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EXECUTIVE SUMMARY 
 

Progressively complex microprocessors originally developed for consumer, automotive, and 
industrial uses are being used in aviation applications.  These microprocessor devices reduce the 
size, weight, and power requirements of a product and add capability by using advanced design 
and dense component packaging techniques.  However, evolving microprocessor architectures 
include concepts, such as caching and pipelining, which can affect system predictability and 
safety.  This is especially true as more complex microprocessors are being used, more complex 
hardware is integrated, and fully partitioned systems are being implemented.  Thus a defined 
process for microprocessor evaluation and acceptance is needed. 
 
This research focuses on current microprocessors being proposed on aircraft and establishes 
evaluation criteria.  The project (1) considers the applicability of RTCA/ DO-254 to 
microprocessors, documents potential safety concerns when using modern microprocessors on 
aircraft, and proposes potential approaches for addressing these safety concerns; (2) considers 
issues of modern microprocessor architecture and related system architectures and their use in 
integrated modular avionics; and (3) provides practical techniques for use by aircraft 
manufacturers, avionics developers, certification authorities, and other stakeholders.  The project 
also provides criteria for the level of rigor required for various levels of systems that use 
microprocessors (i.e., to provide an approach for scaling the criteria depending on the functional 
criticality of the processor).  The results will be used by the Federal Aviation Administration 
(FAA) to develop policy, regulations (if deemed needed), and guidance materials for industry.  
The output may be expanded upon in the future to address other commercially available complex 
devices. 
 
This project is being performed in two phases by a combination of avionics system developers 
(BAE Systems, The Boeing Company, and Smiths Aerospace) and FAA organizations 
responsible for aircraft safety research and development. 
 
Phase 1 established the project scope and identified the research parameters as documented in 
this report:  (1) survey of industry and government organizations responsible for the 
development and certification of avionics systems, (2) search of relevant literature, (3) detailed 
evaluation of existing FAA policy and guidance, and (4) development of subject white papers 
that provides the basis for Phase 2, as shown in the list below. 
 
• Safety Issues and mitigation strategies related to modern microprocessor architectures 

• RTCA/DO-254 suitability for the evaluation of microprocessors 

• Issues unique to commercial-off-the-shelf microprocessors 

• Evaluation criteria for microprocessors 

• Issues related to microprocessor obsolescence 
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• Evaluation criteria based on criticality levels 

• Comprehensive survey of strategies for worst case execution time in the presence of 
unpredictable computation components such as pipeline, caches, and branch prediction.  

• Approaches and strategies for microprocessor test and validation 

• Issues related to System-on-a-Chip architectures 

Candidate microprocessors have been selected for detailed case studies in Phase 2 and will 
provide a detailed analysis of these candidate microprocessors to establish and document 
approaches for evaluating microprocessors to ensure that the safety issues have been addressed.  
Phase 2 will also provide evaluation criteria specific to microprocessors that may be used to 
comply with RTCA/DO-254 or to serve as input to an FAA Advisory Circular or as an update to 
RTCA/DO-254.  These evaluations will be based on test scenarios and test cases to be applied to 
test environments for the candidate microprocessors.   

Evaluation criteria and methods for microprocessors in avionics systems and applications will be 
developed, researched, and documented, including refinement of deterministic methods and 
evaluation of performance and functionality.  This report will be updated and the results of Phase 
2 will be refined into a Microprocessor Evaluation Handbook to provide input to the FAA policy 
and guidelines for evolving modern microprocessors.   
 
Management controls have been established to permit the FAA to publish safety issues and 
guidance while protecting the rights of all partners to the project technology developed during 
this undertaking. 
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1.  INTRODUCTION. 
 
The Aerospace Vehicle Systems Institute (AVSI) and Federal Aviation Administration (FAA) as 
partners have sponsored this research that focus on evaluation techniques to address the safety 
concerns when using Commercial Off-The-Self (COTS) microprocessors in avionics.  BAE 
Systems, The Boeing Company, and Smiths Aerospace, industry partners of AVSI, have actively 
participated in this effort.  Industry goals included effective ways to select, configure, and apply 
current and future microprocessors to cost-effective and safety-critical avionics applications.  
FAA goals included preparing policy and guidance for effective safety certification and use of 
newer microprocessors in future avionics systems.  
 
This project evaluates the use of modern microprocessors in airborne systems in two consecutive 
phases.  The first phase identifies the features and issues related to safety in the aeronautical use 
of microprocessors.  The second phase will establish and evaluate the methods to mitigate risk 
and ensure safety in the certification of these systems and products on aircraft. 
 
The safety issues of using microprocessors in avionics are outlined in section 2.  The RTCA/DO-
254, Design Assurance Guidance for Airborne Electronic Hardware [1], provides guidance that 
ensures that airborne electronic hardware performs its intended functions in the specified 
environment.  From this point on RTCA/DO-254 will be referred to as DO-254.  Section 3 of 
this report examines the suitability of that document for evaluating the use of microprocessors in 
aircraft.  The general conclusion is that DO-254 contains guidance for the evaluation of COTS 
microprocessors that will probably not be adequate to evaluate future microprocessor 
technologies and architectures.  These inadequacies are beginning to be experienced now and are 
reflected in the need to evaluate performance and functionality in cases where time-dependent 
predictability becomes obscure.  Future evaluation criteria are proposed in section 4. 
 
Processor evaluations should be done in a given application context, which requires the scaling 
of evaluation criteria for various levels of applications categorized according to safety-criticality.  
Section 5 classifies the evaluation criteria in safety levels A to E. 
 
Electronic component obsolescence is a major issue in the avionics industry.  However, it 
encompasses all variety of electronic circuits.  Section 6 discusses microprocessor obsolescence 
and presents a survey of available approaches and discusses their advantages and drawbacks. 
 
Section 7 compiles existing modeling approaches of advanced features of microprocessors for 
making worst-case execution time (WCET) predictions. 
 
Microprocessor testing and validation issues are presented in section 8.  A study into the system-
on-a-chip (SoC) integration issues for microprocessors in SoCs is presented in section 9.  The 
conclusion of the study carried out by AVSI and the FAA is presented in section 10.  
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2.  SAFETY ISSUES WHEN USING MICROPROCESSORS IN AVIONICS. 
 
2.1  OVERVIEW. 
 
This section discusses the safety issues when using microprocessors in avionics products.  There 
are several issues that are classified under different categories.  The following sections consider 
each category and further elaborate on the related safety issues.   
 
2.2  AVAILABILITY AND VALIDITY OF INFORMATION.  
 
Information about microprocessors is usually available in the form of user or reference manuals.  
These documents are provided by manufacturers to the customers to give them information about 
the usage of the microprocessor.  Information about the design, production, testing, and 
validation accomplished by the manufacturer are not included because it is considered 
proprietary information by the manufacturer/vendor.  Thus, studying the documentation alone is 
not sufficient to conclude that the design, production, and testing were all rigorous enough to 
guarantee that the microprocessor will function correctly in harsh or critical environments.  
Additionally, there may be some logic implemented on the microprocessor that has not been 
documented because it is used by the manufacturer for in-house testing.  These undocumented 
features may cause unpredictable execution.  Hence, the amount of information made available 
by the manufacturer is an issue when deciding which microprocessor to use in an avionics 
product.   
 
Validity of the information provided by the manufacturer also causes some concerns.  Different 
types of invalidity may arise.  The documentation may give incorrect information about a feature 
and this fact may not appear in the periodically released errata documents.  Documenting a 
nonexistent feature is another type of invalidity.  A manufacturer may decide not to implement a 
feature that initially was planned for, and if the information about this feature is not excluded 
from the documentation, the contents of the manuals will be misleading.  Such types of incorrect 
information are undesirable when a microprocessor is used in critical applications such as 
avionics.   
 
2.3  MANUFACTURER TRUSTWORTHINESS.  
 
Trustworthiness of the manufacturer refers to the company’s life expectancy, its financial 
stability, and its experience in working with and cooperating with military and avionics 
industries.  Using products of a manufacturer that goes out of business causes serious risks for an 
avionics product that on average has had a 30-year life expectancy.  Lack of experience in a 
similar application type is another concern because issues left unresolved by an inexperienced 
manufacturer may be repeated. 
 
2.4  MICROPROCESSOR TRUSTWORTHINESS.  
 
Trustworthiness of a microprocessor is decided by the different properties that it has or lacks.  
Predictable execution time of programs running on a microprocessor and their obsolescence are 
important topics that are discussed separately in sections 3 and 4.  Expected lifetime of a 
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microprocessor predicts the time that it will become obsolete.  The period of time it has been in 
the market is another trustworthiness criterion.  The microprocessors that have been in the 
market longer tend to be more robust because they have been extensively tested by being used in 
various applications fields.  This is not the case for newly released microprocessors because they 
have been tested by the manufacturer only.  If a manufacturer has not considered testing certain 
environmental scenarios, then the microprocessors may be unsuitable for avionics products.  
Testing the microprocessor in temperature ranges that arise in avionics environments is an 
example of such a situation.  The amount of support given by a manufacturer and the cost of this 
support is also important.  Assuring aircraft safety requires the number of faults be minimal.  
However, ensuring minimum number of faults may require the support of the manufacturer 
because the manufacturer possesses all the information about the design, production, and testing 
of the microprocessor.  Prompt notification of errata is also important. 
 
The components such as branch prediction, caches, pipelining, out-of-order execution, interrupt 
and interrupt masking, error detection and correction, and parity protection of different 
components (busses) are discussed in sections 2.5 and 2.6.   
 
2.5  UNPREDICTABLE EXECUTION AND WCET.  
 
The execution behavior of a microprocessor can be unpredictable due to some of the advanced 
features it incorporates.  This section compiles the list of the advanced features that are known to 
cause unpredictable execution times. 
 
Cache memories (Instruction, Data, L2 Cache (L2), Translation Look-Side Buffer, etc.) make the 
WCET of the running tasks difficult to predict because of the intertask and intratask interference 
caused through them.  In a multitasking environment, cache memories are shared resources and a 
cache line may be used by several tasks.  Intertask interference can occur during a context 
switch, where a newly scheduled task changes the cache contents by replacing existing entries 
used by other tasks.  However, this interference uncontrollably affects the execution times of 
tasks due to unpredictable capacity cache misses.  Intratask interference is caused because of 
capacity and conflict cache misses.  It is hard to predict the WCET of tasks unless the ratio of 
these misses is modeled and tightly bounded.  Cache memories cause unpredictable execution 
because intertask interference violates the principle of address partitioning.  Address partitioning 
is used for achieving security, and it requires that tasks do not affect the execution of each other 
uncontrollably.  But when the cache is a common resource used by all tasks without any 
restriction, the principle of address partitioning might not be achieved.   
 
Pipelining of instruction and branch prediction are among the advanced features that make 
WCET of tasks hard to predict.  Incorrect branch predictions stall the pipeline and this increases 
the execution times of tasks.  If the number of incorrect branch predictions is not modeled and 
tightly bounded from above, the WCET time of a task cannot be tightly bounded either.   
 
Out-of-order instruction execution or dynamic scheduling of instructions may cause timing 
anomalies.  For instance, when there is a cache hit, an instruction takes longer to execute than 
when there is a cache miss, contrary to popular knowledge that cache hits take less time.  For 
example, in a processor that employs out-of-order execution, a cache miss will allow subsequent 
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instructions to begin execution.  This out-of-order behavior may lead to a reduced execution time 
for a set of instructions.  This makes the WCET of tasks hard to predict.  Reference 2 gives an 
example of this anomaly. 
 
Interrupts are another source for WCET unpredictability.  Occurrence of an interrupt causes a 
context switch and hence intertask interference.  If enabled, an interrupt can occur at any time 
during normal execution and trigger a context switch leading to unpredictability.  
 
Other sources of WCET uncertainty are multimaster/arbitration for external busses and 
simultaneous use of multiple Direct Memory Access (DMA) engines.  The former can result in 
arbitration issues that can delay the completion of transactions while the latter can result in 
interleaving and nondeterministic completion of DMA transactions.   
 
2.6  FAULT  TOLERANCE SUPPORT.  
 
Fault tolerance support is important to ensure that the microprocessor continues to function 
correctly even when faults occur.  Several features of a microprocessor need to have fault 
tolerance support.  Internal address Data Tag, Register parity, and/or Error Correction Code 
(ECC) protection, and external interfaces (busses) supporting parity protection on address and 
data are crucial for fault tolerance.   
 
2.7  MICROPROCESSOR OBSOLESCENCE.  
 
Microprocessors are among the most popular packaged electronic components and observe fierce 
market competition.  Leading manufacturers always try to stay ahead of the competition by 
frequently introducing higher-performance products.  Microprocessors have several 
performance, design, and process attributes that have different values in different versions or 
stepping (minor revisions) of a microprocessor.  The safety-critical characteristics of the avionics 
applications are highly sensitive to the value of these attributes, which makes the microprocessor 
obsolescence much more likely for avionics systems.  The short product life of microprocessors 
is a concern in the avionics and other safety-critical systems that tend to have a very long 
projected operational life. 
 
Thus, microprocessor obsolescence must be treated as an integral part of the avionics product 
lifecycle.  The strategies dealing with microprocessor obsolescence attempt to manage the 
problem at several levels starting with techniques for predicting the microprocessor 
obsolescence, pushing the actual event of obsolescence by performing a life-time buy of the 
microprocessor, and various system modifications to accommodate a newer microprocessor. 
Section 6 deals with the approaches to mitigate microprocessor obsolescence and associated 
safety issues. 
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2.8  SAFETY ISSUES.  
 
The following list summarizes the safety issues raised when using a microprocessor in avionics 
products.  
 
• Available information about a microprocessor might not give sufficient information on 

all of its features.  

• Available information about a microprocessor might be invalid.  

• The manufacturers of a microprocessor might not be trustworthy because of their:  
 
- History  
- Expected lifetime  
- Financial stability  
- Lack of experience in similar applications  

 
• A microprocessor might not be trustworthy because of its:  

- History  
- Expected lifetime  
- Nonuse in similar applications  
- Support given by the manufacturer  
- Late notification of errata lists  
- Advanced features that cause unpredictability in execution times of tasks 
- Fault tolerance support  

 
• Runtimes of tasks running on a microprocessor might not be predictable because of:  

 
- Cache memories  
- Branch prediction  
- Out-of-order instruction execution  
- Interrupts  
- Multimaster/arbitration for external buses  
- Simultaneous use of multiple DMA engines  

 
• The fault tolerance support of a microprocessor might not be sufficient 

• Microprocessors become obsolete much before the lifetime of an avionics product ends 

• Failure of highly integrated microprocessors including input/output (I/O) controllers 
(single point failures with potentially significant impact) 

• Limited Built-In, Self-Test (BIST) support 
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• Limited performance and functionality testing 

• Lack of mechanism to handle microprocessor warning, failure, and error messages 

• Confidence in a microprocessor obtained from a primary manufacturer may not be 
extended to the same microprocessor obtained from secondary manufacturing sources 

• Lack of adequate testing of high-performance microprocessor containing many advanced 
features due to exploding testing complexity 

• Submicron proximity related problems in highly integrated microprocessors 

3.  DO-254 SUITABILITY FOR MICROPROCESSORS. 
 
3.1  OVERVIEW. 
 
This section comments on the suitability of DO-254 for evaluating microprocessors.  DO-254 
provides guidance that ensures that airborne electronic hardware safely performs its intended 
functions in the specified environment.  DO-254 considers all stages that are necessary to 
develop a hardware product.  The spectrum of the stages ranges from the hardware planning 
processes, to the hardware design and implementation processes, to the hardware validation and 
verification processes, and finally to the hardware maintenance processes.  This wide spectrum 
of guidance is not applicable for assessing the suitability of microprocessors in critical 
environments, because the manufacturer of the microprocessors may not follow the guidance 
give in DO-254.  If microprocessor vendors do follow DO-254 guidance, it has been the general 
practice for them not to release detailed information to protect the vendor’s proprietary 
information.  Additionally, DO-254 does not consider some safety issues discussed in section 2 
of this document.  Hence, DO-254 cannot normally be used as a basis for accepting or rejecting 
the usage of a given microprocessor in the avionics domain.  However, the objectives of DO-254 
may still be used as optional guidance, that if followed, gives additional confidence about the 
credibility of a given microprocessor. 
 
The analysis of DO-254 suitability for evaluating microprocessors is presented in sections 3.2, 
3.3, and 3.4.  Section 3.2 discusses the sections of DO-254 that are suitable for microprocessors.  
Section 3.3 comments on sections of DO-254 that are not suitable for microprocessors.  The 
main reason of the unsuitability is the lack of information required by the corresponding sections 
of DO-254.  Section 3.4 lists the safety issues for which DO-254 does not give guidance for 
mitigating them.   
 
3.2  SUITABLE SECTIONS OF DO-254 FOR EVALUATING MICROPROCESSORS.  
 
The guidance given in section 2, System Aspects of Hardware Design Assurance, of DO-254 is 
suitable for evaluating microprocessors.  The hardware related information required by the 
guidance on the “Information Flow From System Development Process to Hardware Design Life 
Cycle Process,” “Information Flow From Hardware Design Life Cycle Process to System 
Development Process” and “Information Flow Between Hardware Design Life Cycle Process 
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and Software Life Cycle Process” can be obtained through sources discussed in section 4.2 of 
this report.  For example, probabilities for hardware functional failures and failure conditions for 
each function can be obtained by the user by directly testing and verifying the microprocessor.  
Hardware safety assessment, quantitative assessment of random faults, and design errors and 
anomalies are possible by directly testing and verifying the hardware in the user environment. 
For long-term failures due to aging and environmental stress, the accelerated testing approaches 
such as burn-in and environmental stress testing (as explained in section 8 of this document) can 
be applied. 
 
Section 6, Validation and Verification Process, of DO-254 describes the validation and 
verification process.  Two types of validation and verification processes may be considered for a 
microprocessor:  validation and verification done by the manufacturer and validation and 
verification done by the applicant.  
 
When the validation and verification done by the manufacturer is considered, section 6 of DO-
254 is not applicable for evaluating microprocessors.  Information about the validation and 
verification done by the manufacturer is confidential and usually not accessible.  Even if this 
information is accessible, the validation and verification done by the manufacturer might not 
necessarily meet the guidance of DO-254.  However, this does not necessarily mean that the 
quality of a COTS microprocessor is not suitable for avionics.  For alternative criteria for 
evaluating microprocessors, refer to section 4 of this report.  If the validation and verification 
process information of the manufacturer is accessible, in addition to the alternative criteria in 
section 4 of this document, the objectives in section 6 of DO-254 may be used as optional 
criteria.  
 
Validation and verification of a microprocessor can also be done by the applicant.  The applicant 
should consider the evaluation criteria specified in section 4 of this report and make sure that the 
available sources of information are valid, the manufacturer and the microprocessor are 
trustworthy, the features that support predictable execution and fault tolerance function correctly, 
and the workarounds to design faults produce the expected execution.   
 
Section 7, Configuration Management Process, of DO-254 is applicable for evaluating 
microprocessors as there are many artifacts such as test patterns, performance profile and 
diagnostic programs, and other associated data that need to be managed similar to configuration 
items.  This step is important in implementing a successful microprocessor obsolescence 
management strategy as well.  
 
Section 11, Additional Considerations, of DO-254 is applicable for microprocessors.  The 
guidance on use of previously developed hardware should be used whenever a new stepping 
(corresponds to a new mask version which has been tuned according to more matured process 
parameters and incorporates minor fixes for field-reported problems) of a microprocessor is 
released and will be used in an avionics product.  Section 11 of DO-254 has dedicated 
subsections that give guidance on microprocessor components usage and product service 
experience.  These subsections are directly applicable to COTS microprocessors but do not give 
guidance on mitigating all the safety issues.  The guidance given in DO-254 on tool assessment 
and qualification is not applicable to microprocessors when the tools used by the manufacturer 

7 



 

are considered.  However, when the tools used by the user for testing and verification of the 
microprocessor are considered, then guidance of DO-254 becomes applicable.   
 
3.3  UNSUITABLE SECTIONS OF DO-254 FOR EVALUATING MICROPROCESSORS.  
 
Section 4, Planning Process, of DO-254 is not applicable for evaluating microprocessors.  
Information about the hardware planning process for controlling the development of 
microprocessors probably will be lacking because the manufacturer will not be willing to share 
this information.  Even if the manufacturer shares this information, the hardware planning 
process of the manufacturer may not overlap with the guidance of DO-254.  However, the 
hardware planning process of the manufacturer might still be good enough such that the final 
product (the COTS microprocessor) meets the requirements of high-criticality levels.  Similarly, 
section 5, Hardware Design Process, of DO-254 is not applicable for evaluating 
microprocessors.  Information about the hardware design process of a microprocessor will be 
lacking because it is confidential to the manufacturer.  It is possible to develop a model for 
studying the reliability of the design of a microprocessor (see section 5.7 of this report).    
 
Section 8, Process Assurance, of DO-254 is not applicable for COTS microprocessors.  
Information about the life cycle process of a microprocessor will be lacking because it is 
confidential to the manufacturer.  Besides, the general market mainly determines the life cycle of 
microprocessors and the microprocessor demand of the avionics industry is negligible compared 
to the demand of the general market (e.g., demand of the cell phone industry).   
 
Section 9, Certification Liaison Process, of DO-254 is not applicable for microprocessors 
because the certification authority will not be able to provide input to the hardware design life 
cycle.  A manufacturer of microprocessors considers the general market demand and will not 
establish a communication with the certification authority because that will require him to 
concentrate only on a small portion of the market.   
 
3.4  SAFETY ISSUES NOT CONSIDERED BY DO-254.  
 
DO-254 does not give guidance on the following safety issues:  
 
• Certifying the availability and validity of information on a microprocessor  
• Assessing the trustworthiness of a manufacturer  
• Assessing the trustworthiness of the microprocessor  
• Mitigating WCET unpredictability caused by advanced features  
• Assessing the degree of fault tolerance support  
• Mitigating microprocessor obsolescence  
• Use of performance and functionality testing in lieu of predictability (WCET) 
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4.  EVALUATION CRITERIA FOR MICROPROCESSORS.  
 
4.1  OVERVIEW. 
 
This section discusses the sufficient criteria for evaluating the suitability of a microprocessor in 
avionics.  The evaluation criteria specified in this section should provide a basis for the 
development of standards, guidelines, and processes to be used in lieu of the guidance of DO-
254.  The evaluation criteria are divided in the following categories: 
 
• Availability and validity of information 
• Trustworthiness of a manufacturer 
• Trustworthiness of a microprocessor 
• Predictable execution 
• Fault tolerance support 
• Reliability of the design 
• Availability and suitability of tools 
• Adequate mitigation for microprocessor obsolescence 
• Performance and functional testing 
 
The following sections discuss each category. 
 
4.2  AVAILABILITY AND VALIDITY OF INFORMATION. 
 
Availability of information about a microprocessor is crucial for understanding its features.  
Information can be obtained from different sources: 
 
• Public documentation provided by the manufacturer  

• Published case studies  

• Information obtained from the manufacturer under nondisclosure agreement  

• Direct testing and evaluation of the microprocessor in test bed and/or in the target 
application  

The criteria that can be used for validating the available information are discussed below.  
Possible ways of validating public documentation provided by the manufacturer are the 
following:  
 
• Compare the release date of the public documentation against the release date of the 

corresponding microprocessor.  If the release date of the public documentation is before 
the release date of the microprocessor (6-12 months), the documentation could be 
outdated.  

• Contact the manufacturer and ask if the available public documentation is outdated.  The 
customer support services should be able to answer this question.  
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• Compare the public documentation against the published case studies.  This will show the 
inconsistencies (if any) between them.  Any such inconsistency is an indication that the 
public documentation includes invalid information.  

The criterion for evaluating published case studies is that the reported results should be 
reproducible.  Enough information should be given in the case studies so that the user can obtain 
the reported results.   
 
Information obtained from the manufacturer under nondisclosure agreement can be assumed to 
be reliable in the sense that it is less likely to be misleading because of outdated or incomplete 
information. The main issue with this type of information is that the manufacturer may request 
payment in exchange for this information. The cost of buying (if applicable) confidential 
information about a microprocessor could be prohibitive. Some manufacturers might not agree to 
sell any sensitive information about their products even for a high cost. The risks of a 
manufacturer’s refusal to sell the information and the cost of keeping the information 
confidential should also be considered.  
 
4.3  MANUFACTURER TRUSTWORTHINESS.  
 
Business research should be done to answer the following questions about the trustworthiness of 
a manufacturer (ordering does not imply priority):  
 
• How long has the manufacturer been in business?  

• How long the manufacturer is expected to remain in business? 

• Is the manufacturer International Organization for Standardization 9001 certified?  

• Is the manufacturer financially stable?  

• Does the manufacturer currently support or has previously supported a full Military 
Temperature/Defense Supply Center Columbus product line (extended temperature 
ranges, industrial/automotive/full military)?  

• Previous design history/experience with similar product lines/environments.  

Manufacturers that satisfy the above criteria should be given priority over others, everything else 
being equal. 
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4.4  MICROPROCESSOR TRUSTWORTHINESS.  
 
Research should be done to answer questions about the trustworthiness of a microprocessor 
(ordering does not imply priority).  Some listed items are further elaborated in the reference 
sections.  
 
• How long the microprocessor has been in the market? 

• What is the expected lifetime of the microprocessor? 

• Is the microprocessor used in a similar application type? 

• What is the temperature range in which the microprocessor can operate? 

• Previous up screening experience and yield information (i.e., up screen industrial 
temperature part to military temperature range). 

• Does the manufacturer provide support? What kind of support is available?  Are problem 
histories made available? 

• What point will the support be withdrawn or incur higher cost? 

• Is there a warranty, and what limits exist on this warranty? 

• Is there prompt and automated notification support of updated design, process, die, and  
errata information?  

• Are memory management units (MMU), hardware, and software partitioning supported?  

• Are nonmaskable interrupt(s) supported?  

• Does the microprocessor have components (e.g., cache, branch predictor) that would 
cause the execution time to be unpredictable? (See section 4.5) 

• Is there internal address, data, tag, and register parity, or ECC protection? (see section 
4.6.1.) 

• Are there internal or external memory controller/bridge controller support (required 
companion chips)?  

• Do external interfaces (busses) support parity protection on address and data?  

4.5  PREDICTABLE EXECUTION. 
 
Assessing predictable execution of a microprocessor requires identifying both its advanced 
features that cause unpredictability and the attributes that it has for supporting remedies.  If there 
is a remedy for each type of unpredictability, then the microprocessor can be configured to 
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execute predictably.  The possible remedies to causes of unpredictability discussed in section 2.5 
are discussed below.   
 
WCET can be unpredictable either because of intertask interference or intratask interference 
through the cache.  Possible remedies are: 
 
• If the microprocessor supports turning off the cache, the cache may be turned off.  This 

approach solves the address space partitioning violation problem as well.  However, this 
is undesirable because it degrades the system performance considerably.   

• If the microprocessor supports the cache-locking feature, cache locking can be used for 
eliminating the effects both due to intertask and intratask interferences.   

• Partitioning the cache among different tasks is a method for eliminating the intertask 
interference effects.  Current microprocessors, (as of September 2005) do not provide 
hardware support for partitioning the cache.  An alternative is to use software-based 
cache partitioning, as explained in reference 3.  However, this needs compiler support, as 
explained in reference 4.  Cache partitioning solves the address space partitioning 
violation problem as well.   

• If the microprocessor supports flushing and invalidation of cache lines, the cache can be 
emptied upon a context switch.  This eliminates the effects due to intertask interference 
because each time a new task is scheduled the cache is empty.  It also solves the address 
space partitioning violation problem.   

• Model the cache (as explained in section 7.2 of this report) to make WCET prediction 
more precise.  

The associativity of the cache may affect the applicability of some of the remedies.  For 
example, software cache partitioning is not suitable for high-associativity caches because 
software-based cache partitioning works best with direct-mapped caches. 
 
Possible remedies to uncertainty caused by incorrect branch predictions are: 
 
• If the microprocessor supports turning the branch prediction off, turn it off.  This will 

cause pipeline stalls for each fetched branch instruction and will reduce the parallelisms 
of the code.  However, the unpredictability caused by the branch instruction is 
eliminated.  

• Model the branch prediction (as explained in section 7.3 of this document) to estimate the 
upper bound of the number of incorrect branch predictions.  This will also give an upper 
bound for the number of pipeline stalls due to incorrect branch predictions.  WCET 
estimation uses this bound for making timing predictions.  The number of pipeline stalls 
can be predicted by modeling the pipeline as well.  This subject is discussed in section 
7.4 of this report.  
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Enforcing in-order execution can eliminate the uncertainties caused by out-of-order instruction.  
This usually requires hardware support in the microprocessor in the form of an in-order 
instruction issue logic core in addition to the out-of-order issue logic core.  Another technique 
might be to introduce pseudodependency in the instruction to prevent it from being scheduled 
out of order.  However, this will require in-depth, control-flow, and data-flow analyses of the 
source program and internal knowledge about the out-of-order issue logic and may eventually 
turn out to be a costlier solution due to decreased application performance introduced by 
pseudodependencies. 
 
4.6  FAULT TOLERANCE SUPPORT. 
 
4.6.1  Overview. 
 
The analysis discussed here adopts the techniques developed in references 5 and 6 for assessing 
the applicability of microprocessors in high-confidence systems.  According to references 5 and 
6, a COTS microprocessor may be applicable in high-confidence systems if it supports fault 
tolerance (error detection and recovery) features such that it is assured that it continues to 
function correctly in the presence of faults.  In references 5 and 6, information is collected from 
publicly available technical documentation only; however, each type of information specified in 
section 4.2 of this report can be used.  The techniques answer the following questions: 
 
• Which built-in fault tolerance features are available in a microprocessor (i.e., internal and 

external bus address/data parity or ECC coverage, internal register parity, internal and 
external cache address/data/tag parity or ECC coverage, hardware or software watchdog 
monitor, and redundant clock inputs)?  

• How effective are the built-in fault tolerance features?  

• What mechanisms are available to test these built-in, fault-tolerant features?  

The approach consists of three modeling elements.  Each modeling element is discussed in the 
following sections.  The case studies considered here as examples study the Intel Pentium® II 
and IBM S/390 microprocessors.  Similar studies will be conducted for the MPC8540 and 
PowerPC 7447 microprocessors chosen as case studies for Phase 2.   
 
4.6.2  Fault Model. 
 
The fault model gives the list of faults to be evaluated for acceptable levels of risk.  The case 
study in reference 5 gives two examples.  For the Intel Pentium® II processor, the fault model list 
contains:  
 
• Recoverable errors  
• Unrecoverable errors  
• Fatal errors  
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For the IBM S/390 G5, the fault model is:  
 
• Permanent errors  
• Transient faults  
 
4.6.3  System Model. 
 
The system model consists of four parts: 
 
• Performance delivery architecture (PDA)  
• Confidence assurance architecture (CAA)  
• Operation modes  
• Configuration  
 
The PDA is the logic part of the processor that is responsible for delivering the documented 
performance.  Following are the PDAs for Intel Pentium II and IBM S/390 respectively as 
presented in reference 5.  
 
• Intel Pentium II PDAs: 

- Fetch/Decode Unit (FDU) 
- Dispatch/Execution Unit (DEU) 
- Retire Unit (RU) 
- L1 Data & Instruction Cache (L1C) 
- L2 Cache (L2C) 
- Bus Interface Unit (BIU) 
- Advanced Programmable Interrupt Controller (APIC) 

 
• IBM S/390 PDAs: 
 

- I-Unit 
- E-Unit:  Fixed-Point Unit and Floating-Point Unit 
- Buffer Control Unit (BCU):  store buffer (SB) and other arrays (OA) 
- BIU 

 
The CAA is the logic part of the processor that is responsible for assuring that the PDA delivers 
the documented performance in the presence of faults.  The functions that it provides are:  
 
• Error detection (ED)  
• Error recovery (ER)  
• Error logging/reporting (ELR)  
• Fault diagnosis (FD)  
 
Tables 1 and 2 give the CAAs for Intel Pentium II and IBM S/390 respectively as presented in 
reference 5. 
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Table 1.  Intel Pentium II CAAs 
 

CAA Functional Unit Functions 
Voltage Monitoring Unit  ED 
Thermal Monitoring Unit  ED 
Parity Checking Unit  ED 
Functional Redundancy Checking Unit  ED 
Error Correction Code Unit  ED, ER 
Watchdog Timer  ED 
Checksum Unit  ED 
Memory Protection Unit  ED 
Reasonableness Checking Unit  ED, ER 
Retry Logic  ER 
Machine Check Architecture ED, ER, ELR 
Built–In, Self–Test Unit  FD 
Test Access Port  FD 
Debugging Unit  FD 

 
Table 2.  IBM S/390 CAAS 

 
CAA Functional Unit Functions 

Parity Checking Unit  ED 
Error Correction Code Unit  ED, ER 
Checksum Unit  ED 
Memory Protection Unit  ED 
Reasonableness Checking Unit  ED 
Timer  ED 

Comparison Logic  ED 
Checkpoint Array  ER 
Retry Logic  ER R-Unit 

Trace Array  FD 
Memory Scrubbing Logic  ER 
Cache Line Delete/Relocate Logic  ER 
Machine Check Logic  ED, ELR 
Built–In, Self–Test Unit  FD 

 
The examples given in reference 5 indicate that Pentium II processor has five and IBM S/390 G5 
has six operation modes.  The following are the operation modes for Pentium II:  
 
• Start  
• Test  
• Normal  
• System management mode  
• Recovery  
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The following are the operation modes for the IBM S/390 G5:  
 
• Load  
• Test  
• Operating  
• Recovery  
• Stop  
• Check-stop  
 
The case study in reference 5 specifies that the Pentium II processor can be configured in three 
different ways:  Uniprocessor (UP), Multiprocessor (MP), and Functional redundancy  
checking.  
 
IBM S/390 G5 has two main configurations:  UP and MP. 
 
Both configurations of IBM S/390 G5 have three subconfigurations:  UP/MP with spare only, 
UN/MP with service assist processor only, and UP/MP with both spare and service  
assist processor.  
 
4.6.4  Effectiveness Measure. 
 
The fault model, the system model, and the public documentation are used for building two 
coverage matrices: PDA Coverage Matrix and the CAA Coverage Matrix.  
 
The rows of the PDA coverage matrix consist of PDA elements identified in the system model.  
The columns consist of the confidence assurance functions (ED, ER, ELR, and FD).  Similarly, 
each row of the CAA coverage matrix corresponds to one CAA element identified in the system 
model, and the columns consist of the confidence assurance functions.  The effectiveness 
measure is conducted by deriving the entries of the PDA and CAA coverage matrices. 
 
The PDA coverage matrices for the Pentium II and IBM S/390 G5 were developed in reference 5 
and are given in tables 3 and 4.  According to reference 5, the Pentium II CAA is not covered by 
the confidence assurance functions and only the check-pointing array of the IBM S/390 G5 is 
covered.  Hence, the CAA coverage matrices for both processors are not given. 
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Table 3.  Performance Delivery Architecture Coverage Matrix for Intel Pentium II 
 

Confidence Assurance Functions 
PDA Element ED ER ELR 

FDU PCU NC MCA 
DEU NC NC NC 
RU WDT Reset MCA 
L1C PCU NC MCA 
L2C PCU NC MCA 

PCU NC MCA 
ECCU ECCU MCA BIU 

Protocol RL MCA 
APIC CSU RL Y 

 
NC = Not Covered   CSU = Check sum unit 
PCU = Parity Checking Unit  MCA = Micro Channel Architecture 
ECCU = Error Correction Code Unit RL = Retry Logic 
WDT = Watchdog timer   

 
Table 4.  Performance Delivery Architecture Coverage Matrix for IBM S/390 

 
Confidence Assurance Functions 

ER 
PDA Element ED TF PF ELR 

I–Unit dup./comp. RL sparing MCL 
E–Unit dup./comp. RL sparing MCL 

MA PCU RL sparing MCL 

SB ECCU ECCU, 
RL sparing MCL BCU 

OA CRC RL sparing MCL 

BIU ECCU ECCU, 
RL sparing MCL 

 
MA = Millicode Array  ECCU = Error Correction Code Unit 
RL = Retry Logic   PF = Permanent Fault 
MCL = Machine Check Logic 
TF = Temporary Fault 
PCU = Parity Checking Unit   
 

4.7  RELIABILITY OF THE DESIGN. 
 
The analysis discussed in this section adopts the design fault taxonomy (DFT) technique 
introduced in reference 6 for analyzing the effects of the documented design faults on the  
suitability of a microprocessor in critical applications.  The DFT proposed in reference 6 consists 
of the following four actions. 
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a. Identification of design fault: This initial step consists of collecting all known design 

faults, usually published as an errata list by the manufacturer. 

b. Development of target system model:  The PDA and the CAA discussed in section 4.6 of 
this report constitute the target system model.  These modeling models are at the highest 
abstraction level.  If information is available and there is need for more detailed 
modeling, the PCA and CAA models can be elaborated further. 

c. Development of design fault model: A design fault is characterized based on the 
following attributes: 

(1) Logical location of the design fault:  Design faults can be found in the PDA or the 
CAA. 

(2) Type of the design fault:  Describes the type of the error that is caused by the 
design fault.  Possible types of errors are timing, data, and control. 

(3) Triggering condition of the design fault:  Describes the environment under which 
a design fault affects the correct execution of the microprocessor.  It is divided 
into three categories: 

(a) Configuration:  Describes the system configuration when a design fault 
affects correct execution.  Uniprocessor or multiprocessor configurations 
are two examples. 

(b) Operation mode:  The operation when a design fault affects correct 
execution.  Examples are normal, test, and recovery. 

(c) Triggering dependency:  Describes the preconditions for a design fault to 
affect correct execution. 

(4) Effect of the design fault:  This is the list of errors that are caused by a design 
fault.  The design fault is further divided into two categories: 

(a) Severity:  Describes the severity of an error caused by a design fault.  

(b) Affected elements:  Describes the list of logic elements, for example 
function(s) and instruction(s), that are affected by a design fault. 

d. Classification procedure: After the above three steps are completed, each fault of the 
design fault list is analyzed using the design fault model. 
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4.8  AVAILABILITY AND SUITABILITY OF TOOLS. 
 
Microprocessors that have the following tools available should be given priority over others that 
do not have such tools (ordering does not imply priority order): 
 
• Compilers and linkers  
• Debuggers  
• Performance analysis tools  
• JTAG/In-Circuit Emulators 

However, the evaluation of the suitability of these software tools for avionics is beyond the 
scope of the Phase 1 study. 
 
5.  EVALUATION CRITERIA BASED ON CRITICALITY LEVELS. 
 
5.1  OVERVIEW. 
 
This section classifies the evaluation criteria of section 4 in safety Levels A to E.  DO-254 
defines the software criticality levels based on the severity of failures that will be caused by an 
anomalous behavior.  The following list summarizes the criticality levels:  
 
• Level A:  Anomalous behavior that would cause a catastrophic failure condition for the 

aircraft.  A failure is catastrophic when it prevents continued safe flight or landing.  

• Level B:  Anomalous behavior that would cause a hazardous/severe-major failure for the 
aircraft.  A failure is hazardous/severe-major when it reduces the capability of the aircraft 
or the ability of the crew to manage adverse operational conditions to the extent that there 
would be a large reduction in safety margins or higher workload that would affect the 
capability of the flight crew to perform their tasks accurately and completely or adverse 
effects on occupants that include fatal injuries.  

• Level C:  Anomalous behavior that would cause a major failure for the aircraft.  A failure 
is major when it reduces the capability of the aircraft or the ability of the crew to cope 
with adverse operating conditions to such an extent that there is a significant reduction in 
safety margins or functional capabilities or a significant increase in crew workload or 
discomfort to the occupants to the extent that it would cause injuries.  

• Level D:  Anomalous behavior that would cause a minor failure for the aircraft.  A failure 
is minor when it does not reduce the aircraft safety significantly and involves crew 
actions that are well within the crew’s capabilities.  

• Level E:  Anomalous behavior that would have no effect on the operational capability of 
the aircraft or crew workload.  
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5.2  AVAILABILITY AND VALIDITY OF INFORMATION. 
 
Availability of information for a microprocessor is very significant for understanding the 
features it has.  Lack of comprehensive knowledge of a microprocessor that is used in an 
avionics system may result in a catastrophic or a hazardous/severe-major or a major failure.  
Hence, for high-criticality levels (Levels A, B, and C), the following valid information should be 
available for selected microprocessors. 
 
• All the features of the microprocessor  

• The verification of the computational correctness of the microprocessor  

• All the known faults of the microprocessor  

• The information for reproducing the test cases to verify computational correctness and  
to have reproduced the known faults  

The last item in the list above is necessary when the user needs to reproduce a test case or a fault 
when testing a system that uses a microprocessor.  If any of the above information types are 
absent for a microprocessor, that microprocessor should be considered as not meeting the level 
A, B, and C criticality levels.  
 
5.3  MANUFACTURER TRUSTWORTHINESS.  
 
Trustworthiness of a manufacturer is important for predicting the availability of the products in 
the future and is important when the life cycle of a microprocessor is considered.  However, it 
does not directly affect the safety of a flight or directly cause any failure associated with 
criticality levels A, B, C, and D (e.g., catastrophic, hazardous/severe-major, major, or minor).  
Hence, trustworthiness of a manufacturer is not important when considering the criticality levels.   
 
5.4  MICROPROCESSOR TRUSTWORTHINESS.  
 
Trustworthiness criteria of a microprocessor, as discussed in section 4.4 of this report, can be 
classified in two categories: criteria that do and do not limit the use of the microprocessor in 
critical applications.   
 
The following trustworthiness criteria of a microprocessor are important for either predicting its 
lifetime or for improving its confidence level because it has been used in a similar area.  Similar 
to the trustworthiness criteria of a manufacturer, they do not directly affect the safety of flight or 
cause a failure related with criticality Levels A, B, C, and D.  The trustworthiness criteria that do 
not affect criticality are given below.  However, they can significantly affect life cycle costs. 
 
• How long the microprocessor has been in the market?  
• What is the expected lifetime of the microprocessor?  
• Is the microprocessor used in a similar area?  
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• Does the manufacturer provide support?  
• What point will the support be withdrawn or incur higher cost?  
• Is there a warranty and what limits exist on this warranty?  
 
The following trustworthiness criteria of a microprocessor are important when considering 
criticality levels.   
 
• What is the temperature range in which the microprocessor can operate?  

• Is there prompt and automated notification support of updated design/process/die/errata 
information?  

• Is nonmaskable interrupt(s) supported? 

• Does the microprocessor have components (e.g., cache, branch predictor) that would 
cause the execution time to be unpredictable?  

• Is there internal address, data, tag, register parity, or ECC protection?  

• Is internal or external memory controller/bridge controller supported (requires 
companion chips)? 

• Is there an external interfacing (busses) support for parity protection on address and data?  

5.5  PREDICTABLE EXECUTION. 
 
Predictable execution criteria of a microprocessor are concerned with timing anomalies or the 
difficult to predict upper timing bounds caused by advanced features like the cache, pipeline, 
branch prediction, and similar functions.  A timing anomaly or unforeseen long execution time 
of a program may result in missed deadline and this in turn may affect the correct execution of 
the system.  High criticality levels require that anomalous behavior do not occur and that the 
execution time of each program remains within the foreseen limits.   
 
A microprocessor must support features (see section 4.5 of this report) for configuring cache 
memory such that it does not affect predictable execution.  If a microprocessor does not support 
such configuration options, the WCET time of tasks running on the microprocessor may not be 
predicted correctly.  This may affect the ability to schedule the task set, causing system anomaly.  
If highly critical tasks cannot be scheduled because of this anomalous system behavior; 
catastrophic, hazardous/severe-major, or major failures may occur.  Hence, if the execution 
environment of a microprocessor cannot be configured to make the WCET of the running tasks 
predictable, the microprocessor should be considered as not meeting the Level A, B, and C 
criticality levels.  
 
For high criticality levels, it is necessary that the unpredictability due to branch prediction and 
out-of-order execution is eliminated (see section 4.5 of this report).  A microprocessor should be 
able either to turn the prediction off or it should use a branch target buffer for which models are 
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known for bounding the misprediction performance.  Similarly, the microprocessor should 
support configuration options for eliminating out-of-order execution of instruction.  If the 
unpredictability due to branch prediction or out-of-order execution cannot be eliminated for a 
microprocessor, that microprocessor should be considered as not meeting the Level A, B, and C 
criticality levels.  
 
5.6  FAULT TOLERANCE SUPPORT. 
 
Fault tolerance support is very crucial for the correct execution of a microprocessor under all 
circumstances.  A microprocessor that does not support fault tolerance for possible error 
conditions will not be suitable in high-confidence systems.  Unrecoverable errors (a bit change in 
the cache memory that is not detected or recovered) may have dramatic effects such as causing a 
catastrophic, a hazardous/severe-major, or a major failure.  The logic parts of a COTS 
microprocessor that either deliver the documented performance or are responsible for assuring 
that the documented performance is delivered should be tolerant to every known fault (including 
use of approved workarounds). 
 
Section 4.6 of this report discussed a method for assessing the fault tolerance support by 
considering two case studies.  It should be used for ensuring that logic parts of a microprocessor 
are tolerant to every fault that may occur during flight.  If any logic part of a microprocessor that 
is crucial for its normal execution is not fault tolerant, then that microprocessor should be 
considered as not meeting the Level A, B, or C criticality levels.  
 
5.7  RELIABILITY OF THE DESIGN. 
 
Reliability of the design is concerned with the effect that the known faults will have on the 
correct execution of the microprocessor.  Availability of the known faults is very crucial as 
mentioned in subsection5.2 of this report.  A fault in a microprocessor design or implementation 
might affect its correct execution such that it may result in a catastrophic, a hazardous/severe-
major, or a major failure.  Some design faults may have workarounds and might not affect the 
correct execution of a microprocessor if a particular configuration is provided.  Some other faults 
may not have workarounds, and they may consistently affect the correct execution of a 
microprocessor.  It is essential that none of the design faults cause any failure associated with 
high criticality levels (Level A, B, or C).  The technique of section 4.7 of this report should be 
used for ensuring that none of the reported faults will lead to a catastrophic, a hazardous/severe-
major, or a major failure.  Otherwise, a microprocessor that has the fault should be considered as 
not meeting the Level A, B, or C criticality levels.  
 
5.8  AVAILABILITY AND SUITABILITY OF TOOLS. 
 
Availability of various tools specified in section 4.8 of this report is important for the 
development done on the microprocessor.  Availability of debuggers will facilitate software 
development for the microprocessor, whereas the availability of performance analysis tools will 
ease making timing analysis.  However, the evaluation criteria relating to the availability of tools 
do not directly affect the safety of a flight or cause a failure related with criticality Levels A, B, 
C, or D.  Hence, the availability and suitability of tools are not critical when considering the 
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criticality levels of the target application.  However, they can significantly affect development 
feasibility and life cycle costs. 

6.  MICROPROCESSOR OBSOLESCENCE. 

6.1  INTRODUCTION. 
 
Electronic component obsolescence is a major issue in the avionics industry.  However, it 
encompasses all variety of electronic circuits.  This section focuses on microprocessor 
obsolescence, presents a survey of available approaches, and discusses their advantages and 
drawbacks. 

Microprocessors form the heart and brain of most avionics systems.  A typical line replaceable 
unit (LRU) may contain up to a dozen microprocessors.  The typical life of an avionics system is 
expected to be at least 15-30 years or more.  Table 5 shows a few well-known weapon systems 
and their expected lifetime 5. 

Table 5.  Life Cycle of a Few Weapon Systems 
 

Weapon System 
Expected Lifetime 

(Years) 
F-14 41+ 
UH-1 49+ 
F-15 51+ 

SSN668 56+ 
AIM-9 72+ 
KC-135 86+ 

B-52 94+ 
 

However, the microprocessor design, manufacturing, and packaging technology is advancing at a 
fast and sustained pace, and the trend is likely to continue in near future.  For example, the 
average dynamic random access memory (DRAM) memory cell pitch is predicted to continue 
decreasing linearly for another 15 years [8].  A similar trend is also suggested for minimum gate 
length of complementary metal-oxide semiconductor (CMOS) transistors.  These two trends are 
shown in figure 1. 
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Figure 1.  Trend for Minimum Gate Length of CMOS Transistors 
 
Also, transistor density in regular array structure, such as standard random access memory and in 
general purpose logic chip, is predicted to grow at an exponential rate for the same time period. 
This trend is shown in figure 2. 
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Figure 2.  Trend for Transistor Densities on a Chip 
 
The major microprocessor manufacturers frequently incorporate these technological advances to 
come out with a faster, more efficient, and more capable microprocessor to stay ahead of the 
competition and to meet the market demand.  This results in a fairly short shelf life for the 
microprocessors that typically range from 3 to 6 years and sometimes even less.  Tables 6 
through 11 summarize the data for a series of microprocessors manufactured by Intel 
Corporation.  The main reason behind this disparity is that the overall avionics system design, 
implementation, and certification move much slower than commercial microprocessor design. 
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Table 6.  Lifetime of Pentium Microprocessors 
 

Processor 
Speed 
(MHz) Start Date Discontinue Date 

Life 
(Years) 

Pentium 100 March 07,1994 November 24, 2004 10.57 
Pentium 133 June 01,1995 November 24, 2004 9.35 
Pentium 166 January 4,1996 November 24, 2004 8.77 
Pentium M 1300 March 12, 2003 April 16, 2004 1.08 
Pentium M 1400 March 12, 2003 August 9, 2004 1.39 
Pentium M 1500/1600 March 12, 2003 February 18, 2005 1.91 
Pentium M 1700 June 02, 2003 February 18, 2005 1.69 
Pentium M Low Voltage 1100 March 12, 2003 April 16, 2004 1.08 
Pentium M Low Voltage 1200 June 02, 2003 August 9, 2004 1.17 
Pentium M Low Voltage 1300 April  07, 2004 February 18, 2005 0.85 
Pentium M Ultra Low Voltage 900 March 12, 2003 August 9, 2004 1.39 
Pentium Mobile  January 12, 1998 August 17, 1999 1.58 
Pentium with MMX 200 January 08, 1997 November 24, 2004 7.77 
Pentium with MMX 233 June 02, 1997 November 24, 2004 7.38 

 

Table 7.  Lifetime of P4 Microprocessors 
 

Processor 
Speed 
(GHz) Start Date Discontinue Date 

Life 
(Years) 

P4 Extreme Edition with HT 3.2 November 03, 2003 November 19, 2004 1.03 
P4 with HT and 533FSB 2.8 August  26, 2002 April 22, 2005 2.62 
P4 with HT and 800FSB 2.4/2.6 May 21, 2003 November 19, 2004 1.47 
P4 with HT and 800FSB 3.4 February 02, 2004 March 18, 2005 1.11 
P4 with HT and 800FSB 2.8 May 21, 2003 March 18, 2005 1.80 
P4 with HT and 800FSB 3.0 April 24, 2003 March 18, 2005 1.87 
P4 with HT and 800FSB 3.2 June 23, 2003 March 18, 2005 1.71 
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Table 8.  Lifetime of P3 Microprocessors 
 

Processor 
Speed 
(MHz) Start Date Discontinue Date 

Life 
(Years) 

PII 450 August 24, 1998 May 5, 2000 1.67 
PII 266 May 07, 1997 January 12, 2005 7.58 
PII 333 January 26,1998 January 12, 2005 6.87 
PII OD for Pro upgrade  August 18, 1997 May 28, 1999 1.75 
PII Xeon 400 June 29, 1998 November 19, 1999 1.37 
PII Xeon 450 October 06, 1998 February 18, 2000 1.35 
PIII 500 February 26, 1999 November 17, 2000 1.70 
PIII 533 October 25, 1999 November 17, 2000 1.05 
PIII 550 May 17, 1999 November 17, 2000 1.48 
PIII 600 August 02, 199 November 17, 2000 1.27 
PIII (.18 um) 600E/600EB/650 October 25, 1999 December 15, 2000 1.12 
PIII (0.18 um) 500E/533EB/550E October 25, 1999 November 10, 2000 1.03 
PIII (Model 7) 450 February 26, 1999 May 5, 2000 1.18 

 
Table 9.  Lifetime of Xeon Microprocessors 

 

Processor 
Speed 
(MHz) Start Date Discontinue Date 

Life 
(Years) 

PIII Xeon 600/667 October 25, 1999 January 19, 2001 1.22 
PIII Xeon 550 March 17, 1999 April 13, 2001 2.04 
PIII Xeon 733 October 25, 1999 April 13, 2001 1.45 
PIII Xeon 800 January 12, 2000 April 13, 2001 1.24 
PIII Xeon 700 May 22, 2000 July 11, 2003 3.09 
PIII Xeon 900 March  21, 2001 July 11, 2003 2.27 
Xeon 1700/1500 May 21, 2001 August 16, 2002 1.22 
Xeon 2000 September 25, 2001 August 16, 2002 0.88 
Xeon 2000(533FSB) November 18, 2002 November 12, 2004 1.96 
Xeon (0.13um) 2200(512) February 25, 2002 March 12, 2004 2.02 
Itanium 733/800 May 01, 2001 April 10, 2003 1.92 
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Table 10.  Lifetime of Celeron Microprocessors 
 

Processor 
Speed 
(MHz) Start Date Discontinue Date 

Life 
(Years) 

Celeron 333 August 24, 1998 November 19, 1999 1.22 
Celeron 366 January 04, 1999 January 21, 2000 1.03 
Celeron 400 January  04, 1999 May 5, 2000 1.32 
Celeron 433 March 22, 1999 July 7, 2000 1.27 
Celeron 533 January 04, 2000 November 10, 2000 0.84 
Celeron 466 April 26, 1999 October 13, 2000 1.44 
Celeron 500 August 02, 1999 December 15, 2000 1.35 
Celeron 533 January 04, 2000 December 15, 2000 0.93 
Celeron 566 March 29, 2000 April 13, 2001 1.02 
Celeron 600 March 29, 2000 June 8, 2001 1.18 
Celeron 633/667/700 June 26, 2000 October 12, 2001 1.28 
Celeron 2200 November 20, 2002 June 11, 2004 1.54 
Celeron 2300 March 31, 2003 June 11, 2004 1.18 
Celeron 2000 September 18, 2002 November 11, 2004 2.12 

 
Table 11.  Lifetime of Celeron Mobile Microprocessors 

 

Processor 
Speed 
(MHz) Start Date Discontinue Date 

Life 
(Years

) 
Celeron M Ultra Low Voltage 800 January 14, 2003 September 10, 2004 1.63 
Celeron M Ultra Low Voltage 900 April 07, 2004 February 18, 2005 0.85 
Celeron M 1400 April 07, 2004 February 18, 2005 0.85 
Mobile Celeron 266 January 25, 1999 December 17, 1999 0.88 
Mobile Celeron 366 May 17, 1999 May 5, 2000 0.95 
Mobile Celeron 400 June 14, 1999 July 7, 2000 1.05 
Mobile Celeron 433/466 September 15, 1999 July 7, 2000 0.80 
Mobile Celeron 400 June 14, 1999 January 19, 2001 1.58 
Mobile Celeron 450/500 February 14, 2000 January 19, 2001 0.92 
Mobile Celeron 550 April 24, 2000 May 11, 2001 1.03 
Mobile Celeron 600/650 June 19, 2000 October 12, 2001 1.30 
Mobile Celeron 1800 September 16, 2002 April 16, 2004 1.56 
Mobile Celeron 1260 April 16, 2003 April 23, 2004 1.01 
Mobile Celeron 1330 June 24, 2002 April 23, 2004 1.81 
Mobile Celeron 2000 January 14, 2003 May 21, 2004 1.33 
Mobile Celeron Low Voltage 266 January 25, 1999 December 17, 1999 0.88 
Mobile Celeron Low Voltage 866 January 14, 2003 April 23, 2004 1.26 
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The disparity has several major implications on the system design-incorporating microprocessor.  
The system has to be designed to treat microprocessor obsolescence as an integral activity to 
design, logistics, maintenance, and evolutionary management activities.  The following sections 
discuss the major approaches towards handling microprocessor obsolescence.  

6.2  SYSTEM REDESIGN. 
 
An avionics system incorporating an obsolete microprocessor can be redesigned to incorporate a 
newer version of the microprocessor.  This may cause a ripple of change in the microprocessor 
board, board support package, Real-Time Operating System, and application software, 
depending on the extent to which the newer processor has been changed.  This can be a very 
expensive and time-consuming activity due to the effort involved in redesigning and re-
certifying the system.  Since system redesign may require significant amounts of time, 
microprocessor obsolescence needs to be predicted in advance to keep production 
schedule/support impact to a minimum.  However, this process can be somewhat mitigated by 
performing a bridge-buy, which involves purchasing enough microprocessors to support 
production/repair activity during system redesign efforts.  This presents an extra burden to invest 
in decision support systems incorporating microprocessor obsolescence prediction, system 
redesign effort, and bridge-buy estimation. 

Further, frequent upgrades of microprocessors may cause frequent redesigns of the system.  
System redesign is a costly activity that has to be managed at multiple levels and evaluated 
against the cost and complexity of other alternative solutions. 

6.3  LIFETIME BUY. 
 
Lifetime buy is a reactive response strategy to deal with microprocessor obsolescence.  It 
involves purchasing a lifetime buy of microprocessors in needed quantities at its phasing-out 
stage.  This appears to be a simple solution to deal with microprocessor obsolescence but has 
several challenging issues.  The most important issue is tracking the microprocessor for 
obsolescence.  Typically, the manufacturer announces its intention to discontinue a product line 
for a particular version of microprocessor and the associated timeframe.  However, sometimes 
the manufacturer will not give ample notice before discontinuing a product, which leaves very 
little time for planning and management.  There are several agencies (table 12) that offer 
advanced notification services for products nearing obsolescence. 

The second issue is predicting the needed quantities of microprocessors to keep the 
production/support unaffected for the entire life of the product.  This requires a significant 
investment in data mining tools and decision support systems to predict the inventory.  It may 
not be a permanent solution if the inventory needs are underestimated, which can easily arise if a 
product or system remains in production/use beyond its estimated life time.  

In the case of overestimation there may be significant cost implications in inventory/logistics 
overhead.  For example, in order to handle this situation, national clearinghouses, the defense 
supply center, etc., invest millions of dollars in buying near-obsolete components that sometimes 
will never be used.  This forces the designers to resort to other solutions.  
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Table 12.  Obsolescence Notification Services 
 

Obsolescence 
Notification Service Company Name and Address 

ProductWatch Farnell, Leeds, UK 
PrecienceAlert Precience, Silver Springs, MD, USA 
AVCOM Manufacturing Technology Inc., Fort Walton Beach, FL, USA 
PushMail Government-Industry Data Exchange Program (GIDEP), P.O. 

Box 8000, Crona, CA, USA 
LifeCycle Synergy Microsystems Inc, San Diego, CA, USA 
i2 TACTRAC i2 Technologies Inc, Dallas, TX, USA 
AVLalert, CDS, PCNalerts PCNAlert, Pasadena, CA, USA 
 

There are also issues with the manufacturer not letting the customer order more than what is 
available in their current inventory.  Manufacturers might sometimes delegate (under some 
licensing agreement) the manufacturing of certain low-volume microprocessors to small 
fabrication plants known as secondary suppliers or after-market suppliers.  The following is a list 
of the safety concerns about microprocessors procured from the secondary suppliers.  This is 
also applicable for modified microprocessors that have higher environmental margins in terms of 
temperature, radiation, and shock rating. 

• The integrated circuits’ defects are highly dependent on process maturity.  Some of the 
COTS product confidence that comes from statistical advantage of large production 
volume may not be applicable for low-volume secondary suppliers.  Hence, the product 
may require more rigorous testing than usual for the same product from a large-volume 
supplier.  In brief, due to absence of high-volume production, the fabrication process can 
not be tuned and optimized for a reliable yield.  For further treatment on statistical 
process control and correlation to COTS component reliability, refer to reference 9. 

• The secondary supplier may not use a similar quality standard for fabrication and 
assembly as the original supplier.  Also, the secondary supplier may not have access to 
the same test equipment as the original supplier.  A primary manufacturer, however, can 
share some of its testing methodology with the secondary supplier to guarantee a level of 
confidence for its customers. 

• The adequacy of the test vectors used by the secondary supplier is also a concern.  The 
problem is somewhat mitigated if the secondary supplier has access to the test vectors 
and programs used by the original supplier. 

• When the secondary supplier switches to new fabrication equipment, how are the 
processes characterized and what is the yield compared to the original supplier? 
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• Continuing evolution of interfacing equipment, software, and operations when the 
components are no longer supported by the primary manufacturers can make continuing 
use of obsolete components both expensive and hazardous. 

6.4  MICROPROCESSOR EMULATION. 
 
An obsolete microprocessor may be replaced with a new microprocessor with a software layer 
written to emulate the older microprocessor.  This ensures binary compatibility and thus the 
legacy software can continue to run without modification.  The microprocessor emulation can be 
broken down into instruction set emulation, processor-specific functionality emulation, and 
peripheral emulation.  Instruction set emulator is an interpreter for the machine code of 
microprocessors being emulated.  The processor-specific functionality aspect involves the 
emulation of complex microprocessor functions such as MMU, encryption, decryption, and 
sound and graphics processing.  The peripheral emulations concern the emulation of memory, 
memory mapped devices, and interrupt handling. 

The instruction set emulation is implemented in the form of a loop, which consists of fetching, 
decoding, and executing the emulated instructions followed by synchronization.  A fetch routine 
uses a software-emulated program counter register to access the next instruction to be executed.  
The decoding routine extracts the instruction opcode and specified operands based on reduced 
instruction set computer or complex instruction set computer instruction decoding as required for 
the machine being emulated.  The execution routine maintains a jump table for each type of 
instruction that consists of code for handling that instruction.  The synchronization routine waits 
for a specified number of cycles to emulate the timing observed in the original processor or to 
synchronize the operation with external devices to guarantee an error-free operation.  A typical 
emulation loop consists of the following key steps to perform execution of a single instruction of 
the original processor: 

1. Fetching the instruction 
2. Incrementing the program counter 
3. Extraction of the instruction opcode 
4. Fetching the operands 
5. Performing a jump to instruction handler 
6. Synchronization 
 
The loop may also contain routines to emulate other devices between steps 5 and 6.  Since this 
loop is implemented in software, each of these steps requires a few host processor cycles to 
execute.  The differences in byte ordering between the substitute and original processor can 
further degrade the performance.  Thus, instruction set emulation has a large processing 
overhead.  One study indicated that an emulation layer needs about 20 clock cycles of the new 
processor in order to simulate a single instruction of legacy processor [8].  

Due to this performance critical nature, the emulator is generally written in a low-level language 
such as C, mixture of C, and assembly or pure assembly, depending on the performance trade-
offs.  Several other optimizations such as prefetching, branch prediction, and dynamic binary 
translation can be employed to improve the performance further.  The newer microprocessor can 
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be chosen to keep the dissimilarity to the older processor to a minimum.  This allows several of 
the older functionalities such as registers, flags, and specific processing units to be directly 
mapped to the hardware of the newer processor.  

The instruction set emulation must also conform to the timing observed in the original processor 
to ensure error-free operation.  This indicates the need for synchronization within the emulator 
between various devices being emulated as well as externally to faithfully reconstruct the 
original processor behavior.  To maintain the external timing, a dummy wait cycle is added at the 
end of the emulation loop if the loop finishes quickly.  The number of wait cycles to be inserted 
is calculated by using experimental methods and tools.  The internal synchronization may be 
achieved by mixing instruction set emulation and device emulations at appropriate frequencies as 
determined from the system specification of the original processor and experimental methods. 

Interrupts and exceptions must also be handled in a timely manner to ensure error-free emulation 
of the original processor.  Sometimes to ensure correct interrupt timing, the instruction loop 
should contain a routine to enable periodic monitoring or dedicated monitoring, which would 
otherwise be handled only upon completion of the current instruction fetch-decode-fetch-execute 
loop. 

Memory emulation is a very important aspect of microprocessor emulation and contributes a 
great deal to the overall performance of the microprocessor.  As mentioned above, dissimilar 
byte ordering (little endian vs. big endian) can place a huge performance overhead on the 
emulation software due to translation from native to host format and back.  Memory emulation 
has to deal with different kinds of memories present in the system such as random access 
memory, read-only memory (ROM), and I/O-mapped memories.  The accessed memory must be 
checked to see if the processor is attempting to write in a ROM, which must be adequately 
denied.  Sometimes, software programs are written to include antipiracy measures like writing to 
ROM to thwart any reverse-engineering efforts.  Thus, the correct emulation of each memory 
type is very essential for the overall emulation.  Memory emulation must also check for aligned 
memory accesses as is required by many central processing units.  Memory emulation might also 
involve emulation of memory subsystems such as MMUs, DMA, bank-switching hardware, 
virtual-to-physical address translation unit, and caches.  All of these subsidiary emulations place 
some performance overhead on the emulation software. 

As emphasized earlier, the emulator is mostly written in assembly language.  The software 
engineering tools for automated testing and validation are usually supported for a higher-level 
language.  This makes testing the emulator difficult.  Conformance tests for emulators are 
generally derived from the manufacturer’s specification documents.  However, microprocessors 
may contain undocumented features not officially disclosed.  It is not unusual to write programs 
using the microprocessor’s undocumented features.  Thus, the microprocessor has to be emulated 
along with the undocumented features.  The problem lies in discovering these undocumented 
features in an exhaustive manner to derive a complete set of emulation requirements and 
conformance tests.  The testing may also become difficult if a threaded or parallel emulator is 
implemented.  In general, a large number of microprocessor test programs are written and 
executed on the original processor and an execution trace along with precise timing details using 
a logic analyzer (or similar testing device) is collected and compared with a similar execution 

31 



 

trace obtained for the emulation layer on the target microprocessor.  The generation of relevant 
test programs that provide satisfactory fault coverage requires further investigation.  

As noted above, obsolescence mitigation using processor emulation has a large performance 
overhead and may not be suitable in every case.  Further, given the rate of obsolescence, a new 
microprocessor emulation layer may need to be written frequently, which must be properly 
certified for airworthiness, leading to a higher amortized cost.  Software-based emulation will 
still have to deal with circuit card assembly incompatibility issues.  Another hazard of using a 
newer replacement microprocessor is the board peripherals that are not required in the LRU 
being upgraded.  Therefore, the unwanted peripherals have to be disabled, put into a safe mode, 
or monitored if they cannot be disabled in the emulation layer.  Finally, there may be legal issues 
in emulating a copyrighted system, which must be resolved in an appropriate legal framework. 

A closer look at the mechanism of implementing emulation software for a microprocessor brings 
to attention the following safety issues: 

• The wait routine needs to accurately measure the number of clock cycles it has to wait 
before executing the next instruction.  An inaccurate measure may lead to external timing 
problems and may affect the software executed by the emulation layer. 

• The performance enhancement strategies such as emulated branch prediction, dynamic 
binary translation with translation caches, and multithreaded implementation may 
complicate the calculation of wait cycle on the target processor. 

• The unpredictable components (such as cache and pipelining coupled with branch-
prediction) in the original processor may inhibit accurate estimation of instruction timing 
required for accurate calculation of a wait cycle. 

• Faithfulness of correlation of the emulated layer with the original processor in terms of 
test cases and their fault coverage is a safety issue. 

• It is highly unlikely that an emulated version of the microprocessor will exactly follow 
the original microprocessor in terms of timing profile.  Discovering a suitable timing 
granularity in which the performance, functionality, and timing behavior can be shown to 
be equivalent may be difficult. 

6.5  SOFT-PROCESSOR CORE. 
 
The soft-processor core-based solution handles architectural and logic obsolescence.  This 
solution employs reconfigurable logic platforms such as Field Programmable Gate Array 
(FPGA) to implement a soft-processor core.  The soft-processor core separates the computational 
logic of the microprocessor from hardware implementation.  Thus, hardware may continue to 
evolve independently as long as the interface to the soft-processor core remains intact.  Thus, the 
soft-processor core can be ported to a newer version of the FPGA platform easily or with 
relatively little effort.  This has the least impact on the application software and provides a 
smooth upgrade profile.  Sometimes, a change in the FPGA hardware attributes (such as pin-out, 
packaging, and environmental and power characteristics) may require board-level redesign [8]. 

32 



 

The existing avionics systems containing an obsolete microprocessor may be replaced by its 
soft-processor version implemented in an FPGA.  For example, a Raytheon Missile Bourne 
Computer Microprocessor has been reverse engineered and redesigned into a soft-processor core 
hosted in a Xilinx Virtex XCV300-5PQ2401 FPGA using 36K gates.  Sometimes an obsolete 
processor can be accommodated in FPGA along with all its adjoining circuitry, thereby 
minimizing the number of components and exposed contacts.  This increases the overall 
reliability of the re-engineered system [10]. Please note that this is equivalent to a hardware-
based emulation of the obsolete microprocessor.  Hence, all the safety issues applicable to 
software emulation are also applicable in this context. 

The reverse engineering of an obsolete microprocessor can be a difficult task due to the 
complexity of the design and required skill set.  The reverse engineering involves accurate 
cloning of the functionality offered by microprocessors from the information provided by the 
manufacturer.  The manufacturer’s data sheet, the schematic diagram, and environmental ratings 
often omit details, contain errors, and/or unreported bugs and therefore needs to be properly 
qualified before using them as a reference for reverse engineering.  Further, microprocessor 
design verification involves complex and challenging tasks and requires adequate expertise and 
investment in sophisticated tools to automate the verification task.  Several automated 
approaches exist which simplify the task of reverse engineering the obsolete microprocessor.  
These involve an automated test program (ATP) generation to reveal as much of the diverse 
timing profile as possible [11], and test hardware to automate collection and comparison of the 
timing profile corresponding to the different ATPs [9].  

The soft-processor cores can be classified into generic, original equipment manufacturer (OEM), 
and third party based on the cost and customization factors.  Generic soft-processor cores are 
often based on some open architecture and are usually available free or at a nominal cost.  OEM 
soft-processor cores have better performance, reliability, development, testing, and verification 
support compared to generic soft-processor cores.  However, OEM soft-processor cores cost a 
great deal more.  There are also third-party soft-processor core offerings that are either modified 
versions of generic cores or reversed-engineered versions of some popular microprocessors.  

VP Technologies has reversed engineered an i860 from Intel, a SHARC from Analog Devices, a 
PowerPC from Motorola, and a PACE 1750A microprocessors and has further investigated the 
soft-processor core implementation of the next-generation Motorola PowerPC [12]. 

For newer systems, Xilinx offers an 8- and 32-bit soft-processor core named PicoBlazeTM and 
MicroBlazeTM respectively.  PicoBlaze occupies a footprint of 35 configurable logic blocks 
(CLB), runs at 116 MHz, and offers an 8-bit address/data bus.  MicroBlaze offers a 32-bit 
address/data bus that tops at 150 MHz and requires 225 CLBs.  Xilinx also offers LavaCORE, a 
32-bit Java virtual machine soft-processor core [13].  IBM also offers PowerPC 405 soft-
processor core for the Xilinx platform, which can run at 300 MHz and delivers 420 Dhrystone 
million instructions per second. 
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7.  FEATURE MODELING FOR WCET PREDICTION. 
 
7.1  OVERVIEW. 
 
This section compiles some existing modeling approaches of advanced microprocessor features 
for making WCET predictions.  
 
7.2  STATIC CACHE SIMULATION. 
 
Static cache simulation was studied in reference 14.  It uses compiler-generated information to 
statically determine the behavior of a large number of cache references (e.g., cache hit or cache 
miss) prior to execution time of a program.  If an address reference can be determined as a cache 
miss or cache hit with certainty, frequency counters associated with the region of the memory 
reference are used to describe the cache behavior during the execution time.  If the caching 
behavior of a memory reference cannot be determined with certainty, the static cache simulator 
is used for discovering the caching behavior during execution.  
 
The address references are categorized as:  always hit, always miss, first miss, and conflicts.  
 
Always hit and always miss instructions always result in a cache hit and miss respectively during 
program execution.  First miss category instructions result in a cache miss on the first reference 
and cache hit on subsequent instructions.  The behavior of conflict category instructions cannot 
be predicted statically (e.g., they may result in a cache hit or cache miss during program 
execution).  The total number of always hit, always miss, and first miss types of instructions is 
stored in dedicated frequency counters.  For conflict types of instructions, state information is 
associated with the respective code portions, and this state is updated dynamically during 
simulation.  This state information is used for inferring whether the conflict type instructions 
result in a cache hit or a cache miss. 
 
Static cache simulation modeling does not consider multitasking; hence, WCET unpredictability, 
due to context switching, is not considered in a static cache simulation.  To apply the static cache 
simulation modeling for a WCET prediction in a multitasking environment, this modeling should 
be used together with a cache partitioning technique.  In this way, each task will exclusively use 
its own partition and the context switch effects will be eliminated.   
 
7.3  BRANCH TARGET BUFFER MODELING. 
 
Branch target modeling for statically bounding the timing penalty because of incorrect branch 
predictions was studied in reference 15.  The method proposed in reference 15 has some 
restrictions: 
 
• The maximum number of iterations should be bounded  
 
• There are no recursive calls  
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• Only conditional statements, loop statements, and function calls can cause breaks in the 
instruction flow  

 
The method of modeling the branch target buffer for making WCET predictions consists of four 
steps: 
 
• The program is divided into basic blocks (blocks that do not contain branching), and 

information about the program’s control flow graph and syntax tree are constructed.  An 
abstract buffer state (ABS), of the abstract branch target buffer state is attached to each 
node of the control flow graph.  

• The control flow graph of the program is analyzed to fill in the ABS attached to each 
node in the control flow graph.  The ABS lists the possible control transfer instructions 
(conditional or unconditional branch instructions) that are in the branch target buffer 
prior and after the basic block execution. 

• The information stored in the ABS is used to classify the control transfer instructions as 
taken or not taken.  The method detects the branch predictions that are guaranteed to be 
correct.  The rest of the branch predictions may be erroneous.   

• The classification from above and the program syntax tree are used for computing the 
worst-case number of incorrect branch predictions.  WCET calculation is done in two 
steps:  (1) The WCET is computed based on the assumption that the branch prediction 
mechanism is perfect (WCETperfect), and (2) the impact of branch prediction is 
computed separately and added to WCETperfect.   

The modeling given in reference 15 does not consider multitasking; hence, the effects of the 
context switch on the branch target buffer state is not taken into account.  For this reason, when a 
multitasking environment is considered, this modeling should be used together with a branch 
target buffer-partitioning scheme.  Since the branch target buffer is a cache, cache-partitioning 
techniques can be used.   
 
7.4  PIPELINE MODELING. 
 
The pipeline modeling that this section considers is studied in reference 16.  Similar to the 
techniques explained in sections 7.2 and 7.3 of this report, the pipeline modeling of reference 16 
also uses static program analysis for predicting the WCET of programs.  Modeling of the 
pipeline consists of modeling three types of hazards: 
 
• Structural hazards caused by resource conflicts  
• Data hazards caused by data dependencies  
• Control hazards caused by branches  
 
Modeling of the hazards enables detecting them and subsequently identifies pipeline stalls.  
Detection of structural hazards requires that the resource usage of each instruction is known in 
advance.  Data hazards occur only when there is dependency between data registers.  The read 
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and write ports of data registers are modeled as resources to detect data hazards.  The approach 
in reference 16 proposes that control hazards also be detected with information about resource 
usage.  Resource in this case is the program counter.  However, control hazards can be modeled 
and detected using a more robust approach as explained in section 7.3 of this report.   
 
The modeling defines two states for the pipeline: 
 
• Concrete pipeline state  
• Abstract pipeline state  
 
A concrete pipeline state describes the instructions that occupy the pipeline states, the current 
and future assignments of resources to these instructions, and the state of some special resources 
like the prefetch buffer.  A concrete pipeline state changes whenever a new instruction enters the 
pipeline.  The updated pipeline state depends on the previous state and the new instruction (e.g., 
the resource demand sequence of the instruction) and the states of other processor elements like 
the cache (The technique discussed in section 7.2 of this report can be used for modeling the 
state of cache memories.)  An abstract pipeline state consists of a set of concrete pipeline states.   
 
The control flow graph of a program is used for constructing a system of recursive equations.  
The variables of this system of equations stand for abstract pipeline states from program points.  
The solution to this system of equations yields abstract pipeline states for control flow nodes.  
An abstract pipeline state at a control flow k gives all concrete pipeline states that may occur 
when the control reaches k.   
 
Once the abstract pipeline state of each control flow is known, the maximal number of clock 
cycles needed for an instruction to enter the pipeline is determined by simply computing the 
number of cycles needed by each preceding instruction to enter the pipeline.  The maximal 
number of clock cycles needed to finish all instructions in the abstract pipeline state is 
determined by computing the maximum number of cycles needed to flush the pipeline.   
 
7.5  PROFILE-BASED PERFORMANCE ESTIMATION. 
 
Profile-based performance estimation is studied in reference 17.  This study uses detailed 
simulators instead of real machines because in real machines it is hard to fix variables and there 
is no visibility into how exactly the system works.  Profile-based performance estimation runs in 
two stages.  In the first stage a benchmark is run once to collect average statistics like runtime of 
path traces (defined in appendix A), cache behavior, branch prediction behavior, etc.  In the 
second stage the collected statistics are analyzed for estimating the program runtime.  The 
technique is described in appendix A. 
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8.  MICROPROCESSOR TESTING AND VALIDATION. 
 
8.1  INTRODUCTION. 
 
Microprocessors are complex, very large-scale integration (VLSI) devices containing a large 
number of transistors on a single chip.  The number of transistors on single chip is expected to 
reach 1 billion by 2007, according to reference 18.  The advances in silicon manufacturing are 
further supported by use of innovative architectures to achieve state-of-the-art performance in 
microprocessors.  Examples of such architectural enhancements include on-chip caches, 
speculative execution, out-of-order execution, memory partitioning, vector computation support, 
and a host of other features.  These technological trends result in considerable challenges for 
testing and validation of microprocessors.  The microprocessor testing and verification has direct 
implications on the safety of the system incorporating the microprocessor.  Hence, it is 
imperative to understand the various stages and approaches in microprocessor testing and 
identify the stages and approaches vulnerable to advances in microprocessor design and process 
technology.  The following sections discuss various test stages in microprocessor testing and 
various test approaches for these stages.  The safety and certification issues associated with 
various test stages and test methodologies are discussed in section 8.4. 
 
The microprocessor testing is performed at several stages during its entire life cycle.  The early 
tests are performed as a part of validation during the development of the microprocessor.  The 
validation tests exploit full knowledge of the internal structure of the microprocessor and are 
used to ensure the correctness of the microprocessor design.  The tests are applied to a simulated 
design of the microprocessor in a hardware system description language such as Verilog or 
VHDL.  The simulated design is synthesized using manual or automated translation into  
gate-level description and again tested for ensuring translation correctness.  The gate-level 
description is then mapped into technology-specific, transistor-level description followed by 
placement and routing to produce a physical-level design.  The physical-level design is then 
verified for crosstalk noise and delay-induced errors.  Any errors uncovered in this stage leads to 
redesign, which is again followed by translation, placement, and routing steps. 
 
After ensuring a certain level of confidence in the design through several iterations, the design is 
used to derive mask patterns used in manufacturing.  The early chips are generated from these 
mask patterns and rigorously tested using manufacturing test patterns.  The manufacturing tests 
are derived from validation tests, the gate-level description, and an underlying physical fault 
model based on physics of failure.  The manufacturing test patterns are elaborate and designed to 
uncover and locate the faults in microprocessors resulting from manufacturing processes and 
correlate the fault with the design. The manufacturing tests are applied using automated test 
equipment during the wafer sort test stage.  The test equipment applies the test patterns at 
external inputs of the packaged microprocessor and captures the test response at the external 
outputs.  The test responses are verified against the desired response to ensure correct operation 
of the chip.  The chips passing the manufacturing test stage are then put under stress testing to 
meet its environmental specification. The faulty chips are investigated for sources of errors, 
which lead to either design modification or tuning process parameters.  The chips are further 
subjected to environmental and class testing to ensure their proper operation under specified 
environmental conditions. 
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The fault-free chips are then shipped to the market to be purchased by the intended users. The 
user validates the microprocessor according to the performance and environmental requirements 
of the target applications.  The qualified microprocessors are then incorporated into the system 
supporting the intended applications. The microprocessors are subjected to an internal integrity 
check each time the system is started or restarted. These integrity checks (also known as start-up 
test) ensure that the system starts its operation in an error-free state. The microprocessors may be 
subjected to periodic or continuous testing during its normal operation in order to detect runtime 
hardware failures. These tests are generally low-latency tests and do not perform elaborate 
diagnostics since most of the computational power must be dedicated to support system tasks 
such as operating systems and applications.  System tests are used to identify the operation of the 
system and its applications during compliance and regression testing.  This necessitates the need 
for maintenance testing, which is performed periodically after a specified number of hours of 
operation.  The maintenance tests contain criteria for continued worthiness of the microprocessor 
and suggest a replacement if needed. 
 
8.2  TEST STRATEGY. 
 
The test strategy adopted at any stage depends on the amount of details available about the 
processor design, test generation algorithm complexity, available testing time, and economy.  
The test strategy can be divided into structural and functional categories.  These strategies are 
described in the following sections. 
 
8.2.1  Structural Tests. 
 
The structural test strategies are based on the description of the processor design in terms of 
interconnections of primitive circuit elements such as latches, gates, or transistors.  The test 
generation algorithm assumes an underlying physical fault model to introduce realistic faults in 
the circuit design.  The algorithm then discovers a sequence of input combination, which causes 
the faulty behavior to manifest itself at the output of the circuit.  Each input combination in the 
sequence is known as a test vector, and the entire sequence is known as a test pattern.  

The automatic test generation (ATPG) algorithms generally have to deal with two kinds of 
digital circuits—the sequential circuit and combinational circuit.  The combinational circuits do 
not contain any memory elements (flip flops or latches), and the test pattern generation is 
relatively easier.  There are several algorithms to automate the test pattern generation for 
combinational circuits.  It is also worth mentioning that some faults may introduce sequential 
behavior in a purely combinational circuit.  

The test pattern generation for sequential circuits (containing memory elements) is very 
complicated.  The test patterns are normally generated and applied in a known memory state. 
However, the sequential circuit may not be in a known state at the time of testing, which requires 
either a state identification, complete reset, or an application of an input pattern (known as 
homing sequence) to bring the circuit into a known state.  Exploring the test pattern and homing 
sequence for a sequential circuit containing large numbers of states is computationally 
prohibitive, thus restricting the total fault coverage possibly using derived test patterns. 
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The microprocessors contain a number of different circuits to support different functionalities. 
Some of these circuits are very large structures and require a large number of test patterns to 
achieve acceptable fault coverage.  The number of test patterns applied is directly proportional to 
the testing time, an important consideration in mass manufacturing.  Hence, the ATPG 
algorithms attempt to reduce the number of test patterns required to test a given circuit by some 
suitable partitioning scheme.  The ATPG algorithms incorporate partitioning heuristics to 
automate the circuit partitioning, which can be further aided using structured design to facilitate 
testability.  However, partitioning requires insertion of test points in the circuit to observe its 
behavior. This adds silicon overhead to the original design.  The manufacturer would like to 
keep the test circuitry overhead as small as possible so that they could use the saved space for 
improving the performance of the microprocessor.  According to Simulation Package With 
Integrated Circuit Emphasis (SPICE) [19], a 15% increase in die area will result in a construction 
of new fabrication facility, which has enormous cost implications.  Hence, the manufacturer may 
resort to other techniques to increase the amount of area dedicated to performance circuitry at the 
cost of other circuitry not directly contributing to the performance enhancement, such as the test 
area.  Hence, the amount of die area dedicated to test circuitry may be an indirect measure of 
microprocessor reliability. 

The structural tests require direct access to the outputs of the circuit, which is not possible in a 
fabricated chip containing a microprocessor.  Therefore, the microprocessor must contain the 
circuit structures to facilitate the application of test patterns at the input and measure the circuit 
behavior at its output.  The scan test design can be applied to enhance the testability of the 
circuit. In scan test design, all the memory elements in the circuit have an additional mode of 
operation known as a test mode.  In the normal mode of operation, the memory elements in the 
circuit do not functionally interface with any testability circuit structures.  In the test mode, the 
memory elements are connected to form the stages of a shift register.  Thus, the test patterns can 
be shifted deeper inside the circuit from the primary inputs and the circuit responses can be 
shifted from the original output location to the primary outputs.  Thus, scan chain design 
enhances the controllability and visibility and increases the testability for large circuit structures. 

8.2.2  Functional Tests. 
 
The functional test strategies are based on the behavioral specification of the processor hardware 
in terms of memory elements, interfacing signals, interaction, and instruction set semantics. The 
functional testing can be divided into two main categories. The functional test methods in the 
first category take the behavioral description and a system level fault model and generate a set of 
programs to test the microprocessor functionality. The test programs are generated using a signal 
flow graph derived from the behavioral description. The methods in the second category do not 
require a fault model and depend on a checking experiment instead. These methods employ test 
macros, which verify the functionality by sensitizing the Arithmetic Logic Unit, registers, shifter, 
index hardware, and a host of other functional units sequentially using a set of test programs. 
The test programs are composed using a variety of approaches. Some approaches use test 
programs, which contain instructions for all possible operands. A few approaches use a large 
number of application programs and verify correctness of execution. Since these approaches are 
not based on the general model of the processor and do not involve any fault model, it is very 
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difficult to correlate the erroneous behavior to physical faults. The following sections describe 
different functional test program generation approaches. 

8.2.2.1  System Graph-Based Method. 
 
The functional tests derived using this method depend on a system graph constructed from the 
microprocessor architectural specification at register transfer level.  The typical architectural 
parameter required for system graph generation is instruction set, register set, status flags, and 
interfacing signals.  Each register is represented as a node in the system graph.  The system 
graph also incorporates two special nodes IN and OUT to abstract the interfacing with main 
memory and I/O and other external devices.  An instruction may cause a series of data transfers 
between a set of registers and the IN and OUT node, which can be inferred from the instruction 
set semantics.  The data transfer between two registers caused by a particular instruction is 
represented as a labeled edge between the nodes corresponding to those registers in the system 
graph.  Load/Store instructions introduce edges between registers and special nodes, IN/OUT 
respectively.  Thus, a system graph represents a high-level data flow model of the 
microprocessor.  The test program generation algorithm further introduces a system-level fault 
model.  The fault model covers the instructions, fetch/decode unit, data storage unit, and data 
transfer unit. The fault in the instruction fetch/decode unit is assumed to result in an execution of 
some other statement instead of the specified instructions.  The fault in the data storage unit is 
assumed to result in data value being stuck at zero or one.  The fault in the data transfer unit is 
assumed to exhibit either stuck at or data line shorting faults.  The test generation algorithm 
takes the system graph and the fault model described above and generates test programs, which 
attempt to uncover the modeled faults.  Further details of this method can be found in reference 
20. 
 
8.2.2.2  Random Pattern-Based Method. 
 
The functional test approaches require automated algorithms to generate insightful test programs 
and provide limited fault coverage of about 70% [21].  Please note that 100% fault coverage may 
not be possible due to inherent lack of visibility of the circuit behavior at the external outputs.  
Higher fault coverage can be achieved by employing logic synthesis methodologies, which 
increases circuit visibility at the cost of performance.  Pseudo-random patterns are used for 
generating test programs that contain random instructions.  A pseudo-random number generator 
can be used to generate the instructions that are then fed to the microprocessor under test.  The 
pseudo-random number generator can either be incorporated in the microprocessor or can be 
simply implemented in the software. 
 
The hardware-based pseudo-random generator generates the instruction opcode and operands 
randomly and puts them directly on the data bus of the microprocessor.  The microprocessor 
reads the information from the data bus, decodes the instruction, and executes it.  The content of 
each of the registers is verified after the execution of the current instruction is complete.  If the 
verification fails, it is an indication that there is a fault in the microprocessor.  Pseudo-random 
sequences generate illegal opcodes, and there should be a mechanism for replacing them with 
legal ones by using the last or one of the last five legal opcodes.  A filter controls the randomly 
generated opcodes before they are put on the data bus.  If an illegal opcode is detected, the 
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previous legal one replaces it.  This requires that the legal opcodes generated by the pseudo-
random process are being stored.  Please note that this may not be necessary for software-based 
approaches, which can just ignore the illegal opcodes.  The hardware-based random testing is 
also suitable for the start-up test described below.  The software-based approach generates all the 
instructions beforehand, and then loads the resulting program in memory, which is then executed 
by the microprocessor.  
 
The random testing can achieve the same test quality as functional testing in a shorter time.  The 
approximate number of instructions contained in the test program is estimated statistically from 
the level of confidence required that the microprocessor is fault-free.  However, the 
approximation requires the fault distribution data and other statistical measures for estimating the 
program length.  For a mathematical treatment on the appropriate length of the test programs, 
please refer to reference 21. 
 
8.3  TEST STAGES. 
 
As discussed earlier, the microprocessor testing is performed at several levels during the 
development phase and at several stages during the entire life of the product.  This section 
discusses in detail the various tests carried out during the entire life of the microprocessor.  
 
8.3.1  Manufacturing Tests. 
 
The manufacturing tests attempt to identify the defective chips early for quality control and cost 
minimization.  Test throughput and coverage is an important consideration at this stage to 
achieve large-scale production.  The test patterns applied during the manufacturing tests are a 
combination of structural and functional tests derived from a complete knowledge of the 
processor design.  The tests are generated using ATPG and functional test generation algorithms.  
The tests are elaborate enough to enable diagnostic evaluation to correlate the faulty behavior to 
a defect in the design or the manufacturing process.  The microprocessors incorporate scan-based 
test structures to facilitate the delivery of the test patterns and the measurement of response.  
Automatic test equipment is used to deliver the test patterns and verify the response.  The scan 
registers are tested first by selectively enabling them while in the test mode with the 
combinational part of the circuit operating normally and then shifting a known test pattern 
through the scan chain.  The output is measured at the external pins and compared against 
expected results to ensure the correct operation of the scan chain operation. The rest of the 
circuitry is then put into test mode and manufacturing test patterns are applied and measured 
response is verified against an expected response.  The test of the microprocessor production 
patterns are applied at different packaging levels, starting from wafer level to the diced and 
packaged level.  The manufacturing tests are also applied at the assembly level when the 
microprocessor has been incorporated on a printed circuit board. 

A drawback of the scan circuitry is that internal output nodes respond continuously to each test 
pattern applied.  This results in a continuous toggling of the output node voltage level and is a 
source of excessive heat generation.  The cumulative effect of the excessive heat generation 
across all output nodes may be sufficient to cause metal migration or melting of the test structure 
if the tests are carried out at very high clock frequencies. 
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The manufacturing tests can be divided into the three main stages (wafer sort, environmental, 
and class tests), as described in the following sections. 
 
8.3.1.1  Wafer Sort Tests. 
 
The wafer sort test is used to identify and separate the defective die at the wafer stage to reduce 
packaging costs.  The wafer sort test is normally performed before depositing the second metal 
layer.  This ensures that enough electrical contacts are available for thoroughly examining the 
logic devices.  The wafer sort test may also employ some additional tests such as differential 
Hall effect and secondary ion mass spectrometry.  The manufacturing test patterns are delivered 
through the flying probes at normal room temperature.  However, it may be economical to 
perform a limited environmental test to identify more defective chips early in the production.  
One such trend is to sort the wafers at a lower temperature.  This is also known as cold socket 
examination and requires the microprocessors’ wafers to be kept below 35°C during the wafer 
sort test.  The typical duration of these tests range from hundreds to thousands of milliseconds 
and depends on the capability of the test equipment and the complexity of the device being tested 
(i.e., microprocessors). 
 
8.3.1.2  Environmental Tests. 
 
The environmental test ensures the correctness of devices when subjected to extreme 
temperatures in the specified temperature range and other environmental stresses.  The 
environmental tests consist of burn-in tests, thermal stress, vibration stress, pressure tests, and a 
host of other tests.  The burn-in test involves putting several packaged devices (several thousand, 
depending on capability of test equipment) at elevated temperatures and voltages to speed-up the 
reliability-oriented defects arising out of process imperfections.  The amount of time the device 
is subjected to the burn-in test depends on various factors such as yield, failure rate, voltage, and 
junction temperature.  The elevated voltages tend to accelerate the burn-in faster than the 
elevated temperatures; hence, they are kept as high as possible.  Typically, the elevated voltages 
go up to 1.4 times the rated voltage during the burn-in test without damaging the device. The 
typical amount of time the devices are subjected to the burn-in testing range from 10-168 hours 
for microprocessors, with the upper limit for microprocessors conforming to military 
specifications.  The thermal shock test involves subjecting the device to high temperatures and 
then quickly moving it to low temperatures.  The humidity-based tests can be used to assess the 
impact of corrosion.  The test involves placing the microprocessor under extreme humidity and 
temperature conditions.  The stress tests are specified by a pattern that is the value of the 
attribute (temperature, voltage, pressure, or humidity) as a function of time. 
 
8.3.1.3  Class Tests. 
 
The class test forms the last stage in the manufacturing tests.  The packaged devices in this stage 
are again subjected to ATPG-derived test patterns to validate the processor’s functionality.  In 
addition to this, an additional set of tests is performed to determine the speed of the processor in 
the specified temperature range. The processors are sorted and placed into different class speed 
bins.  Hence, the class test is sometimes referred to as speed binning.  The microprocessor speed 
is dependent on the operating temperature.  A typical estimate is that a microprocessor speed 
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decreases by 0.15% for each additional degree centigrade in the operating temperature [22].  
Therefore, precise control of the operating temperature during the class test is very important.  
However, due to the very high-frequency operation and the trend towards highly integrated 
processors, the chips exhibit a nonuniform heating pattern that is increasingly becoming a 
concern in class testing.  
 
8.3.2  Qualification Tests. 
 
Qualification tests are used to evaluate the suitability of a microprocessor for a specific 
application.  The qualification tests have two main parts:  part one deals with validating 
information provided by manufacturer, and part two deals with assessing performance 
parameters for the intended applications.  The qualification test may include part of 
manufacturing tests provided by the manufacturer under a nondisclosure agreement.  The 
qualification tests may also include environmental tests to validate the thermal and mechanical 
specifications of the microprocessor.  The microprocessor functionality is validated by applying 
functional tests derived in the user environment.  These functional tests can be generated using 
the techniques discussed in section 8.2.2.  The tests also validate various timing and power 
specification provided by the manufacturer. 
 
8.3.3  System Validation and Maintenance Tests. 
 
The end system containing the microprocessor is validated using a variety of approaches.  These 
approaches use a large variety of random application programs to achieve good statistical test 
coverage.  Some approaches additionally inject known microprocessor faults during its operation 
to ensure correctness.  Sections 8.3.3.1 and 8.3.3.2 discuss these approaches. 
  
The system validation tests can also be used as maintenance tests.  The maintenance tests are 
periodically performed after a specified number of operational hours.  The exact number of hours 
is determined from the empirical data.  The maintenance tests are also needed after a hardware, 
software, or firmware upgrade. 
 
8.3.3.1  Operational Tests. 
 
The operational tests ensure the functional correctness of the microprocessor by running a large 
variety of application programs.  The applications range from compilers, operating systems, and 
actual programs intended to be run on the processor in the final system.  The operational tests 
use the microprocessor and its peripherals in conjunction.  The other tests mentioned above test 
the microprocessor in isolation.  The operational tests run at the speed of the microprocessor and 
test the interaction of peripheral components in real time.  Since operational tests are performed 
on the final system, they are also known as system tests.  These tests judge the overall 
correctness of the system built around the microprocessor.  However, the operational tests tend 
to be large and exhaustive and consume lots of time. The time between two critical test 
conditions is large due to general programs employed for testing.  Further, the test failures 
cannot be correlated with actual microprocessor faults.  The operational tests cannot be used for 
stress testing the system.  For example, an ad-hoc, burn-in test approach in the user-environment 
employs complex programs that are known to be power-hungry.  However, such programs may 
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not be able to achieve the thermal stress pattern (demanding fast temperature changes) required 
to validate the environmental correctness of the microprocessor operation. 

8.3.3.2  Fault Injection. 
 
Fault injection (FI)-based validation is done through deliberate insertion of faults during the 
system operation and validating its response.  FI can be done using a software-implemented 
technique, a hardware-implemented technique, or a combination of the two.  Hardware-based 
techniques are capable of injecting more sophisticated faults in the system.  The FI environment 
specifies all the attributes necessary for injecting faults into the system being verified for 
correctness.  The FI environment is characterized using the FARM classification scheme, which 
is comprised of the following attributes: 
 
• Faults:  The set of faults that are injected into the system. 

• Activation Trajectories:  The input domain used for functionally testing the system. 

• Readouts:  The observed behavior of the system. 

• Measures:  Dependability measures obtained through the FI experiment.  They are 
obtained experimentally from a set of case studies.  

The challenge with FI-based verification of a processor is that injecting a fault might affect the 
execution environment or the runtime of the target system.  This phenomenon is known as FI 
intrusiveness.  Intrusiveness is caused by different reasons: 
 
• New instructions or modules can be introduced for supporting FI.  Hence, the set of 

executed instructions and modules are different than when the FI is not used. 

• FI may change the electrical and logical setups of the target system affecting its 
execution speed.  This phenomenon is called time intrusiveness. 

• Introduction of new code for supporting FI can change the memory image of the target 
system. 

Ideally, when FI is done, intrusiveness should be minimized.  Otherwise, it is not possible to 
extend the results obtained from the FI experiment to the original target system.  Different types 
of faults can be injected in the execution environment of a system.  Common faults include 
transient single-bit flip, bridging faults, multiple-bit flip faults, and stuck-at faults.  The study in 
reference 22 injected illegal, reserved, and undefined instructions for the processor being tested.  
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The study done in reference 23 used transient single-bit flip type faults.  Each fault is 
characterized by the following information:  
 
• FI Time:  Each fault is injected into the assembly level before an instruction is executed. 
• Fault Location:  A fault is injected either into a memory location or into a register. 
• Fault Mask:  The bit mask that specifies the bit(s) that will be flipped. 
 
8.3.4  Start-Up Tests. 
 
The start-up tests are very important in the safety-critical systems, and they ensure that the 
microprocessor begins operation in an error-free state.  The system start-up can be differentiated 
into cold start or warm start, depending on whether it is started from an off state or from an on 
state.  The cold start generally happens when the system is started for the first time or after a 
period of inactivity, and the microprocessor will require rigorous testing due to the inactivity.  
The cold start-up tests are therefore allocated more time than warm start-up tests to allow for the 
elaborate testing.  The tests in this stage can be done using a relaxed fault model compared to 
manufacturing tests.  The microprocessor should aid the system diagnostic module to report any 
faulty behavior.  The warm start-up generally happens after a run-time exception to the whole or 
a part of the operational system. 
 
8.3.5  Monitoring Tests. 
 
The monitoring tests are also important in the safety-critical systems.  The monitoring tests 
ensure that the microprocessor is operating correctly by checking the processor either 
periodically or concurrently.  These two techniques are described in the following sections. 

8.3.5.1  System Executive/Safety Executive. 
 
The monitoring tests can be implemented by a separate controller system known as the safety 
executive.  The safety executive is responsible for periodically testing the system’s health and 
the operational correctness.  The system executive can be implemented in software and can test 
the microprocessor during periods of inactivity.  Some systems use a watchdog timer to 
implement the system executive’s functionality.  Since the computing resources are limited 
during monitoring tests, most of the techniques use cyclic redundancy check (CRC)-based 
checking to detect run-time fault.  For example, some languages may associate a CRC with each 
data structure that may be verified by the system executive. 

8.3.5.2  Built-In, Self Test. 
 
The BIST mechanism in a processor is responsible for checking the processor functionality 
concurrently with system operation.  Since the run-time performance of the processor is a crucial 
factor, the BIST mechanism employs error detection strategies that cause minimum intrusiveness 
in the system operation.  Thus, the error detection logic depends on CRC checksum or a more 
sophisticated coding scheme to uncover faulty behavior.  Thus, data on bus, on-chip memories, 
and register contents might have a CRC checksum that is monitored by a self-test mechanism 
and flags errors as soon as they occur.  Part of the BIST circuitry performs very elaborate tests 
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and is activated only during the system start-up.  Thus, the BIST mechanism provides limited 
functionality for monitoring tests. 

8.4  SAFETY AND RELIABILITY ISSUES IN MICROPROCESSOR TESTING AND 
VALIDATION. 
 
The trend towards high-performance microprocessors and the existing approaches toward testing 
reveal some interesting safety and reliability issues in safety-critical computing for adoption of 
these microprocessors.  These issues are discussed in the following paragraphs. 
 
The manufacturing tests are applied at the core frequency using automated test equipment as 
previously described.  The core frequency is steadily increasing in the state-of-the-art 
performance microprocessors that result in requiring faster test equipment.  Further, timing 
variation introduced due to submicron effects such as cross-coupling and inductive noises make 
timing verification extremely difficult.  These issues impose a greater performance requirement 
on the test equipment that must operate must faster than the device under test.  Thus, the test 
equipment required for the next generation of microprocessors tends to be very costly.  This has 
serious effects on testing microprocessors used in safety-critical system designs.  A survey 
indicated that some companies in the avionics industry depend on the manufacturer-supplied test 
patterns to verify and validate the microprocessor functionality.  However, this approach may 
become infeasible due to the cost of the automatic test equipment required to deliver the test 
patterns at the core speed. 
 
Another issue worth mentioning is the environmental testing of the microprocessor.  Due to 
increasing core frequency and trends toward highly integrated microprocessors, the temperature 
gradient of the microprocessor core may not be uniform.  This requires microprocessor 
manufacturers to resort to very advanced techniques to control the devices’ temperature for class 
testing and for improving the yield of high-speed bins.  However, the rated performance cannot 
be readily verified without the ability to have the same advanced test equipment and techniques 
as those used by the manufacturer. 
 
One more interesting trend revealed from the survey indicated that most of the avionics 
companies use application test cases developed as part of the DO-178B to qualify the 
microprocessor.  However, research suggests that these ad-hoc testing approaches may not 
achieve the desired statistical test characteristics required for safety-critical systems.  The 
literature suggest much more effective approaches are needed to achieve higher confidence 
levels in the microprocessors using alternate test methods that employ system-level functional 
fault models. 
 
On-chip caches on microprocessors constitute very high-density structures occupying about 65% 
to 80% of the die area. Registers and data paths consume most of the remaining die area.  These 
structures require very elaborate fault models and design efforts to enable their testing.  Some of 
the faults may also be very hard to model, leaving a portion of these structures untested, which 
may have implications on their reliability.  To increase the test reliability, several strategies such 
as design-for-test, BIST, and redundant structures have been adopted.  However, the extent to 
which these techniques are used in practice is decided by the corresponding die area overhead.  
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For example, a Motorola Cold Fire processor allocates about 5% of total die area for dedicated 
test circuitry.  Also, there is an increasing trend to squeeze this area as much as possible to boost 
the processor performance due to commercial interests. 
 
In view of these test strategies and trade-offs adopted by industry in microprocessor testing, 
there is concern about its reliability in safety-critical systems.  Caches are, in particular, a cause 
of concern as it introduces probabilistic behavior in execution time of a process.  Normally, this 
probabilistic behavior can be bound by a combination of partitioning and rigorous WCET 
modeling techniques.  But, all these techniques and models assume the caches to be reliable and 
undegradable over time.  However, as described earlier, the caches are very high-density 
structures, and some of the cache faults are difficult to model.  This leads to an unacceptably 
high probability of residual errors and/or susceptibility to manufacturing defects.  For this 
reason, most of the processor designs include redundant cache blocks and dynamic self-repair by 
modifying the selection path logic in combination with some error flags.  If the defect is detected 
at the time of manufacture, the caches can be repaired using an ion beam to use the redundant 
blocks.  These types of faults can be detected during system testing on a target platform to 
validate the WCET models for various data paths.  However, if the defects are detected later 
during the processor operation, processor self-repair logic selectively disables the faulty cache 
blocks.  For example, the self-repair logic may include a redundancy register, which is loaded 
during processor start-up self-test.  The self-test logic may discover a faulty cache block and 
disable it by appropriately modifying the redundancy register.  This type of error may remain 
undetectable during the system certification and can pose a serious safety risk during actual 
system operation.  Moreover, the processor may not incorporate a mechanism to query the 
amount of currently available cache memory to implement the safety mechanism that will signal 
such operational errors. 
 
9.  MICROPROCESSOR INTEGRATION IN SoC. 
 
9.1  INTRODUCTION. 
 
The modern semiconductor fabrication technology is capable of manufacturing devices 
containing hundreds of millions of gates.  This creates the possibility of integrating full digital 
systems on a single chip for increased performance and low-cost manufacturing.  To promote 
rapid prototyping and integration of digital systems on a single chip, several vendors offer pre-
tested and pre-verified common logic components known as Intellectual Property (IP) Cores.  IP 
cores reduce the overall system development by promoting reusability. 
 
This trend is also embracing the microprocessor industry, which is increasingly offering highly 
integrated microprocessors to a sea of microprocessors on a single chip.  In highly integrated 
microprocessors, the peripheral devices supporting a microprocessor are fabricated on the same 
die.  Example of such peripheral devices include Ethernet controller, fabric interface, memory 
controller and I/O interface, and a host of other IPs.  In addition, the SoC approach allows the 
customization of microprocessor design parameters such as cache size, floating point units, and 
pipeline structure to support a specific application for a highly efficient design. 
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However, the integration of different IP blocks (peripheral devices and other application-specific 
system functionality) raises signal integrity issues due to the close proximity of the components, 
increasing metal layers, and high-frequency system operation.  Also, the shrinking feature sizes 
and the low power design make the circuit susceptible to power grid fluctuations and becomes a 
major issue.  The power grids can also be susceptible to electro-migration problems when the 
power supply noise margin is not properly met.  These problems require a careful and detailed 
analysis of the IPs being integrated and causing possible interference that would affect signal 
integrity, power grid noise margin, and any other incumbent issues.  The analysis is more 
complicated if the IP blocks are obtained from different vendors that have been analyzed and 
tested in the absence of any neighboring blocks that might be present in the current SoC design.  
 
9.2  INTELLECTUAL PROPERTY CORES. 
 
IP cores, also known as virtual components, allow implementation of highly efficient systems.  
The system designer can select the most appropriate IP core that meets a particular performance 
requirement among several similarly available IP cores.  The IP cores are specified and 
exchanged in industry standard format with varying level of details.  The IP cores are generally 
classified in the following three categories according to varying level of details: 
 
• Soft IP core 
• Firm IP core 
• Hard IP core 
 
The soft IP cores contain the maximum level of detail and are generally specified in register 
transfer level description in languages such as Verilog or VHDL.  Thus, soft IP cores allow 
detailed analysis and optimization of the system being integrated.  The firm IP cores are next in 
the decreasing level of detail and specified in technology-independent netlist level format.  This 
allows the IP vendor to hide the critical IP details and yet allow the system integrator to perform 
some limited amount of analysis and optimization during placement, routing, and technology-
dependent mapping of the IP block.  The hard IP cores are the lowest in level of detail and 
specified in technology-dependent physical layout format using industry standard languages such 
as stream, polygon, or GDSII format.  The hard IP cores are like black boxes and cannot be 
properly analyzed and/or co-optimized.  Hard IP cores come with a detailed specification of 
integration requirement in terms of clock, testing, power consumption, and host of other 
parameters.  
 
For the purpose of discussion of integration issues, this report will also categorize IP cores as 
homogenous or heterogeneous IP core, depending on whether or not they come from the same 
vendor. 
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9.3  INTELLECTUAL PROPERTY INTEGRATION ISSUES. 
 
In traditional systems, the different logic components are usually implemented in different chip-
level packages and connected in a board-level integration.  The distances between different 
components in a board-level integration is large enough to make any mutual interferences 
affecting the integrity of signals present on the VLSI interconnects inside the chip negligible.  
However, when these components are integrated on a single die, the distances between the 
different components are of submicron order, which brings in various VLSI interference issues 
such as crosstalk noises and power-grid issues. 
 
9.3.1  Crosstalk Noise. 
 
Coupling capacitance between two adjacent nets, which creates a temporary electrical path 
during signal transition, causes the crosstalk noise.  Here, a net is referred to as an electrically 
equivalent group of wires.  The net carrying the signal under transition is called an aggressor net.  
The net being affected due to signal transition in another net is referred to as a victim net.  The 
amount of injected noise is directly related to signal transition time, also known as the slew rate, 
and the coupling capacitance, which is dependent on process technology and effective 
overlapping of wire segments forming the nets. 
 
The crosstalk noise affects the functionality of the circuit in two ways.  First, crosstalk noise can 
cause a small glitch in the victim net that is subsequently propagated to a latch.  This causes the 
state of the circuit to change and affects the overall functionality.  This type of noise results in a 
functional error and is referred to as functional noise.  The second type of noise is manifested 
when two cross-coupled (due to coupling capacitance) nets switch simultaneously.  This may 
either increase or decrease the delay of both the nets.  If the victim net experiences an increased 
delay and is present on the critical maximum path delay, it results in a setup failure where the 
signal arrives too late to cause the desired switching.  If the result of the switching is expected to 
result in a state change, the circuit will enter into an erroneous state.  Similarly, if the victim net 
experiences a decreased delay and is present on a critical minimum delay path, it will result in a 
hold failure, again possibly affecting the state of the circuit.  This type of noise results in 
setup/hold failure and is referred to as delay noise.  The delay noise can also manifest in another 
form where several small path delays (too insignificant to cause any errors themselves) have a 
cascaded effect.  The cascaded delay of several nets present on a critical delay path has a 
cumulated effect on setup/hold failure.  This type of noise is hard to analyze compared to the 
scenarios described above. 
 
As the industry adopts the newer manufacturing processes with smaller feature size and higher 
frequency of circuit operation, the ratio of coupling capacitance to parasitic capacitance is 
increasing.  The most important scaling factors resulting in an increasing coupling capacitance 
are as follows: 
 
• Minimum Metal-Metal Separation 
• Reduced Metal Pitch (0.36 μ in 0.18 μ process as compared to 0.26 μ in 0.13 μ process) 
• High Slew Rate (High frequency of operation) 
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These factors become dominant with each scaling down of the manufacturing process, making 
crosstalk noise more dominant.  In the latest process technology, it is estimated that the crosstalk 
noise may affect the delay of a signal by more than 100 percent.  It may be noted that the 
increased number of metal layers will not affect crosstalk noise significantly as the adjacent 
metal layers act as shields for other higher layers. 
 
The crosstalk noise analysis involves the extraction of coupling capacitance data and  
parasitic-capacitance data for the entire circuit.  The three-dimensional capacitance extraction 
tool such as space3d can automate the coupling and parasitic-capacitance extraction task from 
GDSII physical layout of the IP cores.  A typical microprocessor core may contain hundreds of 
thousands of nets, prohibiting circuit simulators such as SPICE [19], which can handle thousands 
of nets and requires hours of simulation time (a typical microprocessor core usually has 227,000 
nets).  Hence, a reduced order circuit model is obtained under reasonable assumption. The circuit 
is further pruned out to eliminate the nets whose glitch noise remains under a particular 
threshold.  The resulting circuit is analyzed for functional and delay failures.  Further details of 
crosstalk noise analysis can be found in reference 24. 
 
The IP cores are usually preverified and pretested and considered to be clean from any signal 
integrity violations.  However, the timing analysis is usually done without any information about 
the adjacent IP cores that will be present in the final system.  The neighboring IP cores in the 
final system may introduce new signal integrity violations due to coupling capacitances between 
wires of different cores routed close to each other.  The unexpected noise injected into an IP core 
by its environment may not have been anticipated by the IP core designer, which may affect the 
signal delay on critical path and lead to noise-induced failure.  
 
Some IP cores permit over-the-block routing where the global IP core interconnects use the 
higher metal layers present on top of the IP core block.  The over-the-block routing may interfere 
with the top metal layer of the core, although the lower layers are usually shielded.  The effective 
overlap between the global interconnects and the top metal layer of the core may introduce 
significant noise into the core. 
 
The effect of such interaction can be analyzed if the integrator has sufficient visibility into IP 
cores in terms of electrical and physical on-chip interconnect properties and logical and timing 
window data.  This may be possible in case of soft or firm IP cores where these data can be 
extracted in sufficient detail to permit accurate analysis.  An alternative to this complete 
reanalysis of the whole system is for the IP core designer to share data about the critical set of 
signals and nets. IP core designers can also specify the coupling and shielding constraint on the 
design.  The integrator takes these constraints into account during the physical layout and routing 
of the cores and interconnects. 
 
9.3.2  Substrate Noise. 
 
Substrate noise is caused by capacitive coupling of wells, which creates a temporary electrical 
path during signal switching.  The created temporary electrical path will contain small amounts 
of alternating current that may affect any adjacent analog component or will be propagated 
through on-chip interconnects to other analog components.  The substrate noise results in 
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performance degradation or failure of analog components present in the SoC, if they are 
integrated on the same die.  Examples of such systems include radio frequency cores, analog-to-
digital data converters, and memory blocks (sense amplifiers, etc.). 

9.3.3  Power Grid. 
 
At a submicron level, another issue that affects the integration of IP cores is IR drop (I-current 
times R-resistance) along a power-grid.  Due to lower device voltages and increased power 
consumption, the supply voltage is continuously increasing to support newer process 
technologies resulting in a significant IR drop.  The IR drop problem is anticipated to be 
increasingly prevalent in the 130 nanometer and below process technology.  

IR drop can affect the performance of the system in several ways.  For example, the IR drop can 
alter the effective voltage, VDD, being supplied to transistor devices.  The dynamic variation in 
VDD can sometimes go out of the specified VDD margin, which may affect the performance 
characteristics of the transistor, resulting in a functional failure.  IR drop can also cause 
increased gate delay, resulting in timing failures.  These failures may cause a state change in the 
circuit and may result in an unpredictable circuit response leading to an eventual system failure. 

The dynamic voltage variation may be caused by submicron inductive effect or simultaneous 
digital switching activity straining the global power supply.  The inductive effects are largely 
dependent on the transient signal timings such as rise or fall time.  Thus, as the system design 
moves towards the gigahertz scale, the inductive effects become a significant factor of overall IR 
drop. 

The dynamic voltage variation may also cause the current density of some metal wires to be 
significantly above the rated maximum current density.  The higher current density may 
accelerate the electro-migration process that causes a metal short or metal breaking. 

10.  SUMMARY. 
 
Both ground and airborne avionics are dependent upon the use of COTS microprocessors.  
Evolving microprocessor architectures include concepts such as caching, pipelining, branch 
prediction, and other advanced features that can affect system performance, predictability, and 
safety.  FAA qualification and certification policy and procedures of safety-critical avionics 
require proof of safety.  There is a risk of these regulatory activities becoming exorbitantly 
expensive and less effective in ensuring safety requirements are met.  Microprocessors and other 
complex hardware (e.g., (SoC)) are driven by market forces that generally do not consider 
avionics safety requirements and are rushed into production to meet competitive goals.  Due to 
the need to (1) select COTS components that are less expensive, (2) meet evolving system 
requirements, and (3) select components that are still being produced and maintained by the 
manufacturers’ designers, integrators, and maintainers are forced to use the ever more complex 
hardware.  In most cases, the detailed design and test information held by component 
manufacturers are not available due to the competitive, proprietary nature of the market.  
Microprocessor manufacturers are not designing or testing their products to meet safety-critical 
application requirements because of the cost and potential exposure to litigation. 
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The following three categories of aerospace systems reflect the growth of complexity related to 
the timing of the related certification effort. 
 
• Systems that have been certified and are currently being maintained 

• Systems that are currently undergoing certification 

• Systems that are going to incorporate emerging features that are more complex and less 
deterministic 

As the components are increasingly complex, progressing from past to present to future, each 
category has an increasingly complex set of issues.  All three categories exhibit nondeterministic 
characteristics.  The trend seems to indicate an ever increasing cost of safety evaluations and a 
divergence between existing regulatory policy and the characteristics of the systems being 
certified. 

The intent of this phase of research was to provide findings about safety issues in using modern 
microprocessors on aircraft.  The research considered the applicability of DO-254 to all three 
categories of avionics systems listed above, documented potential safety concerns when using 
modern microprocessors on aircraft, and proposed potential approaches for addressing those 
safety concerns.  In Phase 1, avionics systems developers (BAE Systems, The Boeing Company, 
and Smith Aerospace) joined with the FAA in sponsoring this research at Texas A&M 
University to establish the scope of the project and identify research parameters as documented 
in this report.  This project provided the opportunity to integrate industry approaches into using 
the evolving microprocessor technology in future avionics and safety-critical applications with 
the FAA’s evolving regulatory policy, guidelines, and procedures for safety within the 
qualification, certification, and acceptance processes. 

10.1  FINDINGS. 
 
Phase 1 revealed that the safety analysis of continually evolving modern microprocessors in 
aeronautical and space application has received little attention from research and analysis efforts.  
The trend towards nondeterministic complexity of COTS microprocessors and the resultant 
increase in cost and chance of unassured safety in system certification indicates significant risk 
to a vital part of the U.S. economy.  The research may result in significant savings to both the 
FAA and certifying applicants due to the identification of accepted methods for safety analysis 
of the complex hardware in avionics systems and the resultant simplification of the certification 
processes.  There is also a high probability that the risk of unassured safety related to complex 
microprocessors can be mitigated by the results of this research. 
 
Due to competitive market forces, both (1) microprocessor design and test information held by 
each microprocessor manufacturer and (2) the certification approaches and methods developed 
by individual certifying applicants are considered proprietary and thus are partitioned from each 
other.  This situation is further obscured by existing certification policy and procedures by 
requiring that each certification stand alone.  This results in the repetitive design, proof of failure 
mode information, and the evaluation of the safety evidence approach for each certification of 
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complex nondeterministic hardware (e.g., microprocessors).  There is currently no single source 
of information being maintained for safety analysis methods and techniques related to the 
certification of these complex systems and their potential failure modes. 
 
This report presents an assessment of existing certification guidelines towards certification of 
evolving microprocessor architectures and emerging features.  It indicates that new certification 
processes are required in addition to the existing ones.  This report also addresses unpredictable 
issues in computational components of the microprocessors that may lead to safety concerns in 
avionics applications. 
 
The safety issues are raised when using a microprocessor in avionics products.  The issues are 
primarily due to the lack of trustworthiness of manufactured components, unavailability of 
sufficient information on microprocessor designs, unpredictability of run-time tasks due to 
complex features in the microprocessors, and insufficient test and fault-tolerant support within 
the microprocessor systems.  The report provides the suitability, unsuitability, and safety 
concerns regarding DO-254 for evaluating microprocessors.  A list of possible evaluation criteria 
(such as availability and validity of information, trustworthiness of a microprocessor, predictable 
execution, fault tolerance support, reliability of the design, availability and suitability of tools, 
adequate mitigation for microprocessor obsolescence, and performance and functional testing) 
was identified to provide a basis for the development of standards, guidelines, and processes to 
be used to augment the guidance of DO-254.  A tentative classification of criteria in safety levels 
A through E based on the level of criticality (from higher to lower) was given.  This report 
identifies that microprocessor obsolescence management may become a significant problem in 
the future due to rapidly changing designs.  Feature modeling is going to be a potential approach 
to identify risk involved in a feature and then the microprocessor as a whole.  The 
microprocessor testing and evaluation trends are presented and several safety concerns are 
identified relating to tests, qualifications, and certifications.  The report also outlines the risk-
related issues that arise in a SoC that integrates microprocessor IPs with peripheral components 
(i.e., memory controller, bus controller, and interrupt controller) or multiple IPs on the same chip 
(including multiple processor cores). 
 
10.2  RECOMMENDATIONS. 
 
Based on the findings of Phase 1 and the significance of the certification process, the following 
are identified as recommended research activities.  These activities are intended to further 
research and to possibly provide support to both regulatory agencies and industry. 
 
• Identify ways to augment existing regulatory policy or establish new policy to provide 

procedures and methods to permit the safe, economical qualification of microprocessor 
applications with complex nondeterministic architectures. 

• Develop guidance for field service credits that can be achieved for existing and derivative 
microprocessors. 

• Identify microprocessors and/or microprocessor architectures and features for safety-
critical aerospace applications that can be proven to be safe. 
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• Establish acceptability criteria for instruction set architectures that are incrementally 
evolving or stay constant in different families of microprocessors. 

• Balance the FAA regulations and policy with the design and test of microprocessor 
components and systems that display nondeterministic characteristics. 

• Determine how to economically and realistically test modern, complex microprocessors 
and related avionics systems to meet safety requirements. 

• Identify probable faults in a manner that limits test and evaluation efforts and optimizes 
the likelihood of meeting safety requirements. 

• Identify and/or provide tools to support the qualification and certification processes 
and/or to provide safety evidence. 

• Examine methods to evaluate nondeterministic complex microprocessors and 
components containing microprocessors (e.g., SoC). 

• Determine possible ways to maintain and share failure mode information and safety 
evaluation methods and techniques to facilitate growth and viability of aeronautical and 
space industries. 

These activities should be directed primarily to the second category of systems identified above.  
As Category 1 systems undergo maintenance, logistics will require the replacement of 
components with those microprocessors that are within Category 2 applications, and this 
research and the resultant methods and processes will be applicable to them. 

The emerging features inherent in Category 3 systems and their applications should be a subject 
for research following Phase 2.  The size and complexity of the required research is beyond the 
resources of the AFE number 43 Microprocessor Evaluation Project as it is currently funded and 
contracted. 
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APPENDIX A—PROFILE-BASED PERFORMANCE ESTIMATION 
 
The technique of reference A-1 requires the identification of the path traces in a given program.  
A path is an acyclic sequence of instructions through a program.  A path starts in either of the 
following points: 
 
• An entry point into a procedure.  The entry point could either be due to a call into  

this procedure or due to the return of a subroutine called by this procedure. 

• The top of a backward going program arc (top of a loop).  

The end of a path occurs at either of the following program points: 
 
• An exit from a procedure.  The exit is either due to a call to another subroutine or due  

to the return from this procedure.  

• The bottom of a backward going program arc (bottom of a loop).  

Once the paths are identified, the technique considers both the stall a base path has on a 
successor and the stall a successor imparts onto the base path as well as the overlap between 
paths.  A dependency arc from an instruction in the base path to an instruction in a successor 
path is an indication of additional stall cycles for the successor path.  In architectures that 
support out-of-order issue, instructions from a successor path may be scheduled before some 
instructions from the base path.  Execution of instructions from both paths may also overlap in 
the pipeline.  Typically a path has multiple successors, so the estimation technique must take into 
account the interactions of the base path with each successor path.   
 
Timing estimation of a program is done using equations A-1 and A-2.  These equations do not 
take into account the effects of branch prediction and caches (instruction, data) yet.  However, 
the discussion in the following paragraphs explains how branch prediction and cache effects are 
incorporated into the timing estimation.  The execution time of a program is estimated by 
summing the products of the execution time estimate of each path (Ti) and the number of times 
that path has been executed (Counti).  This estimation is given in equation A-1. 
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The calculation of Ti, which is shown in equation A-2, takes into account the effects due to the 
successor path, and fij is the frequency of the execution of the successor path j after the base path 
i. The term in the parenthesis is the difference between the number of execution cycles of a 
successor path when scheduled with the base path (tij) and the number of execution cycles of the 
successor path when it executes in isolation (tj).   
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The performance of this method can be improved by analyzing only the paths that include the 
fraction (1-ε) of the executed instructions.  This method is called path pruning.  The error 
introduced by path pruning (εactual) is different than ε, but the study in reference A-1 reports the 
maximum difference between εactual and ε to be 0.039%.  Arc pruning is another technique for 
improving the performance of the method of this section.  In arc pruning the arcs in the program 
flow graph are sorted by contributed instructions first.  Next, only the arcs that represent the first 
(1-ε) fraction are analyzed.  For the results reported in reference A-1 the maximum difference of 
εactual and ε is 0.033% when arc pruning is used.  
 
Incorporating timing effects due to branch mispredictions and cache misses requires extending 
equation A-1.  Equation A-3 gives the generalized formula that incorporates timing effects of all 
these features.  Analysis for Tbase (pipeline behavior) is as discussed above.  Tbranch, Ticache, and 
Tdcache are the timing effects due to branch mispredictions, instruction cache misses, and data 
cache misses respectively. 
 
 dcacheicachebranchbaseprogram TTTTT +++=  (A-3) 
 
Equation A-3 is valid when all the timing effects are independent from each other.  This 
condition does not hold in modern microprocessors because they overlap many events like the 
handling of the cache misses in the main pipeline execution.  However, the results in reference 
A-1 show that equation A-3 is good modeling of the timing effects of branch mispredictions and 
instruction cache misses.  Equation A-3 is not a good modeling for capturing the effects due to 
data cache misses.  The discussion at the end of this section gives more information on this.  
 
Equation A-4 gives a way for approximating the average timing effects Tx due to branch 
mispredictions and cache misses.  Mx is the number of misses or mispredictions and Px is the 
average penalty of a miss or misprediction.   
 
 xxx PMT ⋅=  (A-4) 
 
Approximating Px requires the program to be run twice; once with worst-case behavior for type 
(wx) and next with perfect behavior (Nx).  As equation A-5 shows, taking the difference between 
the worst-case behavior and the best-case behavior performance and dividing it by the number of 
event type x (Nx) gives Px.  Wx, BBx and Nx are the worst case behavior performance, best case 
behavior performance and the number of event types.  
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Mx in equation A-4 can be replaced by mx⋅Nx, where mx is the miss or misprediction rate and Nx 
is the number of events of type x.  Combining all of these yields equation A-6.  The miss or 
misprediction rate mx can either be approximated using the modeling discussed in sections 7.2 
and 7.3 or can be collected using profiling tools.  
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 ( )xxxx BWmT −⋅=  (A-6) 
 
Observing that the base-case time for x is the same as Tbase and combining equation A-6 with 
equation A-3 yields equation A-7. 
 

( ) dcachedcacheicacheicachebranchbranchbasedcacheicachebranchprogram WmWmWmTmmmT ⋅+⋅+⋅+⋅−−−= 1  
  (A-7) 
 
According to reference A-1 worst-case behavior for the branch prediction occurs when every 
branch is mispredicted and worst-case data cache is when every load and store misses in the data 
cache.  Worst-case behavior of an instruction cache is when an instruction reference to the 
different instruction cache line misses the cache.   
 
The study in reference A-1 applied equation A-7 at the path level and studied the effects due to 
the branch prediction, instruction cache, and data cache separately.  The results show that the 
maximum error when predicting the branch prediction and instruction cache timing effects is 
about 5%.  The prediction for the data cache timing effects is not accurate though because the 
maximum error is about 40%.  According to reference A-1, this behavior has several causes.  
The first reason is that the data cache effects are not correlated with the execution paths, but the 
data is collected at the path level.  Second, when there is enough instruction level parallelism in 
the code, handling a data cache miss can be completely overlapped with other useful work.  
Third, the worst-case scenario that assumes that each load and store operation misses the data 
cache overestimates the actual worst-case.  Finally, there are multiple data-dependent effects that 
are difficult to predict.   
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