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9.0 PARAMETRIC ESTIMATING 
 
9.1 Introduction 
 
Chapters 9, 10, and 11 discuss extensively the three main estimating methodologies:  parametric, 
analogy, and engineering, respectively.  The reader was introduced to these estimating 
methodologies in Chapter 3, Section 3.3 in the context of the cost estimating process.  This 
chapter provides a full and detailed treatise on parametric estimating. 
 
How a cost estimator develops parametric estimates and evaluates their quality in both a 
statistical and intuitive sense is provided herein.  The chapter begins with a brief overview of 
parametric estimating (Section 9.2), followed by a history of this type of estimating (Section 
9.3).  Section 9.4 discusses parametric estimating in greater detail.  Section 9.5 explains how the 
statistical relationship between the cost to be predicted and the cost predictor or cost driver is 
developed.  It also presents the statistical measures that allow the cost estimator to assess the 
quality of the parametric estimate and the likely accuracy of the estimate.  The limitations of 
parametric estimators are discussed in Section 9.6.  Section 9.7 delves into a special type of 
parametric estimate in wide use in estimating:  the learning or cost improvement curve. 
 
9.2 Overview of Parametric Estimating 
 
Parametric estimating is the process of estimating cost by using mathematical equations that 
relate cost to one or more physical or performance characteristics of the item being estimated.  A 
simple example of a parametric estimate is the use of square footage to estimate building costs.  
Square footage is a physical characteristic of a building that has been shown through statistical 
analyses of building trends to be one way of estimating building costs.  (Rodney D. Stewart, The 
Cost Estimator’s Reference Manual, page 225)   
 
Parametric estimates are often used in the early phases of a system’s life cycle.  At that stage of 
the life cycle, basic physical or performance characteristics may be available, but detailed 
designs may not be.  Thus, parametric approaches may be the only option.  Even later in a 
system’s life cycle, however, a parametric approach might be used, for instance for certain 
elements of a detailed estimate.   
 
Parametric estimating equations are often called Cost Estimating Relationships or CERs.  In the 
rest of this chapter, the two terms are used interchangeably.  A discussion of the history of 
parametric estimating will shed some light upon its usefulness. 
 
9.3 History of Parametric Estimating 
 
Parametric estimating resulted from the need for an alternate method of estimating costs early in 
the development cycle.  In the 1950s, the Rand Corporation first began to pursue methodically 
the development of statistical techniques for estimating the costs of military hardware in the 
early design phases.  The approach worked well for estimating the cost of airframes early in the 
design process.  This technique further evolved as learning curve theory was mated to parametric 
estimating.  The result of joining parametric estimating and cost improvement curve methods 
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was to allow the estimating of design through production costs early in the development cycle.  
Parametric estimating was at that time a relatively radical departure from more traditional 
detailed estimating techniques.  The estimating community, however, had discovered in CERs a 
useful method of producing early life cycle estimates without the time-consuming and input-
intensive detailed methods previously in use.  Parametric methods enjoy widespread use today.  
The greater availability of computers helped spur the use of CERs because of the greater ease of 
doing statistical analyses and handling large amounts of data on a computer.  (Cost Estimator’s 
Reference Manual by Rodney Stewart, page 227-228) 
 
9.4 Cost Estimating Relationships (CERs)  
 
A CER predicts the cost of some part of a program or of the entire program based on specific 
design or program characteristics.  A CER may be used, for example, to predict the cost of an 
entire spacecraft based on its in-orbit weight.  Software costs are often estimated with a CER 
based on how many lines of program code are written.  One of the oldest relationships uses the 
weight and speed of an airplane to provide a prediction of the airframe’s cost.  Another type of 
CER relates the cost of one program element to another.  For example, modification costs often 
are estimated based on the dollar size of airplane flyaway cost.  Equation 9.1 presents an 
example of a CER, drawn from H.E. Boren and J. Dryden in A Computer Model for Estimating 
Development and Procurement Costs of Aircraft. 

 
                                                                        Equation 9.1 

When using a CER, the cost is unknown, 
but there is some information about the 
size, shape, or performance of the piece 
of equipment to be costed or some 
information on the dollar size of other 
cost elements that enables the cost 
estimator to estimate the unknown cost 
based on the known information.  When developing or using CERs, cost estimators must be 
aware of the data upon which it was based.  Differences between the historic programs and a 
new program for which a cost estimate is needed may be significant and could render the CER 
useless, or at least require a major adjustment to the estimate or database.  Assumptions and 
inherent limitations associated with the CER should be addressed prior to its use.  Arguments for 
its validity should be included in the cost estimate documentation. 

ML  =  0.63  ×  Wt0.68  ×  S1.21 
 
Where: 
ML  =  Non-recurring manufacturing labor hours 
Wt  =  Airframe unit weight in pounds 
S    =  Maximum speed at best altitude in knots 

 
CERs have been developed for nearly every major commodity type and cost element and are 
applied to estimate costs in all phases of a system’s life.  CERs come in several different 
functional forms based upon a variety of cost drivers.  The next two sections discuss the different 
types of CERs and their uses. 
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9.4.1 Types of CERs 
 
CERs can be divided into several classes depending on:  1) the kind of costs to be estimated, 2) 
the cost drivers chosen to predict costs, 3) the complexity of the estimating relationship, and 4) 
the aggregation level of the CER.  Other classifications are surely possible, but these will be 
addressed in this section.     
 
CERs Based on the Kind of Costs to be Estimated 
 
The kind of costs to be estimated can be grouped into the three phases of a program’s life cycle: 
 

• Research, Engineering and Development (RE&D) 
• Production 
• Operating and Support (O&S) 

 
These distinctions are important because the kind of costs to be estimated will guide the cost 
estimator in the search for cost drivers to use in the estimating relationship.  O&S cost estimates 
must consider both equipment characteristics and the support and logistic structure.  When 
estimating maintenance costs, the reliability and maintainability of the equipment are important, 
but so is the level of maintenance support (e.g., field level, depot level, etc.).  The level of 
maintenance support is a function of the established maintenance concept for that piece of 
equipment.  In contrast, CERs in RE&D generally use equipment characteristics as primary cost 
drivers and usually are not based on how the equipment is to be developed.  Cost estimators, 
who are estimating production costs, also must estimate cost/quantity relationship curve effects.  
Sometimes these effects are built into CERs. 
 
CERs Classified by Type of Cost Driver 
 
CERs also are classified by the type of cost driver.  Over the years, cost estimators have 
discovered a variety of quantitative cost drivers to apply to CERs.  The most common variable 
for hardware remains weight and for software, the most common variable is its size.  Other 
system attributes, such as physical, technical, and performance characteristics, also are used.  
Besides weight, physical characteristics include volume, length, number of parts, and density.  
Examples of technical parameters (factors that produce performance) include system or 
subsystem power requirements and scan rate.  Performance characteristics include speed, range, 
accuracy, reliability, etc. 
 
Physical, technical, and performance characteristics are not the only variables that have been 
used to develop CERs.  Cost estimators recognize that hybrid variables like hard drive speed to 
memory size ratio, the system environment, the system mission and function, and the 
technological level of the system in relation to the state-of-the-art, can all play an important role 
in determining costs.  There is almost no end to possible quantitative cost drivers. 
 
Cost estimators have long recognized that technology - specifically the degree of technical 
advance sought in a new system - can affect a system’s cost dramatically.  However, measuring 
how far the proposed system is beyond state-of-the-art can be difficult.  Currently, cost 
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estimators use several approaches.  One approach is to use time as a proxy for technological 
advance.  Thus, a CER may include the year development begins or the date of first flight as a 
proxy for the technological advance cost driver.  Another approach counts the number of new 
designs since the first operational system was deployed.  Still another approach uses a subjective 
measure in which the cost estimator, along with system engineers, selects a level of technical 
advance or system complexity.  This can be represented by a continuous variable running from 0 
(off the shelf, no new technology) to some number N (brand new technology, major advances in 
the state-of-the-art); or this variable can be represented by a binary variable, where 1 indicates a 
major technical advance is required, and 0 indicates no technical advance.  Other approaches to 
quantifying technological advances are possible and should be investigated.  To pursue this, the 
cost estimators must learn as much as possible about both how the system works and what 
technological improvements will be implemented to increase system performance. 
 
Table 9.1 provides an example of possible Information Technology (IT) cost drivers that a cost 
estimator might consider when developing an IT CER. 
 

Table 9.1  Potential Airframe Cost Drivers 
Physical 

¾ Software size 
¾ Number of servers 
¾ Length of communications links 
¾ Number of sites 
¾ Number of positions 

 
Performance 

¾ Processor speed  
¾ Communications link speed  
¾ Memory capacity 

 
Environment 

¾ Levels of maintenance planned  
¾ Support concept 

 
Time 

¾ Date of first operational site 
 
Technological Advance 

¾ Level of technical advance required 
 
Another type of cost driver commonly used in building CERs is the use of one cost element to 
predict the cost of another element.  For example, Engineering Change Orders (ECOs) may be 
estimated as a percent of the cost of the prime mission equipment.  Such cost-to-cost CERs are 
often used to estimate portions of O&M costs and non-hardware acquisition costs.  They are 
sometimes referred to as factors. 
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CERs Classified by Complexity of the Estimating Relationship 
                                                                                                      Equation 9.2 

CERs can be simply two variable equations, or they can 
be complicated multivariate equations. J. Gibson, in The 
ASD ECO Model User’s Guide presents the simple CER 
relating ECOs/Management Reserve (ECO/MR) during full-scale production (FSD) to total FSD 
costs (TFSDC) in Equation 9.2.  An example of a more complex CER is presented in Equation 
9.3, from B. W. Boehm and B. K. Clark’s 1997 briefing An Overview of the COCOMO 2.0 
Software Cost Model. 

 
ECO/MR  =  0.10  ×  (TFSDC) 

 
                                                                        Equation 9.3 

ESLOC = ASLOC x ((AA+SU)/100 + 0.4xDM + 0.3xCM + 0.3xIM) 
 
Where: 
ESLOC = equivalent new software size of reused software 
ASLOC = size of the software being adapted in Source Lines of Code (SLOC) 
AA = rating of the assessment and assimilation of the adaptive software 
SU = rating of the current programmers’ software understanding of the adaptive software 
DM = percent of design modification 
CM = percent of code modification 
IM = percent of the original integration effort required for integrating the reused software 

 
CERs Classified by Aggregation Level  
 
CERs can also be classified in terms of the aggregation level of the estimate.  For instance, CERs 
can be developed for the whole system, major subsystems, other major non-hardware elements 
(training, data, etc.) and components.  The aggregation level of the costs to be estimated should 
be matched by the aggregation level of the cost drivers, as shown in Figure 9.1.  For instance, 
system costs may be estimated as a function of total system weight, while a particular subsystem 
will be estimated by that subsystem’s weight. 
 

Figure 9.1  Matching Aggregation Levels of CERs 
 COST  COST DRIVERS 
    
 System Í System Level 

Characterist ics 
    
 Subsystem Í Subsystem Level  

Characterist ics 
    
  Component Í Component Level  

Characterist ics 
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9.4.2 Uses of CERs 
 
CERs are used to estimate costs at many points in the acquisition cycle when little is known 
about the cost to be estimated.  As more cost information becomes available, more detailed 
methods (e.g., engineering methods) of costing become feasible.  CERs are of greatest use in the 
early stages of a system’s development.  CERs can play a valuable role in estimating the cost of 
a design approach, especially when conceptual studies and broad configuration trade-offs are 
being considered.  
 
In the source selection process, CERs can serve as checks for reasonableness on bids proposed 
by contractors.  Many contractors use CERs to help formulate their bids.   
 
Even after the start of the development and production phases, CERs can be used to estimate the 
costs of non-hardware elements.  For example, they can be used to make estimates of O&S costs.  
This may be especially important when trying to determine downstream costs of alternative 
design, performance, logistic, or support choices that must be made early in the development 
process. 
 
9.5 Developing CERs 
 
As discussed earlier, a CER is a mathematical equation that relates one variable such as cost (a 
dependent variable) to one or more other cost drivers (independent variables).  The objective of 
constructing the equation is to use the independent variables about which information is 
available or can be obtained to predict the value of the dependent variable that is unknown.  A 
classic CER uses airframe weight, which can be estimated early in an airplane’s development, to 
predict airframe cost, which is not known until much later in the program’s life. 
 
To make an estimate using CERs or to assess CERs developed by others, the cost estimator must 
have an understanding of basic statistics, including the meaning of such terms as mean, standard 
deviation, correlation, and so on.  The reader is referred to Appendix 9B for a refresher on basic 
statistics.  
 
In most of the discussion of basic statistics in Appendix 9B, the concern is with estimating 
characteristics of single variable probability distributions.  Measures of central tendency (mean, 
median, and mode) are discussed, as well as two measures of dispersion (range and standard 
deviation).  Two variable distributions are also examined.  Scatter diagrams are discussed as a 
means of exploring the relationship between two variables.  The correlation coefficient is 
introduced as a measure of the strength of the association between two variables.  These are 
subjects the reader should understand before proceeding to the discussion of how to develop a 
CER, which is based upon statistics. 
 
The purpose of this section is to describe the mathematical steps required to construct a CER and 
introduce several related statistics used to evaluate the quality of the CER.  The discussion 
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presented here assumes the reader has read, or is otherwise familiar with, the material presented 
in Appendix 9B.  Although the discussion in this handbook is limited to simple CERs (i.e., a 
single independent and a single dependent variable), the generalization to multiple, independent 
variables is briefly discussed.  Further discussion can be found in more advanced CER texts. 
 
The classical CER example that relates airframe weight to airplane cost is an example of a 
simple relationship developed from a set of two-variable data.  Suppose two measurements were 
taken on n airframes, where Xi denotes the weight of airframe i and Yi denotes the cost of 
airplane i.  Then one would obtain a set of n pairs of measurements: 
 

(X1, Y1) 
(X2, Y2) 

. 

. 

. 
(Xn , Yn) 

 
Table 9.2 displays hypothetical cost and weight measurements for 10 airframes.  This data will 
be used to demonstrate the techniques discussed in the remainder of the chapter 
 

Table 9.2  Sample Airframe Cost and Weight Data 
Airplane Cost 1 Weight 2 

727 5.07 9.2 
MD-95 7.67 14.8 
DC-10 24.01 26.5 
DC-9 20.27 18.4 
767 13.0 16.4 
737 4.04 12.1 
MD-80 9.23 12.3 
L1011 13.69 16.1 
747 17.58 17.6 
757 10.99 17.3

(1) Cumulative average cost of the first 
100 airplanes produced, in 
millions of FY 1981 dollars. 

(2) Weight in thousands of pounds. 
 
The objective in developing a CER is to determine the relationship, if any, between X and Y 
(e.g., airframe weight and airplane cost).  If such a relationship is found, it can be used to predict 
the costs of a new airplane if the cost estimator has some information on the new airplane’s 
weight.  One way to proceed is to construct a functional relationship between X and Y.  This 
procedure is called regression analysis. 
 
The first step in regression analysis is to hypothesize a relationship, usually involving one or 
more parameters, between the independent and dependent variables.  This is discussed in Section 
9.5.1.  Once a relationship is selected, a curve fitting technique is required to determine the 
specific values of the parameters.  The method of least squares curve fitting is discussed in 
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Section 9.5.2 and several simple nonlinear models are described in Section 9.5.3.  Measures of 
“goodness of fit” and confidence intervals are presented in Sections 9.5.4 and 9.5.5, respectively.  
More general methods of regression are provided in Section 9.5.6.  A note on computer packages 
to assist in constructing CERs is given in Section 9.5.7. 
 
9.5.1 Hypothesizing Functional Relationships 
 
There are essentially two approaches to hypothesizing a functional relationship between the 
independent and dependent variables in a regression analysis. 
 
The first approach is to hypothesize a relationship on the basis of a priori assumptions.  For 
example, it is reasonable to hypothesize that airframe costs increase as airframe weight increases 
(at least within a certain range of weight).  However, it would not be plausible to assume there is 
a relationship between sunspots and airplane costs.  The cost estimator must review what factors 
might cause costs to increase and measure them directly or indirectly.  The weight relationship 
seems reasonable because the more material that the airframe comprises, the more one would 
expect an airframe to cost.  Other relationships might be hypothesized for which there is no 
direct measure.  For example, the airframe’s technology level could affect costs, but there is no 
direct measure of technology.  Hence, the cost estimator may resort to an indirect measure such 
as time.  Once the cost estimator has a list of hypothetical relationships, the cost estimator should 
determine what kind of relationship is expected.  Is the relationship expected to be positive (as 
weight increases cost increases) or negative?  Determining this before collecting and analyzing 
the data enables the cost estimator to judge the reasonableness of the estimating relationship 
from an intuitive sense. 
 
The second approach is to construct and study a scatter diagram of the two variables.  For 
example, the relationship between the X and Y variables presented in Figure 9.2 (a and b) clearly 
suggests a linear relationship.  Figure 9.2 (c) suggests a non-linear relationship and Figure 9.2 
(d) suggests that X and Y are not related at all. 
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Figure 9.2  Examples of Scatter Diagrams 
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In practice, it is best to employ both approaches.  That is, after hypothesizing one or more 
functional relationships between the independent and dependent variables, the cost estimator 
should plot the data on a scatter diagram.  If the scatter diagram does not confirm the 
hypothesized relationship, the cost estimator should rethink the a priori notions and try to explain 
the discrepancy.  There is no simple, direct way of determining a functional relationship; the 
process requires good judgment and experience that are gained only through repeated use of 
CERs.  Once the relationship has been hypothesized and the data collected and normalized, the 
cost estimator should use curve-fitting techniques to specify the relationship in mathematical 
terms. 
 
9.5.2 Curve Fitting Techniques 
 
Two methods for fitting a curve to a set of bivariate data are described in this section.  The first 
method is visual inspection of the scatter diagram and drawing a suitable curve through the data 
points.  This approach has several advantages - it is easy and quick to do, no calculations are 
required, and consideration can be given to outliers.  The principal disadvantage of this approach 
is that the location and shape of the curve through the data points is based upon individual, 
subjective judgment. 
 
The second approach is the least squares method.  This method has the disadvantage that all data 
points are given equal weight.  The cost estimator cannot give less weight to outliers except by 
excluding them from the sample altogether.  However, the advantages are significant.  The 
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approach results in selection of a best-fitting curve according to a precise definition.  Least 
squares avoids the subjectivity inherent in the graphical approach, and the estimated regression 
equation facilitates predictions (there is no need to refer to a graphical representation). 
 

                                                                                     Equation 9.3 
This figure depicts a scatter diagram in 
which an estimated regression line has 
been drawn through several plotted data 
points.  The vertical distance from the 
estimated curve to the observed value (X0, 
Y0) is given by $Y 0-Y0.  If there are n data 
points, similar distances can be obtained 
for each of the n (X,Y) pairs.  The least 
squares curve through the plotted data points is defined to be the one that minimizes the sum of 
the n squared vertical distances, i.e., the curve that minimizes Equation 9.4.  To illustrate the 
least squares method, refer to Figure 9.3. 

( ) ( ) ( ) (Y Y Y Y Y Y Y Yi i
i=1

n

1 1 2 2 n n− = − + − + + −∑ $ $ $ ... $2 2 2 )2
 

 
Where: 
$Y= The expected value of Y which is generated by the   

regression equation 
Y = Observed values of Y, i.e., data points 

 
Figure 9.3  Sample Points and Estimated Regression Line 

}Y Y0 0− $

$Y aX b= +
Regression Line

( ),X Y0 0

 
 
                                                                           Equation 9-4 

 
         Y = a$ X + b   

 
The least squares curve is a straight line of the form of Equation 9.5 where b is the Y-axis 
intercept and a is the slope of the curve.  The least squares method gives rise to unique values of 
the two parameters b and a.  Once these parameters are found, the regression line is completely 
specified.  The formulas for estimating b and a are derived in the addendum to this chapter and 
displayed in Worksheet 9.1. 
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The parameters of the regression line can be found by performing the computations indicated in 
Worksheet 9.1.  For example, suppose the cost estimator had cost and weight data on the ten 
airframes presented in Table 9.2.  A completed sample worksheet is given in Worksheet 9.2 that 
illustrates the computations that the cost estimator would need to make. 
 

Worksheet 9.1  Worksheet for Computing Regression Line Parameters 
Xi Yi XiYi Xi

2 Yi
2 * 

     
X1 Y1 X1Y1 X1

2 Y1
2 

X2 Y2 X2Y2 X2
2 Y2

2 
. . . . . 
. . . . . 
. . . . . 
Xn Yn XnYn Xn

2 Yn
2 

     
ΣXi ΣYi ΣXiYi ΣXi2 ΣYi

2 
     
 

X =
n

i=1

X
i

n

∑
 

Y =
n

i=1

Y
i

n

∑
 

a

n

i=1

i=1 i=1

i=1

i=1

=
−
















−









∑
∑ ∑

∑
∑

X Y
X Y

n

X
X

i

n

i

i

n

i

n

i

n ii

n

2

2  

  
b = Y - aX  

*  This column will be used in subsequent computations (see 
Section 9.4.4). 

 
The estimated regression line and data points are plotted in Figure 9.4.  Note that airframe cost 
(Y-axis) can be estimated by inspection of the regression curve at any given airframe weight (X-
axis).  Alternatively, the regression equation computes the airframe cost, given any airframe 
weight within the range of the data.  For example, for a weight of 22,000 pounds, the regression 
equation developed in Worksheet 9.1 and applied in Worksheet 9.2 yields a predicted cost of 
$20.19 million. 
 

 Y = -9.29 + 1.34X  =  -9.29 + 1.34 × (22000÷1000)  =  $20.19 million 
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Worksheet 9.2  Completed Worksheet for Airframe Example 
Xi Yi XiYi Xi2 Yi2 

Weight 
(lbs ÷ 1000) 

Cost 
($M) 

Weight 
× Cost 

Weight 
Squared 

Cost 
Squared 

11.2 5.07 56.8 125.4 25.7 
14.8 7.67 113.5 219.0 58.8 
26.5 24.01 636.2 702.3 576.5 
18.4 20.27 373.0 338.6 410.9 
16.4 13.0 213.2 269.0 169.0 
12.1 4.04 48.9 146.4 16.3 
12.3 9.23 113.5 151.3 85.2 
16.1 13.69 220.4 259.2 187.4 
17.6 17.58 309.4 309.8 309.0 
17.3 10.99 190.1 299.3 120.8 

 
ΣXi=162.7     ΣYi=125.6     ΣXiYi=2275.0 

ΣXi
2=2820.3     ΣYi

2=1959.6 
X =16.3     Y =12.6     a=1.34     b=-9.29     n=10 

 
Figure 9.4  Sample Data and Estimated Regression Line for Airframes 
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9.5.3 Simple Non-Linear Relationships 
 
Although this handbook is limited to the development of CERs using simple linear regression 
techniques, this does not preclude consideration of certain non-linear relationships.  By applying 
appropriate variable transformations, some non-linear relationships can be converted into 
equivalent linear relationships.  In addition to treating simple linear relationships of the form 
$Y = aX + b , the curve fitting techniques discussed can be applied easily to the non-linear 

relationships listed in Table 9.3.  For example, if the scatter diagram suggests that an exponential 
relationship might exist, then the cost estimator should first transform all the Y data values by 
taking their logarithms.  The least squares method can then be applied to the transformed data in 
order to estimate the curve parameters.  However, in this case, the least squares estimate of a 
represents the logarithm of a (log a), and b represents log b in the exponential curve. 
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Table 9.3  Simple Non-linear Curves and Variable Transformations 

Curve Type Curve 
Formula 

Equivalent 
Curve 

Formula 

Req. 
X-

Values 

Transform 
Y-Values 

Least Squares 
Estimator Of 
Intercept b= 

Least Squares 
Estimator F 

Slope a= 

Hyperbolic Y =    1        
aX + b 

1/Y = aX + 
b 

None 1/Y b a 

Exponential Y = baX log Y =  
log b + X 
log a 

None log Y log b log a 

Geometric Y = bXa log Y =  
log b + a log 
X 

log X log Y log b a 

 
9.5.4     Determining the Goodness of Fit 
 
In the univariate statistics discussed in Appendix 9B, the standard deviation is introduced as one 
measure of dispersion.  All the variability in a random variable is captured in the standard 
deviation, regardless of the source.  In regression analysis, however, the variability in the 
dependent variable Y is correlated with the independent variable X. 
 
Figure 9.5 depicts a single observed 
data point (Xi,Yi), the plotted point 
( X , Y ) computed from the data, and 
the fitted regression curve.  The total 
deviation of Yi from Y  is the sum of 
the deviation of Yi from  and  
from 

$Yi
$Yi

Y , or mathematically as shown in 
Equation 9.6. 

The second term in the right hand side 
of Equation 9.6 ( $Y Yi − ) is explained 
by the relationship between Y and X, 
that is, by the regression of Y on X.  The first term in the right hand side, ( ), is due to 
random variation and, hence, is unexplained.  By squaring both sides of Equation 9.6 and 
applying the summation operator over all n data points, Equation 9.7 is obtained. 

Y Yi − $

Figure 9.5  Partitioning of Total Deviation 

( )X Y,

( )X Yi i, $

( )X Yi i,

} Y Yi −

Y Yi i− $

$Y Yi−

{
{

Y

X

 

                       Equation 9.5 

( ) ( ) ( )Y Y Y Y Y Yi i i i− = − + −$ $  
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Thus, the total variability in Y, given by the 
left hand side of Equation 9.7, is partitioned 
into a component that is attributable to the 
relationship between the dependent and 
independent variables (explained), and a 
component that is attributable to random 
variation (unexplained).  The ratio of the explained portion of variability to the total variability 
provides a measure of the goodness-of-fit of the regression equation to the sample data.  This 
ratio, called the coefficient of determination, is denoted by R2.  Hence, 

i
∑ ∑

 
                                Equation 9.6 
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R2 = Portion of variation due to regression 

Total variation 
 

        Equation 9.7 
Recall that =aX+b and b=$Y Y -a X  (refer to Table 9.3).  By substituting 
into the numerator of Equation 9.8 for Y  and $

i Y , Equation 9.8 can be 
written as Equation 9.9, given the two mathematical relationships below 
it. 
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Recalling the expression for a, from Worksheet 9.1, Equation 9.9 can be written as Equation  
9.10. 
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                  Equation 9.9 
The coefficient of determination ranges between 
zero and one.  Since R2 is the fraction of variation 
explained by the regression, as R2 approaches one, 
the “goodness of fit” increases.  If all the plotted 
data points are close to the regression line, then R2 
will be close to one (R2 equals one when all data 
points fall on the regression line).  As the points 
become more scattered, R2 will move closer to 
zero.  Using the previous airframe example and 
Worksheet 9.2, R2 can be computed as follows. 
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Since R2=0.814 (close to one), the estimated 
regression line fits the data reasonably well.  
The fraction of variation left unexplained is, ( ) ( )( )
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1 - R2  =  1 - 0.814  =  0.186. 

 
The sample correlation coefficient r, discussed in Appendix 9B, is the square root of the 
coefficient of determination (R2).  The difference between the two lies in their interpretation.  In 
correlation, r estimates the population correlation coefficient, ρ.  In regression, however, the 
independent variable X is assumed to be non-random.  R2 is simply a measure of the goodness-
of-fit of the regression line. 
 
The confidence one can place in whether a valid relationship exists depends on the computed R2 
value and the number of data points.  Tables for using the t statistic to assess both the slope a and 
intercept b can be found in many college level statistics books.  Although the quality of the 
relationship is measured by testing the confidence one can place in the a value, the intercept b 
should be tested to assess the CER’s usefulness in providing high confidence forecasts. 
 
9.5.5 Estimating Confidence Regions 
 
There are several statistical techniques for estimating confidence regions around predicted 
values.  They vary depending on the amount of data available and the data distribution 
assumptions.  Many textbooks, such as R. C. Owen’s Two-Variable Linear Regression Analysis 
for Introductory Quantitative Analysis, describe the use of the Standard Error of the Prediction 
(SEP).  SEP is most applicable for cost estimating activities where data availability is limited.  
Even more textbooks describe the Standard Error of the Estimate (SEE).  However, its use is 
limited to situations where more data are available and the value of the independent variable for 
which an estimate is desired is near the mean of the data values.  The SEE will give a 
deceptively narrow prediction confidence interval; therefore, the SEP is a more appropriate 
measure for cost estimating. 
 
In cost estimating, the typical situation involves a CER developed using a small database (less 
than 20 data points) and input values that are not close to the mean of the independent variables.  
This leads to very wide confidence limits for the predicted values of the dependent variable.  
Cost estimators generally will be better off trying to use a second estimating method to support 
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their estimates rather than attempt to prove statistically that their cost estimate has a high 
probability of lying within narrow bounds.  Therefore, predictive confidence intervals often are 
not used in cost estimating. 
 
9.5.6 Generalization of Simple Regression Analysis 
 
Thus far the discussion has been limited to CER development using simple regression analysis:  
a single independent variable and a single dependent variable.  For many cost applications, 
knowledge about a single key cost driver is all that is required to predict certain cost elements. 
 
In other applications, however, a single independent variable may not be adequate to predict cost 
reliably.  For example, more than one cost driver may be required to describe the manufacturing 
cost of a component.  In these instances, it is useful to broaden simple regression techniques in 
order to accommodate additional cost drivers.  This more general form of regression is called 
multiple regression because there are multiple independent variables that are used to predict the 
value of the single dependent variable.  Thus, the functional relationship between the 
independent variables, denoted Xi, and the dependent variable, denoted Y, may have the 
following linear form if there are p independent variables: 
 

Y = X X X0 1 1 2 2 p pα α α α+ + + +...  
 
Where α 0  represents a constant and the α i  (for  i = l,...,p) are the coefficients of the independent 
variables (analogous to a in the simple regression case).  The α i  can represent the relative 
importance, or weight, of each of the independent variables, provided the Xi are commensurable. 
 
An important assumption of multiple regression is that the independent variables are truly 
statistically independent of each other (i.e., r=0 for all pairs of independent variables).  If this is 
not the case, which it frequently is not, a condition called multi-collinearity is said to exist.  
However, some multicollinearity can be tolerated.  Moderate to severe multicollinearity (values 
of r over 0.7) will cause problems in using the prediction equation for cost trade studies, where 
one wants to see how costs vary as a function of individual variables.  However, 
multicollinearity (high r values) can be tolerated when making a single point estimate. 
 
The computations involved in multiple regression are more difficult than those for simple 
regression; therefore, multiple regressions should be performed using current computer software 
packages.  More advanced textbooks, such as N. Nie et. al.’s SPSS: Statistical Package for the 
Social Sciences, should be referenced for more detailed discussions on multiple regression. 
 
9.5.7 A Note on Computer Applications 
 
Today, there are many regression analysis packages available which can compute the various 
parameters and statistics used in regression analysis easily.  Most computerized statistical 
packages perform simple and multiple regression, and many of them provide useful information 
on significance test computations and interpretations.  Thus, if CERs are to be used frequently, 
the cost estimator should investigate how to access and use a statistical package rather than 
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perform the calculations by hand.  In addition, many hand calculators have special functions to 
perform simple regression. 
 
9.6 Limitations of CERs 
 
Like all estimating techniques, CERs have their limitations.  The cost estimator must be fully 
aware of these limitations to properly convey the degree of confidence one should have in the 
cost estimate.  This section addresses the major limitations associated with using CERs. 
 
9.6.1 Quality and Size of the Database 
 
Credible CERs demand quality data and enough data to estimate the relationship.  Quality data 
means actuals (e.g., actual historical costs, actual weight, speed, etc.).  When the cost estimator 
does not work with actuals, care must be given to estimating and interpreting the CER.  Of 
course, actuals are not always available, forcing the cost estimator to rely on cost data from 
contractor bids and/or other projections.  If a cost estimator were to use the airplane cost CER 
developed in Section 9.5, the cost estimator probably would not have actual airplane weight, 
only an estimate of the weight.  Unfortunately, actual weight is not available until the airplane is 
produced and even historical actuals may contain measurement errors and anomalies.  Moreover, 
historical data is often quite time consuming to collect.  These factors place limits on the quality 
of the data available to build CERs.  As a result, the cost estimator must be sensitive to these 
issues. 
 
The size of the database also places limitations on CER credibility.  In general, the more data 
points the cost estimator has, the more confidence the cost estimator will have in the CER and its 
predictions.  Larger values of n will usually result in smaller values of SEE and SEP.  For small 
values of n, the size of the confidence intervals becomes unacceptably large.  Thus, the cost 
estimator must be aware of quantity and quality of the data used to assess the quality of the CER 
properly.  Sample sizes of 30 or more are valuable because they allow one to assume a normal 
distribution in situations where the Central Limit Theorem is applicable. 
 
9.6.2 Past Costs as Predictors of Future Costs 
 
When using a CER, the cost estimator makes the assumption that information from the past is a 
good predictor of the future.  Therefore, CERs assume that relationships that held true in the past 
will remain roughly the same in the future.  Put another way, one is assuming that all factors 
affecting costs (e.g., productivity, material type, etc.) will affect future costs in approximately 
the same way they affected past costs.  A CER prediction further assumes that the future 
program will have several management and technical problems, just as the programs in the 
historical database. 
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These assumptions may be unrealistic for two reasons.  First, historical relationships between 
costs and cost drivers can change as technology changes.  For example, the increased use of 
composite materials that are lighter and stronger, but which cost more than previously used 
metals, offer the prospect of reversing the positive airplane cost/weight relationship.  Technology 
can thus alter the validity of CERs derived historically.  Second, it is more than likely that 
management has learned from previous successes and failures.  Managers are trying actively to 
ensure that a new program will not repeat past management and technical problems. 
 
The cost estimator must consider whether technological changes (including changes in 
manufacturing technology) may invalidate a CER.  Likewise, the cost estimator must review 
how management practices and acquisition strategy are likely to alter historical cost-to-cost 
driver relationships.  Additionally, studies (Daly, Gates and Schuttling, The Effect of Price 
Competition on Weapon System Acquisition Costs; Kratz, L. A., Dual Source Procurement: An 
Empirical Investigation) show that competition during the production phase reduces unit costs; 
thus, if the program is to be dual-sourced, the cost estimator may have to consider the effects of 
competition in the cost estimate. 
 
One way to make these adjustments would be to develop a CER using only a select portion of 
the data (assuming there is enough data).  To develop the CER only those programs that were 
subject to competition would be included.  More advanced regression techniques such as 
weighting schemes might also be used.  It is important to remember that there are some built-in 
assumptions when using past costs as predictors of future costs, and the cost estimator must be 
careful when interpreting the results. 
 
9.6.3 Cause and Effect versus Correlation 
 
Section 9.5.4 described the computation and meaning of the coefficient of determination, R2.  
The square root of that statistical measure, r, shows the degree of association between the 
independent variable and the dependent variable.  The higher the value of r, the closer the 
association between the two variables.  A high r, however, does not imply there is a cause and 
effect relationship between the two variables.  The cost estimator must provide that 
interpretation.  When doing so, the cost estimator must think through what imputing a cause and 
effect relationship between the two variables really means.  Thus, the cost estimator must ask 
this question of all potential cost drivers:  How do I expect this cost driver to affect cost?  One 
might possibly find a relationship between cost and sunspots, but what cost estimator really 
expects the occurrence of sunspots to drive cost? 
 
Some relationships that may appear plausible at first glance, in actuality are implausible.  For 
instance, if a cost estimator wanted to examine the hypothesis that a large number of air traffic 
controllers at an airport indicates better air space management, the cost estimator might regress 
the number of controllers per airport against the number of flight delays per airport.  The 
resulting regression might show that the greater the number of controllers, the greater the 
number of flight delays.  Does this mean more controllers result in poorer air traffic services?  
Not likely, instead other explanations could also account for the high R2.  Large airports have 
more flights and thus more delays.  Another reason might be that larger airports tend to be 
located in northern areas where there is more inclement weather.  When thinking through this 
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example, the cost estimator concludes that the number of flight delays at an airport may not be 
the best measure of good air traffic service.  The lesson here is to think through the estimating 
problem before performing the regression because a high correlation does not imply necessarily 
a cause and effect. 
 
9.6.4 Going Outside the Range of Data Applicability 
 
CERs are derived from a set range of data.  Using the CER to extrapolate well beyond that range 
must be done with great care.  For example, in Figure 9.6 cost estimates of power requirements 
for cooling a site’s existing ADP between 5 and 20 kilowatts can be developed with some 
confidence.  A cost estimate for cooling the site after receiving new ADP with power 
requirements of 35 kilowatts is subject to more uncertainty.  Can the cost estimator be sure that 
the linear cost/power relationship that held for lower power requirements continues at much 
higher power levels?  Clearly, the cost estimator should consider carefully whether such 
extrapolation is feasible.  Some input from knowledgeable engineers could provide valuable 
guidance on whether to extrapolate the CER. 
 

Figure 9.6  Extrapolating Beyond the Range of the Data 

302010
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9.6.5 Tests of Reasonableness 
 
When using any kind of an estimating relationship, the cost estimator should check to ensure that 
the relationship, cost drivers, and results of a CER are intuitively plausible.  The statistics 
generated in a regression analysis are helpful in this regard.  For example: 
 

    9-19 



Parametric Estimating 
 

• Correlation coefficient, r.  This statistic should have the same algebraic sign as the 
regression coefficient a (the slope of the regression line).  In other words, if the slope of 
the regression line is positive, the correlation coefficient should be positive. 

 
• Standard Error of the Estimate (SEE) and Standard Error of the Prediction (SEP).  SEE 

and SEP confidence bounds can be drawn around the regression line to give the cost 
estimator a sense of the uncertainty associated with the CER. 

 
• Other statistics.  The F-statistic and t-statistic (not discussed in this handbook) are 

useful in establishing the uncertainty associated with the regression coefficients b and a 
(α 0  and α i ).  Refer to any basic statistics book for a discussion of these. 

 
The cost estimator also must examine the relationship form carefully.  The relationship between 
the cost drivers (independent variables) and the cost to be predicted (dependent variable) may be 
linear within a specified region, but curvilinear at extreme values of the independent variable.  
For example, component cost may be linearly related to power requirements within a certain 
range; however, at some threshold, costs may go up at an increasing rate.  The cost estimator 
should try as many functional relationships as feasible. 
 
In addition to statistical evaluation, other things can be done by the cost estimator to ensure a 
quality estimate and a reliable CER.  For example, the estimator can:  
 

• Make a “test” estimate for some recent system that was not included in the database and 
check to see if the CER’s “test” estimate is in agreement with the actual system cost. 

 
• Perform sensitivity analysis with the CER and show that all results are logical and 

reasonable. 
 
• Have independent technical experts review and endorse the selection of the cost driver 

variables used and the reasonableness of sensitivity analysis results. 
 
• Show that the model produced good estimates for those systems in the database most 

like the new system. 
 
• If possible, gather enough historical data points so the new system’s variable values are 

within the ranges of those in the database (i.e., avoid the need for data extrapolation). 
 
Finally, the cost estimator must recognize that some cost estimating problems are not amenable 
to simple regression analysis and that more advanced statistical techniques need to be applied 
(e.g., multiple regression, multivariate techniques) and perhaps even some non-statistical 
techniques (e.g., expert judgment, elicitation techniques).  In the final analysis, the intuition, 
experience, and judgment of the cost estimator are indispensable components in developing 
reliable cost estimates. 
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9.7 Introduction to Cost Improvement Curves 
 
This section addresses the application of cost improvement curves to the cost estimating process.  
Cost improvement curves have been called by many names including learning curves, progress 
curves, cost/quantity relationships, and experience curves.  Specific types (i.e., mathematical 
models) of cost improvement curves often have been named after the men who proposed them or 
companies that first used them.  They include Wright, Crawford, Boeing, and Northrop curves.  
All of these names refer to one of two mathematical models generally agreed to describe best 
how costs or labor hours decrease as the quantity of an item being produced increases.  These 
two models are described most accurately as the unit curve and cumulative (cum) average curve.  
The differences between the two models can be important and will be described later in Section 
9.7.2.  The differences are important because there are times when use of one model clearly is 
preferred over the other.  The two models use what look like identical equations.  However, 
because of the differences in the definition of the cost or hour term, they compute different total 
cost or hour values for identical first unit (Tl) and slope values. 
 
The primary purpose of this section is to provide an introduction to basic cost improvement 
curve theory.  While the theory is applicable equally to labor hours and costs - more exactly 
constant dollar costs - only costs will be addressed in the computation discussions presented in 
this section. 
 
Throughout this section, the term total production costs will be used.  Used herein, it means total 
recurring production costs; that is the total cost for activities and material requirements that are 
common to every production unit.  Recurring costs do not include non-recurring costs, such as 
basic and rate tooling, which must be added in most cases to get a true total production cost. 
 
At the outset it must be pointed out that cost improvement curve theory has been found to be a 
useful estimating tool in the past.  However, it is based on observations, most of which do not fit 
either the unit or cum average curve equations exactly.  No one can describe totally the cause 
and effect mechanisms that produce the cost decreases forecast by the theory.  There are many 
uncertainties associated with cost estimates for future activities.  While cost improvement curve 
analysis methods have been, and will continue to be, useful cost estimating tools, their use is also 
a source of estimate uncertainty.  It is prudent financial management to review actual data from 
time to time, after the estimate has been made, to determine if cost reduction projections are 
being met.  Section 9.7 provides brief historical, theoretical, and application information on cost 
improvement curves. 
 
9.7.1 Brief History 
 
Since the first paper on cost improvement curves in the airplane industry was published in the 
1930s, much has been written on the subject.  Louis E. Yelle, in The Learning Curve:  Historical 
Review and Comprehensive Survey, provides over 90 references published before 1967.  The 
most important fact derived from Yelle’s research is that in the past, costs have been observed to 
go down in a somewhat predictable manner as the quantity increased.  This has resulted in 
industry personnel planning and managing to assure the predicted cost reductions are achieved, 
and the government, as a buyer, expecting to see such reductions in the prices it pays for 
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systems.  Much has been written on what causes costs to decrease.  It is agreed widely that the 
decreases result from many things including - job familiarization by workmen doing repetitious 
jobs, general improvement in tool design and usage, production control improvements, improved 
materials flow, reduced scrap, design fixes and simplification, and many other factors.  On the 
other hand, very little is known about the relative magnitude of the reductions associated with 
each of the many individual sources of improvement or exactly how each component of 
improvement can be predicted.  It is important for an estimator to study the process to which 
learning is being ascribed before accepting the learning curve as a reasonable estimating 
approach.  For instance, if a company has experienced 85 percent learning curves historically, 
but recently has automated its process significantly, it is not to be expected that the process will 
involve as much learning, since machines do not learn.  In this section the word learning is used 
to describe everything being done to reduce costs.  Since factors well beyond the usual definition 
of learning are involved, quotes will be used to indicate this special meaning of the word 
learning. 
 
9.7.2 Brief Theory of Cost Improvement Curves 
 
As already mentioned, cost improvement curve theory states that as the quantity of items 
produced doubles, costs decrease at a constant rate.  This constant rate will depend on many 
factors related to the process being modeled.  Equations 9.11 and 9.12 describe the learning 
curve concept. 

                                                        Equation 9.10 
In reviewing Equations 
9.11 and 9.12, it is 
important to note that 
the form of the 
equations is the same.  
Both plot as straight 
lines when the variables 
are transformed into 
their logarithmic form.  They differ only in the definition of the Y term.  Equation 9.11 describes 
the basis for the unit curve.  It is used to describe or model the relationship between the cost of 
individual units.  Equation 9.12 describes the basis for the cumulative average or cum average 
curve.  It is used to describe the relationship between the average cost of different quantities of 
units.  The significance of the cum in cum average is that the average costs are computed for the 
first X units.  Therefore, the total cost for X units is the product of X times the cum average cost.  
Unfortunately, there is no easy way to get the exact total cost of the first X units produced using 
the unit curve theory without a computer, although there are approximation formulas. 

  Yx = Tl  •  Xb 
 
Where: 
Yx  = The cost required to produce the Xth unit 
Tl  =  The theoretical cost of the first production unit 
X =   The sequential number of the unit for which the cost is to be computed 
b  =  A constant reflecting the rate costs decrease from unit to unit 

                                                                  Equation 9.11 
 
Both the unit and cum average 
cost improvement curve 
equations describe and model 
the observation that costs 
decrease a constant percent 
every time the quantity 

Yx =  T1  •  Xb    
 
Where: 
Yx = The average cost of the first X units 
T1  =  The theoretical cost of the first production unit 
X   =  The sequential number of the last unit in the 
          quantity for which the average cost is to be computed 
b   =  A constant reflecting the rate costs decrease from unit to unit 
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doubles.  This is reflected in the curves through the b value, a constant reflecting the amount of 
the decrease for every doubling of quantity.  The b value for both curves is computed by 
Equation 9.13. 
 
As an example using the unit curve, if the first unit cost 100 and the second unit cost 90, or 90 
percent of unit 1, the unit curve would have a 90 percent slope, and the S value would be 0.9.  
The resulting b value would be the log 0.9/log 2 or  
-.045758/0.30103, or -
0.15200.  The b value is 
determined in the same 
way for the cum average 
curve.  However, using the 
same first unit (Tl) value 
and slope, one will always get lower cum total costs using the cum average curve because of the 
difference in how Yx and Yx  are defined.  In the example above where the first unit cost 100 and 
the second 90, the total cost for the two is 190, based on use of the unit curve.  Using the cum 
average curve the Yx  for the same Tl value (100), slope value of .9, and x value of 2, would yield 
a total cost of 2 times 90, or 180.  

                     Equation 9.12 

b = log S
log 2

 

Where: 
S  =  The cost/quantity slope expressed as a decimal value. 

 
Since these two models of how costs decrease with quantity are clearly different, a cost estimator 
must always know which type of curve is required.  If provided historical slope data, a cost 
estimator must know which curve type was assumed to derive the given slope values. 
 
One other piece of theory is important to the applications of cost improvement curve theory.  It is 
that when a procurement, whether new or continuing after a design change, consists of some 
elements being produced for the Nth time and other elements being produced for the Mth time, 
where N and M are not equal, the total cost of the total unit can be estimated using the sum of 
values computed from two cost improvement curves.  The theory extends to any number of 
curves as long as the Tl, slope, and quantity values for each are appropriate for the items or 
fraction of the total item applicable to each curve.  This is often the case where two or more 
systems use the same engine or some other major component.   
 
9.7.3 Importance of Cost Improvement Curves to Cost Estimating 
 
Cost improvement curves have long been recognized in the airframe industry and widely used by 
industry and government cost estimators.  Subsequently, cost improvement curves have been 
applied to almost all production cost estimates, especially where the quantity of production units 
involved justified planning and tooling activities greater than those used to produce prototype 
items.  Cost improvement curves can be applicable to production quantities as small as two units 
if the product is not machine made. 
 
Cost improvement curves are one of the most widely understood concepts of all cost analysis 
tools.  Therefore, cost estimators can expect questions from various levels of management on all 
aspects of their use in developing a cost estimate.  Where quantities exceed 100 units, a change 
of only a few percent in the slope value can make a large change in the total procurement cost 
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value.  Many managers know this and may challenge the slope values used to argue for higher or 
lower estimates.  The cost estimator must be prepared to defend all cost improvement curve 
methods, assumptions, and input values used to develop an estimate. 
 
9.8 Summary 
 
This chapter has dealt with the subject of parametric estimating, often used interchangeably with 
the term CER.  Parametric estimating is the process of estimating cost by using mathematical 
equations that relate cost to one or more physical or performance characteristics of the item 
being estimated.  Since physical or performance characteristics of a system are known early in a 
system’s life cycle, parametric estimating methods are particularly needed for early life cycle 
estimates, although they are used throughout the life cycle.  The use of parametric methods has 
gained increasing acceptance because of the inherent advantages of the methods; they can 
generate complete estimates with little detail and relatively small time investment.   
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9A.  Least Squares Formula Derivation 
 
The derivation of the least squares formulas for estimating b (y-intercept) and a (slope) is given 
below. 
 

• Step 1:  Observe Equations 9A.1 and 9A.2 and note that the “F” in Equation 9A.2 must 
be minimized. 

 
 

F = 

                                         Equation 9A.2 
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• Step 2:  Square the expression ( b aX Yi i+ − ) in Equation 9A.1 and apply the summation 

operator to get Equation 9A.3. 
 

Equation 9A.3 
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• Step 3:  Take the partial derivatives of F in Equation 9A.2 with respect to b and a.  

Then, set these partial derivatives equal to zero to get Equations 9A.4 and 9A.5. 
 

Equation 9A.4 
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i= − −∑ ∑ ∑ Y 0=  

 
• Step 4:  Multiply Equation 9A.3 by (ΣXi), and Equation 9A.4 by n.  Subtract the 

resulting equations to generate Equation 9A.6. 
 

Equation 9A.6 

a n X X n X Y X Yi
2

i
i=1i=1

n

i i
i=1

i
i=1

i
i=1
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
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



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





− +













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n n n n2
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• Step 5:  Solve Equation 9A.6 for a to generate Equation 9A.7. 
 

Equation 9A.7 
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X Y

X Y
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X
X

i i
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i=1

i
i=1

i=1

i
2

i
i=1

i=1

−
















−









∑ ∑
∑

∑
∑

n n

n

n

n

n

2  

 
• Step 6:  Solve for b in Equation 9A.5 to get Equation 9A.8. 

 
Equation 9A.8 

b =
n

Y - aX
Y a X

i i
i

n

i

n

−
===

∑∑
11  
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9B.  Basic Statistics for Cost Estimators 
 
Introduction 
 
This is a basic statistics reference for cost estimators. 
 
Probability Distributions 
 
Very few things in life are certain.  Just as the actual outcome of a good horse race seldom can 
be predicted with confidence, the actual cost of an airplane seldom can be predicted to the dollar.  
Moreover, knowing the cost of one system or cost element in the Work Breakdown Structure 
may not provide much insight into the cost of another system or cost element because of the 
differences in technology, manufacturing process, labor skill, etc.  How then does the cost 
estimator assess the uncertainty inherent in a cost prediction? 
 
The cost estimator will not be able to specify with certainty the cost of a given element of the 
total system cost.  The uncertainty, however, can be captured in the form of a probability 
distribution (sometimes referred to as a frequency distribution) on that cost element.  A 
probability distribution gives two basic pieces of information: 
 

• The possible values or range of values that the cost element might assume; and 
• The likelihood that each of these values will be realized. 

 
Figure 9B.1 depicts several probability distributions.  In constructing a probability distribution, 
the only mathematical requirements are: 
 

• That the probability assigned to each possible value (given by the height of the 
curve) be non-negative; and 

• That the area under the curve sum to one. 
 
The possible shapes are limitless.  The height of the curve above the X-axis represents the 
relative likelihood that the cost value lying immediately below it will be realized. 
 
Graphically, probability distributions may be depicted as smooth curves or histograms.  Figure 
9B.1, parts (a), (c), and (d) depict smooth curve distributions, and part (b) depicts a distribution 
in histogram form.  The difference between smooth curve and histogram forms lies largely in 
how the distribution is constructed.  In the histogram form, the cost estimator groups data into 
specific intervals (e.g., cost intervals) and centers each of the histogram bars on the midpoints of 
the intervals.  For example, if 20 of a total of 100 cost observations fell in the interval $100,000 
to $150,000, the cost estimator would assign a probability of 0.2 (20/100) to a histogram bar 
centered at $125,000.  Smooth curve distributions may be generated from histograms by drawing 
a smooth curve through the midpoint of the top of all the histogram bars.   
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Smooth distributions also may reflect certain shapes that correspond to specific analytical 
distribution forms.  By knowing the distribution’s parameters, one can simply plot the 
distribution.  For example, part (a) of Figure 9B.1 depicts a normal, or bell-shaped, probability 
distribution.  Normal distributions provide the basis for many statistical estimation theories. 
 

Figure 9B.1  Examples of Probability Distributions 

(a)

(c) (d)

(b)

 
 
Another important property of probability distributions is symmetry.  Symmetry must always be 
measured relative to some point, line, plane, or other geometric reference.  The symmetry in a 
probability distribution is specified relative to the mean.  Figure 9B.1(a) depicts a symmetrical 
distribution as does Figure 9B.1(d).  Skewness is a property of asymmetrical distributions.  
Roughly speaking, a skewed distribution is one that has a long tail at one end.  Figure 9B.1(c) 
depicts a distribution that is skewed to the left. 
 
Most of the information contained in a distribution is reflected in its shape.  Two characteristics 
of shape are: 
 

• a tendency for data values to concentrate around certain values, or 
• a tendency for data values to disperse. 
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The next two sections are devoted to discussions of measures of central tendency and measures 
of dispersion.  When two or more variables are under consideration, other statistics become 
important.  Since CERs seek to exploit the relationship between two or more variables (e.g., cost 
and weight), the last section discusses a measure of association between two variables. 
 
When using statistical methods, a cost estimator needs to understand whether his data constitute 
a population or a sample.  A population consists of all the data of a specified type.  A sample 
consists of part of a population, selected at random from the entire population.  Some statistical 
formulas vary depending on whether the data being used is a population or a sample.  As a 
general convention, Greek letters are used for population parameters and English letters for 
sample parameters. 
 
Measures of Central Tendency 
 
When analyzing historical cost data, it is often observed that while costs may vary over some 
range, there is a tendency for observations to cluster around certain values.  In a sense, this 
clustering locates the middle of the distribution.  It is desirable to identify the value 
corresponding to the center of distribution, but this depends on how this middle value is defined.  
Different definitions give rise to different measures.  In this section, three measures of central 
tendency are given - mean, median, and mode. 
 
Mean 
 
The most commonly used measure of central tendency is the mean or arithmetic average.  The 
mean of a probability distribution has a geometric interpretation.  It represents the middle of the 
distribution in the sense that it is the center of gravity.  If the distribution were balanced on a 
fulcrum, the X value corresponding to the point of balance would be the mean value, denoted by 
X . 
                   Equation 9B.1 

X =
=
∑1

1n
Xi

i

n

   

where ∑ is the summation operator 

For a given set of n values Xl, X2, ... Xn (e.g., number 
of lines of computer code written by each of n 
programmers during a single hour), the mean is their 
sum divided by n, the number of values in the set.  
The mean is expressed mathematically in Equation 
9B.1. 
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CASE STUDY 9B.1.  CALCULATING THE MEAN 
 
Nine programmers picked at random were given the same programming task.  After one hour, 
their coding sheets were collected and the following results were noted: 
 

Programmer (i) Lines of Code 
Written (Xi) 

1 22 
2 21 
3 34 
4 18 
5 22 
6 12 
7 22 
8 28 
9 21 

 
The mean number of lines of code written for this group of nine programmers is computed as: 
 

( )X = 1
n X X X + X + X + X + X + X + X1 2 3 4 5 6 7 8 9+ +  

 

( )X = 1
9

22 21 34 +18 + 22 +12 + 22 + 28 + 21+ +  

X = 200
9

 

 
=  22.2 lines per hour 

 
Median 
 
Another measure of central tendency is the median or middle value of the probability 
distribution.  The median is that value that bisects the probability distribution into two areas of 
equal size.  The median is equivalent to the 50th percentile.  This means that 50 percent of the 
probability lies above the median and 50 percent lies below.  In other words, one is just as likely 
to observe values above the median as below it. 
 
The median is frequently a more useful measure of central tendency than the mean, especially if 
the distribution is highly skewed.  Highly skewed distributions tend to force the mean away from 
the median.  The greater the separation between the two, the more important the choice of 
measure becomes.  If the cost estimator has reason to believe that exceptionally high (or low) 
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values experienced in the past are very unlikely to repeat themselves in the future, then the 
median may be the better choice.  On the other hand, if widely divergent values are expected to 
persist into the future, the mean may be more appropriate, since it implicitly gives more weight 
to outlying values.  A good guideline is to use the more conservative estimate (i.e., the one 
leading to a higher cost estimate). 
 
CASE STUDY 9B.2.  CALCULATING THE MEDIAN 
 
To calculate the median, it is first necessary to arrange the data in ascending order.  Continuing 
our previous example, the data arrange as follows: 
 

Programmer (i) Lines of Code 
 Written (Xi) 

6 12 
4 18 
2 21 
9 21 
1 22 
5 22 
7 22 
8 28 
3 34 

 
Since the median is the middle value of the frequency distribution and 22 lines of code is the 
middle value, then 22 is the median of this distribution. 
 
In the example above, the number of data points was odd (n=9).  The reader may ask how one 
goes about finding the median when the number of data points is even.  The answer is that one 
averages the two middle values.  For example, if a tenth data point is added corresponding to 19 
lines of code, the data would display as follows (in ascending order). 
 

Programmer (i) Lines of Code 
 Written (Xi) 

6 12 
4 18 

10 19 
2 21 
9 21 
1 22 
5 22 
7 22 
8 28 
3 34 
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The median is computed as: 
 

Median = 9 1X X
2

21 22
2

+
=

+
= 215.  

 
Suppose now that another, especially bright programmer is added who writes 72 lines of code in 
one hour.  The new mean for this frequency distribution of eleven data points is: 
 

( )X = 1
11

12 18 19 21 21 22 22 22 28 34 72 265+ + + + + + + + + + = .  

 
The median is now 22.  But which of these two measures of central tendency is more appropriate 
to use?  Note that only three programmers out of eleven wrote more lines than the mean value of 
26.5.  The new mean value is heavily influenced by the large number of lines of code written by 
programmer 11.  That is, programmer 11 is an outlier.  Since this programmer has exceptional 
capability, the mean is biased and does not represent the preponderance of programmers.  
Therefore, the median (22) gives a better indication of the center of the frequency distribution. 
 
Mode  
 
The last measure of central tendency to be discussed in this chapter is the mode.  The mode is 
simply the most frequently observed value, that is, the X-value corresponding to the highest 
point in the frequency distribution.  The mode cannot be computed algebraically and must be 
determined by inspection of the frequency distribution.  In the previous example, the mode is 22 
since this value occurs most often. 
 
Some distributions will have more than one mode (bimodal distribution).  That is, there are two 
X-values around which data values tend to cluster.  Other distributions may not have a mode at 
all if there are no repeated data values. 
 
The normal probability distribution, which will be discussed in a later section, has the property 
that the mean, median, and mode all have the same value. 
 
Measures of Dispersion 
 
The last section was devoted to a discussion of measures of central tendency.  The propensity for 
data values to concentrate around certain X-values.  This section is devoted to just the opposite - 
the tendency for data values to spread.  Two measures of dispersion are discussed below - range 
and standard deviation. 
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Range  
 
The range is a simple statistic that represents the difference between the extreme values of the 
distribution.  It is computed by taking the arithmetical difference between the largest and 
smallest data values. 
 
CASE STUDY 9B.3.  CALCULATING THE RANGE 
 
Continuing our programming example, the largest value was 72 lines of code per hour; the 
smallest was 12 lines.  The range is computed as follows: 
 

Range  =  72  -  12  =  60 lines of code per hour 
 
The range is of limited value as a measure of dispersion because it does not depict the shape of 
the distribution - merely the range of values over which observations have been taken.  
Moreover, the value of the range has no meaning except in relation to the magnitude of the mean 
(or other measure of central tendency).  For example, a range of 1,000 lbs. is small in the context 
of comparing airframe weights but large in the context of comparing the weight of avionics 
boxes.  The standard deviation, which is discussed next, provides an answer to this measurement 
problem. 
   
Standard Deviation  
 
The standard deviation provides a standard 
measure of the degree of dispersion in a 
probability distribution.  It is defined 
according to the formula in Equation 9B.2 
for a sample, and Equation 9B.3 for a 
population. 

 
      Equation 9B.2            Equation 9B.3 

( )
s =

Xi X

n -1

2

1
−

=
∑
i

n

     
( )

σ
µ

=
Xi
n

2

1
−

=
∑
i

n

 

 
To compute the standard deviation of a sample, first compute the sum of squared deviations of 
the individual observations from the mean (this is the numerator under the radical).  Then, divide 
this result by (n-1).  Finally, take the square root. 
 
CASE STUDY 9B.4.  CALCULATING STANDARD DEVIATION 
 
The standard deviation of the number of lines of code written per hour is computed by: 
 

• Step 1:  Compute the sum of the squared deviations from the mean ( )  as 
shown in Worksheet 9B.1. 

X = 26.5
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• Step 2:  Divide the result obtained in Step 1 by (n-1). 
 

( )2

1 2588 75
10

X X

n -1

i −
==

∑
i

n

.
 

 
• Step 3:  Take the square root of the result obtained in Step 2. 

 

( )2

1 258875 16 09
X X

n -1

i −
= ==

∑
i

n

. .  

 
Worksheet 9B.1.  Computation of Sum of Squared Deviations 

      
(X1- X ) 2 = (12-26.5) 2 = 210.25  
(X2- X ) 2 = (18-26.5) 2 = 72.25  
(X3- X ) 2 = (19-26.5) 2 = 56.25  
(X4- X ) 2 = (21-26.5) 2 = 30.25  
(X5- X ) 2 = (21-26.5) 2 = 30.25  
(X6- X ) 2 = (22-26.5) 2 = 20.25  
(X7- X ) 2 = (22-26.5) 2 = 20.25  
(X8- X ) 2 = (22-26.5) 2 = 20.25  
(X9- X ) 2 = (28-26.5) 2 = 2.25  
(X10- X ) 2 = (34-26.5) 2 = 56.25  
(X11- X ) 2 = (72-26.5) 2 = 2070.25  

      

( )2

1
X Xi −

=
∑
i

n

 
  = 2588.75  

      
 
Thus the standard deviation in the example above is 16.09 lines of code per hour.  Note that the 
standard deviation is expressed in the same units as the variable being analyzed. 
 
The standard deviation provides a standard measure of dispersion.  Knowing the standard 
deviation allows one to assign probabilities that observations will occur in various intervals over 
the full range of the distribution.  This is true regardless of the nature of the probability 
distribution.  However, confidence limits depend on the population’s distribution and on whether 
one is dealing with a population or a sample. 
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Figure 9B.2 depicts a normal probability distribution with a mean of µ and a standard deviation 
of σ.  Many natural phenomena obey the normal probability law and, hence, have normal 
probability distributions.  The normal distribution is symmetrical about its mean.  Note in Figure 
9B.2 that the mean, µ in the normal distribution is also the mode and the median.  The only other 
parameter needed to define a normal distribution completely is the standard deviation, σ. 
 
As stated above, the assumption that the data follow a normal distribution allows one to make 
some assertions about the probability that observations will fall within a specified interval.  In 
the case of a normal distribution, 68.3 percent of the observations will fall within one standard 
deviation of the mean, 95.5 percent within two standard deviations of the mean; and 99.7 percent 
within three standard deviations.  (Normal probability tables exist in most statistics texts.)  One 
can also specify the probability that an arbitrary value of X0 or less will be observed if µ and σ 
are known.  This is important since frequently one would like to know whether a specific 
observation constitutes a likely or unlikely event. 
 

Figure 9B.2  Normal Probability Distribution 

68.3%

95.5%

99.7%

−3σ −2σ −1σ +1σ +2σ +3σµ

 
 
If two normal distributions have the same mean but different standard deviations, the one with 
the larger standard deviation has greater dispersion.  This is true in the case of normal 
distributions but not necessarily true in the case of asymmetrical distributions.  Two distributions 
can have the same mean and standard deviation but widely differing shapes.  Only by looking at 
either the entire distribution or more detailed statistics (which are beyond the scope of this 
handbook) can one gain a full appreciation of the uncertainty contained in the distribution.  
Hence, the standard deviation (as a single measure of uncertainty (or risk)) must be used with 
caution. 
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A Measure of Association 
 
In cost estimating, cost estimators attempt to find relationships between two or more variables.  
Some of these relationships are deterministic (certain) in nature.  For example, the relationship 
between programmer labor cost and labor hours is deterministic if a single labor rate is used for 
all programmers.  If labor hours are known, then labor costs can be stated with certainty. 
 
Other relationships are probabilistic (uncertain) in nature.  For example, the relationship between 
lines of code written and software labor costs depends on the difficulty of the coding task and the 
proficiency of the programmer.  If only given the number of lines of code written, one cannot 
assert with certainty the programming cost.  However, one can measure the strength of the 
association between these two variables. 
 
A good way to represent the relationship is by means of a scatter diagram.  Let Xi represent the 
number of lines of code written by programmer i and Yi represent the cost incurred.  If there are 
n programmers, then there are n points (Xi, Yi) which, when plotted, yield a scatter diagram of 
these two variables.  Figure 9B.3 depicts four possible scatter diagrams that might result from 
plotting the n points.  (There are other possibilities as well.) 
 

Figure 9B.3  Examples of Scatter Diagrams 
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Part (a) of Figure 9B.3 depicts a situation in which Y tends to increase in proportion to X; this 
situation reflects positive or direct linear correlation.  Part (b) depicts negative or inverse linear 
correlation (i.e., as X increases, Y tends to decrease proportionately).  Part (c) depicts a situation 
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where Y tends to increase as X does, but at a non-proportional or decreasing rate; this situation 
characterizes positive non-linear correlation.  Finally, part (d), depicts a situation in which there 
is no apparent correlation between X and Y. 
 
In essence, cost estimators need a measure that captures the strength of the association between 
X and Y.  The correlation coefficient provides such a measure. 
 
Correlation Coefficient (r)  
 
The sample correlation coefficient (r), is an estimator of the population correlation coefficient 
(ρ).  The correlation coefficient is a unitless measure of the degree of linear association between 
two random variables.  The formula for computing the sample correlation coefficient follows. 
 

Equation 9B.4 

r
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The sample correlation coefficient can vary between -1 and +1, inclusive.  If r = +1 (-1), the 
correlation is said to be perfectly positive (negative) which means that all sample data points lie 
on a straight line. 
 
CASE STUDY 9B.4.  CALCULATING THE COEFFICIENT OF CORRELATION 
 
Suppose that in addition to the number of lines of code written by each of the nine programmers, 
the number of months of programming experience was also identified.  The data set now appears 
as follows: 
 

Programmer (i) Lines of Code 
Written (Xi) 

No. Months of 
Experience (Yi) 

1 22 16 
2 21 18 
3 34 22 
4 18 15 
5 22 33 
6 12 9 
7 22 40 
8 28 38 
9 21 30 
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Worksheet 9B.2 illustrates the computations required to obtain the sum of squares and cross 
products.  Substituting into equation 9B.4 gives the following result: 
 

( )( )

( ) ( ) ( )( ) 454.0
24.3125.17

89.244

9

22216403
9

22004742

9
2212005156

==

−•−

−
=r  

 
Thus, there is a mild positive correlation between programmer productivity and experience.  This 
suggests that there are other variables that are just as important as experience (e.g., education, 
motivation, intelligence, etc.).  The amount of confidence one can place in the correlation 
between two variables depends on the value of r and the sample size. 
 

Worksheet 9B.2.  Computation of  
Correlation Coefficient (r) 

Xi Yi Xi
2 Yi

2 XiYi 
22 16 484 256 352
21 18 441 324 378
34 22 1156 484 748
18 15 324 225 270
22 33 484 1089 726
12 9 144 81 108
22 40 484 1600 880
28 38 784 1444 1064
21 30 441 900 630

200 221 4742 6403 5156
  

Σ XiYi  =  5156 Σ Yi
2  =  4742 

Σ Xi  =  200 Σ Yi
2  =  6403 

Σ Yi  =  221 n  =  9 
  

 
A calculated r value of 0.454 is low; therefore, the data associated with it could not be used to 
make high confidence estimates.  The  F  and  t  statistics should be used to assess a confidence 
measure of the relationship between the variables.  The  F  and  t  statistics are discussed in most 
statistical texts and can be computed by nearly all statistical computer packages. 
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