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EXECUTIVE SUMMARY 

Object-oriented technology (OOT) has been used extensively throughout the non-safety-critical 
software and computer-based systems industry in safety-critical medical and automotive systems 
and has started being used in the commercial airborne software and systems domain.  However, 
as with any new technology, there are concerns and issues relating to its adoption within safety-
critical systems.  Previous Federal Aviation Administration (FAA) research and two Object-
Oriented Technology in Aviation (OOTiA) workshops with industry indicate that there are some 
areas of OOT verification that are still a concern in safety-critical systems.  One of those areas is 
the verification of data coupling and control coupling (DCCC). 
 
This Handbook provides input to industry and the FAA into issues and acceptance criteria for the 
verification (confirmation) of DCCC within OOT in commercial aviation.  This Handbook takes 
the position that the intent of the structural coverage analyses (confirmation) of DCCC is to 
provide an objective assessment (measure) of the completeness of the requirements-based tests 
of the integrated components.  Unfortunately, no measurable adequacy criterion is provided in 
RTCA DO-178B/EUROCAE ED-12B for Objective 8 of Table A-7.  A review of the published 
literature concerning integration verification found that coverage of intercomponent 
dependencies as an acceptable adequacy criterion (measure) of integration testing, known as 
coupling-based integration testing, was well motivated for both non-OOT and OOT software.  
This Handbook, therefore, uses the coverage of intercomponent dependencies as a measurable 
adequacy criterion to satisfy Objective 8 of DO-178B/EUROCAE ED-12B Table A-7.  One 
limitation of the coverage of intercomponent dependencies used in this Handbook is that any use 
of polymorphism in the OOT must conform to the Liskov Substitution Principle. 
 
Guidelines for developers, verifiers, and acceptors (generally regulators or their designees) for 
DCCC verification are provided for four types of dependencies. 
 
• Sequencing dependencies, a part of control coupling, are requirements on the execution 

order of components. 
 
• Timing dependencies, a part of control coupling, are requirements on the timing of 

individual components and sequences of multiple components. 
 
• Control flow dependencies, part of control coupling, are represented by control 

dependencies between components.  This is divided into sequencing dependencies and 
data dependencies within branch points. 

 
• Information flow dependencies, part of data coupling, are represented by data flows 

between components, where one component defines the value of an object/data item that 
is used in another component (data dependencies). 
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viii 

One limitation of this Handbook is in the area of polymorphism with dynamic binding and 
dispatch.  Defining adequate verification for this OOT feature is an active research area without 
a definitive answer.  As such, the recommendation in this Handbook may only be considered an 
interim solution where polymorphism with dynamic binding and dispatch is concerned. 



 

1.  INTRODUCTION. 

1.1  PURPOSE. 

This Handbook is intended to provide input to industry and the Federal Aviation Administration 
(FAA) into issues and acceptance criteria for the verification (confirmation) of data coupling and 
control coupling (DCCC) within object-oriented technology (OOT) in commercial aviation.  
This Handbook takes the position that the intent of the structural coverage analyses 
(confirmation) of DCCC is to provide an objective assessment (measure) of the completeness of 
the requirements-based tests of the integrated components.  A review of the published literature 
concerning integration verification found that coverage of intercomponent dependencies as an 
acceptable adequacy criterion (measure) of integration testing in both non-OOT and OOT 
software was well motivated.  This approach is known as coupling-based integration testing 
(CBIT).  This Handbook, therefore, uses the coverage of intercomponent dependencies as a 
measurable adequacy criterion to satisfy Objective 8 of RTCA DO-178B/EUROCAE ED-12B 
Table A-7 (DO-178B hereafter) [1]1. 
 
Note that the analysis performed in this Handbook assumes subtype inheritance that conforms to 
the Liskov Substitution Principle (LSP) [2].  This means that a subclass must accept all messages 
that its superclass will accept, and it must produce appropriate results.  As a result, “subclass 
objects can be substituted for superclass objects without causing failures or requiring special 
case code in clients” [3].  This ensures that “the objects of the subtype ought to behave the same 
as those of the supertype as far as anyone or any program using supertype objects can tell” [2].  
Defining adequate verification for polymorphism with dynamic binding and dispatch is an active 
research area without a definitive answer.  As such, the coverage of intercomponent 
dependencies used in this Handbook may only be considered an interim solution where 
polymorphism with dynamic binding and dispatch is concerned. 
 
1.2  BACKGROUND. 

DO-178B requires the confirmation of DCCC in Objective 8 of Table A-7 [1].  Unfortunately, no 
objective (measurable) adequacy criterion is given for this objective.  This is in sharp contrast to 
the other structural coverage objectives (5-7) in the same table. 
 
OOT has been used extensively throughout the non-safety-critical software and computer-based 
systems industry in safety-critical medical and automotive systems and has started being used in 
the commercial airborne software and systems domain [4 and 5].  Previous FAA research [4, 5, 
and 6] and two Object-Oriented Technology in Aviation (OOTiA) workshops with industry (see 
http://shemesh.larc.nasa.gov/foot/ for more information) indicate that guidance for the 
application of DCCC to OOTiA is needed. 
 
The FAA requested that The Boeing Company conduct research to identify issues and provide 
input to the industry and the FAA on the confirmation of DCCC (satisfaction of Objective 8 of 

                                                 
1  Note:  Coverage of intercomponent dependencies (CBIT) will satisfy Objective 8 of DO-178B Table A-7 for both 

OOT and non-OOT software. 
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DO-178B Table A-7 [1]) within OOTiA.  This Handbook is a companion document to the 
research report [7] on DCCC verification. 
 
1.3  DOCUMENT OVERVIEW. 

As stated, this Handbook is a companion document to the research report [7].  The research 
report contains the details behind the steps employed in this Handbook.  This Handbook contains 
the practical how-to guidelines for performing DCCC verification. 
 
• Section 1 provides the purpose, background, and general overview. 
 
• Section 2 provides an overview of structural coverage within DO-178B and the role of 

DCCC verification [1]. 
 
• Section 3 provides the guidelines on how to perform the DCCC verification (structural 

coverage analysis). 
 
• Section 4 summarizes the approach.  
 
• Section 5 provides a list of references. 
 
• Appendix A provides a brief overview of dependency analysis.  
 
1.4  RELATED ACTIVITIES AND DOCUMENTS. 

There are four related activities (one workshop, two previous studies, and one Certification 
Authorities Software Team (CAST) paper) and their associated documents and the companion 
DCCC research report that relate directly to the issues addressed herein: 
 
• The joint FAA/National Aeronautics and Space Administration (NASA) OOTiA project 

workshops and the associated documentation at http://shemesh.larc.nasa.gov/foot/. 
 
• “Handbook for Object Oriented Technology in Aviation (OOTiA),” Revision 0, October 

26, 2004, available at: http://faa.gov/aircraft/air_cert/design_approvals/air_software/oot/. 
 
• Certification Authorities Software Team (CAST), Position Paper CAST-19, 

“Clarification of Structural Coverage Analyses of Data Coupling and Control Coupling,” 
Completed January 2004, (Rev 2), available at:  http://faa.gov/aircraft/air_cert/design_ 
approvals/air_software/cast/cast_papers/. 

 
2.  STRUCTURAL COVERAGE OVERVIEW. 

Software verification consists of a combination of reviews, analyses, and tests to ensure that the 
software satisfies its requirements and that errors, which could lead to unacceptable failure 
conditions have been removed [1].  Testing demonstrates the requirements compliance and 
provides high confidence that errors have been removed through execution of the software [1].  
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The adequacy of the testing is assessed by coverage analysis of the requirements and the code 
structure [1].  The need for both forms of coverage analysis is illustrated in the requirements 
versus implementation overlap depicted in figure 1. 
 

Implementation

Unimplemented 
Function

Unspecified 
Function

Correct 
Function

Requirements

Incorrect 
Function

 
Figure 1.  Requirements/Implementation Overlap 

In figure 1, the requirements are shown as overlapping the implementation.  Where the two 
overlap, there are parts where the implementation is in agreement with the requirements (i.e., 
correct function) and parts where it is not (i.e., incorrect function).  Requirements-based tests 
will generally operate within this overlap.  Where the requirements do not have an overlap with 
the implementation is where the implementation fails to implement a requirement (i.e., 
unimplemented function).  Where the implementation does not have an overlap with the 
requirements is where the implementation provides a capability beyond the requirements (i.e., 
unspecified function, possibly unintended). 
 
Requirements coverage is used to ensure that the test cases satisfy the specified criteria [1].  This 
helps ensure that correct function is present, that incorrect function (i.e., error) is detected if 
present, and that no unimplemented function is present (i.e., no required function is missing).  
Requirements coverage will generally not catch unspecified function.  Structural coverage is 
used to ensure that the requirements-based testing, as a whole, adequately exercised the code 
structure.  This helps ensure that no unspecified function is present.  Structural coverage will 
generally not catch unimplemented function. 
 
The intent of the structural coverage analyses (confirmation) of DCCC is to provide an objective 
assessment (measure) of the completeness of the requirements-based tests of the integrated 
components [7].  This means that DCCC verification helps to ensure the demonstration of the 
presence of intended interactions (function) between those components and supports the 
demonstration of the absence of unintended interactions (function) between those components.  
Since DCCC is a structural coverage criterion, requirements-based tests covering these 
interactions should be present. 
 
As defined in this Handbook, achieving DCCC coverage will have overlap with the other 
structural coverage criteria in Objectives 5 through 7 of Table A-7 of DO-178B [1 and 7]: 
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• Executing all statements for the unconditional control dependency edges and those 
conditional control dependency edges leading to statements (statement coverage, partial 
decision coverage (DC), and partial Modified Condition Decision Coverage (MCDC)). 

 
• Executing those branch point outcomes that lead to statements for the conditional control 

dependency edges (partial DC, partial MCDC).  Note that not all branches of a branch 
point need be represented in a program dependency graph (PDG) [7]. 

 
• Executing all executable definition-use pairs (du-pairs) for the data dependency edges.  

This leads to execution of all statements containing definitions and uses of objects 
(partial statement coverage, partial MCDC).  This may lead to executing branch point 
outcomes that do not have a corresponding PDG control dependency edge, but form a 
definition-clear subpath (partial DC, partial MCDC). 

 
• Executing all subprogram calls for both forms (control and data) of dependencies (a by-

product of MCDC, therefore partial MCDC). 
 
Table 1 compares the levels of coverage identified in Table A-7 of DO-178B [1] along with 
those of DCCC verification employed in this Handbook beyond that currently in DO-178B [1].  
In table 1, the first column identifies the four levels of coverage.  Note that only the branch 
point/branches portion of DC are being considered.  The second through fifth columns show 
which of the coverage criteria are required by software Levels A, B, and C, and DCCC, 
respectively, where a particular coverage criterion that is satisfied by a software level or DCCC 
is indicated by an “X” in the row/column intersection.  Note that covering DCCC will require 
coverage beyond that required for all software levels.  Note also that covering DCCC does not 
satisfy all coverage required for Levels A and B software, because it only provides partial DC 
and MCDC. 
 

Table 1.  Coverage Comparisons 
 

Type of Coverage Level A Level B Level C DCCC 
Statement coverage X X X X 
Decision (branch point) 
coverage X X   

MCDC X    
Coverage of calls X*   X 
Coverage of du-pairs    X 

 
*Byproduct of MCDC 

 
Structural coverage is most effective when it is obtained as a by-product of requirements-based 
testing.  This Handbook assumes that all tests built to cover DCCC interactions will come from 
some combination of the system requirements, software high-level requirements, software low-
level requirements, and software architecture because those sources define the need for the 
DCCC interaction. 
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3.  COUPLING VERIFICATION. 

Determining the adequacy of the DCCC verification consists of three steps. 
 
Step 1 identifies the DCCC dependencies between components.  In OOT, components are class 
methods.  In this Handbook, there are four classes of dependencies identified.  One class is 
subsumed by the analysis required by this Handbook for the other two, but is kept for 
consistency with the companion report [7] and the general literature.  Each dependency is 
covered within one of the following four sections: 
 
• Sequencing 
• Timing 
• Control dependencies 
• Data dependencies 
 
The requirement for these dependencies should be documented in the development artifacts:  
system requirements, software high-level requirements, software low-level requirements, and 
software architecture.  The implementation of these requirements should be present in the 
implementation artifacts:  source code and object code. 
 
Step 2 identifies the verification methods for each dependency. 
 
• Reviews 
• Analyses 
• Tests 
• Traceability 
 
Verification will consist of some combination of the above methods.  The first three methods are 
the traditional verification methods.  Traceability is needed between the development artifacts, 
the implementation artifacts, and the verification artifacts as depicted in figure 2 [1].  Because of 
the importance of traceability, it has been included as a necessary part of verification in the 
above list. 
 

 
 

Figure 2.  Verification and Traceability 

Step 3 provides or identifies the justification for the absence of verification if there are no 
verification methods that cover a dependency.  As DCCC is a structural coverage criterion, and 
therefore requires execution, the absence of testing is a special concern. 
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There are three categories of personnel that perform responsibilities within these steps. 
 
• Developer—this group of individuals is collectively responsible for documenting the 

requirement for the DCCC dependency in the development artifacts, developing that 
requirement into an implementation, and establishing the traceability between the 
development artifacts and the implementation artifacts (generally the source code). 

 
• Verifier—this group of individuals is collectively responsible for developing the 

verification of the DCCC dependency and for establishing the traceability between 
verification artifacts, development artifacts, and implementation artifacts.  It is 
envisioned that, in general, no specific tests for DCCC structural coverage will need to be 
generated, because other requirements-based tests (operational scenarios) will exercise 
the DCCC dependencies as by-products.  These tests merely need to be tagged as 
covering the DCCC dependencies (traceability).  If it is determined that no testing 
covering a dependency is needed, then this group is collectively responsible for justifying 
why execution of a dependency by a requirements-based test (an operational scenario) is 
not necessary.  Beizer points out that untested code is generally not to be trusted and 
should not be incorporated into an operational system [8]. 

 
• Reviewer/Acceptor—this group, generally a regulator or representative, is responsible for 

ensuring that each step has been adequately performed. 
 
Discussion for each of the four DCCC dependencies follows in sections 3.1 through 3.4. 
 
3.1  SEQUENCING. 

Sequencing dependencies, which are a part of control coupling, are requirements on the 
execution order of components:  for example, component C1 must execute before component C2, 
component C3 calls component C4, etc.  Sequencing requirements are due to some form of 
dependency between the components.  Earlier components perform functions necessary for later 
components.  One concrete example in OOT is that the constructor for an object must be called 
before any other methods are called for that object. 
 
A number of representations, both diagrammatic and textual, can be used to both express these 
sequencing requirements and to document the implementation.  Commercial tools exist to 
generate these diagrams or text from user input during forward engineering (development), as 
well as reverse engineer these diagrams, or text, from existing implementations.  Representations 
include: 
 
• Call trees (also known as call graphs) 
• Compiler tables (link directives) 
• Data-flow diagrams 
• Linker tables (link map) 
• Structure charts 
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• Unified Modeling Language (UML) Activity (Interaction) Diagrams 
• UML collaboration (interaction) diagrams 
• UML communication diagrams 
• UML sequence (interaction) diagrams 
• Others 
 
A number of mechanisms can be used to implement the transfers of control between components 
necessary to accomplish the ordering.  Note that the mechanisms are dependent on the 
programming language, run time support, and hardware being used.  Mechanisms include: 
 
• Subprogram call/return 
• Raising and handling of exceptions 
• Jumps 
• Task rendezvous 
• Interrupts 
• Others 
 
The steps to be taken concerning the sequencing portion of DCCC verification are: 
 
• Step 1:  Identify all sequencing requirements and design in the development artifacts.  It 

is anticipated that the majority of this information will reside in the software architecture.  
The developers are responsible for the initial production of this information.  The 
verifiers are responsible for locating this information. 

 
• Step 2:  Identify all instances of sequencing/transfers of control between components in 

the implementation artifacts.  It is anticipated that the majority of this information will 
reside in the source code.  It is also anticipated that the majority of these instances will be 
due to subprogram call/return.  The developers are responsible for the initial production 
of this information.  The verifiers are responsible for locating this information.  It is 
anticipated that the verifiers will use tools to help with the identification. 

 
Component referencing can be direct, generally by name, or indirect, generally through 
an alias or a pointer.  When indirection is used, part of the identification process will 
entail determining all references that can occur as a result of the instance (i.e., alias 
analysis). 

 
• Step 3:  Check the traceability between the development artifacts and the implementation 

artifacts.  The developers are responsible for the initial production of this information.  
The verifiers are responsible for locating this information, checking it for completeness 
and correctness, and identifying errors. 

 
• Step 4:  Check the conformance of the implementation artifacts to the development 

artifacts.  All instances of sequencing/transfers of control between components in the 
implementation artifacts (generally source code) will need to be checked for proper 
occurrence (i.e., do they occur as designed) and operation (i.e., do they behave as 
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designed, and do they behave as required).  The verifiers are responsible for preparing the 
verification artifacts; establishing the traceability between the verification artifacts, 
development artifacts, and implementation artifacts per figure 2; and identifying errors. 

 
This will generally entail a series of requirements-based tests executing each instance of 
sequencing/transfers of control between components.  Note that an instance may only 
need a single execution (i.e., a series can consist of a single element), and a test may 
execute several instances. 
 
If a transfer of control is due to a polymorphic reference or any other dynamic multiple-
bound mechanism, multiple tests resolving to different bindings may be required [7].  
Recall that if a polymorphic reference is present, it must conform to LSP.  Also recall 
that verification beyond this may be required for polymorphism with dynamic binding. 

 
• Step 5:  If there are no verification methods that cover a sequencing dependency, 

generally a transfer of control between components will provide or identify the 
justification for the absence of verification. 

 
3.2  TIMING. 

Timing dependencies, which is a part of control coupling, are requirements on the timing of 
individual components and sequences of multiple components; e.g., component C1 must execute 
37 milliseconds (ms) before component C2, component C4 must complete execution within 25 
ms after being called by component C3, and so on.  Timing dependencies include such things as 
component performance, throughput, and rates.  Timing requirements are generally due to the 
necessary interactions between the system and the rest of the world. 
 
Diagrammatic and textual representations can be used to both express these timing requirements 
and to document the implementation.  Commercial tools exist to generate these diagrams, or text, 
from user input during forward engineering (development), as well as reverse engineer these 
diagrams, or text, from existing implementations.  Representations include: 
 
• Temporal logics (generally textual, but some have diagrammatic representations) 
• Timing diagrams (both UML and others) 
• Timing traces (from timing analyzers and other execution profilers) 
• Others 
 
The steps to be taken concerning the timing portion of DCCC verification are: 
 
• Step 1:  Identify all timing requirements and constraints in the development artifacts.  It 

is anticipated that the majority of this information will reside in the software architecture.  
However, embedded real-time systems must generally interact with the real world, and 
the resulting requirements on system performance will come from the system 
requirements.  The developers are responsible for the initial production of this 
information.  The verifiers are responsible for locating this information. 
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• Step 2:  Identify all instances of component and intercomponent timing constraints in the 
implementation artifacts.  It is anticipated that the majority of this information will reside 
in the source code, generally as scheduling constructs.  The developers are responsible 
for the initial production of this information.  The verifiers are responsible for locating 
this information.  It is anticipated that the verifiers will use tools to help with the 
identification. 

 
• Step 3:  Check the traceability between the development artifacts and the implementation 

artifacts.  The developers are responsible for the initial production of this information.  
The verifiers are responsible for locating this information, checking it for completeness 
and correctness, and identifying errors. 

 
• Step 4:  Check the conformance of the implementation artifacts to the development 

artifacts.  All instances of both component and intercomponent timing constraints in the 
implementation artifacts (generally executable object code) will need to be checked for 
proper operation (i.e., do they behave as designed, do they behave as required).  The 
verifiers are responsible for preparing the verification artifacts; establishing the 
traceability between the verification artifacts, development artifacts, and implementation 
artifacts per figure 2; and identifying errors.  It is anticipated that the verifiers will use 
tools to help with the identification, particularly timing analyzers and profilers.  It is also 
anticipated that the majority of this effort will be common with the worst-case execution 
time (WCET) analysis. 

 
• Step 5:  If there are no verification methods that cover a timing dependency (generally a 

WCET), then provide or identify the justification for the absence of verification. 
 
3.3  CONTROL DEPENDENCY. 

Control flow dependencies, which are part of control coupling, are represented by control 
dependencies between components.  These dependencies take two forms: 
 
• Transfers of control between components, generally due to subprogram call/return.  This 

form of control dependency is covered by the sequencing discussion in section 3.1. 
 
• Definitions of objects/data items in one component used in the branch point selections of 

another component.  This form of data dependency is covered by the data dependency 
discussion in section 3.4.  Note that in the companion report to this Handbook it was 
pointed out that this form of data dependency could be handled as any other data 
dependency [7]. 
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This form of dependency has been included for consistency with the companion report [7] and 
the published literature on the topic even though it is subsumed by the analyses required by other 
dependency forms in this Handbook. 
 
3.4  DATA DEPENDENCY. 

Information flow dependencies, which are part of data coupling, are represented by data flows 
between components where one component defines the value of an object/data item that is used 
in another component (data dependencies); e.g., the AirSpeed function calculates 
CurrentAirSpeed and then sends CurrentAirSpeed to the PrimaryFlightDisplay. 
 
A number of representations, both diagrammatic and textual, can be used to both express these 
information flow requirements and to document the implementation.  Commercial tools exist to 
generate these diagrams, or text, from user input during forward engineering (development), as 
well as reverse engineering these diagrams, or text, from existing implementations. 
Representations include: 
 
• Call trees (also known as call graphs), especially when annotated with information flow 
• Code analyzers (e.g., CodeSurfer® from GrammaTech) 
• Compiler tables 
• Cross-reference reports/tables (generated by compiler or commercial tool) 
• Data dependency graph 
• Data dictionaries 
• Data-flow diagrams 
• Definition-use graphs 
• Definition-use matrices 
• Interactive development environments 
• Program-dependency graphs 
• Set-use tables 
• System-dependency graphs 
• Structure charts 
• UML activity (interaction) diagrams 
• UML collaboration (interaction) diagrams 
• UML communication diagrams 
• UML class diagrams 
• UML sequence (interaction) diagrams 
• Others 
 
Steps to be taken concerning the information flow (data dependency) portion of DCCC 
verification are: 
 
• Step 1:  Identify all information flow (data dependency) requirements and design in the 

development artifacts.  It is anticipated that the majority of this information will reside in 
the software architecture.  The developers are responsible for the initial production of this 
information.  The verifiers are responsible for locating this information. 
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• Step 2:  Identify all instances of information flow (data dependency) between 

components in the implementation artifacts.  It is anticipated that the majority of this 
information will reside in the source code.  The developers are responsible for the initial 
production of this information.  The verifiers are responsible for locating this 
information.  It is anticipated that the verifiers will use tools to help with the 
identification. 
 
As identified in reference 7, the essence of the data dependency analysis is to identify all 
data items accessed by more than one component.  In OOT, this means identifying all 
accesses to objects and attributes within methods.  Object and attribute referencing can be 
direct (generally by name) or indirect (generally through an alias or a pointer).  When 
indirection is used, part of the identification process will entail determining all references 
that can occur as a result of the instance (i.e., alias analysis). 
 
The essence of this analysis is to identify all the realizable intercomponent du-pairs for 
each object and attribute in the software [7]. 
 
- Identify the objects and attributes present in the system.  To simplify the analysis 

of composite data types, an array can be treated as a single entity, while records 
have each component (field) treated individually [9]. 

 
- For each object and attribute, identify each method that defines a value for the 

object/attribute.  This will form half of an intercomponent du-pair. 
 
- For each object and attribute, identify each method that uses the value of the 

object/attribute.  This will form half of an intercomponent du-pair. 

- For each potential unique intercomponent du-pair (defining and using methods 
are different), determine if the intercomponent du-pair is realizable (i.e., 
executable under some operational scenario for the system).  Two intercomponent 
du-pairs are considered to be duplicates if the corresponding definition-use 
associations (DUA) are the same [7]. 

• Step 3:  Check the traceability between the development artifacts and the implementation 
artifacts.  The developers are responsible for the initial production of this information.  
The verifiers are responsible for locating this information, checking it for completeness 
and correctness, and identifying errors. 

 
• Step 4:  Check the conformance of the implementation artifacts to the development 

artifacts.  All instances of information flow (data dependency) between components in 
the implementation artifacts (generally source code) will need to be checked for proper 
occurrence (i.e., do they occur as designed) and operation (i.e., do they behave as 
designed, do they behave as required).  Proper operation also includes such things as: 
- Same size and structure in both the definition and the use?  If not, are they 

compatible?  If not, are they as required? 
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- Same meaning (semantics) behind the data?  If not, are they compatible?  If not, 
are they as required? 

- Does the du-pair exist under the correct circumstances (i.e., is the DUA correct)?  
This analysis is especially important when the use has multiple definers [7]. 

- If the use appears in a branch point predicate, does it make the correct 
contribution to the determination of control flow?  This is the special form of data 
dependency that is considered by some as a control dependency [7].  For Level A 
software, MCDC helps to ensure this.  In general, ensuring the proper 
contribution of a use is a normal part of checking proper operation.  As such, this 
form of dependency can be handled as any other data dependency [7]. 

The verifiers are responsible for preparing the verification artifacts; establishing the 
traceability between the verification artifacts, development artifacts and implementation 
artifacts per figure 2; and identifying errors. 
 
- This will generally entail a series of existing requirements-based tests executing 

each instance of information flow (data dependency) between components.  Note 
that an instance may only need a single execution (i.e., a series can consist of a 
single element), and a test may execute several instances.  It is envisioned that 
this effort will mainly be a traceability exercise, since required information flow 
will have been covered by operational scenarios present in existing requirements-
based tests (i.e., DCCC coverage is a by-product of requirements-based tests). 

- If an information flow (data dependency) is due to a polymorphic reference or any 
other dynamic multiple-bound mechanism, multiple tests resolving to different 
bindings may be required [7]. 

• Step 5: If there are no verification methods that cover an information flow (data 
dependency) dependency, provide or identify the justification for the absence of 
verification. 

 
4.  SUMMARY. 

This Handbook provides guidelines for developers, verifiers and acceptors (generally regulators 
or their designees) for the verification (confirmation) of DCCC within OOT in commercial 
aviation as required by Objective 8 of Table A-7 in DO-178B [1].  The intent of the structural 
coverage analyses (confirmation) of DCCC is to provide an objective assessment (measure) of 
the completeness of the requirements-based tests of the integrated components (i.e., objectively 
measure integration testing).  Currently, DO-178B [1] does not impose an objective measure for 
the confirmation of DCCC between the code components called out in Section 6.4.4.3c of 
DO-178B [1].  This Handbook employs the coverage of intercomponent dependencies (du-pairs 
and calls) as that objective measure. 
 
Dependency analysis is well-established within the computer science and software engineering 
disciplines.  Current compilers perform this analysis in support of optimization, and commercial 
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tools performing this analysis in support of a number of activities (e.g., maintenance, change-
impact analysis, reverse engineering) are currently available.  The use of dependency analysis as 
an adequacy criterion for testing, particularly integration testing, is also well-motivated in both 
the non-OOT and OOT testing literature and is known as CBIT. 
 
Guidelines for developers, verifiers, and acceptors (generally regulators or their designees) for 
DCCC verification are provided for four types of dependencies: 
 
• Sequencing dependencies, which are a part of control coupling, are requirements on the 

execution order of components. 
 
• Timing dependencies, which are a part of control coupling, are requirements on the 

timing of individual components and sequences of multiple components. 
 
• Control flow dependencies, which are part of control coupling, are represented by control 

dependencies between components.  This is divided into sequencing dependencies and 
data dependencies within branch points. 

 
• Information flow dependencies, which are part of data coupling, are represented by data 

flows between components where one component defines the value of an object/data item 
that is used in another component (data dependencies). 

 
One limitation of this Handbook is in the area of polymorphism with dynamic binding and 
dispatch.  Defining adequate verification for this OOT feature is an active research area with no 
definitive answer yet.  As such, the coverage of intercomponent dependencies to satisfy DCCC 
verification may only be considered an interim solution where polymorphism with dynamic 
binding and dispatch is concerned [7]. 
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APPENDIX A—DEPENDENCY ANALYSIS OVERVIEW 

This appendix contains a brief overview of dependency analysis.  More detailed information may 
be found in the companion report [A-1]. 
 
A dependency exists between two components, C1 and C2, when statements in component C1 
influence the execution of statements in component C2.  In particular, for integration verification, 
faults in the statements of component C1 affect the execution of statements in component C2 
[A-2]. 
 
Dependency relations require an interface between the components.  This interface can be direct 
between call-pairs (e.g., component C1 calls component C2, and both components access object 
A), or indirect (e.g., component C1 calls components C2 and C3 at different times, either directly 
or indirectly, and both C2 and C3 access object A).  Dependency relations are also known as 
coupling [A-2].  Many types of dependency relations exist [A-3]: 
 
• Syntactic—one statement affects the execution of another based on the syntax of the 

programming language used. 
 
• Semantic—one statement affects the execution behavior of another during execution.  A 

semantic dependency always implies a syntactic one (i.e., a semantic dependency is 
always allowed by the syntax of the programming language used).  A semantic 
dependency can be executed dynamically (i.e., witnessed) during some operational 
scenario of the system containing the software. 

 
• Control—one statement controls the execution of another statement.  This may be either 

syntactic or semantic.  In figure A-1, statements 4 and 5 are control dependent on 
statement 3, since the outcome of statement 3 determines which statement will be 
executed.  All the statements in figure A-1 are control dependent on statements in other 
components that call the function Maximum_Of, since none of the statements will 
execute unless a call is made. 

 
• Data—one statement defines the value of an object used in another statement.  This may 

be either syntactic or semantic.  In figure A-1, the statements labeled 3 and 4 are data 
dependent on the statement labeled 1 because X is defined in the statement labeled 1 and 
used in the statements labeled 3 and 4.  Likewise, the statements labeled 3 and 5 are data 
dependent on the statement labeled 2 because of Y. 
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data   control 
dependencies  dependencies 

Figure A-1.  Maximum_Of and Dependencies 
 
Dependencies are generally represented in a program dependency graph (PDG) [A-4 and A-5].  
Figure A-2 shows the source code for function Maximum_Of from figure A-1 on the left along 
with the corresponding PDG on the right.  A PDG is a directed graph consisting of (1) a set of 
nodes (N) representing either the entry points or computations within the design or code and (2) 
a set of directed edges (E), expressed as ordered node pairs (nsource, ndestination), representing either 
control dependencies or data dependencies.  The directed edge flows from the source node to the 
destination node.  In figure A-2, the entry node carries the name of the function. 
 

 dependencies dependencies 
 

Figure A-2.  Maximum_Of Program Dependency Graph 
 
A control dependency edge flows between two nodes and is labeled with the predicate outcome 
if traversal of the edge is conditional on some predicate in the source node.  In figure A-2, there 
are unconditional control dependency edges between the entry and statements/nodes 1, 2, and 3.  
This means that if function Maximum_Of is called and entered, these statements/nodes will be 
executed as long as no exceptions are raised.  There are conditional control dependency edges 
between statement/node 3 and statements/nodes 4 and 5.  If the predicate in statement/node 3 is 
True, then statement/node 4 will be executed, otherwise statement/node 5 will be executed.  One 
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significant difference between a control flow graph (CFG), or flow chart, and a PDG is that in a 
PDG not all outcomes of a decision statement (branch point) need be represented with a control 
dependency edge [A-4 and A-5].  Figure A-3 depicts an example CFG on the left and the 
corresponding PDG with control dependency edges only on the right where not all outcomes of 
branch points in the CFG are represented with control dependency edges in the PDG.  Note that 
statement/node 4 is control dependent on statement/node 1 being True, since statement/node 4 is 
reached when statement/node 2 is both True and False. 
 

 
 

Figure A-3.  The CFG PDG Comparison 
 
A data dependency edge flows between two nodes where the source node defines the value of 
some object that is used in the destination node and is labeled with the name of the object.  In 
figure A-2, there are data dependency edges between statement/node 1 and statements/nodes 3 
and 4.  These edges are labeled X since X receives a value in statement/node 1 that is used in 
statements/nodes 3 and 4.  A similar data dependency for Y is shown for statement/node 2 and 
statements/nodes 3 and 5. 
 
A data dependency edge that flows into a branching predicate is considered by some to be a part 
of the control dependency of the branched-to statements/nodes.  In figure A-2, the data 
dependency edges between statements/nodes 1 and 3 for X, and statements/nodes 2 and 3 for Y, 
are examples of this form of special data dependency.  This makes sense, because the execution 
of statements/nodes 4 and 5 is dependent on the values of X and Y in statement/node 3, which 
were defined in statements/nodes 1 and 3, respectively.  This is also in conformance with the 
definition for control coupling in RTCA DO-178B [A-6] since the statement (component) 
defining the data is influencing the execution of the other statement (component). 
 
Data dependencies are generally represented with a definition-use pair (du-pair) [A-7].  A du-
pair is a pair of statement/node numbers that represent where an object is defined and where that 
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definition can be used.  For the definition to be used, at least one subpath (sequence of 
statements) between the definition and use must be definition clear (i.e., not contain another 
definition of the object).  The two intracomponent du-pairs for X in figure A-2 are (1,3) and 
(1,4), respectively, while those for Y are (2,3) and (2,5). 
 
A du-pair can be extended into a definition-use association (DUA) by adding a predicate that 
defines when the du-pair exists.  Recall that for a du-pair to exist, there must be at least one 
definition-clear subpath between the definition and the use.  This means that the predicate in the 
DUA defines all the definition-clear subpaths for the du-pair.  For the du-pair (1,3) for X in 
figure A-2, this predicate would be that the function Maximum_Of is entered without an 
exception being raised.  This would make the DUA (1,3,Enter(Maximum_Of)), where the 
function “Enter” means that the identified subprogram must be entered without an exception 
being raised.  For the du-pair (1,4) for X in figure A-2, the predicate would be that the function 
Maximum_Of be entered without an exception and that the value of X at statement/node 3 be 
greater than the value of Y at statement/node 3.  Since the values of X and Y at statement/node 3 
are just the values on entry, the DUA would be (1,4, Enter(Maximum_Of) and (X > Y)). 
 
A syntactic dependency can be identified with a static analysis of the code.  The analysis need 
only identify where objects are defined and where those same objects are used where a 
definition-clear control-flow path exists between the definition and the use.  Figure A-4 on the 
left-hand side shows the syntactic dependencies for object A.  Object A has definitions and uses 
on all lines.  Note that there are definition-clear paths from both lines labeled 1 and 2 to both 
lines labeled 3 and 4, which leads to the following four syntactic intracomponent du-pairs for A:  
(1,3), (1,4), (2,3), and (2,4). 
 
However, a syntactic dependency may not be realizable with execution data (i.e., there is no data 
that would cause that dependency to be executed).  Semantic dependency overcomes this 
problem by requiring that the dependency be executable.  Figure A-4 shows the difference 
between syntactic dependencies on the left and semantic dependencies on the right of the code.   
 

 
 

syntactic   semantic 
dependencies   dependencies 

Figure A-4.  Syntactic vs Semantic Dependencies 
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Since there is no redefinition of C between the two if-statements, when C is True, the statements 
labeled 1 and 4 will be executed, and when C is False, the statements labeled 2 and 3 will be 
executed.  This means the only realizable dependencies and intracomponent du-pairs for A are:  
(1,4) and (2,3). 
 
Recall that semantic dependency requires that one statement affects the execution behavior of 
another.  This is demonstrated by either modifying one statement, or changing the value of one 
statement, to see if the execution of the other statement is changed [A-8 and A-9].  In figure A-4, 
if the statement labeled 1 is changed from a sum to a difference (i.e., changed from A := A + B 
to A := A – B), then for all nonzero values of B, the result at the statement labeled 4 will differ 
between the two executions.  This establishes that there is a semantic dependency between the 
statements labeled 1 and 4.  A corresponding analysis can be done to establish the semantic 
dependency between the statements labeled 2 and 3. 
 
Unfortunately, determining if a dependency is semantic is generally undecidable [A-3].  
However, it has been shown that reachability over the PDG, that is, finding program data that 
will execute (witness) the dependency represented by the PDG edge (i.e., cover the PDG edge), 
is a conservative approximation of semantic dependency [A-3].  That is, semantic dependency 
implies PDG reachability, but PDG reachability does not imply semantic dependency. 
 
For integration verification, there is a concern with relations between components.  The 
definitions and examples given previously in this appendix are intracomponent relations in that 
each of the statements resides in the same component.  To extend dependence relations from 
intracomponent to intercomponent usage, one of the statements must be in one component, while 
the other statement resides in a different component. 
 
Note that reference to the object can be direct, generally by name, or indirect through an alias.  
An alias is an object name that can refer to other objects.  The other objects do not need to have 
the same name, but generally need to have the same or compatible type.  Examples of aliases are 
the formal parameter names for the actual parameters and pointers.  Read-only formal 
parameters, also known as pass-by-copy or in-mode, will represent uses of the actual parameters.  
Write-only formal parameters, also known as out-mode, will represent definitions of the actual 
parameters.  In some languages (e.g., Ada95), these parameters are allowed to be read after an 
initial assignment, in which case these reads will represent uses of the actual parameter.  Read-
write formal parameters, also known as pass-by reference or in-out-mode, will represent both 
definitions and uses of the actual parameters.  Pointers are equivalent to read-write parameters. 
 
The previously mentioned extension to intercomponent dependencies means that, for a particular 
object, there will be a definition of that object in one component and the usage of that object 
definition in another.  The object will now have an intercomponent du-pair.  As was mentioned 
previously, the two components can be involved in a direct call or invocation (e.g., tasking, 
interrupt) relationship (e.g., one calls the other, one rendezvous with the other) or an indirect 
one.  Figure A-5 gives some examples of the cross component dependencies. 
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Figure A-5.  Intercomponent Dependencies 

 
Within figure A-5, components C2 and C3 are shown as control dependent on C1, as C1 calls C2 
and C3.  Similar control dependencies exist between components C2/C4 and C3/C5.  There is also 
a control dependency between components C4 and C5 due to a shared object named G.  This is an 
example of the special form of data dependency mentioned previously where G receives a 
definition in component C4, and that definition is then used in the predicate of a branch point in 
component C5.  During the study for the companion report [A-1], it was determined that handling 
this special form of data dependency, as any other (i.e., normal) data dependency, does not 
appear to compromise the verification in any way, and is illustrated for completeness. 
 
Several forms of normal data dependency are also shown in figure A-5.  Data dependency 
between direct call-pairs is shown by object A between components C1/C2 , and between indirect 
call-pairs by object B between components C1/C4 (indirect because C1 calls C2, which in turn 
calls C4).  Data dependencies between components that are not part of the same calling subtree 
are shown by object D between components C2/C3, object E between components C2/C5 and 
object F between components C4/C5.   
 
Figure A-5 represents a simplified view of the dependencies between components.  PDGs are 
extended to system dependency graphs (SDGs) to model multicomponent systems (i.e., programs 
with subprograms, generally known as procedures and functions) [A-5].  An SDG consists of a 
collection of individual PDGs connected together with additional nodes representing 
calls/returns and additional dependency edges based on the relationships that cross calls/returns.  
Strictly speaking, an SDG is a PDG for a larger component.  In figure A-5, the nodes and edges 
within the component PDGs have been suppressed, and only the dependency edges between the 
components have been shown.  Note that this simplification results in a loss of information, 
specifically whether there are multiple accesses to the objects within the components and 
whether these accesses are conditional or not (i.e., nested within a conditional statement). 
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