A METALLURGIST LOOKS AT REVERSE ENGINEERING

Terry Khaled, Ph. D.
Chief S/T Advisor, Metallurgy
terry.khaled@faa.gov
(562) 627-5267
June 2005
REVERSE ENGINEERING
A UNIVERSAL CONCEPT

• CORPORATIONS OFTEN BENCHMARK OWN PRODUCTS VS THOSE OF COMPETITION
 – TEAR DOWN COMPETITOR’S PRODUCT
 – USE INFORMATION TO OWN ENDS

• SOUNDS LIKE REVERSE ENGINEERING?- IT IS

• FAA APPLICANTS PRODUCE REPLACEMENTS TO TYPE-CERTIFICATED PARTS, USING REVERSE ENGINEERING

• APPLICANTS STRIVE TO DEMONSTRATE SIMILARITY / IDENTICALITY TO CERTIFICATED PARTS
 – REDUCE TEST, COMPUTATION & ANALYSIS
 – COST SAVINGS TO APPLICANT
ISSUE

• PART MANUFACTURER APPROVAL PROCEDURES, ORDER 8110.42 Rev. A (31 MARCH 1999) STATES:

“WHILE APPLICANT COULD ESTABLISH THE USE OF IDENTICAL MATERIALS AND DIMENSIONS, IT IS UNLIKELY THAT A SHOWING COULD BE MADE THAT TOLERANCES, PROCESSES AND MANUFACTURING SPECIFICATIONS WERE IDENTICAL”

• PURPOSE OF BRIEFING: CHECK VALIDITY OF STATEMENT
AGENDA

- ANATOMY OF TYPE DESIGN
- THE AFTER-MARKET APPLICANT
- CHEMICAL ANALYSES
- MECHANICAL TESTING
- APPLICANT SCORE SHEET
- CONCLUSIONS
ANATOMY OF TYPE DESIGN

• FORM, FIT & FUNCTION

• MATERIALS & PROCESSES

• SUPPLIER INFORMATION

• OEM MATERIAL & PROCESS SELECTION CRITERIA
FORM & FIT

- DEPICTED ON DRAWING (DIMENSIONS, TOLERANCES, ETC.)

FUNCTION

- FUNCTIONAL / PERFORMANCE REQUIREMENTS
 - MECHANICAL, PHYSICAL, ENVIRONMENTAL
- SPECIFIED ON DRAWING OR REFERENCED SPECS
- SOMETIMES
 - SPECIFIED ON HIGHER ASSEMBLY OR NOT SPECIFIED ANYWHERE (CORPORATE MEMORY)
MATERIALS

CALLED OUT IN MATERIAL BLOCK AND / OR GENERAL NOTES OF DRAWING

- MATERIAL TYPE AND FORM (AISI 4130 PLATE; ETC.)
- STOCK CONDITION (ANNEALED; ROLLED; ETC.)
- STOCK SIZE
- MATERIAL SPECIFICATION
 - COMPOSITION LIMITS, MELTING PRACTICE, INSPECTION & TEST REQUIREMENTS, ETC.
- MATERIAL SUBSTITUTION INFORMATION
PROCESSES

CALLED OUT IN GENERAL NOTES SECTION

• FABRICATION OPERATIONS: HEAT TREAT, WELDING, BRAZING, FORGING, ETC.

• SURFACE TREATMENTS: COATINGS, SHOT PEENING, ETC.

• AUXILIARY PROCESSES: STRESS RELIEF, ANNEAL, ETC.

• INSPECTION: PENETRANT, MAGNETIC PARTICLE, ETC.

• PROCESS SEQUENCE: HEAT TREAT AFTER WELDING; INSPECT AFTER WELDING AND AFTER HEAT TREAT; ETC.

• TOOLING: FIXTURES, TEMPLATES, ETC.
SUPPLIER INFORMATION

PREFERRED SUPPLIERS MAY BE CALLED OUT ON DRAWING OR SPECIFICATIONS

• SPECIALIZED PROCESSING
 – CASTING, BRAZING, PLATING ON ALUMINUM OR TITANIUM, STRAIGHTENING, ETC.

• INTRICATE / SPECIALIZED COMPONENTS
 – BALL BEARINGS, GEARS, ETC.

• DIFFICULT TO PROCURE MATERIALS
 – VACUUM MELTED 4340 OR 440, 17-4 PH SHEET OR PLATE, ETC.
OEM MATERIAL & PROCESS SELECTION CRITERIA

• DESIGN REQUIREMENTS
 – MECHANICAL, PHYSICAL, ENVIRONMENTAL

• FABRICATION CONSIDERATIONS
 – FORMING, DEPTH OF HARDENING, WELDING, ETC.

• THE ECONOMY FACTOR
 – COST & AVAILABILITY OF MATERIALS & PROCESSES

• MATERIAL COST VS PROCESSING ECONOMY

• COST = MATERIAL + FABRICATION + INSPECTION + FINISHING + REWORK
AGENDA

• ANATOMY OF TYPE DESIGN
• THE AFTER-MARKET APPLICANT
• CHEMICAL ANALYSES
• MECHANICAL TESTING
• APPLICANT SCORE SHEET
• CONCLUSIONS
THE AFTER-MARKET APPLICANT

• TYPE DESIGN DATA NOT AVAILABLE TO APPLICANT
 – MUST RELY ON REVERSE ENGINEERING
 😊 USING OEM PARTS ON THE MARKET

• CONFIGURATION
 – BY MEASURING PART DIMENSIONS

• MATERIAL & PROCESS REQUIREMENTS
 – ALLOY TYPE: BY CHEMICAL ANALYSES
 – HEAT TREAT: BY MECHANICAL TESTING

APPLICANT FEELS DESIGN REQUIREMENTS SUFFICIENTLY IDENTIFIED
AGENDA

- ANATOMY OF TYPE DESIGN
- THE AFTER-MARKET APPLICANT
- CHEMICAL ANALYSES
 - CHEMICAL ANALYSIS METHODS
 - WHAT APPLICANT SHOULD DO
- MECHANICAL TESTING
- APPLICANT SCORE SHEET
- CONCLUSIONS
CHEMICAL ANALYSES
METHODS

• CLASSICAL WET ANALYTICAL CHEMISTRY (DIRECT)
 – ACCURATE, TIME CONSUMING & EXPENSIVE

• INSTRUMENTAL METHODS (INDIRECT)
 – ONLY COMPARATIVE- NOT ABSOLUTE
 😊 MUST HAVE ADEQUATE STANDARDS
 – FAST & FAIRLY INEXPENSIVE

• ARC / SPARK OES (OPTICAL EMISSION SPECTROSCOPY)
 – MOST ACCEPTED METHOD

• EDS (ENERGY DISPERSIVE X-RAY SPECTROMETRY)
 – FREQUENTLY USED BY APPLICANTS
OES
CONSIDERATIONS / LIMITATIONS

• EXIT SLITS SET BY MANUFACTURER
 – SUITABLE FOR ONLY SOME ALLOY GROUPS

• RESULTS CAN VARY FROM LAB TO LAB
 – SPECTROMETER, STANDARDS & LINES USED
 – MONOCHROMATOR FOR A TRUE UNKNOWN

• NOT FOR ALL ELEMENTS
 – OLDER AIR-PASS SPECTROMETERS- NO C, S OR P
 – OES NOT YET ACCEPTED FOR H, O OR N
EDS
LIMITATIONS

• ONLY SMALL VOLUME ANALYZED
 – NOT REPRESENTATIVE OF BULK CHEMISTRY

• MANY SYSTEMS CANNOT DETECT O, C, N, Be, Li, B

• SOME ENERGY PEAKS COINCIDE
 – DIFFICULT TO IDENTIFY GENERATING ELEMENT

• QUANTITATIVE ANALYSES REQUIRE STANDARDS
 – EVEN WITH STANDARDS
 😞 METHOD NOT ACCEPTED AS OES
 😞 SUPPLEMENT BY OTHER METHODS
CHEMICAL ANALYSIS
WHAT APPLICANT SHOULD DO

SHOULD “INTERROGATE” LAB

- METHOD USED & ITS SUITABILITY FOR ELEMENTS PRESENT; CONCENTRATIONS IN STANDARDS; SUPPLEMENTAL METHODS USED; ETC.
- IF EDS WAS USED, REQUEST ANOTHER METHOD

SHOULD CONSULT

- WITH A CHEMIST
 - SUITABILITY & ACCURACY OF METHOD(S) USED
- WITH MILLS, CONSULTANTS, CSTA-METALLURGY
 - SELECTIONS IN SIMILAR APPLICATIONS IN INDUSTRY
CHEMICAL ANALYSIS
WHAT APPLICANT SHOULD DO

SHOULD VALIDATE RESULTS IF IN DOUBT

• GET SAMPLE OF ALLOY PROPOSED BY LAB

• SUBMIT SAMPLE + OEM MATERIAL TO DIFFERENT LAB
 – FOR COMPARISON

• REMEMBER
 – MANY ALLOYS CLOSE IN CHEMISTRY
 ☹ SUPERALLOYS; CRES STEELS; 4340 & 300M; OTHERS
 – BUT NOT IN PERFORMANCE

INCORRECT ANALYSIS ⇒ PROBLEMS LATER ON
AGENDA

• ANATOMY OF TYPE DESIGN
• THE AFTER-MARKET APPLICANT
• CHEMICAL ANALYSES
• MECHANICAL TESTING
 – HARDNESS
 – HARDNESS & CONDUCTIVITY
 – TENSILE
 – ISSUES IN MECHANICAL TESTING
• APPLICANT SCORE SHEET
• CONCLUSIONS
MECHANICAL TESTING

• PERFORMED TO
 – DETERMINE ALLOY HEAT TREAT / TEMPER

• TWO APPROACHES EXIST
 – INDIRECT METHODS
 ☹ HARDNESS
 ☹ HARDNESS AND CONDUCTIVITY
 – THE DIRECT METHOD
 ☺ TENSILE TESTING

• APPLICANTS PREFER INDIRECT METHODS
 – NONDESTRUCTIVE
 – LESS EXPENSIVE
INDIRECT METHODS
HARDNESS TESTING

• HARDNESS SENSITIVE MEASURE OF HEAT TREATMENT
 – FOR MANY STEELS (41XX, 43XX, 300M, 440, ETC.)

• HARDNESS-STRENGTH RELATIONSHIPS EXIST
 – CONSISTENT & REPRODUCIBLE (ASTM A370)

• TO DETERMINE STEEL HEAT TREATMENT
 – MEASURE HARDNESS & CONVERT TO STRENGTH
 – FIND CORRESPONDING HEAT TREAT DETAILS
 😊 FROM AMS 2759, OTHER SPECS, DATA SHEETS, ETC.

• OFTEN, NO NEED TO CONVERT TO STRENGTH
 – HEAT TREAT RELATED DIRECTLY TO HARDNESS
HARDNESS TEST LIMITATIONS

• HARDNESS GENERALLY NOT SENSITIVE MEASURE OF HEAT TREATMENT / TEMPER
 – FOR NONFERROUS ALLOYS
 – FOR AUSTENITIC & PH CRES STEELS
 – MARAGING STEELS

• NO HARDNESS-STRENGTH RELATIONSHIPS

• ∴ HARDNESS CANNOT BE USED TO DETERMINE HEAT TREAT DETAILS
INDIRECT METHODS
ALUMINUM ALLOYS

• VARIOUS (T) AND (O) TEMPERS IDENTIFIED BY
 – MEASURING HARDNESS & CONDUCTIVITY
 😊 AMS 2658

• TEMPER FOR PARTICULAR ALLOY IDENTIFIED WHEN
 – HARNESS WITHIN SPECIFIED RANGE
 AND
 – CONDUCTIVITY WITHIN SPECIFIED RANGE

• METHOD NOT APPLICABLE TO
 – STRAIN HARDENED (H) TEMPERS
 – CASTINGS
THE DIRECT METHOD
TENSILE TESTING

• **USUALLY PERFORMED PER ASTM E 8**
 – ON SAMPLES MACHINED FROM PART

• **PART SIZE IMPOSES LIMITS ON**
 – SAMPLE LENGTH
 ☹ **AFFECTS GRIP & GAGE LENGTHS**
 -- GAGE LENGTH ↓: STRENGTH ↓ & DUCTILITY ↑
 – NUMBER OF SAMPLES & CONFIDENCE LEVEL

• **∴ SMALL PARTS CAN RENDER TEST IMPOSSIBLE**
 – RELY ON INDIRECT METHODS
 ☹ **SUBJECT TO THEIR LIMITATIONS**
ISSUES IN MECHANICAL TESTING
DRAWING CALLOUTS

• DRAWINGS CALL OUT STRENGTH / HARDNESS
 – AS A RANGE (e.g., HRC 50-54)
 – AS A MINIMUM (e.g., HRC 50 MIN.)

• APPLICANT HAS NO ACCESS TO OEM DRAWING

HOW DO APPLICANT’S RESULTS RELATE TO DRAWING CALLOUT?
ISSUES IN MECHANICAL TESTING
NON-EQUIVALENT SPECIFICATIONS

• INCONEL 718 SHEET: AMS 5596 AND AMS 5597
 – DIFFERENT HEAT TREATMENTS
 – DIFFERENT CREEP PROPERTIES
 – NEARLY IDENTICAL TENSILE PROPERTIES

• AISI 4340 BAR: Mil-S-5000 (AIR MELTED) AND Mil-S-8844 (VACUUM MELTED)
 – IDENTICAL TENSILE PROPERTIES & HARDNESS
 – MIL-S-8844 HAS SUPERIOR TOUGHNESS AND LOW TEMPERATURE PROPERTIES

TENSILE (OR HARDNESS) TESTING
MAY NOT REVEAL ALL PROPERTY ASPECTS
AGENDA

• ANATOMY OF TYPE DESIGN
• THE AFTER-MARKET APPLICANT
• CHEMICAL ANALYSES
• MECHANICAL TESTING
• APPLICANT SCORE SHEET
• CONCLUSIONS
APPLICANT SCORE SHEET
FORM, FIT & FUNCTION

• FORM
 – FROM OEM PART DIMENSIONS

• FIT
 – DIMENSIONS FROM SMALL NUMBER OF PARTS
 – OEM TOLERANCES NOT KNOWN

 WILL ALL PARTS FIT & BE INTERCHANGEABLE?

• FUNCTION
 – OEM FUNCTIONAL TESTS NOT KNOWN

 DID APPLICANT PERFORM RELEVANT FUNCTIONAL TESTS?
 IF NOT, WILL PART PERFORM INTENDED FUNCTION?
APPLICANT SCORE SHEET
MATERIALS & PROCESSES

• MATERIAL TYPE DETERMINED
 - BY CHEMICAL ANALYSIS
 😞 SUBJECT TO LIMITATIONS

• HEAT TREAT / TEMPER DETERMINED
 - BY MECHANICAL TESTING
 😞 SUBJECT TO LIMITATIONS

• MELTING PRACTICE; INSPECTION; AUXILIARY PROCESSES; MANUFACTURING SPECIFICATIONS; PROCESS SEQUENCE
 - NOT ADDRESSED

∴ MATERIAL & PROCESS CHARACTERIZATION INCOMPLETE
APPLICANT SCORE SHEET
OTHER FACETS OF TYPE DESIGN

• SUPPLIER INFORMATION
 - NOT AVAILABLE
 😞 WHAT IF OEM USED A SPECIAL SUPPLIER, SAY IN SWEDEN

• OEM MATERIAL & PROCESS SELECTION CRITERIA
 - NOT AVAILABLE
 😞 WHAT IF OEM MATERIAL IS NOT AVAILABLE TO APPLICANT
 -- ON WHAT BASIS CAN APPLICANT SELECT AN ALTERNATE MATERIAL?
CONCLUSIONS

• COMMONLY USED REVERSE ENGINEERING PRACTICES
 - DO NOT REVEAL MANY TYPE DESIGN FACETS

• THE STATEMENT CONTAINED IN ORDER 8110.42 REV. A (31 MARCH 1999) IS VALID

“WHILE APPLICANT COULD ESTABLISH THE USE OF IDENTICAL MATERIALS AND DIMENSIONS, IT IS UNLIKELY THAT A SHOWING COULD BE MADE THAT TOLERANCES, PROCESSES AND MANUFACTURING SPECIFICATIONS WERE IDENTICAL”