.

2. For runways serving only small airplanes:
 (a) 300 feet for precision instrument runways.
 (b) 250 feet for other runways serving small airplanes with approach speeds of 50 knots, or more.
 (c) 120 feet for other runways serving small airplanes with approach speeds of less than 50 knots.

b. Inner-approach OFZ. The inner-approach OFZ is a defined volume of airspace centered on the approach area. The inner-approach OFZ applies only to runways with an approach lighting system. The inner-approach OFZ begins 200 feet from the runway threshold at the same elevation as the runway threshold and extends 200 feet beyond the last light unit in the approach lighting system. The width of the inner-approach OFZ is the same as the runway OFZ and rises at a slope of 50 (horizontal) to 1 (vertical) from the beginning.

c. Inner-transitional OFZ. The inner transitional surface OFZ is a defined volume of airspace along the sides of the runway and inner-approach OFZ and applies only to precision instrument runways. The inner-transitional surface OFZ slopes 3 (horizontal) to 1 (vertical) out from the edges of the runway OFZ and inner-approach OFZ to a height of 150 feet above the established airport elevation.
(Refer to AC 150/5300-13, Chapter 3.)
(Refer to FAAO JO 7110.65, Para 3–1–5, VEHICLES/EQUIPMENT/PERSONNEL ON RUNWAYS.)

OBSTRUCTION—Any object/obstacle exceeding the obstruction standards specified by 14 CFR Part 77, Subpart C.

OBSTRUCTION LIGHT—A light or one of a group of lights, usually red or white, frequently mounted on a surface structure or natural terrain to warn pilots of the presence of an obstruction.

OCEANIC AIRSPACE—Airspace over the oceans of the world, considered international airspace, where oceanic separation and procedures per the International Civil Aviation Organization are applied. Responsibility for the provisions of air traffic control
service in this airspace is delegated to various countries, based generally upon geographic proximity and the availability of the required resources.

OCEANIC DISPLAY AND PLANNING SYSTEM— An automated digital display system which provides flight data processing, conflict probe, and situation display for oceanic air traffic control.

OCEANIC NAVIGATIONAL ERROR REPORT— A report filed when an aircraft exiting oceanic airspace has been observed by radar to be off course. ONER reporting parameters and procedures are contained in FAAO 7110.82, Monitoring of Navigational Performance In Oceanic Areas.

OCEANIC PUBLISHED ROUTE— A route established in international airspace and charted or described in flight information publications, such as Route Charts, DOD Enroute Charts, Chart Supplements, NOTAMs, and Track Messages.

OCEANIC TRANSITION ROUTE— An ATS route established for the purpose of transitioning aircraft to/from an organized track system.

ODAPS—
(See OCEANIC DISPLAY AND PLANNING SYSTEM.)

ODP—
(See OBSTACLE DEPARTURE PROCEDURE.)

OFF COURSE— A term used to describe a situation where an aircraft has reported a position fix or is observed on radar at a point not on the ATC-approved route of flight.

OFF-ROUTE VECTOR— A vector by ATC which takes an aircraft off a previously assigned route. Altitudes assigned by ATC during such vectors provide required obstacle clearance.

OFFSET PARALLEL RUNWAYS— Staggered runways having centerlines which are parallel.

OFFSHORE/CONTROL AIRSPACE AREA— That portion of airspace between the U.S. 12 NM limit and the oceanic CTA/FIR boundary within which air traffic control is exercised. These areas are established to provide air traffic control services. Offshore/Control Airspace Areas may be classified as either Class A airspace or Class E airspace.

OFT—
(See OUTER FIX TIME.)

OM—
(See OUTER MARKER.)

ON COURSE—

a. Used to indicate that an aircraft is established on the route centerline.

b. Used by ATC to advise a pilot making a radar approach that his/her aircraft is lined up on the final approach course.

(See ON-COURSE INDICATION.)

ON-COURSE INDICATION— An indication on an instrument, which provides the pilot a visual means of determining that the aircraft is located on the centerline of a given navigational track, or an indication on a radar scope that an aircraft is on a given track.

ONE-MINUTE WEATHER— The most recent one minute updated weather broadcast received by a pilot from an uncontrolled airport ASOS/AWSS/AWOS.

ONER—
(See OCEANIC NAVIGATIONAL ERROR REPORT.)

OPERATIONAL—
(See DUE REGARD.)

OPERATIONS SPECIFICATIONS [ICAO]— The authorizations, conditions and limitations associated with the air operator certificate and subject to the conditions in the operations manual.

OPPOSITE DIRECTION AIRCRAFT— Aircraft are operating in opposite directions when:

a. They are following the same track in reciprocal directions; or

b. Their tracks are parallel and the aircraft are flying in reciprocal directions; or

c. Their tracks intersect at an angle of more than 135°.

OPTION APPROACH— An approach requested and conducted by a pilot which will result in either a touch-and-go, missed approach, low approach, stop-and-go, or full stop landing.

(See CLEARED FOR THE OPTION.)
(Refer to AIM.)

ORGANIZED TRACK SYSTEM— A series of ATS routes which are fixed and charted; i.e., CEP, NOPAC, or flexible and described by NOTAM; i.e., NAT TRACK MESSAGE.
OROCA—An off-route altitude which provides obstruction clearance with a 1,000 foot buffer in nonmountainous terrain areas and a 2,000 foot buffer in designated mountainous areas within the United States. This altitude may not provide signal coverage from ground-based navigational aids, air traffic control radar, or communications coverage.

OTR—
(See OCEANIC TRANSITION ROUTE.)

OTS—
(See ORGANIZED TRACK SYSTEM.)

OUT—The conversation is ended and no response is expected.

OUTER AREA (associated with Class C airspace)—Nonregulatory airspace surrounding designated Class C airspace airports wherein ATC provides radar vectoring and sequencing on a full-time basis for all IFR and participating VFR aircraft. The service provided in the outer area is called Class C service which includes: IFR/IFR—standard IFR separation; IFR/VFR—traffic advisories and conflict resolution; and VFR/VFR—traffic advisories and, as appropriate, safety alerts. The normal radius will be 20 nautical miles with some variations based on site-specific requirements. The outer area extends outward from the primary Class C airspace airport and extends from the lower limits of radar/radio coverage up to the ceiling of the approach control’s delegated airspace excluding the Class C charted area and other airspace as appropriate.

(See CONFLICT RESOLUTION.)
(See CONTROLLED AIRSPACE.)

OUTER COMPASS LOCATOR—
(See COMPASS LOCATOR.)

OUTER FIX—A general term used within ATC to describe fixes in the terminal area, other than the final approach fix. Aircraft are normally cleared to these fixes by an Air Route Traffic Control Center or an Approach Control Facility. Aircraft are normally cleared from these fixes to the final approach fix or final approach course.

OR

OUTER FIX—An adapted fix along the converted route of flight, prior to the meter fix, for which crossing times are calculated and displayed in the metering position list.

OUTER FIX ARC—A semicircle, usually about a 50–70 mile radius from a meter fix, usually in high altitude, which is used by CTAS/HOST to calculate outer fix times and determine appropriate sector meter list assignments for aircraft on an established arrival route that will traverse the arc.

OUTER FIX TIME—A calculated time to depart the outer fix in order to cross the vertex at the ACLT. The time reflects descent speed adjustments and any applicable delay time that must be absorbed prior to crossing the meter fix.

OUTER MARKER—A marker beacon at or near the glideslope intercept altitude of an ILS approach. It is keyed to transmit two dashes per second on a 400 Hz tone, which is received aurally and visually by compatible airborne equipment. The OM is normally located four to seven miles from the runway threshold on the extended centerline of the runway.

(See INSTRUMENT LANDING SYSTEM.)
(See MARKER BEACON.)
(Refer to AIM.)

OVER—My transmission is ended; I expect a response.

OVERHEAD MANEUVER—A series of predetermind maneuvers prescribed for aircraft (often in formation) for entry into the visual flight rules (VFR) traffic pattern and to proceed to a landing. An overhead maneuver is not an instrument flight rules (IFR) approach procedure. An aircraft executing an overhead maneuver is considered VFR and the IFR flight plan is cancelled when the aircraft reaches the “initial point” on the initial approach portion of the maneuver. The pattern usually specifies the following:

a. The radio contact required of the pilot.
b. The speed to be maintained.
c. An initial approach 3 to 5 miles in length.
d. An elliptical pattern consisting of two 180 degree turns.
e. A break point at which the first 180 degree turn is started.
f. The direction of turns.
g. Altitude (at least 500 feet above the conventional pattern).
h. A “Roll-out” on final approach not less than 1/4 mile from the landing threshold and not less than 300 feet above the ground.
OVERLYING CENTER– The ARTCC facility that is responsible for arrival/departure operations at a specific terminal.
P

P TIME—
(See PROPOSED DEPARTURE TIME.)

P-ACP—
(See PREARRANGED COORDINATION PROCEDURES.)

PAN-PAN—The international radio-telephony urgency signal. When repeated three times, indicates uncertainty or alert followed by the nature of the urgency.
(See MAYDAY.)
(Refer to AIM.)

PAR—
(See PRECISION APPROACH RADAR.)
PAR [ICAO]—
(See ICAO Term PRECISION APPROACH RADAR.)

PARALLEL ILS APPROACHES—Approaches to parallel runways by IFR aircraft which, when established inbound toward the airport on the adjacent final approach courses, are radar-separated by at least 2 miles.
(See FINAL APPROACH COURSE.)
(See SIMULTANEOUS ILS APPROACHES.)

PARALLEL OFFSET ROUTE—A parallel track to the left or right of the designated or established airway/route. Normally associated with Area Navigation (RNAV) operations.
(See AREA NAVIGATION.)

PARALLEL RUNWAYS—Two or more runways at the same airport whose centerlines are parallel. In addition to runway number, parallel runways are designated as L (left) and R (right) or, if three parallel runways exist, L (left), C (center), and R (right).

PBCT—
(See PROPOSED BOUNDARY CROSSING TIME.)

PBN
(See ICAO Term PERFORMANCE–BASED NAVIGATION.)

PDC—
(See PRE–DEPARTURE CLEARANCE.)

PERFORMANCE–BASED NAVIGATION (PBN) [ICAO]—Area navigation based on performance requirements for aircraft operating along an ATS route, on an instrument approach procedure or in a designated airspace.

Note: Performance requirements are expressed in navigation specifications (RNAV specification, RNP specification) in terms of accuracy, integrity, continuity, availability, and functionality needed for the proposed operation in the context of a particular airspace concept.

PERMANENT ECHO—Radar signals reflected from fixed objects on the earth’s surface; e.g., buildings, towers, terrain. Permanent echoes are distinguished from “ground clutter” by being definable locations rather than large areas. Under certain conditions they may be used to check radar alignment.

PHOTO RECONNAISSANCE—Military activity that requires locating individual photo targets and navigating to the targets at a preplanned angle and altitude. The activity normally requires a lateral route width of 16 NM and altitude range of 1,500 feet to 10,000 feet AGL.

PILOT BRIEFING—A service provided by the FSS to assist pilots in flight planning. Briefing items may include weather information, NOTAMS, military activities, flow control information, and other items as requested.
(Refer to AIM.)

PILOT IN COMMAND—The pilot responsible for the operation and safety of an aircraft during flight time.
(Refer to 14 CFR Part 91.)

PILOT WEATHER REPORT—A report of meteorological phenomena encountered by aircraft in flight.
(Refer to AIM.)

PILOT'S DISCRETION—When used in conjunction with altitude assignments, means that ATC has offered the pilot the option of starting climb or descent whenever he/she wishes and conducting the climb or descent at any rate he/she wishes. He/she may temporarily level off at any intermediate altitude. However, once he/she has vacated an altitude, he/she may not return to that altitude.
PIREP—
(See PILOT WEATHER REPORT.)

PITCH POINT— A fix/waypoint that serves as a transition point from a departure procedure or the low altitude ground–based navigation structure into the high altitude waypoint system.

PLANS DISPLAY— A display available in URET that provides detailed flight plan and predicted conflict information in textual format for requested Current Plans and all Trial Plans.
(See USER REQUEST EVALUATION TOOL.)

POFZ—
(See PRECISION OBSTACLE FREE ZONE.)

POINT OUT—
(See RADAR POINT OUT.)

POINT-TO-POINT (PTP)— A level of NRR service for aircraft that is based on traditional waypoints in their FMSs or RNAV equipage.

POLAR TRACK STRUCTURE— A system of organized routes between Iceland and Alaska which overlie Canadian MNPS Airspace.

POSITION REPORT— A report over a known location as transmitted by an aircraft to ATC.
(Refer to AIM.)

POSITION SYMBOL— A computer-generated indication shown on a radar display to indicate the mode of tracking.

POSITIVE CONTROL— The separation of all air traffic within designated airspace by air traffic control.

PRACTICE INSTRUMENT APPROACH— An instrument approach procedure conducted by a VFR or an IFR aircraft for the purpose of pilot training or proficiency demonstrations.

PRE-DEPARTURE CLEARANCE— An application with the Terminal Data Link System (TDLS) that provides clearance information to subscribers, through a service provider, in text to the cockpit or gate printer.

PREARRANGED COORDINATION— A standardized procedure which permits an air traffic controller to enter the airspace assigned to another air traffic controller without verbal coordination. The procedures are defined in a facility directive which ensures standard separation between aircraft.

PREARRANGED COORDINATION PROCEDURES— A facility’s standardized procedure that describes the process by which one controller shall allow an aircraft to penetrate or transit another controller’s airspace in a manner that assures standard separation without individual coordination for each aircraft.

PRECIPITATION— Any or all forms of water particles (rain, sleet, hail, or snow) that fall from the atmosphere and reach the surface.

PRECIPITATION RADAR WEATHER DESCRIPTIONS— Existing radar systems cannot detect turbulence. However, there is a direct correlation between the degree of turbulence and other weather features associated with thunderstorms and the weather radar precipitation intensity. Controllers will issue (where capable) precipitation intensity as observed by radar when using weather and radar processor (WARP) or NAS ground based digital radars with weather capabilities. When precipitation intensity information is not available, the intensity will be described as UNKNOWN. When intensity levels can be determined, they shall be described as:

a. LIGHT (< 30 dBZ)
b. MODERATE (30 to 40 dBZ)
c. HEAVY (> 40 to 50 dBZ)
d. EXTREME (> 50 dBZ)
(Refer to AC 00–45, Aviation Weather Services.)

PRECISION APPROACH—
(See PRECISION APPROACH PROCEDURE.)

PRECISION APPROACH PROCEDURE— A standard instrument approach procedure in which an electronic glideslope/or other type of glidepath is provided: e.g., ILS, PAR, and GLS.
(See INSTRUMENT LANDING SYSTEM.)
(See PRECISION APPROACH RADAR.)
PRECISION APPROACH RADAR— Radar equipment in some ATC facilities operated by the FAA and/or the military services at joint-use civil/military locations and separate military installations to detect and display azimuth, elevation, and range of aircraft on the final approach course to a runway. This equipment may be used to monitor certain nonradar approaches, but is primarily used to conduct a precision instrument approach (PAR) wherein the controller issues guidance instructions to the pilot based on the aircraft’s position in relation to the final approach course (azimuth), the glidepath (elevation), and the distance (range) from the touchdown point on the runway as displayed on the radar scope.

Note: The abbreviation “PAR” is also used to denote preferential arrival routes in ARTCC computers.

(See GLIDEPATH.)
(See PAR.)
(See PREFERENTIAL ROUTES.)
(See ICAO term PRECISION APPROACH RADAR.)
(Refer to AIM.)

PRECISION APPROACH RADAR [ICAO]— Primary radar equipment used to determine the position of an aircraft during final approach, in terms of lateral and vertical deviations relative to a nominal approach path, and in range relative to touchdown.

Note: Precision approach radars are designed to enable pilots of aircraft to be given guidance by radio communication during the final stages of the approach to land.

PRECISION OBSTACLE FREE ZONE (POFZ)— An 800 foot wide by 200 foot long area centered on the runway centerline adjacent to the threshold designed to protect aircraft flying precision approaches from ground vehicles and other aircraft when ceiling is less than 250 feet or visibility is less than 3/4 statute mile (or runway visual range below 4,000 feet.)

PRECISION RUNWAY MONITOR (PRM) SYSTEM— Provides air traffic controllers monitoring the NTZ during simultaneous close parallel PRM approaches with precision, high update rate secondary surveillance data. The high update rate surveillance sensor component of the PRM system is only required for specific runway or approach course separation. The high resolution color monitoring display, Final Monitor Aid (FMA) of the PRM system, or other FMA with the same capability, presents (NTZ) surveillance track data to controllers along with detailed maps depicting approaches and no transgression zone and is required for all simultaneous close parallel PRM NTZ monitoring operations.

(Refer to AIM)

PREDICTIVE WIND SHEAR ALERT SYSTEM (PWS)— A self−contained system used onboard some aircraft to alert the flight crew to the presence of a potential wind shear. PWS systems typically monitor 3 miles ahead and 25 degrees left and right of the aircraft’s heading at or below 1200’ AGL. Departing flights may receive a wind shear alert after they start the takeoff roll and may elect to abort the takeoff. Aircraft on approach receiving an alert may elect to go around or perform a wind shear escape maneuver.

PREFERENTIAL ROUTES— Preferential routes (PDRs, PARs, and PDARs) are adapted in ARTCC computers to accomplish inter/intrafacility controller coordination and to assure that flight data is posted at the proper control positions. Locations having a need for these specific inbound and outbound routes normally publish such routes in local facility bulletins, and their use by pilots minimizes flight plan route amendments. When the workload or traffic situation permits, controllers normally provide radar vectors or assign requested routes to minimize circuitous routing. Preferential routes are usually confined to one ARTCC’s area and are referred to by the following names or acronyms:

a. Preferential Departure Route (PDR). A specific departure route from an airport or terminal area to an en route point where there is no further need for flow control. It may be included in an Instrument Departure Procedure (DP) or a Preferred IFR Route.

b. Preferential Arrival Route (PAR). A specific arrival route from an appropriate en route point to an airport or terminal area. It may be included in a Standard Terminal Arrival (STAR) or a Preferred IFR Route. The abbreviation “PAR” is used primarily within the ARTCC and should not be confused with the abbreviation for Precision Approach Radar.

c. Preferential Departure and Arrival Route (PDAR). A route between two terminals which are within or immediately adjacent to one ARTCC’s area. PDARs are not synonymous with Preferred IFR Routes but may be listed as such as they do accomplish essentially the same purpose.

(See PREFERRED IFR ROUTES.)
PREFERRED IFR ROUTES— Routes established between busier airports to increase system efficiency and capacity. They normally extend through one or more ARTCC areas and are designed to achieve balanced traffic flows among high density terminals. IFR clearances are issued on the basis of these routes except when severe weather avoidance procedures or other factors dictate otherwise. Preferred IFR Routes are listed in the Airport/Facility Directory. If a flight is planned to or from an area having such routes but the departure or arrival point is not listed in the Airport/Facility Directory, pilots may use that part of a Preferred IFR Route which is appropriate for the departure or arrival point that is listed. Preferred IFR Routes are correlated with DPs and STARs and may be defined by airways, jet routes, direct routes between NA V AIDs, Waypoints, NA V AID radials/DME, or any combinations thereof.

(See CENTER’S AREA.)
(See INSTRUMENT DEPARTURE PROCEDURE.)
(See PREFERENTIAL ROUTES.)
(See STANDARD TERMINAL ARRIVAL.)
(Refer to AIRPORT/FACILITY DIRECTORY.)
(Refer to NOTICES TO AIRMEN PUBLICATION.)

PRE-FLIGHT PILOT BRIEFING—
(See PILOT BRIEFING.)

PREVAILING VISIBILITY—
(See VISIBILITY.)

PRIMARY RADAR TARGET— An analog or digital target, exclusive of a secondary radar target, presented on a radar display.

PRM—
(See ILS PRM APPROACH and PRECISION RUNWAY MONITOR SYSTEM.)

PROCEDURE TURN— The maneuver prescribed when it is necessary to reverse direction to establish an aircraft on the intermediate approach segment or final approach course. The outbound course, direction of turn, distance within which the turn must be completed, and minimum altitude are specified in the procedure. However, unless otherwise restricted, the point at which the turn may be commenced and the type and rate of turn are left to the discretion of the pilot.

(See ICAO term PROCEDURE TURN.)

PROCEDURE TURN [ICAO]— A maneuver in which a turn is made away from a designated track followed by a turn in the opposite direction to permit the aircraft to intercept and proceed along the reciprocal of the designated track.

Note 1: Procedure turns are designated “left” or “right” according to the direction of the initial turn.

Note 2: Procedure turns may be designated as being made either in level flight or while descending, according to the circumstances of each individual approach procedure.

PROCEDURE TURN INBOUND— That point of a procedure turn maneuver where course reversal has been completed and an aircraft is established inbound on the intermediate approach segment or final approach course. A report of “procedure turn inbound” is normally used by ATC as a position report for separation purposes.

(See FINAL APPROACH COURSE.)
(See PROCEDURE TURN.)
(See SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE.)

PROFILE DESCENT— An uninterrupted descent (except where level flight is required for speed adjustment; e.g., 250 knots at 10,000 feet MSL) from cruising altitude/level to interception of a glideslope or to a minimum altitude specified for the initial or intermediate approach segment of a nonprecision instrument approach. The profile descent normally terminates at the approach gate or where the glideslope or other appropriate minimum altitude is intercepted.

PROGRESS REPORT—
(See POSITION REPORT.)

PROGRESSIVE TAXI— Precise taxi instructions given to a pilot unfamiliar with the airport or issued in stages as the aircraft proceeds along the taxi route.

PROHIBITED AREA—
(See SPECIAL USE AIRSPACE.)
(See ICAO term PROHIBITED AREA.)

PROHIBITED AREA [ICAO]— An airspace of defined dimensions, above the land areas or territorial waters of a State, within which the flight of aircraft is prohibited.

PROMINENT OBSTACLE— An obstacle that meets one or more of the following conditions:

a. An obstacle which stands out beyond the adjacent surface of surrounding terrain and immediately projects a noticeable hazard to aircraft in flight.

b. An obstacle, not characterized as low and close in, whose height is no less than 300 feet above the
departure end of takeoff runway (DER) elevation, is within 10NM from the DER, and that penetrates that airport/heliport’s diverse departure obstacle clearance surface (OCS).

c. An obstacle beyond 10NM from an airport/heliport that requires an obstacle departure procedure (ODP) to ensure obstacle avoidance.
 (See OBSTACLE.)
 (See OBSTRUCTION.)

PROPOSED BOUNDARY CROSSING TIME– Each center has a PBCT parameter for each internal airport. Proposed internal flight plans are transmitted to the adjacent center if the flight time along the proposed route from the departure airport to the center boundary is less than or equal to the value of PBCT or if airport adaptation specifies transmission regardless of PBCT.

PROPOSED DEPARTURE TIME– The time that the aircraft expects to become airborne.

PROTECTED AIRSPACE– The airspace on either side of an oceanic route/track that is equal to one-half the lateral separation minimum except where reduction of protected airspace has been authorized.

PROTECTED SEGMENT– The protected segment is a segment on the amended TFM route that is to be inhibited from automatic adapted route alteration by ERAM.

PT–
 (See PROCEDURE TURN.)

PTP–
 (See POINT–TO–POINT.)

PTS–
 (See POLAR TRACK STRUCTURE.)

PUBLISHED INSTRUMENT APPROACH

PROCEDURE VISUAL SEGMENT– A segment on an IAP chart annotated as “Fly Visual to Airport” or “Fly Visual.” A dashed arrow will indicate the visual flight path on the profile and plan view with an associated note on the approximate heading and distance. The visual segment should be flown as a dead reckoning course while maintaining visual conditions.

PUBLISHED ROUTE– A route for which an IFR altitude has been established and published; e.g., Federal Airways, Jet Routes, Area Navigation Routes, Specified Direct Routes.

PWS–
 (See PREDICTIVE WIND SHEAR ALERT SYSTEM.)
Q

Q ROUTE—‘Q’ is the designator assigned to published RNAV routes used by the United States.

QNE—The barometric pressure used for the standard altimeter setting (29.92 inches Hg.).

QNH—The barometric pressure as reported by a particular station.

QUADRANT—A quarter part of a circle, centered on a NAVAID, oriented clockwise from magnetic north as follows: NE quadrant 000-089, SE quadrant 090-179, SW quadrant 180-269, NW quadrant 270-359.

QUEUING—
(See STAGING/QUEUING.)

QUICK LOOK—A feature of the EAS and ARTS which provides the controller the capability to display full data blocks of tracked aircraft from other control positions.
RAA—
(See REMOTE AIRPORT ADVISORY.)

RADAR— A device which, by measuring the time interval between transmission and reception of radio pulses and correlating the angular orientation of the radiated antenna beam or beams in azimuth and/or elevation, provides information on range, azimuth, and/or elevation of objects in the path of the transmitted pulses.

a. Primary Radar— A radar system in which a minute portion of a radio pulse transmitted from a site is reflected by an object and then received back at that site for processing and display at an air traffic control facility.

b. Secondary Radar/Radar Beacon (ATCRBS)— A radar system in which the object to be detected is fitted with cooperative equipment in the form of a radio receiver/transmitter (transponder). Radar pulses transmitted from the searching transmitter/receiver (interrogator) site are received in the cooperative equipment and used to trigger a distinctive transmission from the transponder. This reply transmission, rather than a reflected signal, is then received back at the transmitter/receiver site for processing and display at an air traffic control facility.

(Check INTERROGATOR.)
(Check TRANSPONDER.)
(Check ICAO term RADAR.)
(Refer to AIM.)

RADAR [ICAO]— A radio detection device which provides information on range, azimuth and/or elevation of objects.

a. Primary Radar— Radar system which uses reflected radio signals.

b. Secondary Radar— Radar system wherein a radio signal transmitted from a radar station initiates the transmission of a radio signal from another station.

RADAR ADVISORY— The provision of advice and information based on radar observations.

(See ADVISORY SERVICE.)

RADAR ALTIMETER—
(See RADIO ALTIMETER.)

RADAR APPROACH— An instrument approach procedure which utilizes Precision Approach Radar (PAR) or Airport Surveillance Radar (ASR).

(See AIRPORT SURVEILLANCE RADAR.)
(See INSTRUMENT APPROACH PROCEDURE.)
(See PRECISION APPROACH RADAR.)
(See SURVEILLANCE APPROACH.)
(See ICAO term RADAR APPROACH.)
(Refer to AIM.)

RADAR APPROACH [ICAO]— An approach, executed by an aircraft, under the direction of a radar controller.

RADAR APPROACH CONTROL FACILITY— A terminal ATC facility that uses radar and nonradar capabilities to provide approach control services to aircraft arriving, departing, or transiting airspace controlled by the facility.

(See APPROACH CONTROL SERVICE.)

a. Provides radar ATC services to aircraft operating in the vicinity of one or more civil and/or military airports in a terminal area. The facility may provide services of a ground controlled approach (GCA); i.e., ASR and PAR approaches. A radar approach control facility may be operated by FAA, USAF, US Army, USN, USMC, or jointly by FAA and a military service. Specific facility nomenclatures are used for administrative purposes only and are related to the physical location of the facility and the operating service generally as follows:

1. Army Radar Approach Control (ARAC) (Army).
5. Air Traffic Control Tower (ATCT) (FAA).
(Only those towers delegated approach control authority.)

RADAR ARRIVAL— An aircraft arriving at an airport served by a radar facility and in radar contact with the facility.

(See NONRADAR.)
RADAR BEACON—
(See RADAR.)

RADAR CLUTTER [ICAO]— The visual indication on a radar display of unwanted signals.

RADAR CONTACT—

a. Used by ATC to inform an aircraft that it is identified on the radar display and radar flight following will be provided until radar identification is terminated. Radar service may also be provided within the limits of necessity and capability. When a pilot is informed of “radar contact,” he/she automatically discontinues reporting over compulsory reporting points.

(See RADAR CONTACT LOST.)
(See RADAR FLIGHT FOLLOWING.)
(See RADAR SERVICE.)
(See RADAR SERVICE TERMINATED.)
(Refer to AIM.)

b. The term used to inform the controller that the aircraft is identified and approval is granted for the aircraft to enter the receiving controllers airspace.

(See ICAO term RADAR CONTACT.)

RADAR CONTACT [ICAO]— The situation which exists when the radar blip or radar position symbol of a particular aircraft is seen and identified on a radar display.

RADAR CONTACT LOST— Used by ATC to inform a pilot that radar data used to determine the aircraft’s position is no longer being received, or is no longer reliable and radar service is no longer being provided. The loss may be attributed to several factors including the aircraft merging with weather or ground clutter, the aircraft operating below radar line of sight coverage, the aircraft entering an area of poor radar return, failure of the aircraft transponder, or failure of the ground radar equipment.

(See CLUTTER.)
(See RADAR CONTACT.)

RADAR ENVIRONMENT— An area in which radar service may be provided.

(See ADDITIONAL SERVICES.)
(See RADAR CONTACT.)
(See RADAR SERVICE.)
(See TRAFFIC ADVISORIES.)

RADAR FLIGHT FOLLOWING— The observation of the progress of radar identified aircraft, whose primary navigation is being provided by the pilot, wherein the controller retains and correlates the aircraft identity with the appropriate target or target symbol displayed on the radar scope.

(See RADAR CONTACT.)
(See RADAR SERVICE.)
(Refer to AIM.)

RADAR IDENTIFICATION— The process of ascertaining that an observed radar target is the radar return from a particular aircraft.

(See RADAR CONTACT.)
(See RADAR SERVICE.)
(See ICAO term RADAR IDENTIFICATION.)

RADAR IDENTIFICATION [ICAO]— The process of correlating a particular radar blip or radar position symbol with a specific aircraft.

RADAR IDENTIFIED AIRCRAFT— An aircraft, the position of which has been correlated with an observed target or symbol on the radar display.

(See RADAR CONTACT.)
(See RADAR CONTACT LOST.)

RADAR MONITORING—
(See RADAR SERVICE.)

RADAR NAVIGATIONAL GUIDANCE—
(See RADAR SERVICE.)

RADAR POINT OUT— An action taken by a controller to transfer the radar identification of an aircraft to another controller if the aircraft will or may enter the airspace or protected airspace of another controller and radio communications will not be transferred.

RADAR REQUIRED— A term displayed on charts and approach plates and included in FDC NOTAMs to alert pilots that segments of either an instrument approach procedure or a route are not navigable because of either the absence or unusability of a NAVAID. The pilot can expect to be provided radar navigational guidance while transiting segments labeled with this term.

(See RADAR ROUTE.)
(See RADAR SERVICE.)

RADAR ROUTE— A flight path or route over which an aircraft is vectored. Navigational guidance and altitude assignments are provided by ATC.

(See FLIGHT PATH.)
(See ROUTE.)

RADAR SEPARATION—
(See RADAR SERVICE.)
RADAR SERVICE– A term which encompasses one or more of the following services based on the use of radar which can be provided by a controller to a pilot of a radar identified aircraft.

a. Radar Monitoring– The radar flight-following of aircraft, whose primary navigation is being performed by the pilot, to observe and note deviations from its authorized flight path, airway, or route. When being applied specifically to radar monitoring of instrument approaches; i.e., with precision approach radar (PAR) or radar monitoring of simultaneous ILS, RNAV and GLS approaches, it includes advice and instructions whenever an aircraft nears or exceeds the prescribed PAR safety limit or simultaneous ILS RNAV and GLS no transgression zone.

 (See ADDITIONAL SERVICES.)
 (See TRAFFIC ADVISORIES.)

b. Radar Navigational Guidance– Vectoring aircraft to provide course guidance.

c. Radar Separation– Radar spacing of aircraft in accordance with established minima.

 (See ICAO term RADAR SERVICE.)

RADAR SERVICE [ICAO]– Term used to indicate a service provided directly by means of radar.

a. Monitoring– The use of radar for the purpose of providing aircraft with information and advice relative to significant deviations from nominal flight path.

b. Separation– The separation used when aircraft position information is derived from radar sources.

RADAR SERVICE TERMINATED– Used by ATC to inform a pilot that he/she will no longer be provided any of the services that could be received while in radar contact. Radar service is automatically terminated, and the pilot is not advised in the following cases:

a. An aircraft cancels its IFR flight plan, except within Class B airspace, Class C airspace, a TRSA, or where Basic Radar service is provided.

b. An aircraft conducting an instrument, visual, or contact approach has landed or has been instructed to change to advisory frequency.

c. An arriving VFR aircraft, receiving radar service to a tower-controlled airport within Class B airspace, Class C airspace, a TRSA, or where sequencing service is provided, has landed; or to all other airports, is instructed to change to tower or advisory frequency.

d. An aircraft completes a radar approach.

RADAR SURVEILLANCE– The radar observation of a given geographical area for the purpose of performing some radar function.

RADAR TRAFFIC ADVISORIES– Advisories issued to alert pilots to known or observed radar traffic which may affect the intended route of flight of their aircraft.

 (See TRAFFIC ADVISORIES.)

RADAR TRAFFIC INFORMATION SERVICE–

 (See TRAFFIC ADVISORIES.)

RADAR VECTORING [ICAO]– Provision of navigational guidance to aircraft in the form of specific headings, based on the use of radar.

RADIAL– A magnetic bearing extending from a VOR/VORTAC/TACAN navigation facility.

RADIO–

a. A device used for communication.

b. Used to refer to a flight service station; e.g., “Seattle Radio” is used to call Seattle FSS.

RADIO ALTIMETER– Aircraft equipment which makes use of the reflection of radio waves from the ground to determine the height of the aircraft above the surface.

RADIO BEACON–

 (See NONDIRECTIONAL BEACON.)

RADIO DETECTION AND RANGING–

 (See RADAR.)

RADIO MAGNETIC INDICATOR– An aircraft navigational instrument coupled with a gyro compass or similar compass that indicates the direction of a selected NAVAID and indicates bearing with respect to the heading of the aircraft.

RAIS–

 (See REMOTE AIRPORT INFORMATION SERVICE.)

RAMP–

 (See APRON.)

RANDOM ALTITUDE– An altitude inappropriate for direction of flight and/or not in accordance with FAAO JO 7110.65, Para 4–5–1, VERTICAL SEPARATION MINIMA.
RANDOM ROUTE— Any route not established or charted/published or not otherwise available to all users.

RC—
(See ROAD RECONNAISSANCE.)

RCAG—
(See REMOTE COMMUNICATIONS AIR/GROUND FACILITY.)

RCC—
(See RESCUE COORDINATION CENTER.)

RCO—
(See REMOTE COMMUNICATIONS OUTLET.)

RCR—
(See RUNWAY CONDITION READING.)

READ BACK— Repeat my message back to me.

RECEIVER AUTONOMOUS INTEGRITY MONITORING (RAIM)— A technique whereby a civil GNSS receiver/processor determines the integrity of the GNSS navigation signals without reference to sensors or non-DoD integrity systems other than the receiver itself. This determination is achieved by a consistency check among redundant pseudorange measurements.

RECEIVING CONTROLLER— A controller/facility receiving control of an aircraft from another controller/facility.

RECEIVING FACILITY—
(See RECEIVING CONTROLLER.)

RECONFORMANCE— The automated process of bringing an aircraft’s Current Plan Trajectory into conformance with its track.

REDUCE SPEED TO (SPEED)—
(See SPEED ADJUSTMENT.)

REIL—
(See RUNWAY END IDENTIFIER LIGHTS.)

RELEASE TIME— A departure time restriction issued to a pilot by ATC (either directly or through an authorized relay) when necessary to separate a departing aircraft from other traffic.
(See ICAO term RELEASE TIME.)

RELEASE TIME [ICAO]— Time prior to which an aircraft should be given further clearance or prior to which it should not proceed in case of radio failure.

REMOTE AIRPORT ADVISORY (RAA)— A remote service which may be provided by facilities, which are not located on the landing airport, but have a discrete ground-to-air communication frequency or tower frequency when the tower is closed, automated weather reporting with voice available to the pilot at the landing airport, and a continuous ASOS/AWSS/AWOS data display, other direct reading instruments, or manual observation is available to the FSS specialist.

REMOTE AIRPORT INFORMATION SERVICE (RAIS)— A temporary service provided by facilities, which are not located on the landing airport, but have communication capability and automated weather reporting available to the pilot at the landing airport.

REMOTE COMMUNICATIONS AIR/GROUND FACILITY— An unmanned VHF/UHF transmitter/receiver facility which is used to expand ARTCC air/ground communications coverage and to facilitate direct contact between pilots and controllers. RCAG facilities are sometimes not equipped with emergency frequencies 121.5 MHz and 243.0 MHz.
(Refer to AIM.)

REMOTE COMMUNICATIONS OUTLET— An unmanned communications facility remotely controlled by air traffic personnel. RCOs serve FSSs. RTRs serve terminal ATC facilities. An RCO or RTR may be UHF or VHF and will extend the communication range of the air traffic facility. There are several classes of RCOs and RTRs. The class is determined by the number of transmitters or receivers. Classes A through G are used primarily for air/ground purposes. RCO and RTR class O facilities are nonprotected outlets subject to undetected and prolonged outages. RCO (O’s) and RTR (O’s) were established for the express purpose of providing ground-to-ground communications between air traffic control specialists and pilots located at a satellite airport for delivering en route clearances, issuing departure authorizations, and acknowledging instrument flight rules cancellations or departure/landing times. As a secondary function, they may be used for advisory purposes whenever the aircraft is below the coverage of the primary air/ground frequency.

REMOTE TRANSMITTER/RECEIVER—
(See REMOTE COMMUNICATIONS OUTLET)
REPORT— Used to instruct pilots to advise ATC of specified information; e.g., “Report passing Hamilton VOR.”

REPORTING POINT— A geographical location in relation to which the position of an aircraft is reported.

(See COMPULSORY REPORTING POINTS.)
(See ICAO term REPORTING POINT.)
(Refer to AIM.)

REPORTING POINT [ICAO]— A specified geographical location in relation to which the position of an aircraft can be reported.

REQUEST FULL ROUTE CLEARANCE— Used by pilots to request that the entire route of flight be read verbatim in an ATC clearance. Such request should be made to preclude receiving an ATC clearance based on the original filed flight plan when a filed IFR flight plan has been revised by the pilot, company, or operations prior to departure.

REQUIRED NAVIGATION PERFORMANCE (RNP)— A statement of the navigational performance necessary for operation within a defined airspace. The following terms are commonly associated with RNP:

a. Required Navigation Performance Level or Type (RNP-X). A value, in nautical miles (NM), from the intended horizontal position within which an aircraft would be at least 95-percent of the total flying time.

b. Required Navigation Performance (RNP) Airspace. A generic term designating airspace, route (s), leg (s), operation (s), or procedure (s) where minimum required navigational performance (RNP) have been established.

e. Lateral Navigation (LNAV). A function of area navigation (RNAV) equipment which calculates, displays, and provides lateral guidance to a profile or path.

f. Vertical Navigation (VNAV). A function of area navigation (RNAV) equipment which calculates, displays, and provides vertical guidance to a profile or path.

RESUE COORDINATION CENTER— A search and rescue (SAR) facility equipped and manned to coordinate and control SAR operations in an area designated by the SAR plan. The U.S. Coast Guard and the U.S. Air Force have responsibility for the operation of RCCs.

(See ICAO term RESCUE CO-ORDINATION CENTRE.)

RESCUE CO-ORDINATION CENTRE [ICAO]— A unit responsible for promoting efficient organization of search and rescue service and for coordinating the conduct of search and rescue operations within a search and rescue region.

RESOLUTION ADVISORY— A display indication given to the pilot by the traffic alert and collision avoidance systems (TCAS II) recommending a maneuver to increase vertical separation relative to an intruding aircraft. Positive, negative, and vertical speed limit (VSL) advisories constitute the resolution advisories. A resolution advisory is also classified as corrective or preventive.

RESTRICTED AREA—
(See SPECIAL USE AIRSPACE.)
(See ICAO term RESTRICTED AREA.)

RESTRICTED AREA [ICAO]— An airspace of defined dimensions, above the land areas or territorial waters of a State, within which the flight of aircraft is restricted in accordance with certain specified conditions.

RESUME NORMAL SPEED— Used by ATC to advise a pilot to resume an aircraft’s normal operating speed. It is issued to terminate a speed adjustment where no published speed restrictions apply. It does not delete speed restrictions in published procedures of upcoming segments of flight. This does not relieve the pilot of those speed restrictions, which are applicable to 14 CFR Section 91.117.

RESUME OWN NAVIGATION— Used by ATC to advise a pilot to resume his/her own navigational responsibility. It is issued after completion of a radar vector or when radar contact is lost while the aircraft is being radar vectored.

(See RADAR CONTACT LOST)
(See RADAR SERVICE TERMINATED.)

RESUME PUBLISHED SPEED— Used by ATC to advise a pilot to resume published speed restrictions
that are applicable to a SID, STAR, or other instrument procedure. It is issued to terminate a speed adjustment where speed restrictions are published on a charted procedure.

RMI—
(See RADIO MAGNETIC INDICATOR.)

RNAV—
(See AREA NAVIGATION (RNAV).)

RNAV APPROACH— An instrument approach procedure which relies on aircraft area navigation equipment for navigational guidance.
(See AREA NAVIGATION (RNAV).)
(See INSTRUMENT APPROACH PROCEDURE.)

ROUTE— A defined path, consisting of one or more courses in a horizontal plane, which aircraft traverse over the surface of the earth.
(See AIRWAY.)
(See JET ROUTE.)
(See PUBLISHED ROUTE.)
(See UNPUBLISHED ROUTE.)

ROUTE ACTION NOTIFICATION— URET notification that a PAR/PDR/PDAR has been applied to the flight plan.
(See ATC PREFERRED ROUTE NOTIFICATION.)
(See USER REQUEST EVALUATION TOOL.)

ROUTE SEGMENT— As used in Air Traffic Control, a part of a route that can be defined by two navigational fixes, two NAVAIDs, or a fix and a NAVAID.
(See FIX.)
(See ROUTE.)
(See ICAO term ROUTE SEGMENT.)

ROUTE SEGMENT [ICAO]— A portion of a route to be flown, as defined by two consecutive significant points specified in a flight plan.

RSA—
(See RUNWAY SAFETY AREA.)

RTR—
(See REMOTE TRANSMITTER/RECEIVER.)

RUNWAY— A defined rectangular area on a land airport prepared for the landing and takeoff run of aircraft along its length. Runways are normally numbered in relation to their magnetic direction rounded off to the nearest 10 degrees; e.g., Runway 1, Runway 25.
(See PARALLEL RUNWAYS.)
(See ICAO term RUNWAY.)

RUNWAY [ICAO]— A defined rectangular area on a land aerodrome prepared for the landing and take-off of aircraft.

RUNWAY CENTERLINE LIGHTING—
(See AIRPORT LIGHTING.)

RUNWAY CONDITION READING— Numerical decelerometer readings relayed by air traffic controllers at USAF and certain civil bases for use by the pilot in determining runway braking action. These readings are routinely relayed only to USAF and Air National Guard Aircraft.
(See BRAKING ACTION.)

RUNWAY END IDENTIFIER LIGHTS—
(See AIRPORT LIGHTING.)

RUNWAY ENTRANCE LIGHTS (REL)—An array of red lights which include the first light at the hold line followed by a series of evenly spaced lights to the runway edge aligned with the taxiway centerline, and one additional light at the runway centerline in line with the last two lights before the runway edge.

RUNWAY GRADIENT— The average slope, measured in percent, between two ends or points on a runway. Runway gradient is depicted on Government aerodrome sketches when total runway gradient exceeds 0.3%.

RUNWAY HEADING— The magnetic direction that corresponds with the runway centerline extended, not
the painted runway number. When cleared to “fly or maintain runway heading,” pilots are expected to fly or maintain the heading that corresponds with the extended centerline of the departure runway. Drift correction shall not be applied; e.g., Runway 4, actual magnetic heading of the runway centerline 044, fly 044.

RUNWAY IN USE/ACTIVE RUNWAY/DUTY

RUNWAY—Any runway or runways currently being used for takeoff or landing. When multiple runways are used, they are all considered active runways. In the metering sense, a selectable adapted item which specifies the landing runway configuration or direction of traffic flow. The adapted optimum flight plan from each transition fix to the vertex is determined by the runway configuration for arrival metering processing purposes.

RUNWAY LIGHTS—
(See AIRPORT LIGHTING.)

RUNWAY MARKINGS—
(See AIRPORT MARKING AIDS.)

RUNWAY OVERRUN—In military aviation exclusively, a stabilized or paved area beyond the end of a runway, of the same width as the runway plus shoulders, centered on the extended runway centerline.

RUNWAY PROFILE DESCENT—An instrument flight rules (IFR) air traffic control arrival procedure to a runway published for pilot use in graphic and/or textual form and may be associated with a STAR. Runway Profile Descents provide routing and may depict crossing altitudes, speed restrictions, and headings to be flown from the en route structure to the point where the pilot will receive clearance for and execute an instrument approach procedure. A Runway Profile Descent may apply to more than one runway if so stated on the chart.
(Refer to AIM.)

RUNWAY SAFETY AREA—A defined surface surrounding the runway prepared, or suitable, for reducing the risk of damage to airplanes in the event of an undershoot, overshoot, or excursion from the runway. The dimensions of the RSA vary and can be determined by using the criteria contained within AC 150/5300-13, Airport Design, Chapter 3. Figure 3–1 in AC 150/5300-13 depicts the RSA. The design standards dictate that the RSA shall be:

a. Cleared, graded, and have no potentially hazardous ruts, humps, depressions, or other surface variations;

b. Drained by grading or storm sewers to prevent water accumulation;

c. Capable, under dry conditions, of supporting snow removal equipment, aircraft rescue and firefighting equipment, and the occasional passage of aircraft without causing structural damage to the aircraft; and,

d. Free of objects, except for objects that need to be located in the runway safety area because of their function. These objects shall be constructed on low impact resistant supports (frangible mounted structures) to the lowest practical height with the frangible point no higher than 3 inches above grade.
(Refer to AC 150/5300-13, Airport Design, Chapter 3.)

RUNWAY STATUS LIGHTS (RWSL) SYSTEM—The RWSL is a system of runway and taxiway lighting to provide pilots increased situational awareness by illuminating runway entry lights (REL) when the runway is unsafe for entry or crossing, and take-off hold lights (THL) when the runway is unsafe for departure.

RUNWAY TRANSITION—

a. Conventional STARs/SIDs. The portion of a STAR/SID that serves a particular runway or runways at an airport.

b. RNAV STARs/SIDs. Defines a path(s) from the common route to the final point(s) on a STAR. For a SID, the common route that serves a particular runway or runways at an airport.

RUNWAY USE PROGRAM—A noise abatement runway selection plan designed to enhance noise abatement efforts with regard to airport communities for arriving and departing aircraft. These plans are developed into runway use programs and apply to all turbojet aircraft 12,500 pounds or heavier; turbojet aircraft less than 12,500 pounds are included only if the airport proprietor determines that the aircraft creates a noise problem. Runway use programs are coordinated with FAA offices, and safety criteria used in these programs are developed by the Office of Flight Operations. Runway use programs are administered by the Air Traffic Service as “Formal” or “Informal” programs.

a. Formal Runway Use Program—An approved noise abatement program which is defined and
acknowledged in a Letter of Understanding between Flight Operations, Air Traffic Service, the airport proprietor, and the users. Once established, participation in the program is mandatory for aircraft operators and pilots as provided for in 14 CFR Section 91.129.

b. Informal Runway Use Program—An approved noise abatement program which does not require a Letter of Understanding, and participation in the program is voluntary for aircraft operators/pilots.

RUNWAY VISIBILITY VALUE—
(See VISIBILITY.)

RUNWAY VISUAL RANGE—
(See VISIBILITY.)
SAA—
(See SPECIAL ACTIVITY AIRSPACE.)

SAFETY ALERT— A safety alert issued by ATC to aircraft under their control if ATC is aware the aircraft is at an altitude which, in the controller’s judgment, places the aircraft in unsafe proximity to terrain, obstructions, or other aircraft. The controller may discontinue the issuance of further alerts if the pilot advises he/she is taking action to correct the situation or has the other aircraft in sight.

a. Terrain/Obstruction Alert— A safety alert issued by ATC to aircraft under their control if ATC is aware the aircraft is at an altitude which, in the controller’s judgment, places the aircraft in unsafe proximity to terrain/obstructions; e.g., “Low Altitude Alert, check your altitude immediately.”

b. Aircraft Conflict Alert— A safety alert issued by ATC to aircraft under their control if ATC is aware of an aircraft that is not under their control at an altitude which, in the controller’s judgment, places both aircraft in unsafe proximity to each other. With the alert, ATC will offer the pilot an alternate course of action when feasible; e.g., “Traffic Alert, advise you turn right heading zero niner zero or climb to eight thousand immediately.”

Note: The issuance of a safety alert is contingent upon the capability of the controller to have an awareness of an unsafe condition. The course of action provided will be predicated on other traffic under ATC control. Once the alert is issued, it is solely the pilot’s prerogative to determine what course of action, if any, he/she will take.

SAFETY LOGIC SYSTEM— A software enhancement to ASDE–3, ASDE–X, and ASDE–3X, that predicts the path of aircraft landing and/or departing, and/or vehicular movements on runways. Visual and aural alarms are activated when the safety logic projects a potential collision. The Airport Movement Area Safety System (AMASS) is a safety logic system enhancement to the ASDE–3. The Safety Logic System for ASDE–X and ASDE–3X is an integral part of the software program.

SAFETY LOGIC SYSTEM ALERTS—

a. ALERT— An actual situation involving two real safety logic tracks (aircraft/aircraft, aircraft/vehicle, or aircraft/other tangible object) that safety logic has predicted will result in an imminent collision, based upon the current set of Safety Logic parameters.

b. FALSE ALERT—
 1. Alerts generated by one or more false surface–radar targets that the system has interpreted as real tracks and placed into safety logic.
 2. Alerts in which the safety logic software did not perform correctly, based upon the design specifications and the current set of Safety Logic parameters.
 3. The alert is generated by surface radar targets caused by moderate or greater precipitation.

c. NUISIBLE ALERT— An alert in which one or more of the following is true:
 1. The alert is generated by a known situation that is not considered an unsafe operation, such as LAHSO or other approved operations.
 2. The alert is generated by inaccurate secondary radar data received by the Safety Logic System.
 3. One or more of the aircraft involved in the alert is not intending to use a runway (for example, helicopter, pipeline patrol, non–Mode C overflight, etc.).

d. VALID NON–ALERT— A situation in which the safety logic software correctly determines that an alert is not required, based upon the design specifications and the current set of Safety Logic parameters.

e. INVALID NON–ALERT— A situation in which the safety logic software did not issue an alert when an alert was required, based upon the design specifications.

SAIL BACK— A maneuver during high wind conditions (usually with power off) where float plane movement is controlled by water rudders/opening and closing cabin doors.

SAME DIRECTION AIRCRAFT— Aircraft are operating in the same direction when:

a. They are following the same track in the same direction; or

b. Their tracks are parallel and the aircraft are flying in the same direction; or

c. Their tracks intersect at an angle of less than 45 degrees.
SAR—
(See SEARCH AND RESCUE.)

SAY AGAIN— Used to request a repeat of the last transmission. Usually specifies transmission or portion thereof not understood or received; e.g., “Say again all after ABRAM VOR.”

SAY ALTITUDE— Used by ATC to ascertain an aircraft’s specific altitude/flight level. When the aircraft is climbing or descending, the pilot should state the indicated altitude rounded to the nearest 100 feet.

SAY HEADING— Used by ATC to request an aircraft heading. The pilot should state the actual heading of the aircraft.

SCHEDULED TIME OF ARRIVAL (STA)— A STA is the desired time that an aircraft should cross a certain point (landing or metering fix). It takes other traffic and airspace configuration into account. A STA time shows the results of the TMA scheduler that has calculated an arrival time according to parameters such as optimized spacing, aircraft performance, and weather.

SDF—
(See SIMPLIFIED DIRECTIONAL FACILITY.)

SEA LANE— A designated portion of water outlined by visual surface markers for and intended to be used by aircraft designed to operate on water.

SEARCH AND RESCUE— A service which seeks missing aircraft and assists those found to be in need of assistance. It is a cooperative effort using the facilities and services of available Federal, state and local agencies. The U.S. Coast Guard is responsible for coordination of search and rescue for the Maritime Region, and the U.S. Air Force is responsible for search and rescue for the Inland Region. Information pertinent to search and rescue should be passed through any air traffic facility or be transmitted directly to the Rescue Coordination Center by telephone.

(See FLIGHT SERVICE STATION.)
(See RESCUE COORDINATION CENTER.)
(Refer to AIM.)

SEARCH AND RESCUE FACILITY— A facility responsible for maintaining and operating a search and rescue (SAR) service to render aid to persons and property in distress. It is any SAR unit, station, NET, or other operational activity which can be usefully employed during an SAR Mission; e.g., a Civil Air Patrol Wing, or a Coast Guard Station.

(See SEARCH AND RESCUE.)

SECURITY NOTICE—
(See SECURITY NOTICE.)

SECONDARY RADAR TARGET— A target derived from a transponder return presented on a radar display.

SECTIONAL AERONAUTICAL CHARTS—
(See AERONAUTICAL CHART.)

SECTOR LIST DROP INTERVAL— A parameter number of minutes after the meter fix time when arrival aircraft will be deleted from the arrival sector list.

SECURITY NOTICE (SECNOT)— A SECNOT is a request originated by the Air Traffic Security Coordinator (ATSC) for an extensive communications search for aircraft involved, or suspected of being involved, in a security violation, or are considered a security risk. A SECNOT will include the aircraft identification, search area, and expiration time. The search area, as defined by the ATSC, could be a single airport, multiple airports, a radius of an airport or fix, or a route of flight. Once the expiration time has been reached, the SECNOT is considered to be cancelled.

SECURITY SERVICES AIRSPACE— Areas established through the regulatory process or by NOTAM, issued by the Administrator under title 14, CFR, sections 99.7, 91.141, and 91.139, which specify that ATC security services are required; i.e., ADIZ or temporary flight rules areas.

SEE AND AVOID— When weather conditions permit, pilots operating IFR or VFR are required to observe and maneuver to avoid other aircraft. Right-of-way rules are contained in 14 CFR Part 91.

SEGMENTED CIRCLE— A system of visual indicators designed to provide traffic pattern information at airports without operating control towers.

(Refer to AIM.)

SEGMENTS OF AN INSTRUMENT APPROACH PROCEDURE— An instrument approach procedure may have as many as four separate segments depending on how the approach procedure is structured.

a. Initial Approach— The segment between the initial approach fix and the intermediate fix or the
point where the aircraft is established on the intermediate course or final approach course.

(See ICAO term INITIAL APPROACH SEGMENT.)

b. Intermediate Approach—The segment between the intermediate fix or point and the final approach fix.

(See ICAO term INTERMEDIATE APPROACH SEGMENT.)

c. Final Approach—The segment between the final approach fix or point and the runway, airport, or missed approach point.

(See ICAO term FINAL APPROACH SEGMENT.)

d. Missed Approach—The segment between the missed approach point or the point of arrival at decision height and the missed approach fix at the prescribed altitude.

(Refer to 14 CFR Part 97.)

(See ICAO term MISSED APPROACH PROCEDURE.)

SEPARATION—In air traffic control, the spacing of aircraft to achieve their safe and orderly movement in flight and while landing and taking off.

(See SEPARATION MINIMA.)

(See ICAO term SEPARATION.)

SEPARATION [ICAO]—Spacing between aircraft, levels or tracks.

SEPARATION MINIMA—The minimum longitudinal, lateral, or vertical distances by which aircraft are spaced through the application of air traffic control procedures.

(See SEPARATION.)

SERVICE—A generic term that designates functions or assistance available from or rendered by air traffic control. For example, Class C service would denote the ATC services provided within a Class C airspace area.

SEVERE WEATHER AVOIDANCE PLAN—An approved plan to minimize the affect of severe weather on traffic flows in impacted terminal and/or ARTCC areas. SWAP is normally implemented to provide the least disruption to the ATC system when flight through portions of airspace is difficult or impossible due to severe weather.

SEVERE WEATHER FORECAST ALERTS—Preliminary messages issued in order to alert users that a Severe Weather Watch Bulletin (WW) is being issued. These messages define areas of possible severe thunderstorms or tornado activity. The messages are unscheduled and issued as required by the Storm Prediction Center (SPC) at Norman, Oklahoma.

(See AIRMET.)

(See CONVECTIVE SIGMET.)

(See CWA.)

(See SIGMET.)

SFA—

(See SINGLE FREQUENCY APPROACH.)

SFO—

(See SIMULATED FLAMEOUT.)

SHF—

(See SUPER HIGH FREQUENCY.)

SHORT RANGE CLEARANCE—A clearance issued to a departing IFR flight which authorizes IFR flight to a specific fix short of the destination while air traffic control facilities are coordinating and obtaining the complete clearance.

SHORT TAKEOFF AND LANDING AIRCRAFT—An aircraft which, at some weight within its approved operating weight, is capable of operating from a runway in compliance with the applicable STOL characteristics, airworthiness, operations, noise, and pollution standards.

(See VERTICAL TAKEOFF AND LANDING AIRCRAFT.)

SIAP—

(See STANDARD INSTRUMENT APPROACH PROCEDURE.)

SID—

(See STANDARD INSTRUMENT DEPARTURE.)

SIDESTEP MANEUVER—A visual maneuver accomplished by a pilot at the completion of an instrument approach to permit a straight-in landing on a parallel runway not more than 1,200 feet to either side of the runway to which the instrument approach was conducted.

(Refer to AIM.)

SIGMET—A weather advisory issued concerning weather significant to the safety of all aircraft.
SIGMET advisories cover severe and extreme turbulence, severe icing, and widespread dust or sandstorms that reduce visibility to less than 3 miles.

(See AIRMET.)
(See AWW.)
(See CONVECTIVE SIGMET.)
(See CWA.)
(See ICAO term SIGMET INFORMATION.)
(Refer to AIM.)

SIGMET INFORMATION [ICAO]—Information issued by a meteorological watch office concerning the occurrence or expected occurrence of specified en-route weather phenomena which may affect the safety of aircraft operations.

SIGNIFICANT METEOROLOGICAL INFORMATION—

(See SIGMET.)

SIGNIFICANT POINT—A point, whether a named intersection, a NAVAID, a fix derived from a NAVAID(s), or geographical coordinate expressed in degrees of latitude and longitude, which is established for the purpose of providing separation, as a reporting point, or to delineate a route of flight.

SIMPLIFIED DIRECTIONAL FACILITY—A NAVAID used for nonprecision instrument approaches. The final approach course is similar to that of an ILS localizer except that the SDF course may be offset from the runway, generally not more than 3 degrees, and the course may be wider than the localizer, resulting in a lower degree of accuracy.

(Refer to AIM.)

SIMULATED FLAMEOUT—A practice approach by a jet aircraft (normally military) at idle thrust to a runway. The approach may start at a runway (high key) and may continue on a relatively high and wide downwind leg with a continuous turn to final. It terminates in landing or low approach. The purpose of this approach is to simulate a flameout.

(See FLAMEOUT.)

SIMULTANEOUS CLOSE PARALLEL APPROACHES—A simultaneous, independent approach operation permitting ILS/RNAV/GLS approaches to airports having parallel runways separated by at least 3,000 feet and less than 4300 feet between centerlines. Aircraft are permitted to pass each other during these simultaneous operations. Integral parts of a total system are radar, NTZ monitoring with enhanced FMA color displays that include aural and visual alerts and predictive aircraft position software, communications override, ATC procedures, an Attention All Users Page (AAUP), PRM in the approach name, and appropriate ground based and airborne equipment. High update rate surveillance sensor required for certain runway or approach course separations.

SIMULTANEOUS (CONVERGING) DEPENDENT APPROACHES—An approach operation permitting ILS/RNAV/GLS approaches to runways or missed approach courses that intersect where required minimum spacing between the aircraft on each final approach course is required.

SIMULTANEOUS (CONVERGING) INDEPENDENT APPROACHES—An approach operation permitting ILS/RNAV/GLS approaches to non-parallel runways where approach procedure design maintains the required aircraft spacing throughout the approach and missed approach and hence the operations may be conducted independently.

SIMULTANEOUS ILS APPROACHES—An approach system permitting simultaneous ILS/MLS approaches to airports having parallel runways separated by at least 4,300 feet between centerlines. Integral parts of a total system are ILS/MLS, radar, communications, ATC procedures, and appropriate airborne equipment.

(See PARALLEL RUNWAYS.)
(Refer to AIM.)

SIMULTANEOUS OFFSET INSTRUMENT APPROACH (SOIA)—An instrument landing system comprised of an ILS PRM, RNAV PRM or GLS PRM approach to one runway and an offset LDA PRM with glideslope or an RNAV PRM or GLS PRM approach utilizing vertical guidance to another where parallel runway spaced less than 3,000 feet and at least 750 feet apart. The approach courses converge by 2.5 to 3 degrees. Simultaneous close parallel PRM approach procedures apply up to the point where the approach course separation becomes 3,000 feet, at the offset MAP. From the offset MAP to the runway threshold, visual separation by the aircraft conducting the offset approach is utilized.

(Refer to AIM)

SIMULTANEOUS (PARALLEL) DEPENDENT APPROACHES—An approach operation permitting ILS/RNAV/GLS approaches to adjacent parallel runways where prescribed diagonal spacing must be
maintained. Aircraft are not permitted to pass each other during simultaneous dependent operations. Integral parts of a total system ATC procedures, and appropriate airborne and ground based equipment.

SINGLE DIRECTION ROUTES—Preferred IFR Routes which are sometimes depicted on high altitude en route charts and which are normally flown in one direction only.

(See PREFERRED IFR ROUTES.)
(Refer to AIRPORT/FACILITY DIRECTORY.)

SINGLE FREQUENCY APPROACH—A service provided under a letter of agreement to military single-piloted turbojet aircraft which permits use of a single UHF frequency during approach for landing. Pilots will not normally be required to change frequency from the beginning of the approach to touchdown except that pilots conducting an en route descent are required to change frequency when control is transferred from the air route traffic control center to the terminal facility. The abbreviation “SFA” in the DOD FLIP IFR Supplement under “Communications” indicates this service is available at an aerodrome.

SINGLE-PILOTED AIRCRAFT—A military turbojet aircraft possessing one set of flight controls, tandem cockpits, or two sets of flight controls but operated by one pilot is considered single-piloted by ATC when determining the appropriate air traffic service to be applied.

(See SINGLE FREQUENCY APPROACH.)

SKYSPOTTER—A pilot who has received specialized training in observing and reporting inflight weather phenomena.

SLASH—A radar beacon reply displayed as an elongated target.

SLDI—
(See SECTOR LIST DROP INTERVAL.)

SLOT TIME—
(See METER FIX TIME/SLOT TIME.)

SLOW TAXI—To taxi a float plane at low power or low RPM.

SN—
(See SYSTEM STRATEGIC NAVIGATION.)

SPEAK SLOWER—Used in verbal communications as a request to reduce speech rate.

SPECIAL ACTIVITY AIRSPACE (SAA)—Any airspace with defined dimensions within the National Airspace System wherein limitations may be imposed upon aircraft operations. This airspace may be restricted areas, prohibited areas, military operations areas, air ATC assigned airspace, and any other designated airspace areas. The dimensions of this airspace are programmed into URET and can be designated as either active or inactive by screen entry. Aircraft trajectories are constantly tested against the dimensions of active areas and alerts issued to the applicable sectors when violations are predicted.

(See USER REQUEST EVALUATION TOOL.)

SPECIAL EMERGENCY—A condition of air piracy or other hostile act by a person(s) aboard an aircraft which threatens the safety of the aircraft or its passengers.

SPECIAL INSTRUMENT APPROACH PROCEDURE—
(See INSTRUMENT APPROACH PROCEDURE.)

SPECIAL USE AIRSPACE—Airspace of defined dimensions identified by an area on the surface of the earth wherein activities must be confined because of their nature and/or wherein limitations may be imposed upon aircraft operations that are not a part of those activities. Types of special use airspace are:

a. Alert Area—Airspace which may contain a high volume of pilot training activities or an unusual type of aerial activity, neither of which is hazardous to aircraft. Alert Areas are depicted on aeronautical charts for the information of nonparticipating pilots. All activities within an Alert Area are conducted in accordance with Federal Aviation Regulations, and pilots of participating aircraft as well as pilots transiting the area are equally responsible for collision avoidance.

b. Controlled Firing Area—Airspace wherein activities are conducted under conditions so controlled as to eliminate hazards to nonparticipating aircraft and to ensure the safety of persons and property on the ground.

c. Military Operations Area (MOA)—A MOA is airspace established outside of Class A airspace area to separate or segregate certain nonhazardous military activities from IFR traffic and to identify for VFR traffic where these activities are conducted.

(Refer to AIM.)

d. Prohibited Area—Airspace designated under 14 CFR Part 73 within which no person may operate
an aircraft without the permission of the using agency.

(Refer to AIM.)
(Refer to En Route Charts.)

e. Restricted Area– Airspace designated under 14 CFR Part 73, within which the flight of aircraft, while not wholly prohibited, is subject to restriction. Most restricted areas are designated joint use and IFR/VFR operations in the area may be authorized by the controlling ATC facility when it is not being utilized by the using agency. Restricted areas are depicted on en route charts. Where joint use is authorized, the name of the ATC controlling facility is also shown.

(Refer to 14 CFR Part 73.)
(Refer to AIM.)

f. Warning Area– A warning area is airspace of defined dimensions extending from 3 nautical miles outward from the coast of the United States, that contains activity that may be hazardous to nonparticipating aircraft. The purpose of such warning area is to warn nonparticipating pilots of the potential danger. A warning area may be located over domestic or international waters or both.

SPECIAL VFR CONDITIONS– Meteorological conditions that are less than those required for basic VFR flight in Class B, C, D, or E surface areas and in which some aircraft are permitted flight under visual flight rules.

(See SPECIAL VFR OPERATIONS.)
(Refer to 14 CFR Part 91.)

SPECIAL VFR FLIGHT [ICAO]– A VFR flight cleared by air traffic control to operate within Class B, C, D, and E surface areas in meteorological conditions below VMC.

SPECIAL VFR OPERATIONS– Aircraft operating in accordance with clearances within Class B, C, D, and E surface areas in weather conditions less than the basic VFR weather minima. Such operations must be requested by the pilot and approved by ATC.

(See SPECIAL VFR CONDITIONS.)
(See ICAO term SPECIAL VFR FLIGHT.)

SPEED–
(See AIRSPEED.)
(See GROUND SPEED.)

SPEED ADJUSTMENT– An ATC procedure used to request pilots to adjust aircraft speed to a specific value for the purpose of providing desired spacing. Pilots are expected to maintain a speed of plus or minus 10 knots or 0.02 Mach number of the specified speed. Examples of speed adjustments are:

a. “Increase/reduce speed to Mach point (number).”

b. “Increase/reduce speed to (speed in knots)” or “Increase/reduce speed (number of knots) knots.”

SPEED BRAKES– Moveable aerodynamic devices on aircraft that reduce airspeed during descent and landing.

SPEED SEGMENTS– Portions of the arrival route between the transition point and the vertex along the optimum flight path for which speeds and altitudes are specified. There is one set of arrival speed segments adapted from each transition point to each vertex. Each set may contain up to six segments.

SQUAWK (Mode, Code, Function)– Activate specific modes/codes/functions on the aircraft transponder; e.g., “Squawk three/alpha, two one zero five, low.”

(See TRANSPONDER.)

STA–
(See SCHEDULED TIME OF ARRIVAL.)

STAGING/QUEUING– The placement, integration, and segregation of departure aircraft in designated movement areas of an airport by departure fix, EDCT, and/or restriction.

STAND BY– Means the controller or pilot must pause for a few seconds, usually to attend to other duties of a higher priority. Also means to wait as in “stand by for clearance.” The caller should reestablish contact if a delay is lengthy. “Stand by” is not an approval or denial.

STANDARD INSTRUMENT APPROACH PROCEDURE (SIAP)–
(See INSTRUMENT APPROACH PROCEDURE.)

STANDARD INSTRUMENT DEPARTURE (SID)– A preplanned instrument flight rule (IFR) air traffic control (ATC) departure procedure printed for pilot/controller use in graphic form to provide obstacle clearance and a transition from the terminal area to the appropriate en route structure. SIDs are primarily designed for system enhancement to expedite traffic flow and to reduce pilot/controller
workload. ATC clearance must always be received prior to flying a SID.

(See IFR TAKEOFF MINIMUMS AND DEPARTURE PROCEDURES.)
(See OBSTACLE DEPARTURE PROCEDURE.)
(Refer to AIM.)

STANDARD RATE TURN— A turn of three degrees per second.

STANDARD TERMINAL ARRIVAL— A preplanned instrument flight rule (IFR) air traffic control arrival procedure published for pilot use in graphic and/or textual form. STARs provide transition from the en route structure to an outer fix or an instrument approach fix/arrival waypoint in the terminal area.

STANDARD TERMINAL ARRIVAL CHARTS—
(See AERONAUTICAL CHART.)

STANDARD TERMINAL AUTOMATION REPLACEMENT SYSTEM (STARS)—
(See DTAS.)

STAR—
(See STANDARD TERMINAL ARRIVAL.)

STATE AIRCRAFT— Aircraft used in military, customs and police service, in the exclusive service of any government, or of any political subdivision, thereof including the government of any state, territory, or possession of the United States or the District of Columbia, but not including any government-owned aircraft engaged in carrying persons or property for commercial purposes.

STATIC RESTRICTIONS— Those restrictions that are usually not subject to change, fixed, in place, and/or published.

STATIONARY RESERVATIONS— Altitude reservations which encompass activities in a fixed area. Stationary reservations may include activities, such as special tests of weapons systems or equipment, certain U.S. Navy carrier, fleet, and anti-submarine operations, rocket, missile and drone operations, and certain aerial refueling or similar operations.

STEP TAXI— To taxi a float plane at full power or high RPM.

STEP TURN— A maneuver used to put a float plane in a planing configuration prior to entering an active sea lane for takeoff. The STEP TURN maneuver should only be used upon pilot request.

STEPDOWN FIX— A fix permitting additional descent within a segment of an instrument approach procedure by identifying a point at which a controlling obstacle has been safely overflown.

STEREO ROUTE— A routinely used route of flight established by users and ARTCCs identified by a coded name; e.g., ALPHA 2. These routes minimize flight plan handling and communications.

STOL AIRCRAFT—
(See SHORT TAKEOFF AND LANDING AIRCRAFT.)

STOP ALTITUDE SQUAWK— Used by ATC to inform an aircraft to turn-off the automatic altitude reporting feature of its transponder. It is issued when the verbally reported altitude varies 300 feet or more from the automatic altitude report.

(See ALTITUDE READOUT.)
(See TRANSPONDER.)

STOP AND GO— A procedure wherein an aircraft will land, make a complete stop on the runway, and then commence a takeoff from that point.

(See LOW APPROACH.)
(See OPTION APPROACH.)

STOP BURST—
(See STOP STREAM.)

STOP BUZZER—
(See STOP STREAM.)

STOP SQUAWK (Mode or Code)— Used by ATC to tell the pilot to turn specified functions of the aircraft transponder off.

(See STOP ALTITUDE SQUAWK.)
(See TRANSPONDER.)

STOP STREAM— Used by ATC to request a pilot to suspend electronic attack activity.

(See JAMMING.)

STOPOVER FLIGHT PLAN— A flight plan format which permits in a single submission the filing of a sequence of flight plans through interim full-stop destinations to a final destination.

STOPWAY— An area beyond the takeoff runway no less wide than the runway and centered upon the extended centerline of the runway, able to support the airplane during an aborted takeoff, without causing structural damage to the airplane, and designated by
the airport authorities for use in decelerating the airplane during an aborted takeoff.

STRAIGHT-IN APPROACH IFR—An instrument approach wherein final approach is begun without first having executed a procedure turn, not necessarily completed with a straight-in landing or made to straight-in landing minimums.

(See LANDING MINIMUMS.)
(See STRAIGHT-IN APPROACH VFR.)
(See STRAIGHT-IN LANDING.)

STRAIGHT-IN APPROACH VFR—Entry into the traffic pattern by interception of the extended runway centerline (final approach course) without executing any other portion of the traffic pattern.

(See TRAFFIC PATTERN.)

STRAIGHT-IN LANDING—A landing made on a runway aligned within 30° of the final approach course following completion of an instrument approach.

(See STRAIGHT-IN APPROACH IFR.)

STRAIGHT-IN LANDING MINIMUMS—
(See LANDING MINIMUMS.)

STRAIGHT-IN MINIMUMS—
(See STRAIGHT-IN LANDING MINIMUMS.)

STRATEGIC PLANNING—Planning whereby solutions are sought to resolve potential conflicts.

SUBSTITUTE ROUTE—A route assigned to pilots when any part of an airway or route is unusable because of NAVAID status. These routes consist of:

a. Substitute routes which are shown on U.S. Government charts.

b. Routes defined by ATC as specific NAVAID radials or courses.

c. Routes defined by ATC as direct to or between NAVAIDs.

SUNSET AND SUNRISE—The mean solar times of sunset and sunrise as published in the Nautical Almanac, converted to local standard time for the locality concerned. Within Alaska, the end of evening civil twilight and the beginning of morning civil twilight, as defined for each locality.

SUPER HIGH FREQUENCY—The frequency band between 3 and 30 gigahertz (GHz). The elevation and azimuth stations of the microwave landing system operate from 5031 MHz to 5091 MHz in this spectrum.

SUPPLEMENTAL WEATHER SERVICE LOCATION—Airport facilities staffed with contract personnel who take weather observations and provide current local weather to pilots via telephone or radio. (All other services are provided by the parent FSS.)

SUPPS—Refers to ICAO Document 7030 Regional Supplementary Procedures. SUPPS contain procedures for each ICAO Region which are unique to that Region and are not covered in the worldwide provisions identified in the ICAO Air Navigation Plan. Procedures contained in Chapter 8 are based in part on those published in SUPPS.

SURFACE AREA—The airspace contained by the lateral boundary of the Class B, C, D, or E airspace designated for an airport that begins at the surface and extends upward.

SURPIC—A description of surface vessels in the area of a Search and Rescue incident including their predicted positions and their characteristics.

(Refer to FAAO JO 7110.65, Para 10–6–4, INFLIGHT CONTINGENCIES.)

SURVEILLANCE APPROACH—An instrument approach wherein the air traffic controller issues instructions, for pilot compliance, based on aircraft position in relation to the final approach course (azimuth), and the distance (range) from the end of the runway as displayed on the controller’s radar scope. The controller will provide recommended altitudes on final approach if requested by the pilot.

(Refer to AIM.)

SWAP—
(See SEVERE WEATHER AVOIDANCE PLAN.)

SWSL—
(See SUPPLEMENTAL WEATHER SERVICE LOCATION.)

SYSTEM STRATEGIC NAVIGATION—Military activity accomplished by navigating along a preplanned route using internal aircraft systems to maintain a desired track. This activity normally requires a lateral route width of 10 NM and altitude range of 1,000 feet to 6,000 feet AGL with some route segments that permit terrain following.
TACAN—
(See TACTICAL AIR NAVIGATION.)

TACAN-ONLY AIRCRAFT—An aircraft, normally military, possessing TACAN with DME but no VOR navigational system capability. Clearances must specify TACAN or VORTAC fixes and approaches.

TACTICAL AIR NAVIGATION—An ultra-high frequency electronic rho-theta air navigation aid which provides suitably equipped aircraft a continuous indication of bearing and distance to the TACAN station.
(See VORTAC.)
(Refer to AIM.)

TAILWIND—Any wind more than 90 degrees to the longitudinal axis of the runway. The magnetic direction of the runway shall be used as the basis for determining the longitudinal axis.

TAKEOFF AREA—
(See LANDING AREA.)

TAKEOFF DISTANCE AVAILABLE (TODA)—The takeoff run available plus the length of any remaining runway or clearway beyond the far end of the takeoff run available.
(See ICAO term TAKEOFF DISTANCE AVAILABLE.)

TAKEOFF DISTANCE AVAILABLE [ICAO]—The length of the takeoff run available plus the length of the clearway, if provided.

TAKEOFF HOLD LIGHTS (THL)—The THL system is composed of in-pavement lighting in a double, longitudinal row of lights aligned either side of the runway centerline. The lights are focused toward the arrival end of the runway at the “line up and wait” point, and they extend for 1,500 feet in front of the holding aircraft. Illuminated red lights indicate to an aircraft in position for takeoff or rolling that it is unsafe to takeoff because the runway is occupied or about to be occupied by an aircraft or vehicle.

TAKEOFF ROLL—The process whereby an aircraft is aligned with the runway centerline and the aircraft is moving with the intent to take off. For helicopters, this pertains to the act of becoming airborne after departing a takeoff area.

TAKEOFF RUN AVAILABLE (TORA) — The runway length declared available and suitable for the ground run of an airplane taking off.
(See ICAO term TAKEOFF RUN AVAILABLE.)

TAKEOFF RUN AVAILABLE [ICAO]—The length of runway declared available and suitable for the ground run of an aeroplane take-off.

TARGET—The indication shown on an analog display resulting from a primary radar return or a radar beacon reply.
(See ASSOCIATED.)
(See DIGITAL TARGET.)
(See DIGITIZED RADAR TARGET.)
(See FUSED TARGET)
(See PRIMARY RADAR TARGET.)
(See RADAR.)
(See SECONDARY RADAR TARGET.)
(See TARGET SYMBOL.)
(See ICAO term TARGET.)
(See UNASSOCIATED.)

TARGET [ICAO]—In radar:

a. Generally, any discrete object which reflects or retransmits energy back to the radar equipment.

b. Specifically, an object of radar search or surveillance.

TARGET RESOLUTION—A process to ensure that correlated radar targets do not touch. Target resolution must be applied as follows:

a. Between the edges of two primary targets or the edges of the ASR-9/11 primary target symbol.

b. Between the end of the beacon control slash and the edge of a primary target.

c. Between the ends of two beacon control slashes.

Note 1: Mandatory traffic advisories and safety alerts must be issued when this procedure is used.

Note 2: This procedure must not be used when utilizing mosaic radar systems or multi-sensor mode.

TARGET SYMBOL—A computer-generated indication shown on a radar display resulting from a primary radar return or a radar beacon reply.
TARMAC DELAY—The holding of an aircraft on the ground either before departure or after landing with no opportunity for its passengers to deplane.

TARMAC DELAY AIRCRAFT—An aircraft whose pilot—in—command has requested to taxi to the ramp, gate, or alternate deplaning area to comply with the Three—hour Tarmac Rule.

TARMAC DELAY REQUEST—A request by the pilot—in—command to taxi to the ramp, gate, or alternate deplaning location to comply with the Three—hour Tarmac Rule.

TAS—
(See TERMINAL AUTOMATION SYSTEMS.)

TAWS—
(See TERRAIN AWARENESS WARNING SYSTEM.)

TAXI—The movement of an airplane under its own power on the surface of an airport (14 CFR Section 135.100 [Note]). Also, it describes the surface movement of helicopters equipped with wheels.
(See AIR TAXI.)
(See HOVER TAXI.)
(Refer to 14 CFR Section 135.100.)
(Refer to AIM.)

TAXI PATTERNS—Patterns established to illustrate the desired flow of ground traffic for the different runways or airport areas available for use.

TCAS—
(See TRAFFIC ALERT AND COLLISION AVOIDANCE SYSTEM.)

TCH—
(See THRESHOLD CROSSING HEIGHT.)

TCLT—
(See TENTATIVE CALCULATED LANDING TIME.)

TDLS—
(See TERMINAL DATA LINK SYSTEM.)

TDZE—
(See TOUCHDOWN ZONE ELEVATION.)

TELEPHONE INFORMATION BRIEFING SERVICE—A continuous telephone recording of meteorological and/or aeronautical information.
(Refer to AIM.)

TEMPORARY FLIGHT RESTRICTION (TFR)—A TFR is a regulatory action issued by the FAA via the U.S. NOTAM System, under the authority of United States Code, Title 49. TFRs are issued within the sovereign airspace of the United States and its territories to restrict certain aircraft from operating within a defined area on a temporary basis to protect persons or property in the air or on the ground. While not all inclusive, TFRs may be issued for disaster or hazard situations such as: toxic gas leaks or spills, fumes from flammable agents, aircraft accident/incident sites, aviation or ground resources engaged in wildlife suppression, or aircraft relief activities following a disaster. TFRs may also be issued in support of VIP movements; for reasons of national security; or when determined necessary for the management of air traffic in the vicinity of aerial demonstrations or major sporting events. NAS users or other interested parties should contact a FSS for TFR information. Additionally, TFR information can be found in automated briefings, NOTAM publications, and on the internet at http://www.faa.gov. The FAA also distributes TFR information to aviation user groups for further dissemination.

TENTATIVE CALCULATED LANDING TIME—A projected time calculated for adapted vertex for each arrival aircraft based upon runway configuration, airport acceptance rate, airport arrival delay period, and other metered arrival aircraft. This time is either the VTA of the aircraft or the TCLT/ACLT of the previous aircraft plus the AAI, whichever is later. This time will be updated in response to an aircraft’s progress and its current relationship to other arrivals.

TERMINAL AREA—A general term used to describe airspace in which approach control service or airport traffic control service is provided.

TERMINAL AREA FACILITY—A facility providing air traffic control service for arriving and departing IFR, VFR, Special VFR, and on occasion en route aircraft.
(See APPROACH CONTROL FACILITY.)
(See TOWER.)

TERMINAL AUTOMATION SYSTEMS (TAS)—TAS is used to identify the numerous automated tracking systems including ARTS IIIE, ARTS IIIA, ARTS IIIE, STARS, and MEARTS.

TERMINAL DATA LINK SYSTEM (TDLS)—A system that provides Digital Automatic Terminal Information Service (D—ATIS) both on a specified
radio frequency and also, for subscribers, in a text message via data link to the cockpit or to a gate printer. TDLS also provides Pre-departure Clearances (PDC), at selected airports, to subscribers, through a service provider, in text to the cockpit or to a gate printer. In addition, TDLS will emulate the Flight Data Input/Output (FDIO) information within the control tower.

TERMINAL RADAR SERVICE AREA—Airspace surrounding designated airports wherein ATC provides radar vectoring, sequencing, and separation on a full-time basis for all IFR and participating VFR aircraft. The AIM contains an explanation of TRSA. TRSAs are depicted on VFR aeronautical charts. Pilot participation is urged but is not mandatory.

TERMINAL VFR RADAR SERVICE—A national program instituted to extend the terminal radar services provided instrument flight rules (IFR) aircraft to visual flight rules (VFR) aircraft. The program is divided into four types service referred to as basic radar service, terminal radar service area (TRSA) service, Class B service and Class C service. The type of service provided at a particular location is contained in the Airport/Facility Directory.

a. Basic Radar Service—These services are provided for VFR aircraft by all commissioned terminal radar facilities. Basic radar service includes safety alerts, traffic advisories, limited radar vectoring when requested by the pilot, and sequencing at locations where procedures have been established for this purpose and/or when covered by a letter of agreement. The purpose of this service is to adjust the flow of arriving IFR and VFR aircraft into the traffic pattern in a safe and orderly manner and to provide traffic advisories to departing VFR aircraft.

b. TRSA Service—This service provides, in addition to basic radar service, sequencing of all IFR and participating VFR aircraft to the primary airport and separation between all participating VFR aircraft. The purpose of this service is to provide separation between all participating VFR aircraft and all IFR aircraft operating within the area defined as a TRSA.

c. Class C Service—This service provides, in addition to basic radar service, approved separation between IFR and VFR aircraft, and sequencing of VFR aircraft, and sequencing of VFR arrivals to the primary airport.

d. Class B Service—This service provides, in addition to basic radar service, approved separation of aircraft based on IFR, VFR, and/or weight, and sequencing of VFR arrivals to the primary airport(s).

(See CONTROLLED AIRSPACE.)
(See TERMINAL RADAR SERVICE AREA.)
(Refer to AIM.)
(Refer to AIRPORT/FACILITY DIRECTORY.)

TERMINAL—VERY HIGH FREQUENCY OMNI-DIRECTIONAL RANGE STATION—A very high frequency terminal omnirange station located on or near an airport and used as an approach aid.

(See NAVIGATIONAL AID.)
(See VOR.)

TERRAIN AWARENESS WARNING SYSTEM (TAWS)—An on-board, terrain proximity alerting system providing the aircrew ‘Low Altitude warnings’ to allow immediate pilot action.

TERRAIN FOLLOWING—The flight of a military aircraft maintaining a constant AGL altitude above the terrain or the highest obstruction. The altitude of the aircraft will constantly change with the varying terrain and/or obstruction.

TETRAHEDRON—A device normally located on uncontrolled airports and used as a landing direction indicator. The small end of a tetrahedron points in the direction of landing. At controlled airports, the tetrahedron, if installed, should be disregarded because tower instructions supersede the indicator.

(See SEGMENTED CIRCLE.)
(Refer to AIM.)

TF—
(See TERRAIN FOLLOWING.)

THAT IS CORRECT—The understanding you have is right.

THREE-HOUR TARMAC RULE—Rule that relates to Department of Transportation (DOT) requirements placed on airlines when tarmac delays are anticipated to reach 3 hours.

360 OVERHEAD—
(See OVERHEAD MANEUVER.)

THRESHOLD—The beginning of that portion of the runway usable for landing.

(See AIRPORT LIGHTING.)
(See DISPLACED THRESHOLD.)

THRESHOLD CROSSING HEIGHT—The theoretical height above the runway threshold at
which the aircraft’s glideslope antenna would be if the aircraft maintains the trajectory established by the mean ILS glideslope or the altitude at which the calculated glidespath of an RNAV or GPS approaches.

(See GLIDESLOPE.)
(See THRESHOLD.)

THRESHOLD LIGHTS—
(See AIRPORT LIGHTING.)

TIBS—
(See TELEPHONE INFORMATION BRIEFING SERVICE.)

TIE-IN FACILITY— The FSS primarily responsible for providing FSS services, including telecommunications services for landing facilities or navigational aids located within the boundaries of a flight plan area (FPA). Three-letter identifiers are assigned to each FSS/FPA and are annotated as tie-in facilities in A/FDs, the Alaska Supplement, the Pacific Supplement, and FAA Order JO 7350.8, Location Identifiers. Large consolidated FSS facilities may have many tie-in facilities or FSS sectors within one facility.

(See FLIGHT PLAN AREA.)
(See FLIGHT SERVICE STATION.)

TIME GROUP— Four digits representing the hour and minutes from the Coordinated Universal Time (UTC) clock. FAA uses UTC for all operations. The term “ZULU” may be used to denote UTC. The word “local” or the time zone equivalent shall be used to denote local when local time is given during radio and telephone communications. When written, a time zone designator is used to indicate local time; e.g. “0205M” (Mountain). The local time may be based on the 24-hour clock system. The day begins at 0000 and ends at 2359.

TIS—B—
(See TRAFFIC INFORMATION SERVICE—BROADCAST.)

TMA—
(See TRAFFIC MANAGEMENT ADVISOR.)

TMPA—
(See TRAFFIC MANAGEMENT PROGRAM ALERT.)

TMU—
(See TRAFFIC MANAGEMENT UNIT.)

TODA—
(See TAKEOFF DISTANCE AVAILABLE.)
(See ICAO term TAKEOFF DISTANCE AVAILABLE.)

TOI—
(See TRACK OF INTEREST.)

TOP ALTITUDE— In reference to SID published altitude restrictions the charted “maintain” altitude contained in the procedure description or assigned by ATC.

TORA—
(See TAKEOFF RUN AVAILABLE.)
(See ICAO term TAKEOFF RUN AVAILABLE.)

TORCHING— The burning of fuel at the end of an exhaust pipe or stack of a reciprocating aircraft engine, the result of an excessive richness in the fuel air mixture.

TOTAL ESTIMATED ELAPSED TIME [ICAO]— For IFR flights, the estimated time required from take-off to arrive over that designated point, defined by reference to navigation aids, from which it is intended that an instrument approach procedure will be commenced, or, if no navigation aid is associated with the destination aerodrome, to arrive over the destination aerodrome. For VFR flights, the estimated time required from take-off to arrive over the destination aerodrome.

(See ICAO term ESTIMATED ELAPSED TIME.)

TOUCH-AND-GO— An operation by an aircraft that lands and departs on a runway without stopping or exiting the runway.

TOUCH-AND-GO LANDING—
(See TOUCH-AND-GO.)

TOUCHDOWN—

a. The point at which an aircraft first makes contact with the landing surface.

b. Concerning a precision radar approach (PAR), it is the point where the glide path intercepts the landing surface.

(See ICAO term TOUCHDOWN.)

TOUCHDOWN [ICAO]— The point where the nominal glide path intercepts the runway.

Note: Touchdown as defined above is only a datum and is not necessarily the actual point at which the aircraft will touch the runway.

TOUCHDOWN RVR—
(See VISIBILITY.)
TOUCHDOWN ZONE – The first 3,000 feet of the runway beginning at the threshold. The area is used for determination of Touchdown Zone Elevation in the development of straight-in landing minimums for instrument approaches.

(See ICAO term TOUCHDOWN ZONE.)

TOUCHDOWN ZONE [ICAO] – The portion of a runway, beyond the threshold, where it is intended landing aircraft first contact the runway.

TOUCHDOWN ZONE ELEVATION – The highest elevation in the first 3,000 feet of the landing surface. TDZE is indicated on the instrument approach procedure chart when straight-in landing minimums are authorized.

(See TOUCHDOWN ZONE.)

TOUCHDOWN ZONE LIGHTING –
(See AIRPORT LIGHTING.)

TOWER – A terminal facility that uses air/ground communications, visual signaling, and other devices to provide ATC services to aircraft operating in the vicinity of an airport or on the movement area. Authorizes aircraft to land or takeoff at the airport controlled by the tower or to transit the Class D airspace area regardless of flight plan or weather conditions (IFR or VFR). A tower may also provide approach control services (radar or nonradar).

(See AIRPORT TRAFFIC CONTROL SERVICE.)
(See APPROACH CONTROL FACILITY.)
(See APPROACH CONTROL SERVICE.)
(See MOVEMENT AREA.)
(See TOWER EN ROUTE CONTROL SERVICE.)
(See ICAO term AERODROME CONTROL TOWER.)
(Refer to AIM.)

TOWER EN ROUTE CONTROL SERVICE – The control of IFR en route traffic within delegated airspace between two or more adjacent approach control facilities. This service is designed to expedite traffic and reduce control and pilot communication requirements.

TOWER TO TOWER –
(See TOWER EN ROUTE CONTROL SERVICE.)

TPX-42 – A numeric beacon decoder equipment/system. It is designed to be added to terminal radar systems for beacon decoding. It provides rapid target identification, reinforcement of the primary radar target, and altitude information from Mode C.

(See AUTOMATED RADAR TERMINAL SYSTEMS.)
(See TRANSPONDER.)

TRACEABLE PRESSURE STANDARD – The facility station pressure instrument, with certification/calibration traceable to the National Institute of Standards and Technology. Traceable pressure standards may be mercurial barometers, commissioned ASOS/AWSS or dual transducer AWOS, or portable pressure standards or DASI.

TRACK – The actual flight path of an aircraft over the surface of the earth.

(See COURSE.)
(See FLIGHT PATH.)
(See ROUTE.)
(See ICAO term TRACK.)

TRACK [ICAO] – The projection on the earth’s surface of the path of an aircraft, the direction of which path at any point is usually expressed in degrees from North (True, Magnetic, or Grid).

TRACK OF INTEREST (TOI) – Displayed data representing an airborne object that threatens or has the potential to threaten North America or National Security. Indicators may include, but are not limited to: noncompliance with air traffic control instructions or aviation regulations; extended loss of communications; unusual transmissions or unusual flight behavior; unauthorized intrusion into controlled airspace or an ADIZ; noncompliance with issued flight restrictions/security procedures; or unlawful interference with airborne flight crews, up to and including hijack. In certain circumstances, an object may become a TOI based on specific and credible intelligence pertaining to that particular aircraft/object, its passengers, or its cargo.

TRACK OF INTEREST RESOLUTION – A TOI will normally be considered resolved when: the aircraft/object is no longer airborne; the aircraft complies with air traffic control instructions, aviation regulations, and/or issued flight restrictions/security procedures; radio contact is re-established and authorized control of the aircraft is verified; the aircraft is intercepted and intent is verified to be nonthreatening/nonhostile; TOI was identified based on specific and credible intelligence that was later determined to be invalid or unreliable; or displayed data is identified and characterized as invalid.
TRAFFIC–

a. A term used by a controller to transfer radar identification of an aircraft to another controller for the purpose of coordinating separation action. Traffic is normally issued:

1. In response to a handoff or point out,
2. In anticipation of a handoff or point out, or
3. In conjunction with a request for control of an aircraft.

b. A term used by ATC to refer to one or more aircraft.

TRAFFIC ADVISORIES– Advisories issued to alert pilots to other known or observed air traffic which may be in such proximity to the position or intended route of flight of their aircraft to warrant their attention. Such advisories may be based on:

a. Visual observation.

b. Observation of radar identified and nonidentified aircraft targets on an ATC radar display, or

c. Verbal reports from pilots or other facilities.

Note 1: The word “traffic” followed by additional information, if known, is used to provide such advisories; e.g., “Traffic, 2 o’clock, one zero miles, southbound, eight thousand.”

Note 2: Traffic advisory service will be provided to the extent possible depending on higher priority duties of the controller or other limitations; e.g., radar limitations, volume of traffic, frequency congestion, or controller workload. Radar/ nonradar traffic advisories do not relieve the pilot of his/her responsibility to see and avoid other aircraft. Pilots are cautioned that there are many times when the controller is not able to give traffic advisories concerning all traffic in the aircraft’s proximity; in other words, when a pilot requests or is receiving traffic advisories, he/she should not assume that all traffic will be issued.

(Refer to AIM.)

TRAFFIC ALERT (aircraft call sign), TURN (left/right) IMMEDIATELY, (climb/descend) AND MAINTAIN (altitude).

(See SAFETY ALERT.)

TRAFFIC ALERT AND COLLISION AVOIDANCE SYSTEM– An airborne collision avoidance system based on radar beacon signals which operates independent of ground-based equipment. TCAS-I generates traffic advisories only. TCAS-II generates traffic advisories, and resolution (collision avoidance) advisories in the vertical plane.

TRAFFIC INFORMATION–

(See TRAFFIC ADVISORIES.)

TRAFFIC INFORMATION SERVICE– BROADCAST (TIS–B)– The broadcast of ATC derived traffic information to ADS–B equipped (1090ES or UAT) aircraft. The source of this traffic information is derived from ground–based air traffic surveillance sensors, typically from radar targets. TIS–B service will be available throughout the NAS where there are both adequate surveillance coverage (radar) and adequate broadcast coverage from ADS–B ground stations. Loss of TIS–B will occur when an aircraft enters an area not covered by the GBT network. If this occurs in an area with adequate surveillance coverage (radar), nearby aircraft that remain within the adequate broadcast coverage (ADS–B) area will view the first aircraft. TIS–B may continue when an aircraft enters an area with inadequate surveillance coverage (radar); nearby aircraft that remain within the adequate broadcast coverage (ADS–B) area will not view the first aircraft.

TRAFFIC IN SIGHT– Used by pilots to inform a controller that previously issued traffic is in sight.

(See NEGATIVE CONTACT.)

(See TRAFFIC ADVISORIES.)

TRAFFIC MANAGEMENT ADVISOR (TMA)– A computerized tool which assists Traffic Management Coordinators to efficiently schedule arrival traffic to a metered airport, by calculating meter fix times and delays then sending that information to the sector controllers.

TRAFFIC MANAGEMENT PROGRAM ALERT– A term used in a Notice to Airmen (NOTAM) issued in conjunction with a special traffic management program to alert pilots to the existence of the program and to refer them to either the Notices to Airmen publication or a special traffic management program advisory message for program details. The contraction TMPA is used in NOTAM text.

TRAFFIC MANAGEMENT UNIT– The entity in ARTCCs and designated terminals directly involved in the active management of facility traffic. Usually under the direct supervision of an assistant manager for traffic management.
TRAFFIC NO FACTOR—Indicates that the traffic described in a previously issued traffic advisory is no factor.

TRAFFIC NO LONGER OBSERVED—Indicates that the traffic described in a previously issued traffic advisory is no longer depicted on radar, but may still be a factor.

TRAFFIC PATTERN—The traffic flow that is prescribed for aircraft landing at, taxiing on, or taking off from an airport. The components of a typical traffic pattern are upwind leg, crosswind leg, downwind leg, base leg, and final approach.

 a. **Upwind Leg**—A flight path parallel to the landing runway in the direction of landing.
 b. **Crosswind Leg**—A flight path at right angles to the landing runway off its upwind end.
 c. **Downwind Leg**—A flight path parallel to the landing runway in the direction opposite to landing. The downwind leg normally extends between the crosswind leg and the base leg.
 d. **Base Leg**—A flight path at right angles to the landing runway off its approach end. The base leg normally extends from the downwind leg to the intersection of the extended runway centerline.
 e. **Final Approach**. A flight path in the direction of landing along the extended runway centerline. The final approach normally extends from the base leg to the runway. An aircraft making a straight-in approach VFR is also considered to be on final approach.

(See **STRAIGHT-IN APPROACH VFR**.)
(See **TAXI PATTERNS**.)
(See **ICAO term AERODROME TRAFFIC CIRCUIT**.)
(Refer to **14 CFR Part 91**.)
(Refer to **AIM**.)

TRAJECTORY—A URET representation of the path an aircraft is predicted to fly based upon a Current Plan or Trial Plan.

(See **USER REQUEST EVALUATION TOOL**.)

TRAJECTORY MODELING—The automated process of calculating a trajectory.

TRANSCRIBED WEATHER BROADCAST—A continuous recording of meteorological and aeronautical information that is broadcast on L/MF and VOR facilities for pilots. (Provided only in Alaska.)

(Refer to **AIM**.)

TRANSFER OF CONTROL—That action whereby the responsibility for the separation of an aircraft is transferred from one controller to another.

(See **ICAO term TRANSFER OF CONTROL**.)

TRANSFER OF CONTROL [ICAO]—Transfer of responsibility for providing air traffic control service.

TRANSFERRING CONTROLLER—A controller/facility transferring control of an aircraft to another controller/facility.

(See **ICAO term TRANSFERRING UNIT/CONTROLLER**.)

TRANSFERRING FACILITY—
(See **TRANSFERRING CONTROLLER**.)

TRANSFERRING UNIT/CONTROLLER [ICAO]—Air traffic control unit/air traffic controller in the process of transferring the responsibility for providing air traffic control service to an aircraft to the next air traffic control unit/air traffic controller along the route of flight.

Note: See definition of accepting unit/controller.

TRANSITION—

 a. The general term that describes the change from one phase of flight or flight condition to another; e.g., transition from en route flight to the approach or transition from instrument flight to visual flight.

 b. A published procedure (DP Transition) used to connect the basic DP to one of several en route Airways/Jet routes, or a published procedure (STAR Transition) used to connect one of several en route Airways/Jet routes to the basic STAR.

(Refer to **DP/STAR Charts**.)

TRANSITION POINT—A point at an adapted number of miles from the vertex at which an arrival
aircraft would normally commence descent from its en route altitude. This is the first fix adapted on the arrival speed segments.

TRANSITION WAYPOINT—The waypoint that defines the beginning of a runway or en route transition on an RNAV SID or STAR.

TRANSITIONAL AIRSPACE—That portion of controlled airspace wherein aircraft change from one phase of flight or flight condition to another.

TRANSMISSOMETER—An apparatus used to determine visibility by measuring the transmission of light through the atmosphere. It is the measurement source for determining runway visual range (RVR) and runway visibility value (RVV).

(See VISIBILITY.)

TRANSMITTING IN THE BLIND—A transmission from one station to other stations in circumstances where two-way communication cannot be established, but where it is believed that the called stations may be able to receive the transmission.

TRANSPONDER—The airborne radar beacon receiver/transmitter portion of the Air Traffic Control Radar Beacon System (ATCRBS) which automatically receives radio signals from interrogators on the ground, and selectively replies with a specific reply pulse or pulse group only to those interrogations being received on the mode to which it is set to respond.

(See INTERROGATOR.)
(See ICAO term TRANSPONDER.)
(Refer to AIM.)

TRANSPONDER [ICAO]—A receiver/transmitter which will generate a reply signal upon proper interrogation; the interrogation and reply being on different frequencies.

TRANSPONDER CODES—
(See CODES.)

TRANSPONDER OBSERVED—Phraseology used to inform a VFR pilot the aircraft’s assigned beacon code and position have been observed. Specifically, this term conveys to a VFR pilot the transponder reply has been observed and its position correlated for transit through the designated area.

TRIAL PLAN—A proposed amendment which utilizes automation to analyze and display potential conflicts along the predicted trajectory of the selected aircraft.

TRSA—
(See TERMINAL RADAR SERVICE AREA.)

TSD—
(See TRAFFIC SITUATION DISPLAY.)

TURBOJET AIRCRAFT—An aircraft having a jet engine in which the energy of the jet operates a turbine which in turn operates the air compressor.

TURBOPROP AIRCRAFT—An aircraft having a jet engine in which the energy of the jet operates a turbine which drives the propeller.

TURN ANTICIPATION— (maneuver anticipation).

TVOR—
(See TERMINAL-VERY HIGH FREQUENCY OMNIDIRECTIONAL RANGE STATION.)

TWEB—
(See TRANSCRIBED WEATHER BROADCAST.)

TWO-WAY RADIO COMMUNICATIONS FAILURE—
(See LOST COMMUNICATIONS.)
ULTRAHIGH FREQUENCY—The frequency band between 300 and 3,000 MHz. The bank of radio frequencies used for military air/ground voice communications. In some instances this may go as low as 225 MHz and still be referred to as UHF.

ULTRALIGHT VEHICLE—A single-occupant aeronautical vehicle operated for sport or recreational purposes which does not require FAA registration, an airworthiness certificate, nor pilot certification. Operation of an ultralight vehicle in certain airspace requires authorization from ATC.

UNABLE—Indicates inability to comply with a specific instruction, request, or clearance.

UNASSOCIATED—A radar target that does not display a data block with flight identification and altitude information.

UNDER THE HOOD—Indicates that the pilot is using a hood to restrict visibility outside the cockpit while simulating instrument flight. An appropriately rated pilot is required in the other control seat while this operation is being conducted.

UNFROZEN—The Scheduled Time of Arrival (STA) tags, which are still being rescheduled by traffic management advisor (TMA) calculations. The aircraft will remain unfrozen until the time the corresponding estimated time of arrival (ETA) tag passes the preset freeze horizon for that aircraft’s stream class. At this point the automatic rescheduling will stop, and the STA becomes “frozen.”

UNICOM—A nongovernment communication facility which may provide airport information at certain airports. Locations and frequencies of UNICOMs are shown on aeronautical charts and publications.

UNPUBLISHED ROUTE—A route for which no minimum altitude is published or charted for pilot use. It may include a direct route between NAVAIDs, a radial, a radar vector, or a final approach course beyond the segments of an instrument approach procedure.

UNRELIABLE (GPS/WAAS)—An advisory to pilots indicating the expected level of service of the GPS and/or WAAS may not be available. Pilots must then determine the adequacy of the signal for desired use.

UPWIND LEG—

URET—

URGENCY—A condition of being concerned about safety and of requiring timely but not immediate assistance; a potential distress condition.

URGENCY [ICAO]—A condition concerning the safety of an aircraft or other vehicle, or of person on board or in sight, but which does not require immediate assistance.

USAFIB—

USER REQUEST EVALUATION TOOL (URET)—User Request Evaluation Tool is an automated tool provided at each Radar Associate position in selected En Route facilities. This tool utilizes flight and radar data to determine present and future trajectories for all active and proposal aircraft and provides enhanced, automated flight data management.
V

VASI—
(See VISUAL APPROACH SLOPE INDICATOR.)

VCOA—
(See VISUAL CLIMB OVER AIRPORT.)

VDP—
(See VISUAL DESCENT POINT.)

VECTOR— A heading issued to an aircraft to provide navigational guidance by radar.
(See ICAO term RADAR VECTORING.)

VERIFY— Request confirmation of information; e.g., “verify assigned altitude.”

VERIFY SPECIFIC DIRECTION OF TAKEOFF (OR TURNS AFTER TAKEOFF)— Used by ATC to ascertain an aircraft’s direction of takeoff and/or direction of turn after takeoff. It is normally used for IFR departures from an airport not having a control tower. When direct communication with the pilot is not possible, the request and information may be relayed through an FSS, dispatcher, or by other means.
(See IFR TAKEOFF MINIMUMS AND DEPARTURE PROCEDURES.)

VERTEX— The last fix adapted on the arrival speed segments. Normally, it will be the outer marker of the runway in use. However, it may be the actual threshold or other suitable common point on the approach path for the particular runway configuration.

VERTEX TIME OF ARRIVAL— A calculated time of aircraft arrival over the adapted vertex for the runway configuration in use. The time is calculated via the optimum flight path using adapted speed segments.

VERTICAL NAVIGATION (VNAV)— A function of area navigation (RNAV) equipment which calculates, displays, and provides vertical guidance to a profile or path.

VERTICAL SEPARATION— Separation between aircraft expressed in units of vertical distance.
(See SEPARATION.)

VERTICAL TAKEOFF AND LANDING AIRCRAFT— Aircraft capable of vertical climbs and/or descents and of using very short runways or small areas for takeoff and landings. These aircraft include, but are not limited to, helicopters.
(See SHORT TAKEOFF AND LANDING AIRCRAFT.)

VERY HIGH FREQUENCY— The frequency band between 30 and 300 MHz. Portions of this band, 108 to 118 MHz, are used for certain NAVAIDs; 118 to 136 MHz are used for civil air/ground voice communications. Other frequencies in this band are used for purposes not related to air traffic control.

VERY HIGH FREQUENCY OMNIDIRECTIONAL RANGE STATION—
(See VOR.)

VERY LOW FREQUENCY— The frequency band between 3 and 30 kHz.

VFR—
(See VISUAL FLIGHT RULES.)

VFR AIRCRAFT— An aircraft conducting flight in accordance with visual flight rules.
(See VISUAL FLIGHT RULES.)

VFR CONDITIONS— Weather conditions equal to or better than the minimum for flight under visual flight rules. The term may be used as an ATC clearance/instruction only when:

a. An IFR aircraft requests a climb/descent in VFR conditions.

b. The clearance will result in noise abatement benefits where part of the IFR departure route does not conform to an FAA approved noise abatement route or altitude.

c. A pilot has requested a practice instrument approach and is not on an IFR flight plan.

Note: All pilots receiving this authorization must comply with the VFR visibility and distance from cloud criteria in 14 CFR Part 91. Use of the term does not relieve controllers of their responsibility to separate aircraft in Class B and Class C airspace or TRSAs as required by FAAO JO 7110.65. When used as an ATC clearance/instruction, the term may be abbreviated “VFR;” e.g., “MAINTAIN VFR,” “CLimb/DESCend VFR,” etc.

VFR FLIGHT—
(See VFR AIRCRAFT.)
VFR MILITARY TRAINING ROUTES— Routes used by the Department of Defense and associated Reserve and Air Guard units for the purpose of conducting low-altitude navigation and tactical training under VFR below 10,000 feet MSL at airspeeds in excess of 250 knots IAS.

VFR NOT RECOMMENDED— An advisory provided by a flight service station to a pilot during a preflight or inflight weather briefing that flight under visual flight rules is not recommended. To be given when the current and/or forecast weather conditions are at or below VFR minimums. It does not abrogate the pilot’s authority to make his/her own decision.

VFR-ON-TOP— ATC authorization for an IFR aircraft to operate in VFR conditions at any appropriate VFR altitude (as specified in 14 CFR and as restricted by ATC). A pilot receiving this authorization must comply with the VFR visibility, distance from cloud criteria, and the minimum IFR altitudes specified in 14 CFR Part 91. The use of this term does not relieve controllers of their responsibility to separate aircraft in Class B and Class C airspace or TRSAs as required by FAAO JO 7110.65.

VFR TERMINAL AREA CHARTS— (See AERONAUTICAL CHART.)

VFR WAYPOINT— (See WAYPOINT.)

VHF— (See VERY HIGH FREQUENCY.)

VHF OMNIDIRECTIONAL RANGE/TACTICAL AIR NAVIGATION— (See VORTAC.)

VIDEO MAP— An electronically displayed map on the radar display that may depict data such as airports, heliports, runway centerline extensions, hospital emergency landing areas, NAVAIDs and fixes, reporting points, airway/route centerlines, boundaries, handoff points, special use tracks, obstructions, prominent geographic features, map alignment indicators, range accuracy marks, minimum vectoring altitudes.

VISIBILITY— The ability, as determined by atmospheric conditions and expressed in units of distance, to see and identify prominent unlighted objects by day and prominent lighted objects by night. Visibility is reported as statute miles, hundreds of feet or meters.

(Refer to 14 CFR Part 91.)
(Refer to AIM.)

a. **Flight Visibility**— The average forward horizontal distance, from the cockpit of an aircraft in flight, at which prominent unlighted objects may be seen and identified by day and prominent lighted objects may be seen and identified by night.

b. **Ground Visibility**— Prevailing horizontal visibility near the earth’s surface as reported by the United States National Weather Service or an accredited observer.

c. **Prevailing Visibility**— The greatest horizontal visibility equaled or exceeded throughout at least half the horizon circle which need not necessarily be continuous.

d. **Runway Visibility Value (RVV)**— The visibility determined for a particular runway by a transmissometer. A meter provides a continuous indication of the visibility (reported in miles or fractions of miles) for the runway. RVV is used in lieu of prevailing visibility in determining minimums for a particular runway.

e. **Runway Visual Range (RVR)**— An instrumentally derived value, based on standard calibrations, that represents the horizontal distance a pilot will see down the runway from the approach end. It is based on the sighting of either high intensity runway lights or on the visual contrast of other targets whichever yields the greater visual range. RVR, in contrast to prevailing or runway visibility, is based on what a pilot in a moving aircraft should see looking down the runway. RVR is horizontal visual range, not slant visual range. It is based on the measurement of a transmissometer made near the touchdown point of the instrument runway and is reported in hundreds of feet. RVR is used in lieu of RVV and/or prevailing visibility in determining minimums for a particular runway.

1. **Touchdown RVR**— The RVR visibility readout values obtained from RVR equipment serving the runway touchdown zone.

2. **Mid-RVR**— The RVR readout values obtained from RVR equipment located midfield of the runway.
3. Rollout RVR—The RVR readout values obtained from RVR equipment located nearest the rollout end of the runway.

(See ICAO term FLIGHT VISIBILITY.)
(See ICAO term GROUND VISIBILITY.)
(See ICAO term RUNWAY VISUAL RANGE.)
(See ICAO term VISIBILITY.)

VISIBILITY [ICAO]—The ability, as determined by atmospheric conditions and expressed in units of distance, to see and identify prominent unlighted objects by day and prominent lighted objects by night.

a. Flight Visibility—The visibility forward from the cockpit of an aircraft in flight.

b. Ground Visibility—The visibility at an aerodrome as reported by an accredited observer.

c. Runway Visual Range [RVR]—The range over which the pilot of an aircraft on the centerline of a runway can see the runway surface markings or the lights delineating the runway or identifying its centerline.

VISUAL APPROACH—An approach conducted on an instrument flight rules (IFR) flight plan which authorizes the pilot to proceed visually and clear of clouds to the airport. The pilot must, at all times, have either the airport or the preceding aircraft in sight. This approach must be authorized and under the control of the appropriate air traffic control facility. Reported weather at the airport must be ceiling at or above 1,000 feet and visibility of 3 miles or greater.

(See ICAO term VISUAL APPROACH.)

VISUAL APPROACH [ICAO]—An approach by an IFR flight when either part or all of an instrument approach procedure is not completed and the approach is executed in visual reference to terrain.

VISUAL APPROACH SLOPE INDICATOR—
(See AIRPORT LIGHTING.)

VISUAL CLimb OVER AIRPORT (VCOA)—A departure option for an IFR aircraft, operating in visual meteorological conditions equal to or greater than the specified visibility and ceiling, to visually conduct climbing turns over the airport to the published “climb-to” altitude from which to proceed with the instrument portion of the departure. VCOA procedures are developed to avoid obstacles greater than 3 statute miles from the departure end of the runway as an alternative to complying with climb gradients greater than 200 feet per nautical mile. These procedures are published in the ‘Take-Off Minimums and (Obstacle) Departure Procedures’ section of the Terminal Procedures Publications.

(See AIM.)

VISUAL DESCENT POINT—A defined point on the final approach course of a nonprecision straight-in approach procedure from which normal descent from the MDA to the runway touchdown point may be commenced, provided the approach threshold of that runway, or approach lights, or other markings identifiable with the approach end of that runway are clearly visible to the pilot.

VISUAL FLIGHT RULES—Rules that govern the procedures for conducting flight under visual conditions. The term “VFR” is also used in the United States to indicate weather conditions that are equal to or greater than minimum VFR requirements. In addition, it is used by pilots and controllers to indicate type of flight plan.

(See INSTRUMENT FLIGHT RULES.)
(See INSTRUMENT METEOROLOGICAL CONDITIONS.)
(See VISUAL METEOROLOGICAL CONDITIONS.)
(Refer to 14 CFR Part 91.)
(Refer to AIM.)

VISUAL HOLDING—The holding of aircraft at selected, prominent geographical fixes which can be easily recognized from the air.

(See HOLDING FIX.)

VISUAL METEOROLOGICAL CONDITIONS— Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling equal to or better than specified minima.

(See INSTRUMENT FLIGHT RULES.)
(See INSTRUMENT METEOROLOGICAL CONDITIONS.)
(See VISUAL FLIGHT RULES.)

VISUAL SEGMENT—
(See PUBLISHED INSTRUMENT APPROACH PROCEDURE VISUAL SEGMENT.)
VISUAL SEPARATION—A means employed by ATC to separate aircraft in terminal areas and en route airspace in the NAS. There are two ways to effect this separation:

a. The tower controller sees the aircraft involved and issues instructions, as necessary, to ensure that the aircraft avoid each other.

b. A pilot sees the other aircraft involved and upon instructions from the controller provides his/her own separation by maneuvering his/her aircraft as necessary to avoid it. This may involve following another aircraft or keeping it in sight until it is no longer a factor.

(See SEE AND AVOID.)
(Refer to 14 CFR Part 91.)

VLF—
(See VERY LOW FREQUENCY.)

VMC—
(See VISUAL METEOROLOGICAL CONDITIONS.)

VOICE SWITCHING AND CONTROL SYSTEM—The VSCS is a computer controlled switching system that provides air traffic controllers with all voice circuits (air to ground and ground to ground) necessary for air traffic control.

(See VOICE SWITCHING AND CONTROL SYSTEM.)
(Refer to AIM.)

VOR—A ground-based electronic navigation aid transmitting very high frequency navigation signals, 360 degrees in azimuth, oriented from magnetic north. Used as the basis for navigation in the National Airspace System. The VOR periodically identifies itself by Morse Code and may have an additional voice identification feature. Voice features may be used by ATC or FSS for transmitting instructions/information to pilots.

(See NAVIGATIONAL AID.)
(Refer to AIM.)

VOR TEST SIGNAL—
(See VOT.)

VORTAC—A navigation aid providing VOR azimuth, TACAN azimuth, and TACAN distance measuring equipment (DME) at one site.

(See DISTANCE MEASURING EQUIPMENT.)
(See NAVIGATIONAL AID.)
(See TACAN.)
(See VOR.)
(Refer to AIM.)

VORTICES—Circular patterns of air created by the movement of an airfoil through the air when generating lift. As an airfoil moves through the atmosphere in sustained flight, an area of area of low pressure is created above it. The air flowing from the high pressure area to the low pressure area around and about the tips of the airfoil tends to roll up into two rapidly rotating vortices, cylindrical in shape. These vortices are the most predominant parts of aircraft wake turbulence and their rotational force is dependent upon the wing loading, gross weight, and speed of the generating aircraft. The vortices from medium to heavy aircraft can be of extremely high velocity and hazardous to smaller aircraft.

(See AIRCRAFT CLASSES.)
(See WAKE TURBULENCE.)
(Refer to AIM.)

VOT—A ground facility which emits a test signal to check VOR receiver accuracy. Some VOTs are available to the user while airborne, and others are limited to ground use only.

(See AIRPORT/FACILITY DIRECTORY.)
(Refer to 14 CFR Part 91.)
(Refer to AIM.)

VR—
(See VFR MILITARY TRAINING ROUTES.)

VSCS—
(See VOICE SWITCHING AND CONTROL SYSTEM.)

VTA—
(See VERTEX TIME OF ARRIVAL.)

VTOL AIRCRAFT—
(See VERTICAL TAKEOFF AND LANDING AIRCRAFT.)
WA—
(See AIRMET.)
(See WEATHER ADVISORY.)

WAAS—
(See WIDE-AREA AUGMENTATION SYSTEM.)

WAKE TURBULENCE— Phenomena resulting from the passage of an aircraft through the atmosphere. The term includes vortices, thrust stream turbulence, jet blast, jet wash, propeller wash, and rotor wash both on the ground and in the air.
(See AIRCRAFT CLASSES.)
(See JET BLAST.)
(See VORTICES.)
(Refer to AIM.)

WARNING AREA—
(See SPECIAL USE AIRSPACE.)

WAYPOINT— A predetermined geographical position used for route/instrument approach definition, progress reports, published VFR routes, visual reporting points or points for transitioning and/or circumnavigating controlled and/or special use airspace, that is defined relative to a VORTAC station or in terms of latitude/longitude coordinates.

WEATHER ADVISORY— In aviation weather forecast practice, an expression of hazardous weather conditions not predicted in the area forecast, as they affect the operation of air traffic and as prepared by the NWS.
(See AIRMET.)
(See SIGMET.)

WHEN ABLE—
\(a.\) In conjunction with ATC instructions, gives the pilot the latitude to delay compliance until a condition or event has been reconciled. Unlike “pilot discretion,” when instructions are prefaced “when able,” the pilot is expected to seek the first opportunity to comply.

\(b.\) In conjunction with a weather deviation clearance, requires the pilot to determine when he/she is clear of weather, then execute ATC instructions.

\(c.\) Once a maneuver has been initiated, the pilot is expected to continue until the specifications of the instructions have been met. “When able,” should not be used when expeditious compliance is required.

WIDE-AREA AUGMENTATION SYSTEM (WAAS)— The WAAS is a satellite navigation system consisting of the equipment and software which augments the GPS Standard Positioning Service (SPS). The WAAS provides enhanced integrity, accuracy, availability, and continuity over and above GPS SPS. The differential correction function provides improved accuracy required for precision approach.

WILCO— I have received your message, understand it, and will comply with it.

WIND GRID DISPLAY— A display that presents the latest forecasted wind data overlaid on a map of the ARTCC area. Wind data is automatically entered and updated periodically by transmissions from the National Weather Service. Winds at specific altitudes, along with temperatures and air pressure can be viewed.

WIND SHEAR— A change in wind speed and/or wind direction in a short distance resulting in a tearing or shearing effect. It can exist in a horizontal or vertical direction and occasionally in both.

WIND SHEAR ESCAPE— An unplanned abortive maneuver initiated by the pilot in command (PIC) as a result of onboard cockpit systems. Wind shear escapes are characterized by maximum thrust climbs in the low altitude terminal environment until wind shear conditions are no longer detected.

WING TIP VORTICES—
(See VORTICES.)

WORDS TWICE—
\(a.\) As a request: “Communication is difficult. Please say every phrase twice.”

\(b.\) As information: “Since communications are difficult, every phrase in this message will be spoken twice.”

WORLD AERONAUTICAL CHARTS—
(See AERONAUTICAL CHART.)

WS—
(See SIGMET.)
(See WEATHER ADVISORY.)
WST–
 (See CONVECTIVE SIGMET.)
 (See WEATHER ADVISORY.)
INDEX

[References are to page numbers]

A
Accident, Aircraft, Reporting, 7−6−1
Accident Cause Factors, 7−5−1
Adherence to Clearance, 4−4−5
ADIZ. See Air Defense Identification Zones
ADS−B. See Automatic Dependent Broadcast Services
ADS−R. See Automatic Dependent Surveillance−Rebroadcast
Advisories
 Braking Action, 4−3−12
 Inflight Aviation Weather, 7−1−8
 Minimum Fuel, 5−5−7
 Runway Friction, 4−3−12
 Traffic, 5−5−4
 Aerobatic Flight, 8−1−8
Aerodrome Forecast (TAF), 7−1−69, 7−1−70, 7−1−71
Aeronautical
 Charts, 9−1−1
 Publications, 9−1−1
Aeronautical Light Beacons, 2−2−1
AFIS. See Automatic Flight Information Service
AHRS. See Attitude Heading Reference System
Air Ambulance Flights, 4−2−4
Air Defense Identification Zone, Land−Based, 5−6−1
Air Defense Identification Zones, 5−6−1, 5−6−9
Air Route Surveillance Radar, 4−5−7
Air Route Traffic Control Centers, 4−1−1
Air Traffic Control
 Aircraft Separation, 4−4−1
 Clearances, 4−4−1
 Pilot Services, 4−1−1
 Air Route Traffic Control Centers, 4−1−1
 Airports Reservations, 4−1−21
 Approach Control Service, Arriving VFR Aircraft, 4−1−2
 Automatic Terminal Information Service, 4−1−7
 Communications, Release of IFR Aircraft, Airports without Operating Control Tower, 4−1−1
 Control Towers, 4−1−1
 Flight Service Stations, 4−1−1
 Ground Vehicle Operations, 4−1−6
 Hazardous Area Reporting Service, 4−1−18
 IFR Approaches, 4−1−6
 Operation Raincheck, 4−1−2
 Operation Take−off, 4−1−2
 Radar Assistance to VFR Aircraft, 4−1−11
 Radar Traffic Information Service, 4−1−8
 Recording and Monitoring, 4−1−1
 Safety Alert, 4−1−10
 Terminal Radar Services for VFR Aircraft, 4−1−12
 Tower En Route Control, 4−1−14
 Traffic Advisory Practices, Airports Without Operating Control Towers, 4−1−2
 Transponder Operation, 4−1−15
 Unicom, Use for ATC Purposes, 4−1−7
 Unicom/Multicom, 4−1−6
Air Traffic Control Radar Beacon System, 4−1−15, 4−5−2
Aircraft
 Arresting Devices, 2−3−30
 Call Signs, 4−2−3
 Lights, Use in Airport Operations, 4−3−24
 Unmanned, 7−5−2
 VFR, Emergency Radar Service, 6−2−1
Aircraft Conflict Alert, 4−1−11
Airport
 Aids, Marking, 2−3−1
 Holding Position, 2−3−12
 Pavement, 2−3−1
 Other, 2−3−1
 Runway, 2−3−1
 Taxiway, 2−3−1
 Holding Position, 2−3−1
 Lighting Aids, 2−1−1
 Local Airport Advisory (LAA), 4−1−3
 Operations, 4−3−1
 Communications, 4−3−17
 Exiting the Runway, After Landing, 4−3−22
 Flight Check Aircraft, In Terminal Areas, 4−3−25
 Flight Inspection, 4−3−25
 Gate Holding, Departure Delays, 4−3−18
 Intersection Takeoffs, 4−3−13
 Low Approach, 4−3−16
 Low Level Wind Shear/Microburst Detection Systems, 4−3−12
 Option Approach, 4−3−24
 Signals, Hand, 4−3−25
 Taxi During Low Visibility, 4−3−21
 Traffic Control Light Signals, 4−3−16
 Traffic Patterns, 4−3−1, 4−3−2
 Use of Aircraft Lights, 4−3−24
Use of Runways, 4–3–7
VFR Flights in Terminal Areas, 4–3–18
VFR Helicopter at Controlled Airports, 4–3–18
With Operating Control Tower, 4–3–1
Without Operating Control Tower, 4–3–6
Remote Airport Advisory (RAA), 3–5–1, 4–1–4
Remote Airport Information Service (RAIS), 3–5–1, 4–1–4
Signs, 2–3–1, 2–3–19
Destination, 2–3–28
Direction, 2–3–25
Information, 2–3–29
Location, 2–3–23
Mandatory Instruction, 2–3–20
Runway Distance Remaining, 2–3–29

Airport Reservations, 4–1–21
Airport Surface Detection Equipment – Model X, 4–5–7
Airport Surveillance Radar, 4–5–7

Airspace, 3–1–1
Basic VFR Weather Minimums, 3–1–1
Class D, 3–2–8
Class E, 3–2–9
Class G, 3–3–1
Controlled, 3–2–1
Advisories, Traffic, 3–2–1
Alerts, Safety, 3–2–1
Class A, 3–2–2
Class B, 3–2–2
Class C, 3–2–4
IFR Requirements, 3–2–1
IFR Separation, 3–2–1
Parachute Jumps, 3–2–2
Ultralight Vehicles, 3–2–2
Unmanned Free Balloons, 3–2–2
VFR Requirements, 3–2–1
Flight Levels, 3–1–2
General Dimensions, Segments, 3–1–1
Military Training Routes, 3–5–1
Other Areas, 3–5–1
Parachute Jumping, 3–5–5
Special Use, 3–4–1
Temporary Flight Restrictions, 3–5–2
Terminal Radar Service Areas, 3–5–9
VFR Cruising Altitudes, 3–1–2
VFR Routes, Published, 3–5–5
Class B Airspace, VFR Transition Routes, 3–5–7
VFR Corridors, 3–5–7
VFR Flyways, 3–5–5

Airway, 5–3–5
Airways, Course Changes, 5–3–7

Alcohol, 8–1–1
Alert, Safety, 4–1–10, 5–5–3
Alert Areas, 3–4–2
Alignment of Elements Approach Slope Indicator, 2–1–5
Alphabet, Phonetic, 4–2–5
ALS. See Approach Light Systems

Altitude
Automatic Reporting, 4–1–15
Density Altitude, 4–1–15
Errors, 7–2–3
High Barometric Pressure, 7–2–4
Low Barometric Pressure, 7–2–4

Ambulance, Air, 4–2–4
Amended Clearances, 4–4–2
Approach
Advance Information, Instrument Approach, 5–4–4
Approach Control, 5–4–3
Clearance, 5–4–24
Contact, 5–4–62, 5–5–2
Instrument, 5–5–2
Instrument Approach Procedure, Charts, 5–4–5
Instrument Approach Procedures, 5–4–26
Low, 4–3–16
Minimums, 5–4–52
Missed, 5–4–55, 5–5–2
No–Gyro, 5–4–35
Option, 4–3–24
Overhead Approach Maneuver, 5–4–62
Precision, 5–4–34
Surveillance, 5–4–34
Visual, 5–4–60, 5–5–5

Approach Control Service, VFR Arriving Aircraft, 4–1–2

Approach Light Systems, 2–1–1

Approaches
IFR, 4–1–6
Parallel Runways, ILS/RNAV/GLS, 5–4–36
Radar, 5–4–34
Timed, 5−4−31
Area Navigation (RNAV), 1−2−1, 5−1−14, 5−3−6, 5−5−7
Area Navigation (RNAV) Routes, 5−3−6
ARFF (Aircraft Rescue and Fire Fighting) Emergency Hand Signals, 6−5−1
ARFF (Aircraft Rescue and Fire Fighting) Radio Call Sign, 6−5−1
Arresting Devices, Aircraft, 2−3−30
ARSR. See Air Route Surveillance Radar
ARTCC. See Air Route Traffic Control Centers
ASDE−X. See Airport Surface Detection Equipment−Model X
Ash, Volcanic, 7−5−7
ASOS. See Automated Surface Observing System
ASR. See Airport Surveillance Radar; Surveillance Approach
ATCRBS. See Air Traffic Control Radar Beacon System
ATCT. See Control Towers
ATIS. See Automatic Terminal Information Service
Attitude Heading Reference System (AHRS), 1−1−17
Authority, Statutory, 1−1−1
Automated Surface Observing System (ASOS), 4−3−29, 7−1−29
Automated Weather Observing System (AWOS), 4−3−29, 7−1−26
Automated Weather Sensor System (AWSS), 4−3−29
Automated Weather Sensor System (AWSS), 7−1−29
Automatic Altitude Reporting, 4−1−15
Automatic Dependent Surveillance−Broadcast Services, 4−5−14
Automatic Dependent Surveillance−Rebroadcast, 4−5−20
Automatic Flight Information Service (AFIS) – Alaska FSSs Only, 4−1−8
Automatic Terminal Information Service, 4−1−7
AWOS. See Automated Weather Observing System
Balloons, Unmanned, 7−5−2
Free, 3−2−2
Beacon
Aeronautical Light, 2−2−1
Code, 2−2−1
Marker, 1−1−9
Nondirectional Radio, 1−1−1
Beacons, Airport/Heliport, 2−1−14
Bird
Bird Strike
Reduction, 7−4−1
Reporting, 7−4−1
Hazards, 7−4−1
Migratory, 7−4−1
Bird/Other Wildlife Strike Reporting, Form. See Appendix 1
Block Island Reporting Service, 4−1−19
Braking Action Advisories, 4−3−12
Braking Action Reports, 4−3−12
Briefing, Preflight, 7−1−5
Call Signs
Aircraft, 4−2−3
Ground Station, 4−2−4
Cape Code Radar Overwater Flight Following, 4−1−19
Carbon Monoxide Poisoning, 8−1−5
CAT. See Clear Air Turbulence
CDR. See Coded Departure Route
Changeover Points, 5−3−8
Charted Visual Flight Procedures, 5−4−61
Charts, Aeronautical, 9−1−1
Class A Airspace, 3−2−2
Definition, 3−2−2
Operating Rules, 3−2−2
Pilot/Equipment Requirements, 3−2−2
Class B Airspace, 3−2−2
ATC Clearances, 3−2−3
Definition, 3−2−2
Flight Procedures, 3−2−3
Mode C Veil, 3−2−3
Operating Rules, 3−2−2
Pilot/Equipment Requirements, VFR Operations, 3–2–2
Proximity Operations, 3–2–4
Separation, 3–2–3
VFR Transition Routes, 3–5–7

Class C Airspace, 3–2–4
Air Traffic Services, 3–2–5
Aircraft Separation, 3–2–5
Definition, 3–2–4
Operating Rules, 3–2–4
Outer Area, 3–2–5
Pilot/Equipment Requirements, 3–2–4
Secondary Airports, 3–2–6

Class D Airspace, 3–2–8
Definition, 3–2–8
Operating Rules, 3–2–8
Pilot/Equipment Requirements, 3–2–8
Separation for VFR Aircraft, 3–2–8

Class E Airspace, 3–2–9
Definition, 3–2–9
Operating Rules, 3–2–9
Pilot/Equipment Requirements, 3–2–9
Separation for VFR Aircraft, 3–2–9
Types, 3–2–9
Vertical Limits, 3–2–9

Class G Airspace, 3–3–1
IFR Requirements, 3–3–1
VFR Requirements, 3–3–1

Clear Air Turbulence, 7–1–48

Clearance
Abbreviated IFR Departure, 5–2–2
Adherence, 4–4–5
Air Traffic, 5–5–1
Air Traffic Control, 4–4–1
Amended, 4–4–2
Approach, 5–4–24
IFR, VFR–on–Top, 4–4–4
IFR Flights, 4–4–5
Issuance, Pilot Responsibility, 4–4–4
Items, 4–4–1
Altitude Data, 4–4–2
Clearance Limit, 4–4–1
Departure Procedure, 4–4–1
Holding Instructions, 4–4–2
Route of Flight, 4–4–1
Pre–Taxi, 5–2–1
Prefix, 4–4–1
Taxi, 5–2–1
VFR Flights, 4–4–5
Void Times, 5–2–4

Clearances, Special VFR Clearances, 4–4–3
Clearing Procedures, Visual, 4–4–10
Coded Departure Route, 4–4–3
Collision, Avoidance, Judgment, 8–1–8

Communication, Radio
Contact, Reestablishing, 6–4–2
Two–way Failure, 6–4–1
IFR Conditions, 6–4–1
Transponder Usage, 6–4–2
VFR Conditions, 6–4–1

Communications
ARTCC, 5–3–1
Additional Reports, 5–3–4
Position Reporting, 5–3–3
Distress, 6–3–1
Radio, 4–2–1
Phonetic Alphabet, 4–2–5
Release, 4–1–1
Urgency, 6–3–1
Conflict Alert, Aircraft, 4–1–11
Contact Approach, 5–4–62
Contact Procedures, 4–2–1
Initial Contact, 4–2–1
Control of Lighting Systems, 2–1–11
Control Towers, 4–1–1
Controlled Firing Areas, 3–4–2
Controller, Responsibility, 5–3–8, 5–4–61, 5–5–1
COP. See Changeover Points
CORONA, 7–5–9
Course Lights, 2–2–1
CVFP. See Charted Visual Flight Procedures

D
Decompression Sickness, 8–1–4
Density Altitude, Effects, 7–5–4
Departure, Restrictions, 5–2–4
Departure Control, 5–2–5
Departures, Instrument, 5–5–6
Direct User Access Terminal System, 7–1–3
Discrete Emergency Frequency, 6–5–1
Distance Measuring Equipment, 1–1–3, 1–1–9, 5–3–12
Distress, 6–3–1
[References are to page numbers]

Ditching Procedures, 6–3–3

DME. See Distance Measuring Equipment

Doppler Radar, 1–1–18

DUATS. See Direct User Access System

E

Ear Block, 8–1–4

EFAS. See En Route Flight Advisory Service

EFVS. See Enhanced Flight Vision Systems

ELT. See Emergency Locator Transmitters

Emergency, 6–1–1
 Air Piracy, 6–3–6
 Airborne Aircraft Inspection, 7–5–8
 Aircraft, Overdue, 6–2–5
 Body Signals, 6–2–6
 Ditching Procedures, 6–3–3
 Explosives Detection, FAA K–9 Team Program, 6–2–3
 Fuel Dumping, 6–3–7
 Inflight Monitoring and Reporting, 6–2–3
 Intercept and Escort, 6–2–1
 Locator Transmitters, 6–2–2
 Obtaining Assistance, 6–3–2
 Pilot Authority, 6–1–1
 Pilot Responsibility, 6–1–1
 Request Assistance Immediately, 6–1–1
 Search and Rescue, 6–2–4
 Services, 6–2–1
 Radar Service for VFR Aircraft in Difficulty, 6–2–1
 Survival Equipment, 6–2–6
 Transponder Operation, 6–2–1
 VFR Search and Rescue Protection, 6–2–5

Emergency Locator Transmitter, 6–2–2

En Route Flight Advisory Service, 7–1–7

Enhanced Flight Vision Systems, 5–4–58

Escort, 6–2–1

Explosives, FAA K–9 Detection Team Program, 6–2–3

F

FAROS. See Final Approach Runway Occupancy Signal (FAROS)

Final Approach Runway Occupancy Signal (FAROS), 2–1–9

Final Guard, 3–5–1

FIS–B. See Flight Information Service–Broadcast

Flight
 Aerobatic, 8–1–8
 Fitness, 8–1–1
 Illusions, 8–1–5
 Safety, Meteorology, 7–1–1
 Vision, 8–1–6

Flight Check Aircraft, 4–3–25

Flight Information Service–Broadcast, 4–5–18

Flight Information Services, 7–1–22

Flight Inspections Aircraft, 4–3–25

Flight Management System, 1–2–3, 5–1–12

Flight Plan
 Change, 5–1–30
 Proposed Departure Time, 5–1–30
 Closing
 DVFR, 5–1–30
 VFR, 5–1–30
 Composite, VFR/IFR, 5–1–11
 DVFR Flights, 5–1–10
 Explanation of IFR, 5–1–15
 Explanation of VFR, 5–1–9
 Form 7233–I, 5–1–9, 5–1–16
 IFR, Canceling, 5–1–30
 IFR Flights, Domestic, 5–1–11
 VFR Flights, 5–1–7

Flight Restrictions, Temporary, 3–5–2

Flight Service Stations, 4–1–1

Flights, Outside the United States, 5–1–28

Fly Visual to Airport, 5–4–18

Flying, Mountain, 7–5–3
[References are to page numbers]

FMS. See Flight Management System
Forms
Bird Strike Incident/Ingestion Report, Appendix 1–1
Volcanic Activity Reporting Form, Appendix 2–1
Frequency, Instrument Landing System, 1–1–10
FSS. See Flight Service Stations
Fuel Dumping, 6–3–7

G

Gate Holding, 4–3–18
GBAS. See Ground Based Augmentation System
Glideslope, Visual Indicators, 2–1–1
Global Positioning System, 1–1–18
Database, 1–1–25
Equipment, 1–1–25
GPS Approach Procedures, 1–1–25
GNSS. See Global Navigation Satellite System
GPS. See Global Positioning System
GPS Approach Procedures, 1–1–25
Ground Based Augmentation System (GBAS), 1–1–37
Ground Based Augmentation System (GBAS) Landing System (GLS), 1–1–36
Ground Station, Call Signs, 4–2–4
Ground Vehicle Operations, 4–1–6
Gulf of Mexico Grid System, 10–1–6

H

Half–Way Signs, 7–5–5
Hand Signals, 4–3–25
Hazard
Antenna Tower, 7–5–1
Bird, 7–4–1
Flight
Obstructions to Flight, 7–5–1
Potential, 7–5–1
VFR in Congested Areas, 7–5–1
Ground Icing Conditions, 7–5–12
Mountain Flying, 7–5–3
Overhead Wires, 7–5–2
Thermal Plumes, 7–5–13
Unmanned Balloons, 7–5–2
Volcanic Ash, 7–5–7
Hazardous Area Reporting Service, 4–1–18
HDTA. See High Density Traffic Airports
Helicopter
IFR Operations, 10–1–1
Landing Area Markings, 2–3–19
VFR Operations at Controlled Airports, 4–3–18
Special Operations, 10–2–1
Wake Turbulence, 7–3–6
High Density Traffic Airports, 4–1–21
Hold, For Release, 5–2–4
Holding, 5–3–8
Holding Position Markings, 2–3–1, 2–3–12
for Instrument Landing Systems, 2–3–12
for Taxiway/Taxiway Intersections, 2–3–12
Holding Position Signs, Surface Painted, 2–3–12
Hypoxia, 8–1–3

I

Icing Terms, 7–1–45
IFR, 4–4–4
Operations, To High Altitude Destinations, 5–1–27
Procedures, Use When Operating VFR, 5–1–2
IFR
Approaches, 4–1–6
Military Training Routes, 3–5–2
Separation Standards, 4–4–7
ILS. See Instrument Landing System
In–Runway Lighting, 2–1–6
Taxiway Centerline Lead–off Lights, 2–1–6
Taxiway Centerline Lead–On Lights, 2–1–6
Touchdown Zone Lighting, 2–1–6
Incident, Aircraft, Reporting, 7–6–1
Inertial Navigation System, 1–1–17
Inertial Reference Unit (IRU), 1–1–17, 5–1–12
Initial Contact, 4–2–1
INS. See Internal Navigation System
Instrument Departure Procedures (DP), 5–2–5
Instrument Landing System, 1–1–7
Category, 1–1–10
Compass Locator, 1–1–10

I–6
Course, Distortion, 1−1−11
Distance Measuring Equipment, 1−1−9
Frequency, 1−1−10
Glide Path, 1−1−9
Glide Slope, 1−1−9
 Critical Area, 1−1−11
Holding Position Markings, 2−3−12
Inoperative Components, 1−1−11
Localizer, 1−1−8
 Critical Area, 1−1−11
Locators, Compass, 1−1−7
Marker Beacon, 1−1−9
Minimums, 1−1−10
Instrument Meteorological Conditions (IMC), 5−2−6
Integrated Terminal Weather System, 4−3−12
Intercept, 6−2−1
Interception
 Procedures, 5−6−2
 Signals, 5−6−7
Interchange Aircraft, 4−2−4
International Flight Plan, IFR, Domestic, International, 5−1−17
International Flight Plan (FAA Form 7233−4)—IFR Flights (For Domestic or International Flights), 5−1−17
Intersection Takeoffs, 4−3−13
IR. See IFR Military Training Routes
IRU. See Inertial Reference Unit
ITWS. See Integrated Terminal Weather System

K
K−9 Explosives Detection Team, 6−2−3

L
LAHSO. See Land and Hold Short Operations
Land and Hold Short Lights, 2−1−6
Land and Hold Short Operations (LAHSO), 4−3−14
Landing
 Minimums, 5−4−52
 Priority, 5−4−62
Laser Operations, 7−5−10
Law Enforcement Operations
 Civil, 5−6−6
 Military, 5−6−6
LDA. See Localizer—Type Directional Aid
Leased Aircraft, 4−2−4
Lifeguard, 4−2−4
Light Signals, Traffic Control, 4−3−16
Lighting
 Aeronautical Light Beacons, 2−2−1
 Aids
 Airport, 2−1−1
 Approach Light Systems, 2−1−1
 Control of Lighting Systems, 2−1−11
 In−Runway Lighting, 2−1−6
 Pilot Control of Airport Lighting, 2−1−11
 Runway End Identifier Lights, 2−1−6
 Taxiway Lights, 2−1−15
 Airport/Heliport Beacons, 2−1−14
 Airport, Radio Control, 4−1−6
 Code Beacon, 2−2−1
 Course, 2−2−1
 Navigation, 2−2−1
 Obstruction, 2−2−1
Line Up and Wait, 5−2−1
LLWAS. See Low Level Wind Shear Alert System
Local Airport Advisory (LAA), 3−5−1, 4−1−3
Local Flow Traffic Management Program, 5−4−3
Localizer Performance with Vertical Guidance, 1−1−32
Localizer—Type Directional Aid, 1−1−8
Locator, Compass, 1−1−10
Long Island Sound Reporting Service, 4−1−18
Long Range Navigation, 1−1−17
LORAN. See Long Range Navigation
Low Approach, 4−3−16
Low Level Wind Shear Alert System (LLWAS), 4−3−12, 7−1−52
Low Level Wind Shear/Microburst Detection Systems, 4−3−12
LPV. See Localizer Performance with Vertical Guidance
LUAW. See Line Up and Wait

Index
[References are to page numbers]

M

Magnetic Variation, 1−1–28
MAYDAY, 6–3–1

Medical
Carbon Monoxide Poisoning, 8–1–5
Decompression Sickness, 8–1–4
Facts, Pilots, 8–1–1
Flight, Ear Block, 8–1–4
Illness, 8–1–1
Medication, 8–1–1
Sinus Block, 8–1–4

Meteorology, 7–1–1
ATC InFlight Weather Avoidance, 7–1–38
Automated Surface Observing System, 7–1–29
Categorical Outlooks, 7–1–18
Clear Air Turbulence, 7–1–48
Cloud Heights, Reporting, 7–1–42
Direct User Access Terminal System, 7–1–3
Drizzle, Intensity, 7–1–43
En Route Flight Advisory Service, 7–1–7
FAA Weather Services, 7–1–1
ICAO, Weather Formats, 7–1–63
Icing, Airframe, 7–1–44
Inflight Aviation Weather Advisories, 7–1–8
Inflight Weather Broadcasts, 7–1–19
Microbursts, 7–1–48
National Weather Service, Aviation Products, 7–1–1
Pilot Weather Reports, 7–1–43
Precipitation, Intensity, 7–1–42
Preflight Briefing, 7–1–5
Runway Visual Range, 7–1–40
Telephone Information Briefing Service, 7–1–19
Thunderstorms, 7–1–58
Flying, 7–1–59
Transcribed Weather Broadcast, 7–1–19
Turbulence, 7–1–47
Visibility, Reporting, 7–1–42
Weather, Radar Services, 7–1–34
Weather Observing Programs, 7–1–26
Wind Shear, 7–1–48

Microwave Landing System, 1–1–14
Approach Azimuth Guidance, 1–1–14
Data Communications, 1–1–15
Elevation Guidance, 1–1–15
Operational Flexibility, 1–1–16
Range Guidance, 1–1–15

Military NOTAMs, 5–1–3
Military Operations Areas, 3–4–2
Military Training Routes, 3–5–1

IFR, 3–5–2
VFR, 3–5–2
Minimum, Fuel Advisory, 5–5–7
Minimum Safe Altitudes, 5–4–8
Minimum Turning Altitude (MTA), 5–3–8
Minimum Vectoring Altitudes, 5–4–16
Minimums
Approach, 5–4–52
Instrument Landing Systems, 1–1–10
Landing, 5–4–52
Missed Approach, 5–4–55
MLS. See Microwave Landing System
MOA. See Military Operations Areas
Mode C, 4–1–15
Mountain Flying, 7–5–3
Mountain Wave, 7–5–4
Mountainous Areas, 5–6–9
MSA. See Minimum Safe Altitudes
MTA. See Minimum Turning Altitude (MTA)
Multicom, 4–1–6
MVA. See Minimum Vectoring Altitudes

N

National Forests, 7–4–1
National Geospatial–Intelligence Agency (NGA), 5–4–7
National Parks, 7–4–1
National Refuges, 7–4–1
National Security Areas, 3–4–2
National Weather Service, Aviation Products, 7–1–1
NAVAID
Identifier Removal During Maintenance, 1–1–16
Maintenance, 1–1–16
Performance, User Report, 1–1–17
Service Volumes, 1–1–4
with Voice, 1–1–17
Navigation, Aids, 1–1–1
Nondirectional Radio Beacon, 1–1–1
Radio, VHF Omni–directional Range, 1–1–1
Navigation Reference System (NRS), 5–1–15
Navigational Aids, Radio
 Distance Measuring Equipment, 1–1–3
 Doppler Radar, 1–1–18
 Identifier Removal During Maintenance, 1–1–16
 Instrument Landing System, 1–1–7
 Localizer–Type Directional Aid, 1–1–8
 Long Range Navigation, 1–1–17
 Microwave Landing System, 1–1–14
 Navaid Service Volumes, 1–1–4
 NAVAIDs with Voice, 1–1–17
 Performance, User Report, 1–1–17
 Simplified Directional Facility, 1–1–12
 Tactical Air Navigation, 1–1–3
 VHF Omni–directional Range/Tactical Air Navigation, 1–1–3
 Inertial Navigation System, 1–1–17

NDB. See Nondirectional Radio Beacon

Near Midair Collision, 7–6–2

NGA. See National Geospatial–Intelligence Agency

NGMAC. See Near Midair Collision

Nondirectional Radio Beacon, 1–1–1

Nonmovement Area Boundary Markings, 2–3–18

NOTAM. See Notice to Airmen

Notice to Airmen, 5–1–2
 FDC NOTAM, 5–1–3
 NOTAM Contractions, 5–1–6
 NOTAM D, 5–1–3

Notice to Airmen System, 5–1–2

Notices to Airmen Publication, NTAP, 5–1–3

Obstacle Departure Procedures, 5–2–5

Obstruction Alert, 4–1–10

Operation Raincheck, 4–1–2

Operation Take–off, 4–1–2

Operational Information System (OIS), 5–1–10

Option Approach, 4–3–24

P

P–static, 7–5–9

PAN–PAN, 6–3–1

PAPI. See Precision Approach Path Indicator

PAR. See Precision Approach; Precision Approach Radar

Parachute Jumps, 3–2–2, 3–5–5

Phonetic Alphabet, 4–2–5

Pilot
 Authority, 6–1–1
 Responsibility, 4–1–14, 4–4–1, 4–4–4, 5–4–61, 5–5–1, 6–1–1, 7–3–6

Pilot Control of Airport Lighting, 2–1–11

Pilot Visits to Air Traffic Facilities, 4–1–1

Pilot Weather Reports, 7–1–43

Piracy, Air, Emergency, 6–3–6

PIREPs. See Pilot Weather Reports

Pointer NOTAMs, 5–1–3

Position Reporting, 5–3–3

Pre–departure Clearance Procedures, 5–2–1

Precipitation Static, 7–5–9

Precision Approach, 5–4–34

Precision Approach Path Indicator, 2–1–4

Precision Approach Radar, 4–5–7

Precision Approach Systems, 1–1–36

Preflight, Preparation, 5–1–1

Priority, Landing, 5–4–62

Procedure Turn, 5–4–28
 Limitations, 5–4–31

Procedures
 Arrival, 5–4–1
 En Route, 5–3–1
 Instrument Approach, 5–4–26
 Interception, 5–6–2

Prohibited Areas, 3–4–1

Publications, Aeronautical, 9–1–1

Published Instrument Approach Procedure Visual Segment, 5–4–18

Pulsating Visual Approach Slope Indicator, 2–1–5
Radar
 Air Traffic Control Radar Beacon System, 4−5−2
 Airport Route Surveillance Radar, 4−5−7
 Airport Surveillance Radar, 4−5−7
 Approach Control, 5−4−3
 Approaches, 5−4−34
 Capabilities, 4−5−1
 Doppler, 1−1−18
 Limitations, 4−5−1
 Monitoring of Instrument Approaches, 5−4−35
 Precision Approach, 4−5−7
 Precision Approach Radar, 4−5−7
 Surveillance, 4−5−7
 Vector, 5−5−3
Radar Assistance to VFR Aircraft, 4−1−11
Radar Beacon, Phraseology, 4−1−17
Radar Sequencing and Separation, VFR Aircraft, TRSA, 4−1−13
Radar Traffic Information Service, 4−1−8
Radio, Communications, 4−2−1
 Altitudes, 4−2−6
 Contact Procedures, 4−2−1
 Directions, 4−2−6
 Inoperative Transmitter, 4−2−7
 Phonetic Alphabet, 4−2−5
 Receiver Inoperative, 4−2−7
 Speeds, 4−2−6
 Student Pilots, 4−2−4
 Technique, 4−2−1
 Time, 4−2−6
 Transmitter and Receiver Inoperative, 4−2−7
 VFR Flights, 4−2−8
RCLS. See Runway Centerline Lighting
Receiver, VOR, Check, 1−1−2
REIL. See Runway End Identifier Lights
REL. See Runway Entrance Lights
Release Time, 5−2−4
Remote Airport Advisory (RAA), 3−5−1, 4−1−4
Remote Airport Information Service (RAIS), 3−5−1, 4−1−4
Required Navigation Performance (RNP), 1−2−1, 5−4−22
Required Navigation Performance (RNP) Operations, 5−1−30, 5−5−7
Rescue Coordination Center
 Air Force, 6−2−5
 Alaska, 6−2−5
 Coast Guard, 6−2−4
 Joint Rescue, Hawaii, 6−2−5
Reservations, Airport, 4−1−21
Responsibility
 Controller, 5−3−8, 5−4−61, 5−5−1
 Pilot, 4−1−14, 4−4−1, 4−4−4, 5−4−61, 5−5−1, 6−1−1, 7−3−6
Restricted Areas, 3−4−1
Restrictions
 Departure, 5−2−4
 Flight, Temporary, 3−5−2
RIL. See Runway Intersection Lights (RIL)
RNAV. See Area Navigation
RNP. See Required Navigation Performance
Route
 Coded Departure Route, 4−4−3
 Course Changes, 5−3−7
Route System, 5−3−5
Runway
 Friction Reports, 4−3−12
 Aiming Point Markings, 2−3−2
 Centerline Markings, 2−3−2
 Closed
 Lighting, 2−3−18
 Marking, 2−3−18
 Demarcation Bar, 2−3−4
 Designators, 2−3−2
 Friction Advisories, 4−3−12
 Holding Position Markings, 2−3−12
 Markings, 2−3−1
 Separation, 4−4−9
 Shoulder Markings, 2−3−3
 Side Stripe Markings, 2−3−3
 Signs, Distance Remaining, 2−3−29
 Threshold Bar, 2−3−4
 Threshold Markings, 2−3−3
 Touchdown Zone Markers, 2−3−2
Runway
 Edge Light Systems, 2−1−6
 End Identifier Lights, 2−1−6
 Entrance Lights, 2−1−7
 Centerline Lighting System, 2−1−6
 Status Light (RWSL) System, 2−1−7, 2−1−8
Runway Intersection Lights (RIL), 2−1−9
RWSL System, Runway Status Light (RWSL) System.
 See Runway Status Light (RWSL) System.
Runway, Visual Range, 7–1–40
Runways, Use, 4–3–7
RVR. See Runway Visual Range

S

Safety
Alert, 5–5–3
Alerts, 3–2–1
 Aircraft Conflict, 3–2–1
 Mode C Intruder, 3–2–1
 Terrain/Obstruction, 3–2–1
 Aviation, Reporting, 7–6–1
Seaplane, 7–5–6
Safety Alert, 4–1–10
 Aircraft Conflict Alert, 4–1–11
 Obstruction Alert, 4–1–10
 Terrain Alert, 4–1–10
SAR. See Search and Rescue
SCAT–I DGPS. See Special Category I Differential GPS
Scuba Diving, Decompression Sickness, 8–1–4
SDF. See Simplified Directional Facility
Seaplane, Safety, 7–5–6
Search and Rescue, 6–2–1, 6–2–4
Security, National, 5–6–1
Security Identification Display Area, 2–3–31
See and Avoid, 5–5–4
Separation
 IFR, Standards, 4–4–7
 Runway, 4–4–9
 Visual, 4–4–10, 5–5–5
 Wake Turbulence, 7–3–7
Sequenced flashing lights (SFL), 2–1–11
SFL. See Sequenced flashing lights
SIDA. See Security Identifications Display Area
Side–Step Maneuver, 5–4–52
Signs
 Airport, 2–3–1
 Half–Way, 7–5–5
Simplified Directional Facility, 1–1–12
Sinus Block, 8–1–4
Special Category I Differential GPS (SCAT–I DGPS),
 1–1–37
Special Instrument Approach Procedures, 1–1–36,
 5–4–27
Special Traffic Management Programs, 4–1–21
Special Use Airspace, 3–4–1
 Alert Areas, 3–4–2
 Controlled Firing Areas, 3–4–2
 Military Operations Areas, 3–4–2
 Prohibited Areas, 3–4–1
 Restricted Areas, 3–4–1
 Warning Areas, 3–4–1
Special Use Airspace (SUA) NOTAMs, 5–1–3
Special VFR Clearances, 4–4–3
Speed, Adjustments, 4–4–7, 5–5–4
Standard Instrument Departures, 5–2–5
Standard Terminal Arrival, 5–4–1
STAR. See Standard Terminal Arrival
Surface Painted Holding Position Signs, 2–3–12
Surveillance Approach, 5–4–34
Surveillance Radar, 4–5–7
Surveillance Systems, 4–5–1

T

TACAN. See Tactical Air Navigation
Tactical Air Navigation, 1–1–3
TAF. See Aerodrome Forecast
Takeoff Hold Lights (THL), 2–1–8
Takeoffs, Intersection, 4–3–13
Taxi
 Clearance, 5–2–1
 During Low Visibility, 4–3–21
Taxiway
 Centerline Markings, 2–3–7
 Closed
 Lighting, 2–3–18
 Marking, 2–3–18
 Edge Markings, 2–3–7
Geographic Position Markings, 2–3–10
Holding Position Markings, 2–3–12
Markings, 2–3–1, 2–3–7
Shoulder Markings, 2–3–7
Surface Painted Direction Signs, 2–3–10
Surface Painted Location Signs, 2–3–10
[References are to page numbers]

Taxiway Centerline Lead–Off Lights, 2–1–6
Taxiway Lights, 2–1–15
 Centerline, 2–1–15
 Clearance Bar, 2–1–15
 Edge, 2–1–15
 Runway Guard, 2–1–15
 Stop Bar, 2–1–15
TCAS. See Traffic Alert and Collision Avoidance System
TDWR. See Terminal Doppler Weather Radar
TDZL. See Touchdown Zone Lights
TEC. See Tower En Route Control
Telephone Information Briefing Service, 7–1–19
Temporary Flight Restrictions, 3–5–2
Terminal Arrival Area (TAA), 5–4–8
Terminal Doppler Weather Radar (TDWR), 4–3–12, 7–1–53
Terminal Radar Service Areas, 3–5–9
Terminal Radar Services for VFR Aircraft, 4–1–12
Terminal Weather Information For Pilots System (TWIP), 7–1–58
Terrain Alert, 4–1–10
THL. See Takeoff Hold Lights
TIBS. See Telephone Information Briefing Service
 Time
 Clearance Void, 5–2–4
 Release, 5–2–4
TIS. See Traffic Information Service
TIS–B. See Traffic Information Service–Broadcast
TLS. See Transponder Landing System
Touchdown Zone Lights (TDZL), 2–1–6
Tower, Antenna, 7–5–1
Tower En Route Control, 4–1–14
Traffic
 Advisories, 5–5–4
 Local Flow Traffic Management Program, 5–4–3
Traffic Advisory Practices, Airports Without Operating Control Towers, 4–1–2
Traffic Alert and Collision Avoidance System, 4–4–11
Traffic Control Light Signals, 4–3–16
Traffic Information Service, 4–5–8
Traffic Information Service (TIS), 4–4–11
Traffic Information Service–Broadcast, 4–5–17
Traffic Patterns, 4–3–2
Transcribed Weather Broadcast, 7–1–19
Transponder Landing System (TLS), 1–1–36
Transponder Operation, 4–1–15
 Automatic Altitude Reporting, 4–1–15
 Code Changes, 4–1–16
 Emergency, 6–2–1
 Ident Feature, 4–1–16
 Mode C, 4–1–15
 Under Visual Flight Rules, 4–1–17
 VFR, 4–1–17
Tri–Color Visual Approach Slope Indicator, 2–1–4
TRSA. See Terminal Radar Service Areas
Turbulence, Wake, 7–3–1
 Air Traffic Separation, 7–3–7
 Helicopters, 7–3–6
 Pilot Responsibility, 7–3–6
 Vortex Behavior, 7–3–2
 Vortex Generation, 7–3–1
 Vortex Strength, 7–3–1
TWEB. See Transcribed Weather Broadcast
TWIP. See Terminal Weather Information For Pilots System

U

Ultralight Vehicles, 3–2–2
Unicom, 4–1–6
Unidentified Flying Object (UFO) Reports, 7–6–3
Unmanned Aircraft, 7–5–2
Urgency, 6–3–1

V

VASL. See Visual Approach Slope Indicator
VCOA. See Visual Climb Over the Airport
VDP. See Visual Descent Points
Vector, Radar, 5–5–3
Vehicle Roadway Markings, 2–3–16
Vertical Navigation, 5–1–12
VFR Corridors, 3–5–7
[References are to page numbers]

VFR Flights in Terminal Areas, 4–3–18
VFR Flyways, 3–5–5
VFR Military Training Routes, 3–5–2
VFR Transition Routes, 3–5–7
VFR–on–Top, 5–5–6
VHF Omni–directional Range, 1–1–1
VHF Omni–directional Range/Tactical Air Navigation, 1–1–3

Visual
 Approach, 5–4–60, 5–5–5
 Clearing Procedures, 4–4–10
 Glideslope Indicators, 2–1–1
 Separation, 4–4–10, 5–5–5
Visual Approach Slope Indicator, 2–1–1
Visual Climb Over the Airport (VCOA), 5–2–8
Visual Descent Points, 5–4–18
Visual Meteorological Conditions (VMC), 5–2–6
Visual Segment, 5–4–18
VNAV. See Vertical Navigation
Void Times, Clearance, 5–2–4

Volcanic, Ash, 7–5–7
Volcanic Activity Reporting, Forms. See Appendix 2
VOR See also VHF Omni–directional Range
 Receiver Check, 1–1–2
VOR Receiver Checkpoint Markings, 2–3–16
VORTAC. See VHF Omni–directional Range/Tactical Air Navigation
VR. See VFR Military Training Routes

W

Waivers, 4–1–23
Wake, Turbulence, 7–3–1
Warning Areas, 3–4–1
Weather
 Deviations in Oceanic Controlled Airspace, 7–1–39
 ICAO, Weather Formats, 7–1–63
Weather System Processor (WSP), 4–1–23, 4–3–12, 7–1–54
WSP. See Weather System Processor