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FAA Pavement Design Guidance

AC 150/5320-6D 
• Chapter 3 & 4

– Rigid Design based on Westergaard analysis 
(edge load with 25% load transfer)

– Flexible Design based on CBR Design Method 
(S-77-1 US Corp of Engineers procedure)

• Chapter 7
– Layered Elastic Design (LEDFAA v1.3)

Interim rigid design procedure
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Airfield Rigid Pavement Design

R805FAA.xls
Computer program for rigid airfield pavement design 
in accordance with AC 150/5320-6D Chapters 3 and 4 

FAAFED (eventually named FAARFIELD)

Computer program for rigid airfield pavement design 
using finite element procedures.
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Development of FAA Standards for 
Airport Pavement Thickness Design
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FAA Rigid Pavement Design
Chapter 3 – AC 150/5320-6D
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FAA Rigid Pavement Design
Chapter 3 – AC 150/5320-6D

Based on Westergaard Edge Load Analysis

Assumes 25% Edge
Load Transfer

Additional adjustments 
for Traffic level

Foundation assumed
as a “dense liquid”

Concrete Slab

Wheel Load

Foundation Support
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FAA Rigid Pavement Design
Westergaard Edge Load Analysis

Westergaard analysis used to determine stress in 
the rigid panel

For single wheel analysis
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Westergaard analysis used to determine stress in the rigid panel

FAA Rigid Pavement Design
Westergaard Edge Load Analysis

For multi-wheel 
analysis 
Pickett and Ray 
Influence Chart

These have be 
automated.
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Miner’s Hypothesis
Damage accumulates linearly with number of loadings
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FD = Accumulated fatigue damage over design period
n = Number of individual load applications at stress level i
Ni = Maximum allowable number of load applications at 

stress level i

FAA Rigid Pavement Design
Westergaard Edge Load Analysis
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Fatigue Model to define maximum allowable 
number of load applications till “failure”

Rc
  SR σ
=

SR = Stress Ratio
σ = Critical bending stress
Rc = Modulus of rupture (flexural strength)

FAA Rigid Pavement Design
Westergaard Edge Load Analysis
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FAA Rigid Pavement Design
Westergaard Edge Load Analysis

Stress Ratios and Allowable Load Repetitions   *(PCA)
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FAA Rigid Pavement Design
Westergaard Edge Load Analysis

Smith et al,., 2002

Various Rigid Pavement Fatigue Models
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FAA Rigid Pavement Design
Westergaard Edge Load Analysis
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>=

Hslab

cR
σ

= Maximum Tensile edge stress at the bottom of the     
slab for slab thickness HslabHslabσ

Rc  =  Flexural Strength of the PCC
1.3 =  Safety Factor (77%)
0.75 = Reduction factor based on assumption that a joint

transfers 25% of the load
Recently validated in DIA Study
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FAA Rigid Pavement Design
Westergaard Edge Load Analysis

We must determine the most critical gear arrangement 
i.e. maximum stress in slab

Alternate Design charts are provided in 5320-6D for Dual 
Tandem gears

Standard charts – Parallel
Alternate charts – Rotated 45 degrees
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FAA Rigid Pavement Design
Westergaard Edge Load Analysis

We must also account for traffic levels higher than 5000 coverages
Percent Thickness versus Coverages
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FAA Rigid Pavement Design
Westergaard Edge Load Analysis

Traffic levels other than 5000 coverages
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Rigid Pavement Design
Basic Design Parameters

• Concrete Flexural Strength

• Subgrade Support 
– Modulus (k-value)

• Design Aircraft
– Gear type and Gross Load

• Traffic
– Annual Departures
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FAA Rigid Pavement Design
Concrete Flexural Strength

Some debate over what flexural strength should be 
used in pavement design.
AC 5320-6D Design on the strength available when 
opening to traffic.

Default strength – project specifications
Proposed Change 4 suggests design at 600 – 650 and spec 
at design - 5% (use 28 day)

Don’t play games like: 
“I think the contractor will give me more strength than I 

ask for….”
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FAA Rigid Pavement Design
Concrete Flexural Strength

Required thickness for DUAL TAN-300 at 300000 lbs  k on top of all subbase = 253 psi 
3000 departures  -- subgrade k = 100
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FAA Rigid Pavement Design
Concrete Flexural Strength

Required thickness for DUAL TAN-300 at 300000 lbs  k on top of all subbase = 253 psi 
PCC Flexural Strength = 650
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FAA Rigid Pavement Design
Concrete Flexural Strength

Flexural Strength is based on ASTM C 78
Third Point Loading
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FAA Rigid Pavement Design
Concrete Flexural Strength

Flexural Strength is based on ASTM C 78
Third Point Loading

Zero Shear

High Shear

Center Point testing 
will produce Strength 
values approximately 
15% lower than center 
point testing.

Be sure test results are 
third point
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Westergaard analysis assumes the foundation support 
as a “dense liquid”
Stabilized layers may not support this assumption
Some concern in the industry with stabilized layers 
becoming too strong.

Can lead to premature cracking

Stiff subbases require that we reduce the size of the 
concrete panels

FAA Rigid Pavement Design
SUBGRADE SUPPORT
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FAA Rigid Pavement Design
SUBGRADE SUPPORT

Panels sized by Radius of Relative Stiffness 
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l = Radius of Relative Stiffness, inches
E = modulus of elasticity of the concrete (usually 4 million psi)
h = Slab thickness, inches
u = Poisson’s ratio for concrete, usually 0.15
k = modulus of subgrade reaction, pci



26

1.0

2.0

3.0

4.0

5.0

6.0

7.0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Joint spacing

L
/l 

ra
tio
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SUBGRADE SUPPORT

Panels sized by Radius of Relative Stiffness
Joint Spacing Limits with k=500,  E = 4,000,000
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FAA Rigid Pavement Design
SUBGRADE SUPPORT

15” Thick Panels sized by Radius of Relative Stiffness 
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Rigid Pavement Design
Design Steps   150/5320-6D

• Determine PCC Flexural Strength
– Strength when traffic permitted

• Determine Subgrade Support
– k-value

• Determine Design Aircraft
– Determine Critical Aircraft
– Determine Equivalent Annual Departures

• Determine  PCC Thickness
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Single Wheel Rigid Design

Basic FAA Design Chart
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Single Wheel Rigid Design

Basic FAA Design Chart
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Single Wheel Rigid Design

Basic FAA Design Chart
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Single Wheel Rigid Design

Basic FAA Design Chart
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30,000

Single Wheel Rigid Design

Basic FAA Design Chart
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Design Example
Determine Design Aircraft

• Single Wheel Aircraft
– 60,000 Pound Gross Load
– 6,000 Annual Departures

AND
• Dual Wheel Aircraft

– 120,000 lbs
– 3000 Annual Departures
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Design Example
Determine Design Aircraft

• How are we going to select a concrete 
strength for design purposes?
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Design Example
Determine Subgrade Support value

• How do you determine the subgrade 
support value?

K-value ?
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Design Example
Determine Subgrade Support Value

• Recognize this equipment?
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Design Example
Determine Design Aircraft

Geotech report provided 12 CBR Points 
3.1,  4.8,  3.7,  3.1, 
3.5,  3.8,  3.8,  3.3, 
4.3,  4.0,  2.8,  4.0

5320-6D suggests using average minus one standard deviation
Average 3.53
Standard Deviation 0.532
Avg- 1(Std) 3.00
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Design Example
Determine Design Aircraft

• Using CBR of 3 
– Approximate Subgrade Modulus of Reaction
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Correlation from PCA Engineering Bulletin – Design of Concrete Airport Pavement
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First Case
• Single Wheel Aircraft

– Concrete Flexural Strength of 650 psi
– Subgrade k = 100 pci

• 6” aggregate plus 6” stabilized layer

– 60,000 Pound Gross Load
– 6,000 Annual Departures

Design Example
Determine Design Aircraft
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Subbase Requirements

Minimum 4” requirement under all pavements
Except Gravel soils and non-frost sands

Stabilized subbase required when gross aircraft 
weight exceeds 100,000 lbs

Design Example
Determine Design Aircraft
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Effective k value
Subbase layers will improve the k-value seen by the 
concrete layer.
Use figure 2-4 for aggregate layers
Use figure 3-16 for stabilized materials

Design Example
Determine Design Aircraft
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Figure 2-4

Bank-run Sand and Gravel  PI < 6
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0

Figure 3-16   Effect of Stabilized 
Subbase on Subgrade Modulus
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30,000

Single Wheel Rigid Design
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First Case
• Single Wheel Aircraft

– Concrete Flexural Strength of 650 psi
– Subgrade k = 100 pci (improved k = 280)

• 6” aggregate plus 6” stabilized layer

– 60,000 Pound Gross Load
– 6,000 Annual Departures

Design Example
Determine Design Aircraft

Concrete Thickness of 9.63 inches
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Second Case
• Dual Wheel Aircraft

– Concrete Flexural Strength of 650 psi
– Subgrade k = 100 pci (improved k = 280)

• 6” Aggregate plus 6” stabilized layer
• Improved K of 280 pci

– 120,000 Pound Gross Load
– 3,000 Annual Departures

Design Example
Determine Design Aircraft
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DUAL WHEEL GEAR
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Second Case
• Dual Wheel Aircraft

– Concrete Flexural Strength of 650 psi
– Subgrade k = 100 pci

• 6” Aggregate plus 6” stabilized layer
• Improved K of 280 pci

– 120,000 Pound Gross Load
– 3,000 Annual Departures

Design Example
Determine Design Aircraft

Concrete Thickness of 12.76 inches
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Becomes The Design Aircraft

• Single Wheel Aircraft
– 60,000 Pound Gross Load
– 6,000 Annual Departures

Or
• Dual Wheel Aircraft

– 120,000 lbs
– 3000 Annual Departures

9.63 inches

12.76 inches

Design Example
Determine Design Aircraft
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To Convert From To Multiply Departures by 
single wheel dual wheel 0.8 
single wheel dual tandem 0.5 
dual wheel dual tandem 0.6 
double dual tandem dual tandem 1.0 
dual tandem single wheel 2.0 
dual tandem dual wheel 1.7 
dual wheel single wheel 1.3 
double dual tandem dual wheel 1.7 

6,000 x 0.8 = 4,800

Design Example
Convert Aircraft to Design Aircraft
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R1 = equivalent annual departures by the design aircraft 
R2 = annual departures expressed in design aircraft landing gear 
W1 = wheel load of the design aircraft 
W2 = wheel load of the aircraft in question 

Design Example
Convert Aircraft to Design Aircraft
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Wheel Load equals  95% of gross weight divided by 
number of wheels

Dual wheel ==  0.95 * 120,000 / 4  = 28,500

Single wheel == 0.95 * 60,000 / 2 = 28,500

Design Example
Convert Aircraft to Design Aircraft
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R1 = 4800 equivalent annual departures

Total Departures of Dual wheel  
3000 + 4800 = 7800

Design Example
Convert Aircraft to Design Aircraft
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DUAL WHEEL GEAR
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Based on Dual Wheel Design Aircraft
120,000 lbs
7800 equivalent annual departures
k=100
Flexural Strength = 650

Required Total Thickness = 13.5 inches

Design Example
Determine Total Thickness
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Calculate Radius of Relative Stiffness

Design Example
Determine Recommended Slab size
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l = 41.61 L/l = 41.61x5 /12 = (41.61x5/12”)= 17.3 feet

17 =>  4.9
18 =>  5.2
19 =>  5.5
20 =>  5.8

What spacing are you going to accept?

What is the pavement width?
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Final New Pavement Section

Design Example
Basic Pavement Section

13.5 “ PCC

6” Stabilized Base

6” Aggregate Subbase

SUBGRADE       k = 100

Effective k of 280

Max panel size 
17-18 feet
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What if we dropped the 6” aggregate layer

Design Example
Basic Pavement Section

13.9 “ PCC

6” Stabilized Base

SUBGRADE       k = 100

Effective k of 215

Max panel size 
20 feet

For a 9,000 foot runway
100,000 Sq yd aggregate layer at $7.50/sy  = $750,000
Approx. 80 transverse joints = 8000 ln ft at $1.50 = $12,000

Total Savings  = $762,000
VERSUS
½ inch PCC = 1,388 CY at $65/cy = $90,300

Saved approx. $670,000
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Airfield Pavement Design Spreadsheets

Microsoft Excel 

Visual Basic macro system

Available at
http://www.faa.gov/airports_airtraffic/airports/
construction/design_software/

Airport Pavement Design
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Software Demonstration
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Program Date 5/09/02

Rigid Pavement Design For AC Method

Airport Name: Any Airport Date: today's date
Associated City: Anywhere, USA

Design Firm: Engineer's Are Us Designer: Joe Engineer
AIP Number: 3-XX-XXX-XX

New Pavement Section Required Stabilized Subbase Is Required
13.5 PCC Thickness 650 psi New Concrete Flexural Strength
6.0 Stabilized Base
6.0 Subbase
0.0 Non-Frost Layer (free draining material)

Large Aircraft Parallel to Joints (standard design)

Overlay Sections
18.81" Asphalt Overlay Thickness 8" Existing Slab Thickness

9.3" Unbonded PCC without leveling course 13.52" PCC needed for existing section
11.33" Unbonded PCC with leveling course 6" Existing Stabilized Subbase
5.52" Bonded PCC 6" Existing Aggregate Subbase

650 psi Existing Slab Flexural Strength
1 F- Factor used in design

0.85 Cr Factor
0.75 Cb Factor

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  Non-Frost Subgrade k-value was not modified for frost

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  280

k value on top of subbase layer  157
Original subgrade k value  100

Design Aircraft Information
DUAL WH-100 20 Design Life (years)

120000 lbs Gross Aircraft Weight
7,800 Equivalent Annual Departures
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New Pavement Section Required Stabilized Subbase Is Required
13.5 PCC Thickness 650 psi New Concrete Flexural Strength
6.0 Stabilized Base
6.0 Subbase
0.0 Non-Frost Layer (free draining material)

Large Aircraft Parallel to Joints (standard design)

Rigid Design

New Pavement Thickness Requirements
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Program Date 5/09/02

Rigid Pavement Design For AC Method

Airport Name: Any Airport Date: today's date
Associated City: Anywhere, USA

Design Firm: Engineer's Are Us Designer: Joe Engineer
AIP Number: 3-XX-XXX-XX

New Pavement Section Required Stabilized Subbase Is Required
13.5 PCC Thickness 650 psi New Concrete Flexural Strength
6.0 Stabilized Base
6.0 Subbase
0.0 Non-Frost Layer (free draining material)

Large Aircraft Parallel to Joints (standard design)

Overlay Sections
18.81" Asphalt Overlay Thickness 8" Existing Slab Thickness

9.3" Unbonded PCC without leveling course 13.52" PCC needed for existing section
11.33" Unbonded PCC with leveling course 6" Existing Stabilized Subbase
5.52" Bonded PCC 6" Existing Aggregate Subbase

650 psi Existing Slab Flexural Strength
1 F- Factor used in design

0.85 Cr Factor
0.75 Cb Factor

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  Non-Frost Subgrade k-value was not modified for frost

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  280

k value on top of subbase layer  157
Original subgrade k value  100

Design Aircraft Information
DUAL WH-100 20 Design Life (years)

120000 lbs Gross Aircraft Weight
7,800 Equivalent Annual Departures
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Rigid Design

Frost and Subgrade Parameters

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  Non-Frost Subgrade k-value was not modified for frost

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  280

k value on top of subbase layer  157
Original subgrade k value  100
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Rigid Design

Frost and Subgrade Parameters

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  Non-Frost Subgrade k-value was not modified for frost

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  280

k value on top of subbase layer  157
Original subgrade k value  100
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Rigid Design
Frost and Subgrade Parameters

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  Non-Frost Subgrade k-value was not modified for frost

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  280

k value on top of subbase layer  157
Original subgrade k value  100

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  FG-3 25 Frost group k-value

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  101

k value on top of subbase layer  43
Original subgrade k value  100

NON-FROST DESIGN

FG-3 FROST DESIGN
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Program Date 5/09/02

Rigid Pavement Design For AC Method

Airport Name: Any Airport Date: today's date
Associated City: Anywhere, USA

Design Firm: Engineer's Are Us Designer: Joe Engineer
AIP Number: 3-XX-XXX-XX

New Pavement Section Required Stabilized Subbase Is Required
13.5 PCC Thickness 650 psi New Concrete Flexural Strength
6.0 Stabilized Base
6.0 Subbase
0.0 Non-Frost Layer (free draining material)

Large Aircraft Parallel to Joints (standard design)

Overlay Sections
18.81" Asphalt Overlay Thickness 8" Existing Slab Thickness

9.3" Unbonded PCC without leveling course 13.52" PCC needed for existing section
11.33" Unbonded PCC with leveling course 6" Existing Stabilized Subbase
5.52" Bonded PCC 6" Existing Aggregate Subbase

650 psi Existing Slab Flexural Strength
1 F- Factor used in design

0.85 Cr Factor
0.75 Cb Factor

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  Non-Frost Subgrade k-value was not modified for frost

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  280

k value on top of subbase layer  157
Original subgrade k value  100

Design Aircraft Information
DUAL WH-100 20 Design Life (years)

120000 lbs Gross Aircraft Weight
7,800 Equivalent Annual Departures
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Rigid Design

Design Aircraft Information

Design Aircraft Information
DUAL WH-100 20 Design Life (years)

120000 lbs Gross Aircraft Weight
7,800 Equivalent Annual Departures
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Program Date 5/09/02

Rigid Pavement Design For AC Method

Airport Name: Any Airport Date: today's date
Associated City: Anywhere, USA

Design Firm: Engineer's Are Us Designer: Joe Engineer
AIP Number: 3-XX-XXX-XX

New Pavement Section Required Stabilized Subbase Is Required
13.5 PCC Thickness 650 psi New Concrete Flexural Strength
6.0 Stabilized Base
6.0 Subbase
0.0 Non-Frost Layer (free draining material)

Large Aircraft Parallel to Joints (standard design)

Overlay Sections
18.81" Asphalt Overlay Thickness 8" Existing Slab Thickness

9.3" Unbonded PCC without leveling course 13.52" PCC needed for existing section
11.33" Unbonded PCC with leveling course 6" Existing Stabilized Subbase
5.52" Bonded PCC 6" Existing Aggregate Subbase

650 psi Existing Slab Flexural Strength
1 F- Factor used in design

0.85 Cr Factor
0.75 Cb Factor

Frost Considerations (for new pavement section)
Dry Unit Weight of Soil (lb/cf ) 100

Degree Days ºF  250
Soil Frost Code  Non-Frost Subgrade k-value was not modified for frost

Frost Depth Penetration (in)  22.53
k value on top of stabilized layer  280

k value on top of subbase layer  157
Original subgrade k value  100

Design Aircraft Information
DUAL WH-100 20 Design Life (years)

120000 lbs Gross Aircraft Weight
7,800 Equivalent Annual Departures
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Rigid Design

Overlay Pavement Thickness Requirements

Overlay Sections
18.81" Asphalt Overlay Thickness 8" Existing Slab Thickness

9.3" Unbonded PCC without leveling course 13.52" PCC needed for existing section
11.33" Unbonded PCC with leveling course 6" Existing Stabilized Subbase
5.52" Bonded PCC 6" Existing Aggregate Subbase

650 psi Existing Slab Flexural Strength
1 F- Factor used in design

0.85 Cr Factor
0.75 Cb Factor
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Rigid Design
INPUT VALUES
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n 2 120,000 3,000 2 0.95 120,000 3,000 28,500 3,000
n 3 60,000 6,000 1 0.95 60,000 4,800 28,500 4,800
n 0 0 0 0.00 0 0 0 0
n 2 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 2 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 2 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0
n 0 0 0 0.00 0 0 0 0

Equivalent Annual Departures of the DUAL WH-100 7,800

None

None

DUAL WH-100

SINGLE WH-60

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None
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Where are we headed with 
Rigid Pavement Design?
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Development of FAA Standards for 
Airport Pavement Thickness Design

LEDFAA 1.2

Flexible Rigid

3D FEM Single- Edge 
Model on Multiple Layers

Full-Scale Test 
Data from 
NAPTF

Evaluate FEM 
Models

Nonlinear, Inelastic, 
Moving Load, Wander, 

Damage

Modeling 
Requirements 

for Next 
Generation

FAARFIELD

LEDFAA 1.3

LEAF

Full-Scale Test Data 
from NAPTF

FEDFAA

1995

2000

2002

2004

2006

2001

1999

2003



Why do we need a new
pavement design procedure?



New Aircraft are larger and heavier which increases the 
damage on airfield pavements.

In addition to gross weight increases, aircraft manufacturers 
are exploring new complex gear geometries.

Pavement Issues with New Aircraft

Airfield Pavement Research and Development





Gear Configurations



Gross Aircraft Weights
Total Wheels –Main Gears
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Aircraft Individual Wheel Weights
Total Wheels –Main Gears
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Typical Thickness Required for Rigid Airfield Pavement  -
Westergaard Procedure

0

4

8

12

16

20

0 200000 400000 600000 800000 1000000 1200000

Aircraft Gross Weight (lbs)

Ty
pi

ca
l P

av
em

en
t T

hi
ck

ne
ss

 (i
n)

  .
Typical Pavement Sections

This curve does not represent a design standard. Actual requirements vary depending 
upon subgrade support, concrete strength, gear configuration and aircraft traffic

Minimum 4 inch subbase required

Stabilized subbase required with 
gross weight over 100,000 lbs

K=200 psi, f = 700 psi
Coverage = 10,000



FAA - Future Rigid Pavement Design

Finite Element Procedure

Calibrate to NAPTF and historical test results

Available in FEDFAA 2.0 software (Feb 2006)

Final product in FAARFIELD software (late 
2006)
Slab edge stresses computed directly using 3D-FEM.
Revised rigid pavement failure model based on analysis 
of NAPTF CC2 and historical full-scale test data.
Improved rigid overlay design procedures.



FAA - Future Rigid Pavement Design
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What is 3D Finite Element?

3D Finite Element is:
A method of structural analysis.
Applicable to a wide range of physical structures, 

boundary and loading conditions.
3D Finite Element is not:

A design method or procedure.
An exact mathematical solution.
Always preferable to other analysis models.
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Structures and Models
In finite element analysis, it is important to distinguish:

The physical structure

The idealized model

The discretized 
(approximate) model
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Types of 3D Elements

Linear (8-Node) Brick

Quadratic (20 -Node) 
Brick

Nonconforming 
(Incompatible Modes)

Axial (1-D)

Infinite Element

Focal Point
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Discretized Model of Rigid 
Airport Pavement

SLAB

BASE SUBGRADE 
(Infinite Elements)
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3D-FEM Solution - Deflection
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3D-FEM Solution - Stress σxx
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3D-FEM Solution - Stress σyy
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3D-FEM Solution - Stress σzz
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Improvement in Solution Time

Approximate time for B-777 stress solution:
• July 2000: 4 - 5 hours
• July 2001: 30 minutes

(single slab with infinite element foundation)
• May 2002: 2 - 3 minutes

(implement new incompatible modes elements)
• Current version implemented in FEDFAA: 

<10 seconds
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Effect of Mesh Size on Run 
Time (Using Windows XP, Pentium-4, 

512MB)
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Key Advantages of 3D-FEM

Correctly models rigid pavement features 
including slab edges and joints.
Provides the complete stress and 
displacement fields for the analyzed domain.
Handles complex load configurations easily.
No inherent limitation on number of 
structural layers or material types.
Not limited to linear elastic analysis.
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Disadvantages of 3D-FEM

May require long computation times.
Pre-processing and post-processing 
requirements.
Solution may be mesh-dependent.
• In theory, the solution can always be improved 

by refining the 3D mesh.
• Improvement comes at the expense of time.



Future Issues with Rigid Pavement Design

Traditional Models assume “bottom-up” cracking due 
to tensile stress in the bottom of the slabs.

FAA NAPTF and Airbus research suggest “top-down”
cracking may be of equal concern with multi-wheel 
aircraft.

FAA - Future Rigid Pavement Design



Stress at Top of Slab under 
One, Two and Three Wheels

Airbus and NAPTF research 
suggest that the existing failure 
mode of “center slab – bottom 
up cracking” may  not the 
critical failure mode with multi-
wheel gear aircraft.

Future refinement of FAArfield 
will attempt to address this 
concern

169.6 psi

236.5 psi

267.8 psi

One wheel

Two wheel

Three wheel

FAA - Future Rigid Pavement Design
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Gage 2
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20’
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March, 2005
17” transition 
sections



Bottom-up Critical Strains: 
2 wheels > 4 wheels > 6 wheels

Measured Strains at C3Ch34 (CC1, Bottom, LRS, 
24,000 lbs Wheel Load, 09/28/1999)

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

70 80 90 100 110 120 130 140 150 160 170 180

Time in Seconds

M
ic

ro
 S

tr
ai

ns

under 2 wheels

under 4 wheels

under 6 wheels

Strain Gauge at bottom of panel



Top-Down Critical Strains: 
6 wheels > 4 wheels > 2 wheels

Measured Strains at C3Ch17 (CC1, Top, LRS 
24,000 lbs Wheel Load, 09/28/1999)
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A bottom-up crack 
perpendicular to a 

LONGITUDINAL JOINT 
is mainly dominated by wheel 
load while a top-down crack is 
mainly dominated by gear load

FAA - Future Rigid Pavement Design



Critical Strains: 6 Tires > 4 Tires > 2 Tires  
Test Three Gage 2
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Comparison of Critical Strains At the Transverse Joint
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Both bottom-up and top-down 
crack perpendicular to a 
TRANSVERSE JOINT 

is mainly dominated by gear load

FAA - Future Rigid Pavement Design



The mechanisms of bottom-up and top-down 
cracks at longitudinal and transverse joints 
are different. Therefore, the critical bottom-up 
stress can not appropriately predict the top-
down crack risk.

Both top-down and bottom-up cracks are 
influenced by pavement structure and gear 
configurations.

Finding from Full Scale Test Observations

FAA - Future Rigid Pavement Design



Based on NAPTF test results, we recognize the 
importance of slab curling (and more generally, top-
down cracking).

3D-FEM gives us the ability to model critical top-down 
stresses at a distance from the load.
Currently developing the ability to model slab curling 
stresses & load in NIKE3D.

Top-down stress mode will not be included the initial 
release of FAARFIELD (but could be in future 
versions).

Slab cracking experienced 
at NAPTF due to loading 
during curled condition

FAA - Future Rigid Pavement Design



Pavement Test by AIRBUS

Corner cracking and longitudinal panel cracking

FAA - Future Rigid Pavement Design
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Thank You


