SNMPv3 Guidance – December 2002

[image: image1.wmf]
U.S. Department of Transportation
Federal Aviation Administration

Guidance Document
Guidance for Implementing a

NAS Infrastructure Management System (NIMS)

Managed Subsystem Agent

Using the

Simple Network Management Protocol Version 3(SNMPv3)

GUIDANCE DOCUMENT
APPROVAL SIGNATURE PAGE

Guidance for Implementing a

NAS Infrastructure Management System (NIMS)

Managed Subsystem Agent

Using the

Simple Network Management Protocol Version 3(SNMPv3)

APPROVAL SIGNATURE

 NAME TITLE

DATE

 Richard Simmons NIMS Product Team Lead, AOP-10

REVISION RECORD

__

 REVISION

DESCRIPTION

DATE

ENTERED BY

 LETTER

-

Initial Outline

March, 02
Tom McParland

-

Draft

April, 02
Tom McParland

-

Revised Draft

July, 02
Tom Wilson,

Tom McParland

-

Revision 2 Draft

Oct, 02

Tom McParland

-

Baseline

Nov, 02
Tom McParland

-

Revised Baseline

Dec, 02
Tom McParland

__

TABLE OF CONTENTS
Paragraph
Title

 Page

61. SCOPE

61.1
Scope

61.2
Organization

62. APPLICABLE DOCUMENTS

72.1
Government Documents.

72.2
Non-government documents.

102.3
Document sources.

102.3.1
FAA Documents.

102.3.2
IETF Documents.

102.3.3
ISO Documents.

103. SYSTEM MANAGEMENT AND SNMPv3 OVERVIEW

103.1
Open Systems Management

103.1.1
System Management Functional Areas

113.1.2
Systems Management Model

123.1.3
Manager-Agent Communications

123.1.4
Managed Objects

133.2
SNMP Framework

143.2.1
Protocol Operations and Transport Mappings

143.2.1.1
Retrieve Management Information

153.2.1.2
Modify Management Information

153.2.1.3
Report Events

153.2.1.4
Encapsulation of SNMPv1 or SNMPv2 within SNMPv3

163.2.2
Data Definition

163.2.3
Standard MIB Modules

173.2.4
Security and Administration

184. DETAILED GUIDANCE ON SNMPv3 ICD

184.1
General requirements. (v3 ICD ref: 3.1)

204.2
Functional requirements. (v3 ICD ref: 3.2)

204.2.1
Application process. (v3 ICD ref: 3.2.1)

204.2.1.1
Identification of application process. (v3 ICD ref: 3.2.1.1)

224.2.1.2
Type of services required by the AP. (v3 ICD ref: 3.2.1.2)

264.2.1.2.1
Event reporting. (v3 ICD ref: 3.2.1.2.1)

274.2.1.2.2
Solicited data reporting. (v3 ICD ref: 3.2.1.2.2)

274.2.1.2.3
Control. (v3 ICD ref: 3.2.1.2.3)

274.2.1.2.3.1
Initiate action. (v3 ICD ref: 3.2.1.2.3.1)

284.2.1.2.3.2
Modify management information. (v3 ICD ref: 3.2.1.2.3.2)

284.2.1.3
Information units. (v3 ICD ref: 3.2.1.3)

284.2.1.3.1
Information code. (v3 ICD ref: 3.2.1.3.1)

314.2.1.3.1.1
Protocol data unit. (v3 ICD ref: 3.2.1.3.1.1)

334.2.1.3.2
Information structure. (v3 ICD ref: 3.2.1.3.2)

344.2.1.3.2.1
NIMS Information structure (v3 ICD ref: 3.2.1.3.2.1)

364.2.1.3.2.1.1
NimsManagedResourceRegistration

364.2.1.3.2.1.2
NimsManagedResourceCommonInfoGroup

394.2.1.3.2.1.3
NimsManagedResourceMIBs

404.2.1.3.2.1.4
NimsAgentProfiles

404.2.1.3.2.1.5
NimsCompliance

404.2.1.3.2.1.6
NasInfrastructureServices

404.2.1.3.2.1.7
NimsCommonNotifications

414.2.1.3.2.1.8
NimsExperimental

424.2.1.3.2.2
IETF MIB support (v3 ICD ref: 3.2.1.3.2.3)

434.2.1.3.3
Information unit segmentation. (v3 ICD ref: 3.2.1.3.3)

444.2.1.3.4
Frequency of transmission. (v3 ICD ref: 3.2.1.3.5)

444.2.1.3.5
Information priority. (v3 ICD ref: 3.2.1.5.1)

444.2.1.3.6
Information security. (v3 ICD ref: 3.2.1.5.2)

444.2.1.3.6.1
Security Threats to System Management

454.2.1.3.6.2
Security Services to Mitigate Network Management Threats

464.2.1.3.6.3
SNMPv3 Mechanisms to Implement Security

494.2.1.4
Error handling. (v3 ICD ref: 3.2.1.6)

494.2.2
Communication requirements. (v3 ICD ref: 3.2.2)

494.2.2.1
Application layer. (v3 ICD ref: 3.2.2.1)

494.2.2.2
Transport layer. (v3 ICD ref: 3.2.2.4)

504.2.2.3
Network layer. (v3 ICD ref: 3.2,2.5)

504.2.2.4
Addressing. (v3 ICD ref: 3.2.2.6)

505. Step-by-Step Guide to Developing a Subsystem MIB

1. SCOPE

1.1 Scope

This document provides guidance for implementation of a NAS Infrastructure Management System (NIMS) Managed Subsystem Agent using the Simple Network Management Protocol Version 3 (SNMPv3). It is a companion document to the NAS Interface Control Document (ICD) NAS-IC-51070000-2, NAS Infrastructure Management System Manager/Managed Subsystem Agent Using the Simple Network Management Protocol Version 3 (SNMPv3). This document will be referred to as the SNMPv3 ICD. The SNMPv3 ICD is a mid-level requirements document, which contains requirements specific to SNMPv3.

The purpose of this guidance document is to provide background information on SNMPv3 generally and on the SNMPv3 ICD requirements specifically. In addition, this document provides guidance on developing a subsystem-specific Management Information Base (MIB) in accordance with the SNMPv3 ICD and on the security features of SNMPv3. It should be noted that while this document is intended to provide background information that may be of use to in developing a managed subsystem agent, it is not a specification of requirements and accordingly should not be interpreted to provide direction to developers. Nothing in this document should be taken to contradict the functional or interface requirements as mandated by the program office responsible for development of the NIMS managed subsystem.

1.2 Organization

This document contains four sections. This first section identifies the scope and organization of the document. Section 2 contains a list of applicable reference documents and where they may be obtained. Section 3 contains an overview of system management generally and of the Simple Network Management Protocol Version 3 (SNMPv3) framework. Section 4 contains detailed guidance on the SNMPv3 ICD. It contains background information on a section-by-section basis paralleling section 3 of the SNMPv3 ICD. Section 5 is a general approach for developing a subsystem specific Management Information Base (MIB).

2. APPLICABLE DOCUMENTS

The following documents are referenced.

2.1 Government Documents.

Specifications

[1] ENET1370-002.7:2000
FAA Enterprise Network IPv4, non-NAS Internet/Intranet

Addressing Assignment

[2] FAA Order 1370.82:2000
Information Systems Security Program

[3] FAA-E-2911:1998
System Level
Specification for NAS Infrastructure
Management System (NIMS) Managed Subsystems

[4] NAS-IC-51070000-1:
Interface Control Document, NAS Infrastructure

 1999
Management System Manager/Managed Subsystem Agent

Using the Simple Network Management Protocol

Version 1 (SNMPv1), Rev A

[5] NAS-IC-51070000-2:
Interface Control Document, NAS Infrastructure

 2001
Management System Manager/Managed Subsystem Agent

Using the Simple Network Management Protocol

Version 3 (SNMPv3)

Standards

[6] FAA-STD-025d:1995
Preparation of Interface Documentation

[7] NIST FIPS 180-1:1995
National Institute of Standards and Technology (NIST), Federal Information Processing Standard (FIPS),

Secure Hash Algorithm

[8] NIST FIPS 46-1:1988
National Institute of Standards and Technology (NIST), Federal Information Processing Standard (FIPS),

Data Encryption Standard

2.2 Non-government documents.

Internet Engineering Task Force, Request for Comment

[9] IETF RFC 768:1980
User Datagram Protocol (UDP)

[10] IETF RFC 791:1981
DARPA Internet Program Protocol Specification -

Internet Protocol

[11] IETF RFC 792:1981
Internet Control Message Protocol

[12] IETF RFC 862:1983
Echo Protocol

[13] IETF RFC 1157:1990
A Simple Network Management Protocol

[14] IETF RFC 1321:1992
Message Digest Algorithm MD5

[15] IETF RFC 1905:1996
Protocol Operations for Version 2 of the Simple Network

Management Protocol (SNMPv2)

[16] IETF RFC 1906:1996
Transport Mappings for Version 2 of the Simple Network

Management Protocol (SNMPv2)

[17] IETF RFC 1907:1996
Management Information Base for Version 2 of the Simple

Network Management Protocol (SNMPv2)

[18] IETF RFC 2011:1996
SNMPv2 Management Information Base for the Internet

Protocol using SMIv2

[19] IETF RFC 2012:1996
SNMPv2 Management Information Base for the

Transmission Control
Protocol using SMIv2

[20] IETF RFC 2013:1996
SNMPv2 Management Information Base for the

User Datagram Protocol using SMIv2

[21] IETF RFC 2104:1997
HMAC: Keyed-Hashing for Message Authentication

[22] IETF RFC 2460:1998
Internet Protocol, Version 6 (IPv6) Specification

[23] IETF RFC 2464:1998
Internet Control Message Protocol, Version 6

(ICMPv6) for the Internet Protocol, Version 6

(IPv6) Specification

[24] IETF RFC 2570:1999
An Introduction to Version 3 of the Internet Network

Management Framework

[25] IETF RFC 2571:1999
An Architecture for Describing SNMP Management

Frameworks

[26] IETF RFC 2572:1999
Message Processing and Dispatching for the Simple

Network Management Protocol (SNMP)

[27] IETF RFC 2573:1999
SNMPv3 Applications

[28] IETF RFC 2574:1999
User-Based Security Model for SNMPv3

[29] IETF RFC 2575:1999
View-Based Access Control Model (VACM) for SNMP

[30] IETF RFC 2576:1999
Coexistence Between Version 1, Version 2 and Version 3

of the Internet Standard Network Management Framework

[31] IETF RFC 2578:1999
Structure of Management Information Version 2 (SMIv2)

[32] IETF RFC 2579:1999
Textual Conventions for SMIv2

[33] IETF RFC 2580:1999
Conformance Statements for SMIv2

[33a] ITEF RFC 2786:2000
Diffie-Hellman USM Key Management Information and

Textual Convention

[34] IETF RFC 2863:2000
The Interfaces Group MIB

[35] IETF RFC 3000:2001
Internet Official Protocol Standards

International Organization for Standardization (ISO)
[36] ISO 7498-4:1989
Information Processing Systems - Open Systems

Interconnection – Basic Reference Model – Part 4:

Management framework

[37] ISO 8824:1987
Information Processing Systems - Open Systems
Interconnection - Specification of Abstract Syntax Notation
One (ASN.1)

[38] ISO 8825:1987
Information Processing Systems - Open Systems
Interconnection - Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1)

[39] ISO 10040:1998
Information Technology - Open Systems Interconnection –

System management overview

2.3 Document sources.

2.3.1 FAA Documents.

Copies of FAA specifications, standards, and publications may be obtained from the Contracting Officer, Federal Aviation Administration, 800 Independence Avenue, S.W., Washington, D.C., 20591. Requests should clearly identify the desired material by number and date, and state the intended use of the material.

2.3.2 IETF Documents.

Copies of IETF standards may be obtained from electronically from the World Wide Web at http://www.ietf.org.

2.3.3 ISO Documents.

Copies of ISO standards may be obtained from the American National Standards Institute, 11 West 42nd Street, New York, NY, 10036, or electronically from the World Wide Web at http://www.ansi.org or http://www.iso.ch for a fee.

3. SYSTEM MANAGEMENT AND SNMPv3 OVERVIEW

3.1 Open Systems Management

The NIMS is based on the concepts and framework of Open Systems Management [36, 39]. This section summarizes key concepts of systems management from the OSI and Internet communities. It will be seen that the overall framework and facilities are derived primarily from OSI Management concepts; however, the specific mechanisms for systems management are based on Internet Engineering Task Force (IETF) standards related to the Simple Network Management Protocol (SNMP). Note that the OSI Common Management Information Protocol (CMIP) is not addressed herein as it is not the subject of the SNMPv3 ICD.

3.1.1 System Management Functional Areas

ISO 7498-4, OSI Basic Reference Model Part 4: Management Framework [36] describes sets of management facilities called system management functional areas (SMFAs), which, from an operational perspective, are the major areas of systems management. SMFAs may loosely be considered the work areas or tasks involved in management. Five system management functional areas have been defined in ISO: Fault Management, Configuration Management, Accounting Management Performance Management, and Security Management. The SMFAs are summarized as follows:

a. Fault Management - Fault management facilities allow system managers to detect problems in the subsystems they manage and in the network that interconnects these subsystems. Fault management includes mechanisms for the detection, isolation and correction of abnormal system operation.

b. Configuration Management - Configuration management facilities allow system managers to exercise control over the configuration of the managed subsystems. Network and subsystem configurations may be changed to alleviate congestion, isolate faults, or otherwise meet changing user needs.

c. Accounting Management - Accounting management facilities allow a system manager to determine the usage of subsystem resources and to allocate costs and charges on resource utilization.

d. Performance Management - Performance management facilities provide the system manager with the ability to monitor and evaluate the performance of the managed subsystems and interconnecting network.

e. Security Management - Security management facilities allow a system manager to manage those services that provide authentication, integrity, confidentiality, and access control of system resources.

3.1.2 Systems Management Model

The conceptual model of systems management is described in ISO 10040, OSI Systems Management Overview [39]. ISO 10040 describes management operations and notifications exchanged between Management Information System (MIS) users acting in either a manager or agent role. Accordingly, the most basic concepts of a manager, an agent, manager to agent communications and managed objects are fundamental to systems management as is depicted in Figure 3-1. In the basic systems management model, manager to agent interactions are abstracted in terms of operations on and notifications emitted by managed objects, which in turn are abstractions of system resources.

Figure 3-1. Systems Management Model (ISO 10040)

3.1.3 Manager-Agent Communications

Management services are the means by which a Manager (M) in a Managing Subsystem and an Agent (A) in a Managed Subsystem communicate to carry out system management functions, that is, they support management operations and notifications in an open environment. In general there are three types of services employed: services for retrieving management information, services for modifying management information, and services for reporting events in a managed subsystem.

[image: image2.emf]M

Managing Subsystem

A

Managed Subsystem

Management Services

1. Retrieve Management Information

2. Modify Management Information

3. Report Events

Figure 3-2. Management Services

3.1.4 Managed Objects

Information about the system being managed must be made available in a standard fashion that is understandable to a managing subsystem.

Figure 3-3. Object View of Subsystem Resources

The general approach is to employ an object-oriented technique to describe managed resources. Under this technique, managed objects provide for a generalized representation of resources to be managed. Less formally, a managed object provides a "window" through which one can view a resource.

3.2 SNMP Framework

The term Simple Network Management Protocol (SNMP) in a limited sense refers to the protocol for communication of management information between a manager and a managed element. However, in actuality the term is used in a more general sense. SNMP does not just refer to the protocol for exchanging management data but rather refers to a modular management framework, which has evolved from SNMPv1, through SNMPv2 to SNMPv3. SNMPv3 provides features, which overcome the drawbacks of previous versions of SNMP. SNMPv3’s chief contribution is the addition of security, i.e., authentication and optionally confidentiality of management operations and provision for controlled access to managed resources, while maintaining the enhanced protocol operations and data definition techniques added in v2. The SNMPv3 framework as defined in RFC 2570, An Introduction to Version 3 of the Internet Network Management Framework [24] consists of:

(1) Protocol operations and transport mappings for exchanging management information,

(2) Rules for data definition, i.e., for describing individual managed objects, notifications, logical groupings of objects into Management Information Base (MIB) modules, and conformance statements

(3) A standard set of pre-defined MIB modules, and

(4) Provisions for security and administration.

3.2.1 Protocol Operations and Transport Mappings

The management services described generically above are realized through specific protocol operations in SNMP. (See Figure 3-4) These operations involve the transfer of various protocol data units (PDUs) (as described below) for their execution. The protocol for SNMPv1 is specified in STD 15, RFC 1157, A Simple Network Management Protocol [13]. The protocol for v2 is described in RFC 1905, Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2) [15].

[image: image3.wmf]Managing Subsystem

Managed Subsystem

Retrieve Management Information

Modify Management Information

Report Events

Figure 3-4. SNMP Protocol Operations

3.2.1.1 Retrieve Management Information

The basic operation to retrieve management information is termed a GET operation and is carried out through transmission of a GetRequest-PDU. The GetRequest-PDU operates on one or more instances of managed objects, termed variables. Thus a GetRequest-PDU contains a list of variable identifiers specifying which variables are to be retrieved. (Note that the request also contains a “place holder” for the values to be retrieved). Management information is returned in a GetResponse-PDU for SNMPv1 or a Response-PDU for SNMPv2. The response message generally returns the actual values of management information. The GET operations for SNMPv1 and SNMPv2 essentially perform the same function; however, there are differences in error handling for the two versions. The SNMPv2 response operator permits the return of as many variables as possible. This is in contrast to the atomic SNMPv1 operation whereby either the complete set of variable values are returned or none. For variables not returned, exceptions are returned with the variable name rather than the value. The GET operation is used when the identification of the managed object to be retrieved is known; however, this is not always the case. In this situation the GETNEXT operation may be used with an approximate identification value. The response to a GetNextRequest-PDU will be the identifier of the next object (in lexicographical order) and its value in the GetResponse-PDU. The GETNEXT operation is available in SNMPv1 and SNMPv2. SNMPv2 also has a GETBULK operation. GETBULK is an optimization of the GETNEXT operation to minimize the number of protocol exchanges required to retrieve a large amount of management information.

SNMPv2 defines an additional PDU, the REPORT-PDU, which is not used in the SNMPv3 ICD.

3.2.1.2 Modify Management Information

The operation to modify management information (for example, to change a resource configuration or performance parameter) is termed a SET operation and is carried out through transmission of a SetRequest-PDU. Similar to the GetRequest-PDU, the SetRequest-PDU operates on one or more variables and accordingly a SetRequest-PDU contains pairs of variable identifiers and values to which the variables are to be set. The response to a SetRequest-PDU is a GetResponse-PDU for SNMPv1 or a Response-PDU for SNMPv2.

3.2.1.3 Report Events

There are two SNMP operations to send event reports, the TRAP operation and the INFORM operation. The TRAP operation permits the unsolicited notification of an event during which the values of one or more variables associated with the event may be sent. In SNMPv1 a Trap-PDU is sent while in SNMPv2 an SNMPV2-Trap-PDU is sent. Both messages are unconfirmed, i.e., there is no response message, with the difference being in how events are identified. The SNMPV2-TrapPDU format was changed so that it uses the same format as certain other SNMPv2 PDUs to facilitate common processing by the receiver. The INFORM operation permits sending unsolicited management information in an InformRequest-PDU but unlike the TRAP has an associated Response-PDU returned to the initiator.

3.2.1.4 Encapsulation of SNMPv1 or SNMPv2 within SNMPv3

The protocol for SNMPv3 is specified in RFC 2572, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) [26]. The SNMPv3 protocol is an evolution of the SNMPv1 and SNMPv2 protocols. However, SNMPv3 does not simply replace the SNMPv1 and SNMPv2 protocol operations. Rather SNMPv3 provides for encapsulation of an SNMPv1 or SNMPv2 PDU (or other PDUs) in its own version 3 specifically formatted PDU. In this way RFC 2572 provides generally for multiple message processing models. The message-processing model specified in the SNMPv3 ICD is that SNMPv3 encapsulates v2 PDUs as scoped PDUs in SNMPv3 messages. Figure 3-5 depicts the encapsulation of protocols under the SNMPv3 framework.

[image: image4.emf]IP HeaderUDP HeaderSNMPv3 Header SNMPv2 PDU

Figure 3-5. SNMP Protocol Encapsulation
SNMP messages may be used over a variety of protocol suites. RFC 1906, Transport mappings for SNMPv2 [16], defines how SNMP messages map onto an initial set of transport domains. In particular, RFC 1906 defines the mapping onto the User Datagram Protocol (UDP) [9] over the Internet Protocol (IP) as the preferred mapping. Note that the use of UDP makes the particular version of IP transparent to SNMP; that is, either IP Version 4 (IPv4) [10] or IP Version 6 (IPv6) [22] may be used. Likewise, the use of an associated Internet Control Message Protocol such as ICMPv6 [23] is also transparent to SNMP.
3.2.2 Data Definition

The second component of the SNMP framework is a set of specifications for data definition. These specifications use a subset of OSI’s Abstract Syntax Notation One (ASN.1) [37]. The particular specifications for data definition language include STD 58, RFC 2578, "Structure of Management Information Version 2 (SMIv2)" [31], and related RFCs 2579 [32] and RFC 2580 [33].

The Structure of Management Information (SMIv2) defines fundamental data types and macro definitions for describing managed objects, definitions for describing information modules, and definitions to be used to describe notifications. These descriptions use ASN.1 macros (OBJECT-TYPE, MODULE-IDENTITY, and NOTIFICATION-TYPE) to concisely convey the syntax and/or semantics of managed objects, information modules, and notifications.

STD 58, RFC 2579, "Textual Conventions for SMIv2" [32], defines an initial set of shorthand abbreviations, which are available for use within all MIB modules for the convenience of human readers and writers.

STD 58, RFC 2580, "Conformance Statements for SMIv2" [33], defines the format for compliance statements which are used for describing requirements for agent implementations and capability statements which can be used to document the characteristics of particular implementations.

3.2.3 Standard MIB Modules

A conforming SNMP agent must provide access to a small common set of management information. This information is specified in the SNMPv2 Core, RFC 1907 [17]. In addition there is a continuously growing number of standards-based MIB modules available for use in management implementations. These MIB modules are defined in the periodically updated list of standard protocols (STD 1, RFC 3000 [35]). An agent will also have management information specific to the enterprise. This information is specified in MIB modules, which are defined using SMIv2 conventions. More information on the NIMS MIB modules, as part of the FAA enterprise MIB, is in section 4.2.1.3.2.2. Figure 3-6 depicts the components of an agent MIB from the perspective of the SNMPv3 framework.

[image: image5.emf]Agent MIB

SNMPv2 Core

(RFC 1907)

STD MIB

Modules

(RFC 3000)

Enterprise MIB Modules

- Defined in accordance with

SMIv2 and related RFCs

(RFCs 2578, 2579, 2580)

Figure 3-6. Agent MIB Components

3.2.4 Security and Administration

The protocol for SNMPv1, STD 15 [13] describes a basic approach to security and administration. The main contribution of the SNMPv3 framework has been to extend SNMP to incorporate these features in a comprehensive fashion. The SNMPv3 framework provides protection against common threats to network management operations, namely Modification of Information, Masquerade, Disclosure, and Message Stream Modification. SNMPv3 protects against these threats by providing the security services of Data Integrity, Authentication, Privacy (Confidentiality), and Message Timeliness. In addition SNMPv3 provides Access Control, which ensures that requesting managers are authorized to retrieve or modify management information. SNMPv3 is specified in the following RFCs:

RFC 2570, "Introduction to Version 3 of the Internet-standard Network Management Framework" [24].

RFC 2571, "An Architecture for Describing SNMP Management Frameworks" [25], describes the overall architecture with special emphasis on the architecture for security and administration.

RFC 2572, "Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)" [26], describes the multiple message processing models and the dispatcher portion that can be part of an SNMP protocol engine.

RFC 2573, "SNMP Applications" [27], describes the five types of applications that can be associated with an SNMPv3 engine and their elements of procedure.

RFC 2574, "The User-Based Security Model for Version 3 of the Simple Network Management Protocol (SNMPv3)" [28], describes the threats, mechanisms, protocols, and supporting data used to provide SNMP message-level security.

RFC 2575, "View-based Access Control Model for the Simple Network Management Protocol (SNMP)" [29], describes how view-based access control can be applied within command responder and notification originator applications.

RFC 2576, "Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework" [30], describes coexistence between the SNMPv3 Management Framework, the SNMPv2 Management Framework, and the original SNMPv1 Management Framework.

4. DETAILED GUIDANCE ON SNMPv3 ICD

This section contains detailed guidance on select sections of the SNMPv3 ICD. In general, it provides additional information on SNMPv3 ICD requirements. When applicable, the reader is provided reference data, which applies to the particular requirement.

4.1 General requirements. (v3 ICD ref: 3.1)

The SNMPv3 ICD provides for three distinct configurations for agent implementation as depicted in figure 4-1.

[image: image6.emf]NIMS

Manager

Embedded

Agent in

NAS Subsystem

NIMS

Manager

NAS

Subsystem

Proxy

Agent

NIMS

Manager

Proxy

Agent

NAS

Subsystem

Figure 4-1. Agent Implementations

In the first configuration an SNMPv3 NIMS Manger communicates directly with an SNMPv3 Agent embedded within a NAS Subsystem. This is the preferred configuration for implementation in NAS subsystems. In the second and third configurations a proxy agent is introduced. In the SNMPv3 framework the term “proxy” is used in a more restrictive sense than it has been with earlier versions or with network management systems generally. Under SNMPv3 a proxy forwarder application is defined as an application, which forwards SNMP requests to other SNMP entities without regard for what managed object types are being accessed. This forwarding operation may be to forward SNMP requests from one transport domain to another (for example, from the UDP over IP domain of the Internet Protocol Stack to the Connectionless Transport Protocol (CLTP) over the Connectionless Network Protocol (CLTP) domain of OSI) or to translate SNMP requests of one version into SNMP requests of another version. The SNMPv3 ICD’s use of the term “proxy” is meant to be more general and includes other historical uses to include an application that translates SNMP requests into operations of some non-SNMP management protocol.

Note that while a single management entity is depicted in the possible agent configurations, the use of intermediate managers within NIMS is not precluded. In particular it is possible for intermediate managers to manage the particular subsystems on their own sub-networks while providing consolidated information to one or more high-level managers. In any case the scope of the SNMPv3 ICD is nonetheless limited to just those functions related to SNMPv3 operation.

4.2 Functional requirements. (v3 ICD ref: 3.2)

The SNMPv3 ICD deals generally with Manager to Agent functionality. Subnetwork connectivity is dependent on the particular configuration of the NAS subsystem and, outside of supporting permitted transport mappings, is beyond the scope of the SNMPv3 ICD. However, it should be noted that the subnetwork interface must be specified in detail in the subsystem specific ICD.

4.2.1 Application process. (v3 ICD ref: 3.2.1)

4.2.1.1 Identification of application process. (v3 ICD ref: 3.2.1.1)

The SNMPv3 ICD is written in accordance with FAA-STD-025 [6]. STD-025 partitions interface requirements into those associated with an application and those associated with communications, specifically the protocol stack requirements. The application and communications requirements assume the OSI model as a specification basis.

In the context of a real open system (a system that complies with OSI in its communications with other real open systems) application requirements are allocated to an Application Process (AP). An AP is defined to be an abstract representation of the elements of the open system, which performs processing for a particular application. An Application Entity (AE) represents the AP within a real open system.

The SNMPv3 architecture as defined in RFC 2571 [25] is implemented with a particular type of AE termed an SNMP entity. An SNMP entity consists of an SNMP engine and one or more applications. (See Figure 4-2)

[image: image7.emf]Command

Generator

Command

Responder

Notification

Receiver

Notification

Originator

Dispatcher

Proxy

Forwarder

SNMP entity

Application(s)

Message

Processing

Subsystem

Security

Subsystem

Access

Control

Subsystem

SNMP engine

Figure 4-2. SNMP entity

The SNMP engine contains:

1. A Dispatcher, which is responsible for sending and receiving SNMP messages to/from the network, determining the version of an SNMP message and interacting with the corresponding Message Processing Model, providing an abstract interface to SNMP applications for delivery of a PDU to an application, and providing an abstract interface for SNMP applications that allows them to send a PDU to a remote SNMP entity. In its central role of interfacing to the network, applications, and one or more message processing models in the Message Processing Subsystem, the dispatcher allows the use of prior versions of SNMP within the v3 framework.

2. A Message Processing Subsystem, which is responsible for preparing outbound messages and extracting data from received messages.

3. A Security Subsystem, which provides security services such as authentication and privacy of messages.

4. An Access Control Subsystem, which provides authorization services.

The types of applications under the SNMPv3 architecture include:

1. Command generators, which monitor and manipulate management data,

2. Command responders, which provide access to management data,

3. Notification originators, which initiate asynchronous messages,

4. Notification receivers, which process asynchronous messages, and

5. Proxy forwarders, which forward messages between entities.

An SNMP entity containing one or more command generator and/or notification receiver applications is traditionally called a manager. The NIMS Manager assumes the traditional manager role under the SNMP model in that it is an AE with a command generator and notification receiver application along with an SNMP engine.

An SNMP entity containing one or more command responder and/or notification originator applications is traditionally called an agent. The NIMS Agent assumes the traditional agent role under the SNMP model. It is an AE with a command responder and notification originator application along with an SNMP engine.

4.2.1.2 Type of services required by the AP. (v3 ICD ref: 3.2.1.2)

The notion of management services under NIMS is based on the NIMS operational view derived originally from the Remote Maintenance Monitoring System (RMMS) and select conceptual distinctions derived from the OSI Common Management Information Service (CMIS). From this operational view there has been a long-standing basic distinction between monitor and control of managed subsystems. In fact, managed subsystems (i.e. remote monitor systems) were generally classified as “monitor only” or “monitor and control”. Monitoring by a managed subsystem involves the active acquisition of management information on its resources, examination of this information to determine the status of individual resources and the aggregate status of the subsystem, and automatic or request-response reporting of status information. Thus under monitoring, a further functional distinction is made between solicited data reporting and event reporting. Note that event reporting is a particular concern primarily because of Airway Facilities requirements relating to reporting and reacting to system outages. Accordingly, the event reporting service must be reliable, which generally means that a confirmed communication service is required. Control in a managed subsystem refers to those capabilities required to carry out real-time or pre-determined management operations. In terms of the management interface, control generally means the ability to alter management information. Thus under NIMS three functional management services are defined:

1. Reliable event reporting,

2. Solicited data reporting and

3. Control

Note. - Under control, a further distinction is made in FAA-E-2911 [3] between “actions” (which was derived from the CMIS M-ACTION service) and “modifications” (which was derived from the CMIS M-SET service).

The NIMS functional services are provided through the abstract services of an SNMPv3 engine as depicted in Figure 4-2. As is depicted in this figure, an SNMPv3 engine provides the capability to send and receive messages through the services of the Message Processing Model. The Message Processing Model provides a set of SNMP operations (GET, TRAP, etc.), which are carried out by the exchange of PDUs. An SNMPv3 engine provides authentication and privacy of messages through the services of the User-Based Security Model, and controlled (i.e., authorized) access to managed objects using the services of the View-Based Access Control Model.

The SNMPv3 Message Processing Model is specified for use in the SNMPv3 ICD. It may be noted, however, that this model is only one of potentially multiple models, which are possible under Message Processing Subsystem in the SNMPv3 framework. Each Message Processing Model defines the format of a particular version of an SNMP message and coordinates the preparation and extraction of its version-specific message format.

The SNMPv3 User-Based Security Model (USM) implements the actual security services for authentication and privacy. As with message processing, the USM is only one of potentially multiple models in the security subsystem. In fact, because of concerns with using DES as the Encryption Algorithm in the USM, it is likely that a replacement will be forthcoming. Such a replacement may use 3DES or AES for stronger encryption.

The SNMPv3 View-Based Access Control Model (VACM) is used to determine the access rights of a manager to alter or view the local MIB. Access control is performed on a particular PDU operation by checking that the subject (who belongs to a particular group in a managed subsystem) in a specific communication context is permitted a specified view type (read, write, or modify) on the object of the operation.

[image: image8.wmf] NIMS Functional Services

Event

Reporting

Solicited

Data

Reporting

Control

Management Services of SNMPv3 Engine

Provided by

SNMPv3 View-Based Access Control Model

Authorization

Authentication

SNMPv3 User-Based Security Model

Privacy

SNMP Operations

(supporting PDUs)

TRAP

(Trap PDU)

GET

(GetRequest/Response

PDUs)

SET

(SetRequest/Response

PDUs)

INFORM

(InformRequest/

Response PDUs)

GETNEXT

(GetNextRequest/

Response PDUs)

GETBULK

(GetBulkRequest/

Response PDUs)

SNMPv3 Message Processing Model

Figure 4-3. NIMS Functional Services provided by SNMPv3 Engine
Figure 4-4 depicts the message flow through an SNMP engine for a traditional manager application.

[image: image9.wmf]Command

Generator/

Notification

Receiver

PDU Dispatcher

Message

Dispatcher

Transport Mapping

SNMP entity

Application(s)

v3

Message

Processing

Model

User-based

Security

Model

View-based

Access

Control

Model

SNMP engine

Manager

Dispatcher

UDP

IP

Figure 4-4. Message flow through SNMP engine for Manager Application

Figure 4-5 depicts the message flow through an SNMP engine for a traditional agent application.

[image: image10.wmf]Command

Responder/

Notification

Originator

PDU Dispatcher

Message

Dispatcher

Transport Mapping

SNMP entity

Application(s)

v3

Message

Processing

Model

User-based

Security

Model

View-based

Access

Control

Model

SNMP engine

Agent

Dispatcher

UDP

IP

MIB

Figure 4-5. Message flow through SNMP engine for Agent Application

4.2.1.2.1 Event reporting. (v3 ICD ref: 3.2.1.2.1)

NIMS managed subsystems are required to report an event whenever there is a (significant) change in the fault, configuration, performance, or security status of the managed subsystem. As noted above, event reporting is expected to be reliable. Accordingly, event reporting by a NIMS Agent uses the SNMP INFORM operation rather than the TRAP operation. NIMS managed subsystems are further required to report an event only once for each instance of that event and to apply event forwarding discriminators to filter event reporting.

SNMPv3 event reporting is performed by a notification originator application. A mechanism and MIB module (the SNMP-TARGET-MIB) for sending messages are provided in RFC 2573 [27]. A notification originator must have a mechanism for determining where to send messages and what SNMP message parameters (for example, security parameters) are to be used when sending messages. The SNMP-TARGET-MIB contains these two types of information. The information on where to send messages includes a timeout and retry counter. In general, the default value for a retry counter may be used; however, the timeout will depend on the particular implementation and communication environment and should be set accordingly.

RFC 2573 also contains a MIB module (the SNMP-NOTIFICATION-MIB) for the generation of notifications. In general, filtering by the snmpNotifyTable in this MIB will be sufficient to select management targets that receive notifications and to indicate that an inform snmpNotifyType is to be used, so long as implementers only define significant events for reporting and note that it is not generally necessary to report every change in a MIB variable.

The SNMP-NOTIFICATION-MIB provides for more complex filtering mechanisms (by the snmpNotifyFilterProfileTable and snmpNotifyFilterTable).

4.2.1.2.2 Solicited data reporting. (v3 ICD ref: 3.2.1.2.2)

NIMS managed subsystems are required to report monitor and control attributes of subsystem resources upon request. In SNMPv3 terms a managed subsystem must have a command responder application capable of processing SNMP Read-Class requests. The command responder application will perform the appropriate protocol operation (i.e., a GET, GETNEXT or GETBULK operation in accordance with RFC 1905), using access control, and will generate a response message to be sent to the request's originator.

4.2.1.2.3 Control. (v3 ICD ref: 3.2.1.2.3)

NIMS managed subsystems that are not “monitor only” are required to respond to control operations with the command results or an indication of command execution. In SNMPv3 terms a managed subsystem must have a command responder application capable of processing SNMP Write-Class requests. Similar to processing Read-Class requests, the command responder application will perform the SET operation (in accordance with RFC 1905 [15]), using access control, and will generate a response message to be sent to the request's originator.

4.2.1.2.3.1 Initiate action. (v3 ICD ref: 3.2.1.2.3.1)

As noted above, SNMP does not have a distinct “action” service as is in other management protocols (notably CMIP) or object-oriented environments (e.g., with a “method” operation). Thus although functionally a distinction is made between actions, for example “Subsystem Reset” or “Perform Diagnostics”, from the management interface perspective there are only management modification operations via the SET operation.

It is recognized that certain actions may require considerable processing time to execute. In such cases, a response to the SET operation should be returned by the command responder application to indicate that the operation has been initiated. The completion of the action (along with applicable results), however, could be reported by a notification originator application. In this way, for example, the timeout value in SNMP-TARGET-MIB would not have to be set to an inordinately large value because of the characteristics of just one action.

4.2.1.2.3.2 Modify management information. (v3 ICD ref: 3.2.1.2.3.2)

Modification of management information (including fault management, configuration, performance, or security management attributes) is performed by the straightforward execution of a SET operation by a command responder application.

4.2.1.3 Information units. (v3 ICD ref: 3.2.1.3)

The basic unit of information transferred on the interface between a NIMS Manager and NIMS Agent is an SNMPv3 message as defined RFC 2572. The basic format of a plaintext (unencrypted) SNMPv3 message is depicted in Figure 4-6.

[image: image11.emf]msgVersion

HeaderData

msgIDmsgMaxSizemsgFlagsmsgSecurityModel

msgSecurityParameters

ScopedPDU

contextEngineIDcontextNamedata (SNMPv2 PDU)

ScopedPduData

msgGlobalData

msgData

Figure 4-6. SNMPv3 Message Format

4.2.1.3.1 Information code. (v3 ICD ref: 3.2.1.3.1)

Abstract Syntax Notation One (ASN.1)

SNMP is defined using Abstract Syntax Notation One (ASN.1). ASN.1 is a data definition language developed by ISO in the mid-1980s (ISO 8824 [37]). ASN.1 is recursively defined using tags (variable names) and an assignment operator, “::=”. ASN.1 has provisions for describing the (abstract) structure and data type of information to be exchanged among communicating entities.

A general feel of ASN.1 can be obtained by examining the use of example ASN.1 Built-In Types and ASN.1 Structured Types. (See Figure 4-7) ASN.1 Built-In Types are similar to the types we encounter in modern programming language to define individual data items. ASN.1 Built-In Types include such items as BOOLEAN, INTEGER, and OCTET STRING. ASN.1 Structured types signal the organization of objects and, with the use of Tags, constitute the basis for abstract data types, which are composed of other components. ASN.1 Structured Types are SEQUENCE and CHOICE. SEQUENCE is an ordered list of one or more elements, each of which can be of any ASN.1 type. CHOICE denotes a selection among one or more alternatives.

Suppose, for example, we wanted to define a record of information for an employee of an organization consisting of the employee’s name, whether or not the employee is a full time worker, and identification. This may be defined by defining an ordered list of these items (with the SEQUENCE Structured type) and by selecting an appropriate Built-In type for each item (OCTET STRING, BOOLEAN, and INTEGER) as follows:

EmployeeRecord ::= SEQUENCE {

employeeName
OCTET STRING,

isFullTime

BOOLEAN,

employeeID

INTEGER

}

To illustrate the use of tags to define a new construct, consider the following modification, which permits the employee ID to be either a social security number or telephone number.

EmployeeRecord ::= SEQUENCE {

employeeName
OCTET STRING,

isFullTime

BOOLEAN,

employeeID

IDtype

}

IDtype ::= CHOICE {

ssn

INTEGER,

telephone
INTEGER

}

Figure 4-7. Sample ASN.1 Construct with Built-In and Structured Types

It is important to note that SNMP does not use all of the capabilities of ASN.1, but rather uses an adapted subset. For example SNMP uses the Built-In types INTEGER, OCTET STRING, and OBJECT IDENTIFIER; but, it does not use the type BOOLEAN illustrated in the above example. SNMP supplements the 3 Built-In types with 8 Application-Defined types: Integer32, IpAddress, Counter32, Gauge32, Unsigned32, TimeTicks, Opaque, and Counter64. (See RFC 2578 [31]).

With this basic notion of ASN.1, Figure 4-8 presents the ASN.1 definition of the SNMPv3 message (which is depicted in Figure 4-6). This definition is from RFC 2572 but with comments removed for simplicity.

 SNMPv3Message ::= SEQUENCE {

 msgVersion INTEGER (0 .. 2147483647),

 msgGlobalData HeaderData,

 msgSecurityParameters OCTET STRING,

 msgData ScopedPduData

 }

 HeaderData ::= SEQUENCE {

 msgID INTEGER (0..2147483647),

 msgMaxSize INTEGER (484..2147483647),

 msgFlags OCTET STRING (SIZE(1)),

 msgSecurityModel INTEGER (1..2147483647)

 }

 ScopedPduData ::= CHOICE {

 plaintext ScopedPDU,

 encryptedPDU OCTET STRING -- encrypted scopedPDU value

 }

 ScopedPDU ::= SEQUENCE {

 contextEngineID OCTET STRING,

 contextName OCTET STRING,

 data ANY -- e.g., PDUs as defined in RFC 1905

 }

 END

Figure 4-8. ASN.1 Definition of SNMPv3 Message

Basic Encoding Rules (BER)
The above message cannot be transmitted “abstractly”. There must be a way to transfer an SNMPv3 message (with the variables assigned) between a Manager and Agent. This is accomplished with a separate syntax, which is termed a “transfer syntax”. A transfer syntax is simply a set of rules for encoding data items which are defined with ASN.1 types and which are assigned specific values. The transfer syntax used in SNMP is Basic Encoding Rules (BER) defined in ISO 8825 [38]. BER encoding operates by taking each data item and representing it as a triple consisting of a Tag, Length, and Value. Tag essentially defines the data type, Length specifies the size of the Value field, and Value contains the actual value assigned to the data item. Thus a BER encoded message contains a series of <Tag, Length, Value> triples which represent the explicitly or implicitly assigned data items. Implementers generally do not need to be concerned with BER since the encoding and decoding is typically handled by manager or agent builders which operate on the input ASN.1 files to generate the appropriate encoder or decoder routines.

4.2.1.3.1.1 Protocol data unit. (v3 ICD ref: 3.2.1.3.1.1)

As explained above, any SNMPv2 PDU as defined in RFC 1905 [15] may be contained in the data field of the scoped PDU construct. Figure 4-9 contains the ASN.1 definition (with comments removed) of SNMPv2 PDUs.

 PDUs ::= CHOICE {

 get-request GetRequest-PDU,

 get-next-request GetNextRequest-PDU,

 get-bulk-request GetBulkRequest-PDU,

 response Response-PDU,

 set-request SetRequest-PDU,

 inform-request InformRequest-PDU,

 snmpV2-trap SNMPv2-Trap-PDU,

 report Report-PDU,

 }

 GetRequest-PDU
::= [0]IMPLICIT PDU

 GetNextRequest-PDU ::= [1]IMPLICIT PDU

 Response-PDU
::= [2]IMPLICIT PDU

 SetRequest-PDU
::= [3]IMPLICIT PDU

 GetBulkRequest-PDU ::= [5]IMPLICIT BulkPDU

 InformRequest-PDU
::= [6]IMPLICIT PDU

 SNMPv2-Trap-PDU
::= [7]IMPLICIT PDU

 Report-PDU

::= [8]IMPLICIT PDU

 PDU ::= SEQUENCE {

 request-id
 Integer32,

 error-status INTEGER {

 noError(0),

 tooBig(1),

.

.

.

 notWritable(17),

 inconsistentName(18)

 },

 error-index INTEGER (0..max-bindings),

 variable-bindings VarBindList

 }

 max-bindings INTEGER ::= 2147483647

 BulkPDU ::= SEQUENCE {

 request-id Integer32,

 non-repeaters INTEGER (0..max-bindings),

 max-repetitions INTEGER (0..max-bindings),

 variable-bindings VarBindList

 VarBind ::= SEQUENCE {

 Name ObjectName,

 CHOICE {

 Value ObjectSyntax,

 unSpecified NULL,

 noSuchObject[0] IMPLICIT NULL,

 noSuchInstance[1]IMPLICIT NULL,

 endOfMibView[2] IMPLICIT NULL

 }

 }

 VarBindList ::=

 SEQUENCE (SIZE (0..max-bindings)) OF VarBind

Figure 4-9. ASN.1 Definition of SNMPv2 PDUs

The above ASN.1 definition results in the following general format for PDUs:

[image: image12.emf]PDU type ([0]..[8])request-iderror-index

variable-binding

PDUs

namevaluenamevaluenamevaluenamevalue

error-status

Figure 4-10. SNMPv2 PDU Format

A NIMS Manager or NIMS Agent must comply with the above format requirements (as defined by the ASN.1 description) and additionally must comply with the associated processing requirements, i.e., invoke the appropriate management operation for SNMPv2 PDUs as specified in RFC 1905 [15]. The explicit (application) requirement to perform PDU processing in the SNMPV3 framework is in RFC 2573 [27].

4.2.1.3.2 Information structure. (v3 ICD ref: 3.2.1.3.2)

The information structure under which FAA system management is placed is defined in RFC 2578, Structure of Management Information version 2 (SMIv2) [31]. The Internet Assigned Numbers Authority (IANA) that administers this information structure has assigned the FAA the faaEnterprise (2120)-identifier subtree under the Internet standard enterprises subtree. The FAA is responsible for administering the faaEnterprise namespace and accordingly has assigned to the NIMS PT the nims (1) subtree. The overall information structure with references to the RFC in which the MIB modules are defined is depicted in Figure 4-11.

0 ccitt root)

.1
iso

.3
org

.6 dod

.1 internet

 .2 mgmt

 .1 mib-2

 .1 system (from RFC 1907)

 .2 interfaces (from RFC 2863)

 .4 ip (from RFC 2011)

 .5 icmp (from RFC 2011)

 .7 udp (from RFC 2013)

 .11 snmp (from RFC 1907)

.4 private

.1
enterprises

 .2120 faaEnterprise

 .1 nims

 .6 snmpv2

 .3 snmpModules

 .1 snmpMIB (v2 MIB as defined in RFC 1907)

 .10 snmpFrameworkMIB (as defined in RFC 2571)

 .11 snmpMPDMIB (as defined in RFC 2572)

 .12 snmpTargetMIB (as defined in RFC 2573)

 .13 snmpNotificaitonMIB (as defined in RFC 2573)

 .14 snmpProxyMIB (as defined in RFC 2573)

 .15 snmpUsmMIB (as defined in RFC 2574)

 .16 snmpVacmMIB (as defined in RFC 2575)

 .18 snmpCommunityMIB (as defined in RFC 2576)

Figure 4-11. Overall MIB Structure

The mib-2 and snmpv2 modules are described below in section 4.2.1.3.2.2 and the NIMS enterprise MIB is described in the following section.

4.2.1.3.2.1 NIMS Information structure (v3 ICD ref: 3.2.1.3.2.1)

Figure 4-12 provides an expanded view of the nims subtree. The purpose of each of these information nodes under the nims subtree and the information contained in each, beginning with the nimsManagedResourceRegistration node, will be explained in the following subsections.

NOTE: Descriptions of the commonResourceGroup and specificResourceGroup are not included in this document. They can be found in the Interface Control Document for NAS Infrastructure Management System Manager/Managed Subsystem using the Simple Network Management Protocol Version 1(SNMPv1) [4].

.1 nims

.1 commonResourceGroup (deprecated)

.2 specificResourceGroup (deprecated)

.3 nimsManagedResourceRegistration

.1 surveillanceRegistration

.1 shortRangeRegistration

.2 longRangeRegistration

.2 weatherRegistration

.1 weatherSensingRegistration

.2 weatherProcessingRegistration

.3 navigationRegistration

.1 enrouteNavRegistration

.2 terminalNavRegistration

.3 spaceBasedNavRegistration

.4 communicationsRegistration

.1 airToGroundCommRegistration

.2 groundToGroundCommRegistration

.3 spaceBasedCommRegistration

.5 telecommunicationsRegistration

.1 wideAreaTelecommRegistration

.2 localAreaTelecommRegistration

.6 automationRegistration

.1 enrouteAutomationRegistration

.2 terminalAutomationRegistration

.7 environmentalRegistration

.1 hvacRegistration

.2 electricalRegistration

.3 powerGeneratingRegistration

.4 fuelStorageRegistration

.8 otherSystemTypeRegistration

.4 nimsTC

.5 nimsManagedResourceCommonInfoGroup

.6 nimsManagedResourceMIBs

.1 surveillance

.1 shortRange

.2 longRange

.2 weather

.1 weatherSensing

.2 weatherProcessing

.3 navigation

.1 enrouteNav

.2 terminalNav

.3 spaceBasedNav

.4 communications

.1 airToGroundComm

.2 groundToGroundComm

.3 spaceBasedComm

.5 telecommunications

.1 wideAreaTelecomm

.2 localAreaTelecomm

.6 automation

.1 enrouteAutomation

.2 terminalAutomation

.7 environmental

.1 hvac

.2 electrical

.3 powerGenerating

.4 fuelStorage

.8 otherSystemType

.7 nimsAgentProfiles

.8 nimsCompliance

.9 nasInfrastructureServices

.10 nimsCommonNotifications

.11 nimsExperimental

Figure 4-12. Expanded NIMS MIB Structure

4.2.1.3.2.1.1 NimsManagedResourceRegistration

This subtree contains a MIB information module that registers object identifiers (OID) for each of the FAA major system types, e.g., surveillance, weather, communications, telecommunications, automation, environmental and navigation. Under each major system type another level of definition is defined that indicates the primary function of the NAS subsystem, e.g., terminal navigation. While a majority of systems should fall under one of these major system types, the MIB provides a node for those systems that do not fall into one the major system types. The registered OID provides an unambiguous reference to a specific FAA system type and is used as the value in the MIB object faaResourceObjectID that is defined in the FAA-RESOURCE-MIB. (See paragraph 4.2.1.3.2.2.2 for a description). The assignment of a unique OID enables SNMP entities to determine specifically what type of system is being managed by retrieving the value of the MIB object. An example of this is provided below by using a fictitious OID registration 1.3.6.1.4.1.2120.3.1.1.1 that resolves to a system named the exampleASR9:

.3 nimsManagedResourceRegistration

.1 surveillanceRegistration

.1 shortRangeRegistration

.1 exampleASR9

The retrieved OID can be used by an SNMP management application to perform specific operations within the manager related to the managed subsystem, e.g., associate a specific icon with the subsystem to display on a GUI.

NOTE: An object identifier once registered shall not be reused. The SMIv2 described in RFC 2578 [31] provides mechanisms for handling obsolete OIDs and for creating new ones as needed. It is imperative the most current version of this MIB be requested from the NIMS PT to ensure up-to-date OIDs are used.

4.2.1.3.2.1.2 NimsManagedResourceCommonInfoGroup

The FAA-RESOURCE-MIB is located under this node. This MIB, maintained by the NIMS PT, contains the object definitions that are common to FAA managed subsystems. This MIB shall be implemented by all NIMS managed subsystems. The FAA-RESOURCE-MIB contains all scalar values to take advantage of the capability of SNMPv3 to uniquely identify instance of management information by using contexts. To uniquely identify an instance of an object contained in this MIB requires the assignment of a unique context for the managed system and the configuration of the NIMS Manager and Agent to process these contexts. The mechanisms for accomplishing this is described in RFC 2571, An Architecture for Describing SNMP Frameworks [25], and RFC 2576, Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework [30], and developers should refer to these documents for correct implementation of this SNMPv3 capability.

Experience indicates that the FAA-RESOURCE-MIB is the most challenging to implement. This is because many of the FAA-RESOURCE-MIB objects are dependent on MIB objects defined in the system specific MIB. These dependencies require the agent developers to work closely with the managed system expert to properly implement the MIB. For example, a failed part in the managed system that causes the value of the faaResourceOpStatus object to change from NORMAL to WARNING requires an understanding of the end system behavior and the subsequent impact to the capabilities of the managed system to continue to perform its function in the NAS. All objects in the FAA-RESOURCE-MIB must be placed in either the General Information Group or Status Group.

The General Information Group lists the MIB objects that are administrative in nature and are not effected by changes to the operating status of the end system. All of the MIB objects in the General Information Group have been implemented as READ-ONLY and may not be configured using the SNMP SET operation. Usually their configuration is set by the SNMP agent reading from a configuration file upon initialization.

The Status Group contains those MIB objects that reflect the current status or state of the managed system. These are normally aggregate objects in that the current value reflects the overall status or state of the managed system and normally do not reflect the status or state of a single component of the managed system. A few of these MIB objects have been implemented as READ-WRITE to allow authorized users to change their values using the SNMP SET operation. The following describes the members of each of these groups and hints for implementation where appropriate.

General Information Group

faaLocationID – the unique location ID of the managed resource. The authoritative source for this code is the Facility, Service, and Equipment Profile (FSEP).

faaResourceID – the facility identifier of the managed subsystem. The authoritative source for this code is the FSEP.

faaResourceType – The broad category of which the managed subsystem is a member, .e.g., Navigation. The NIMS PT makes this assignment.

faaResourceDescr – The textual description of the managed system. This is free text and can contain up to 255 characters. Any information such as a unique system configuration should be entered in this MIB object.

faaResourceObjectID – the unique Object Identifier (OID) assigned to the faaResourceID. This OID is contained in the faaResourceRegistrationMIB that can be obtained from the NIMS PT. Since these OIDs are used to provide unambiguous reference to the system type they may not be reused and cannot be assigned by anyone other than the NIMS PT.

Status Group

problemFlag – this is a single variable that may be polled by an SNMP entity acting in a manager role to determine if a problem exists or could occur on the managed subsystem. This MIB object indicates that either some type of problem has been detected by the SNMP entity acting in the agent role or something has happened that may be of interest to the SNMP manger. Note that this MIB object, while effected by the current value of the faaResourceOpStatus and faaSystemCertStatus MIB objects; is not required to follow their behavior. For example, there may some other conditions in the managed subsystem that do not result in a change to the operations status but that may be an indicator of a pending problem. This MIB object could be used to indicate to the NIMS Manager that the managed subsystem needs attention before a system failure occurs.

faaResourceOpStatus –this MIB object represents an aggregate status of the managed subsystem. It reflects the capability of the managed subsystem to perform its function in the NAS based on the operating status of the subsystem’s components. The implementation of this MIB object requires an in-depth knowledge of the behavior of the managed system. The agent developer must understand the effects that changes in status of the managed subsystem components have to the overall capability of the system to perform its role in the NAS and reflect this in the value this MIB object assumes. The management information for the system components is defined in the system specific MIB for the managed subsystem. There may be one to many MIB objects in the system specific MIB that effect the current value of the faaResourceOpStatus object. For example, a system with a redundant component that automatically switches to the operable component upon a detected fault may result in the faaResourceOpStatus assuming the WARNING value. On the other hand a system with no redundancy would assume the FAILED value. Also the impact of multiple, unrelated faults on operating status must be considered when implementing this MIB object. A single fault could occur that results in the faaResourceOpStatus assuming the WARNING value. A subsequent and unrelated fault could occur that, when combined with the previous fault, changes the status to DEGRADED or FAILED. The possible combinations of faults and their impact on this MIB object must be understood by the agent developer and managed system expert to properly implement this MIB object.

faaSystemCertStatus – this MIB object is implemented as a READ-WRITE object in systems the require certification. Those managed subsystems requiring certification are listed in FAA Order 6000.15 (series). This MIB variable when implemented as a READ-WRITE shall only be changed by the action of an operator using an SNMP SET operation, i.e., a system cannot automatically change this variable. For systems that do not require certification this MIB object is implemented as READ ONLY and assumes a permanent value of NOT APPLICABLE. Developers must read the compliance statements that apply to this MIB. The compliance statements are located in the associated MODULE-COMPLIANCE construct that is under the nimsCompliance node and can be obtained from the NIMS PT.

faaSystemCertSource – this MIB object is implemented as a READ-WRITE. An authorized user can change the value using the SNMP SET operation to indicate the source of the certification. If the system does not require certification then this MIB object shall be set to NOT APPLICABLE and the Max Access shall be READ-ONLY. Developers must read the compliance statements for this MIB. The compliance statements are located under the nimsCompliance node and can be obtained from the NIMS PT.

faaSystemCertDateTime – this MIB object is implemented as READ-WRITE and indicates the local time at the system location the last successful system certification was completed. This time is intended to be entered by the operator using an SNMP SET operation.

faaResourceCurrentState – this MIB object is implemented as READ-WRITE and indicates the current usage of the managed system and if it is available for use in the NAS. Developers need to read the DESCRIPTION clause of this MIB object to implement it correctly as there are specific behaviors defined for the various states. Normally, this MIB object will be changed through an operator using the SNMP SET operation. However, experience indicates it may be desirable to change the value of this MIB object automatically based on changes in status or current state of a managed subsystem. For example, an Emergency Generator (EG) may be in a STANDBY current state, however, if a power failure occurs that requires the EG to assume the power load, then this MIB object should reflect the change in the current state of the EG to ONLINE. There are many other possible changes to a managed subsystem that may also effect the value of this MIB object and agent developers should work with the system expert to understand these changes.

4.2.1.3.2.1.3 NimsManagedResourceMIBs

This node contains the system specific MIBs that have been approved for use to manage FAA systems. The NIMS PT maintains the most current MIBs. The information is organized by system type with these nodes being further sub-divided to indicate the function of the subsystem in the NAS. The MIBs under this node are under NAS configuration control and may not be changed without approval of the NIMS PT.

4.2.1.3.2.1.4 NimsAgentProfiles

This node contains descriptions about the capabilities of a specific agent using the AGENT-CAPABILITIES construct that is defined in RFC 2580, Conformance Statements for SMIv2 [33]. Use of this construct allows agent developers to describe exactly what was implemented and how it was implemented. Each agent developed for NIMS shall have an Agent Profile defined and placed under this node. The NIMS PT administers this node and any AGENT-CAPABILITIES constructs placed here must be approved by the NIMS PT. RFC 2580 contains detailed descriptions and examples for the use of this construct.

4.2.1.3.2.1.5 NimsCompliance

Entries under this node use the MODULE-COMPLIANCE construct defined in RFC 2580, Conformance Statements for SMIv2 [33]. The MODULE-COMPLIANCE constructs contain a minimum set of requirements for the implementation of one or more MIB modules. The MODULE-COMPLIANCE for each NIMS MIB must be reviewed by the agent developers to ensure the agent that is developed is compliant. Any exceptions to the requirements must be documented in the AGENT-CAPABILITIES construct for that agent. RFC 2580 contains detailed descriptions and examples for the use of this construct. The NIMS PT administers this node and any MODULE-COMPLIANCE constructs placed here must be approved by the NIMS PT.

4.2.1.3.2.1.6 NasInfrastructureServices

The MIB placed under this node contains definitions of NAS Infrastructure Services. The Services represent a composite of the systems and networks that provide a specific type of service. At the present time the use of the MIB is still being determined and imposes no special requirements on agent developers.

4.2.1.3.2.1.7 NimsCommonNotifications

This node contains the required notification types that shall be implemented by NIMS agents. The notifications types defined in this MIB provide a template for developing systems specific notifications that will be placed in the system specific MIB. For example, the faaResourceOpStatusChange notification would be implemented in a system specific MIB for an Distance Measuring Equipment (DME) as the dmeOpStatusChange. The dmeOpStatusChange notification would implement, at a minimum, the required MIB objects described in the NIMS-COMMON- NOTIFICATIONS-MIB for the faaResourceOpStatus notification. The agent developers would add any additional DME system specific objects to the dmeOpStatusChange notification that are needed to describe the event. The following is an abbreviated definition of a system specific notification implementation of the faaResourceOpStatusChange notification:

Notification template as defined in NIMS-COMMON-NOTIFICATIONS-MIB

faaResourceOpStatusChange NOTIFICATION-TYPE

OBJECTS { faaLocationID, faaResourceID, faaResourceOpStatus }

STATUS current

DESCRIPTION

“The description of the notification”

The system specific notification based on the template for the DME:

dmeOpStatusChange NOTIFICATION-TYPE

OBJECTS {faaLocationID, faaResourceID, faaResourceOpStatus, dmeSpecificVariable1, dmeSpecificVariable2, ….}

STATUS current

DESCRIPTION

“The description for this system specific notification.”

4.2.1.3.2.1.8 NimsExperimental

NIMS MIBs that are under development or that have not been approved by the NIMS PT for general use are placed under this node. This node provides a temporary location for MIBs to be developed. Once a NIMS MIB is approved for general use it is placed under the appropriate system specific node as designated by the NIMS PT. Assignments under this node are administered by the NIMS PT.

The NIMS PT will assign a node under nimsExperimental to a specific vendor who is building an SNMP MIB for use in NIMS. The namespace under the node assigned to the vendor becomes the responsibility of the vendor to manage ,i.e., the NIMS PT does not do assignments below the vendor node. This approach allows the vendors to manage their MIB development efforts associated with NIMS and frees the NIMS PT from this activity.

At some point in the MIB development process the vendor will determine that the MIB is stable, i.e., minimal changes will be made in the future, and the MIB can be moved from under the nimsExperimental node to a permanent assignment. The vendor would request that the NIMS PT assign a position under the nimsManagedResourceMIBs node based on the system type for the MIB. This assignment to the nimsManagedResourceMIBs node should be done as soon as feasible since the nimsExperimental node OID assignments will change and these will impact any SNMP agent developed. If an agent has been developed using the OID assignments from the nimsExperimental the vendor should have a plan to change these to the OID assignments under the nimsManagedResourceMIBs node.

In order to minimize changes in OID assignments when moving from the nimsExperimental node, it is suggested that vendors follow the assignment under the nimsManagedResoourceMIBs node to minimize changes in OID assignments. The following is an example of how the assignments under the nimsExperimental node may look:

.11 nimsExperimental

.1 LockheedMartin

.3 navigation

.1 lmEnrouteNavigationSystemMIB

.2 TRW

.1 surveillance

.1 trwRadarSystemMIB1

.6 automation

.1 enrouteAutomation

.2 trwHostComputerMIB

4.2.1.3.2.2 IETF MIB support (v3 ICD ref: 3.2.1.3.2.3)

Since SNMPv2 is the message processing model to be supported, a NIMS Manager or NIMS Agent must also support the associated managed objects as defined in RFC 1907. RFC 1907, the Management Information Base for SNMPv2 [17] document defines: managed objects which describe the behavior of an SNMPv2 entity (snmpMIB); managed objects for managing the system (system); and definitions for managing the SNMP protocol (snmp)

NIMS Managers and NIMS Agents must support the SNMP-FRAMEWORK-MIB defined in section 5 of RFC 2571 [25]. This MIB contains textual conventions which define the SNMP Engine, SNMP Security Module, SNMP Message Processing Model, SNMP Security Levels, an SNMP Administrative String, Administrative Assignments, and object definitions for SNMP Engine, OIDs as reference points to register authentication and privacy modules, and a compliance module for the Framework MIB.

NIMS Managers and NIMS Agents must support the Management Target MIB and the Notification MIB for SNMPv3 defined in RFC 2573 [27]. See section 4.1.2.1 for additional information.

NIMS Managers and NIMS Agents may be connected via a Proxy Forwarder as described in section 4.1. In this case the Proxy MIB module defined in RFC 2573 must be implemented. The SNMP-PROXY-MIB module, which defines MIB objects that provide mechanisms to remotely configure the parameters used by an SNMP entity for proxy forwarding operations, contains a single table. This table, snmpProxyTable, is used to define translations between management targets for use when forwarding messages.

NIMS Managers and NIMS agents must support the snmpUsmMIB defined in RFC 2574 [28]. This MIB contains management information definitions for the SNMP User-based Security Model.

NIMS Managers and NIMS agents must support the snmpVacmMIB defined in RFC 2575 [29]. This MIB contains management information definitions for the SNMP View-Based Access Control Model.

NIMS Managers and NIMS agents must support the snmpCommunityMIB defined in RFC 2576 [30]. This MIB contains objects for mapping between community strings and version-independent SNMP message parameters. In addition, this MIB provides a mechanism for performing source address validation on incoming requests and for selecting community strings based on target addresses for outgoing notifications.

NIMS Managers and NIMS agents must support the snmpMPDMIB defined in RFC 2572 [26]. This MIB contains definitions for message processing and dispatching.

NIMS Managers and NIMS Agents must support a number of MIB II functional areas relating to interfaces. In particular, they must support: definitions for managing network interfaces (interfaces) as defined in RFC 2863 [34], definitions for managing the IP protocol (ip) and ICMPa protocol (icmp) as defined in RFC 2011 [18], and definitions for managing the UDP protocol (udp) as defined in RFC 2013 [20]. In addition NIMS Managers and NIMS Agents must support the applicable IETF Standards-Track transmission group MIB module(s) for the agent’s local interface, i.e., they must support the subnetwork MIB. .

4.2.1.3.3 Information unit segmentation. (v3 ICD ref: 3.2.1.3.3)

NIMS Managers and Agents must perform segmentation in accordance with RFC 1906 [16]. Section 3.1 of RFC 1906 requires that each instance of a message be serialized (i.e., be encoded according to the convention of RFC 1905 onto a single UDP datagram). Section 8 of RFC 1906 also contains certain restrictions related to encoding forms and use of the BITS construct, which is a construct for a collection of labeled bits defined in RFC 2578 [31].

4.2.1.3.4 Frequency of transmission. (v3 ICD ref: 3.2.1.3.5)

The frequency of transmission of SNMP PDUs is generally aperiodic and will be subsystem dependent. Accordingly the SNMPv3 ICD does not specify a particular frequency of transmission but rather specifies that an event report will be transmitted upon the occurrence of the associated event and that PDUs to retrieve or modify management information will be transmitted as required to monitor and control the NAS subsystem. Note that for event reporting InformRequest PDUs are preferred since they are acknowledged; however, certain NAS subsystems, especially those employing off-the-shelf equipment (routers, switches, etc.) may not support Informs and thus will use SNMPv2-TRAP PDUs .

4.2.1.3.5 Information priority. (v3 ICD ref: 3.2.1.5.1)

Priority is not part of SNMP. i.e., there is no specified priority field in an SNMP message.

4.2.1.3.6 Information security. (v3 ICD ref: 3.2.1.5.2)

4.2.1.3.6.1 Security Threats to System Management

The SNMPv3 framework provides protection against common threats to management communications and against the unauthorized use of managed resources. Note that the security services provided by SNMPv3 only address certain system management threats. NAS subsystems may need additional security measures beyond SNMPv3 provisions to satisfy requirements relating to their overall Certification and Authorization process.

Manager to agent communications are generally subject to the following threats:

Modification of Information is the threat that an SNMP message may be maliciously altered during transit.

Masquerade is the threat that an unauthorized entity may perform a management operation by assuming the identity of an authorized entity.

Disclosure is the threat that an unauthorized entity may eavesdrop on the exchange of management data.

Message Stream Modification is the threat that an SNMP message may be maliciously re-ordered, delayed, or replayed to adversely effect management operations.

Managed resources are subject to the following threat:

Unauthorized Access is the threat that an unauthorized entity may retrieve or modify management information.

4.2.1.3.6.2 Security Services to Mitigate Network Management Threats

SNMPv3 protects against threats to management communications by providing the security services of Data Integrity, Sequence Integrity, Message Timeliness, Authentication, and Privacy (Confidentiality). SNMPv3 protects against the threat of unauthorized access to management information by providing the Access Control security service.

Data Integrity
Data Integrity provides confidence that data has not been altered or destroyed in an unauthorized manner. Data integrity protects against modification of information (also known as manipulation). Data integrity specifically protects against the replacement, insertion, deletion, or misordering of data (within a message) by an unauthorized user.

Sequence Integrity

Sequence Integrity protects against a particular type of message stream modification. Sequence integrity specifically protects against the re-ordering of messages to produce an unauthorized effect. The SNMPv3 USM does not provide sequence integrity.

Message Timeliness

Message Timeliness protects against a message being delayed or replayed outside of a specified window.

Authentication

Authentication provides assurance to a verifying entity that a communicating peer entity (termed the claimant) or the source of data is as claimed. Peer Entity Authentication, i.e., providing corroboration that a peer entity in an association (i.e. the Manager and Agent) is the one claimed is not provided by the SNMPv3 USM. Rather, the SNMPv3 USM provides Data Origin Authentication, i.e., it provides corroboration that the source of data received is as claimed.

Privacy

Privacy (Confidentiality) provides confidence that information is not made available or disclosed to unauthorized individuals, entities, or processes.

Access Control provides confidence that resources are not subject to unauthorized use, including use in an unauthorized manner. Access control may rely on the authentication service to assure the identity of an entity seeking access; however, it further verifies that a particular entity has the right (“is authorized”) to access a specific resource or resource group generally or for a given purpose.

4.2.1.3.6.3 SNMPv3 Mechanisms to Implement Security

USM Services

The SNMP USM provides the services of data integrity, message timeliness, data origin authentication and optionally privacy. Data integrity and data origin authentication are provided through use of a cryptographic hash function, which operates within a message authentication code scheme. Privacy is provided through use of an encryption scheme.

SHA-1 Hash Function

A cryptographic hash function is a cryptographic technique for providing data integrity. A hash function is a mapping, h(M), from an arbitrarily long input, M, to a short, typically fixed-length output value, m. This may be denoted as follows: M→h(M)→m. A hash function is distinguished from other integrity check mechanisms, for example, error detection and error correction codes, by two characteristics. The first characteristic, termed “pre-image resistance”, is that given a hash value, it is not feasible to find an input message, which hashes to the given value. The second characteristic, termed “collision resistance”, is that it is not feasible to find two input messages that have the same hash value. These two characteristics distinguish cryptographic hash functions from other integrity check mechanisms in that they permit detection of deliberate alterations by a malicious attacker rather than simply detect errors. Note however that errors would also be detected. There are two hash functions identified in the SNMPv3 USM. One is Message Digest 5 (MD5). The other is the Secure Hash Algorithm Revision One (SHA-1) published by the U.S. National Institute Science and Technology (NIST) as a Federal Information Processing Standard (FIPS 180-1). The SHA-1 algorithm is required for use by the SNMPv3 ICD.

HMAC Message Authentication Code Scheme

A message authentication code (MAC) is a mechanism for data origin authentication and data integrity. A MAC may be constructed using a hash function that is parameterised with a secret key. A MAC may be used to generate a unique tag associated with a particular input message. This may be denoted as follows: M→hK(M)→t. In order to use a keyed hash function the sender and receiver must agree in advance on a shared secret key. To protect a message in transmission a sender computes the tag using his copy of the secret key (authKey) and sends both the message and tag to the receiver. The receiver re-computes the tag using a local instance of the secret key (authKey) and checks that the newly computed value matches the purported tag received with the message. Data integrity is achieved through use of the hash function as described above. Authentication is achieved since the sender demonstrated possession of the secret key. An attacker attempting to modify the message would not be able to predict a corresponding tag without possessing the secret key. The SNMPv3 USM MAC scheme is based on the well-known Hashed Message Authentication Code (HMAC). HMAC is a general purpose MAC technique, which can be used with any cryptographic hash function. The SNMPv3 ICD requires that it be used with the SHA-1 hash function.

Message Time Tag

A time tag may be applied to a message to ensure message timeliness. In order to use time tagging, the receiver must determine the window for which a received message is considered valid. The receiver will reject messages outside this window as being potentially maliciously delayed or a replay of a previous message. The USM uses two counters to support the timeliness function. These timers are associated with a particular instance of an SNMP engine and are labelled snmpEngineBoots and snmpEngineTime. When an SNMP engine is installed on a managed subsystem, both values are set to zero. When the SNMP engine is activated, snmpEngineTime is incremented once per second. If snmpEngineTime reaches its maximum value, it is reset and snmpEngineBoots is incremented. Using a synchronization mechanism, an SNMP engine in a managed subsystem maintains an estimate of the values of time for the managing subsystem. These estimated values are placed in each outgoing message and the receiving engine determines whether or not a time window of 150 seconds has been exceeded. Although this window is considered by some to be too large a value, it does provide a reasonable level of protection without an undue requirement to maintain tightly synchronized clocks and is able to operate over a variety of network topologies.
DES Encryption

The USM currently specifies use of the Data Encryption Standard (DES) encryption scheme (FIPS 46-1), specifically; the CBC-mode of DES is used. DES is a symmetric encryption technique, which requires, as in HMAC, that the sender and receiver agree in advance on a shared secret key, which in this case is a privacy (or encryption) key and an initialisation vector (IV). The encryption key and IV are both derived from a localized privacy key (privKey). The first eight octets of privKey are used as the encryption key and the last eight octets are used as the IV. The use of DES for privacy is considered to be a weakness of the current USM. DES is generally considered to be a weak algorithm and it is recommended that it be replaced by 3DES or AES. The use of DES must be examined through the security accreditation and certification process required for each NAS subsystem.

Key Management

As described above, Manager and Agent must agree in advance on a shared authentication key and a shared privacy key. The currently defined key management technique for SNMPv3 is based on manual key management. There are two fundamental techniques involved. First, a set of keys is generated from a password, and then these key pairs are made unique to a SNMP engine pair through a “key localization” technique.

Password to key generation is performed by first taking the user’s password and repeating the value (i.e., concatenating it with itself) to form a string of length 220 octets (which is 1,048,576 octets). The resulting string is then hashed using the SHA-1 hash algorithm to form a 20-octet key.

Key localization is performed by next taking the snmpEngineID value and concatenating it with the 20-octet key from the password to key generation process. This value is in turn hashed using the SHA-1 hash algorithm to produce a 20-octet localized key.

SNMPv3 assumes that there is a secure out-of-band method for delivering the initial localized keys to agent systems. An alternative to out-of-band key initialisation is to use a key agreement scheme such as the Diffie-Hellman Key Agreement Scheme specified in RFC 2786 [33a]. This approach should be followed with caution however since RFC 2786 is experimental and thus subject to change should a standards track RFC be advanced. In addition, it should be noted that the ephemeral Diffie-Hellman approach in RFC 2786 does not provide for authenticated key agreement. An example of an authenticated key agreement scheme is to retrieve the Diffie-Hellman public value from a Public Key Certificate which has been signed by a Certificate Authority to guarantee the authenticity of the key. In any case, the password to key and key localization techniques may be repeated to update keys or the SNMPv3 key update procedure may be followed. This procedure permits the update of keys via in-band exchange, that is, via a Set command to the KeyChange object in the Agent. And furthermore, the exchange may be performed without encryption. The procedure works as follows. A random value, rand, is generated. The current localized key is concatenated with rand and the result is hashed using the SHA-1 hash algorithm to form a 20-octet digest. This digest value is exclusive-OR’d with the new Key to form a delta value, delta. The random value (rand) and delta value (delta) are concatenated together and “sent” to the agent (by setting the KeyChange object). The Agent is able to compute the new Key by applying the SHA-1 hash function to the concatenation of the current localized key and the received random value (rand) to form an intermediate digest value. The intermediate digest value is then exclusive-OR’d with the received delta value (delta) to form the new Key.

VACM Services

The SNMP VACM provides an access control security service, which as described above is the means by which only authorized users may perform management operations. In general access control rules govern what operations an initiator, termed a “principal”, may invoke on a particular target object or group of target objects.

Principals may be aggregated together according to their access capabilities. The aggregation is into Groups, which a set of tuples consisting of a securityModel and securityName. The securityModel defines which model is used for processing a request message, for example the v3 USM or SNMPv1 security model. The securityName defines the principals of the group. Thus, for example, under the SNMPv3 scheme principals associated with intermediate managers may be aggregated into one group while principals associated with a high-level manager by be aggregated into another group.

The target objects in a managed subsystem are aggregated according to certain access control attributes. Target objects which are identified by a particular OID (variableName) are associated within a specific context (contextName) with a viewType (i.e., read, write, or notify) and securityLevel (e.g., authentication for set request).

 The SNMPv3 VACM thus provides an abstract service interface, isAcccessAllowed, which takes as input: securityModel, securityName, securityLevel, viewType, contextName, and variableName, and returns either success or an error indication.

4.2.1.4 Error handling. (v3 ICD ref: 3.2.1.6)

SNMP errors may originate in the Message Processing Subsystem, Security Subsystem, or Access Control Subsystem. Errors originating in the Message Processing Subsystem are those resulting from processing a particular SNMP operation. In SNMPv1 response messages contain an error-status and error-index associated with a PDU. In SNMPv2 a further granularity is provided in that an exception value may be associated with particular objects (i.e., VarBind element). Errors originating in the Security Subsystem are authentication failures (HMAC tag checking errors) or confidentiality failures (error in decoding a message). Errors originating in Access Control Subsystem errors are associated with isAccessAllowed, an abstract service described in 4.3.1.2.63 under VACM services.

4.2.2 Communication requirements. (v3 ICD ref: 3.2.2)

4.2.2.1 Application layer. (v3 ICD ref: 3.2.2.1)

Another useful network management service is defined by the Echo protocol in accordance with RFC 862 [12]. Systems supporting the Echo protocol communicate via UDP or TCP over port 7. When data is received over port 7, it is returned unchanged to the sender.

4.2.2.2 Transport layer. (v3 ICD ref: 3.2.2.4)

The preferred transport mapping for SNMPv3 is the User Datagram Protocol (UDP) in accordance with RFC 768 [9]. UDP is a connectionless transport service. Essentially UDP identifies which port is to be used for communications by a particular application and provides a checksum. By convention SNMP agents are identified by port 161 and SNMP managers are identified by port 162. The checksum is useful since the IP checksum is only over the IP header.

4.2.2.3 Network layer. (v3 ICD ref: 3.2,2.5)

Since SNMP operates over the transport layer, the use of IP is transparent to its operation. There are two versions of IP in use in today’s networks. Internet Protocol Version 4 (IPv4) is defined in RFC 791 [10]. Internet Protocol Version 6 (IPv6) is defined in RFC 2460 [22]. Similarly the version of the Internet Control Management Protocol (ICMP) used is transparent to SNMP. ICMP for IPv4 is defined in RFC 792 [11] while ICMP for IPv6 is defined in RFC 2464 [23]. The widely used Packet Internet Groper (PING) program uses ICMP messages with various header options to verify network connectivity.

4.2.2.4 Addressing. (v3 ICD ref: 3.2.2.6)

SNMP does not impose specific addressing requirements on the network layer; however, IPv4 systems generally must adhere to the FAA Enterprise Network IPv4, non-NAS Internet/Intranet Addressing Assignment (ENET1370 [1]).

5. Step-by-Step Guide to Developing a Subsystem MIB

In this section a general approach on how to develop a subsystem MIB is provided.

(It may turn out that there is considerable redundancy with the examples of the previous section. This section should have a complete example)

The general steps are as follows:

I. Perform Subsystem Object Analysis

1. Identify subsystem resources

2. Classify resources by one or more system management functional areas.

3. For each resource in each functional area identify:

Monitored Information

Control Information

Notifications

II Identify Standard MIB elements

III Assign OID Structure

IV Design subsystem specific modules

V Define Events

VI Develop Conformance Statements

VIICompile MIB

C-1

_1087813320.vsd
M�

Managing Subsystem�

A�

Managed Subsystem�

Management Services
1. Retrieve Management Information
2. Modify Management Information
3. Report Events�

_1096116342.vsd
Agent MIB�

SNMPv2 Core
(RFC 1907)�

STD MIB Modules
(RFC 3000)�

Enterprise MIB Modules
- Defined in accordance with SMIv2 and related RFCs
(RFCs 2578, 2579, 2580)�

_1098617999.vsd
Retrieve Management Information�

Managing Subsystem�

�

Managed Subsystem�

�

�

Modify Management Information�

Report Events�

_1098696294.vsd
SNMPv3 Message Processing Model�

Authentication�

SNMPv3 User-Based Security Model�

�

 NIMS Functional Services�

Event
Reporting�

Solicited
Data
Reporting�

Control�

GET
(GetRequest/Response PDUs)�

Privacy�

SNMP Operations
(supporting PDUs)�

SNMPv3 View-Based Access Control Model�

Provided by�

TRAP
(Trap PDU)�

SET
(SetRequest/Response PDUs)�

INFORM
(InformRequest/Response PDUs)�

GETNEXT
(GetNextRequest/Response PDUs)�

GETBULK
(GetBulkRequest/Response PDUs)�

Authorization�

Management Services of SNMPv3 Engine�

_1097860129.vsd
Manager�

Command
Generator/Notification
Receiver�

PDU Dispatcher

Message
Dispatcher

Transport Mapping�

SNMP entity�

Application(s)�

v3
Message
Processing
Model�

User-based
Security
Model�

View-based
Access
Control
Model�

SNMP engine�

Dispatcher�

UDP�

IP�

_1097860281.vsd
Agent�

Command
Responder/Notification
Originator�

PDU Dispatcher

Message
Dispatcher

Transport Mapping�

SNMP entity�

Application(s)�

v3
Message
Processing
Model�

User-based
Security
Model�

View-based
Access
Control
Model�

SNMP engine�

Dispatcher�

UDP�

IP�

MIB�

_1087813598.vsd
NIMS
Manager�

Embedded
Agent in
NAS Subsystem�

NIMS
Manager�

NAS
Subsystem�

Proxy
Agent�

NIMS
Manager�

�

Proxy
Agent�

�

NAS
Subsystem�

_951288544.doc

_1081250645.vsd
Command
Generator�

Command
Responder�

Notification
Receiver�

Notification
Originator�

Dispatcher�

Proxy
Forwarder�

SNMP entity�

Application(s)�

Message
Processing
Subsystem�

Security
Subsystem�

Access
Control
Subsystem�

SNMP engine�

_1081507208.vsd
msgVersion�

HeaderData�

msgID�

msgMaxSize�

msgFlags�

msgSecurityModel�

msgSecurityParameters�

ScopedPDU�

contextEngineID�

contextName�

data (SNMPv2 PDU)�

ScopedPduData�

msgGlobalData�

msgData�

_1081521680.vsd
name�

value�

PDU type ([0]..[8])�

request-id�

error-index�

variable-binding�

name�

value�

name�

PDUs�

value�

name�

value�

error-status�

_1081181111.vsd
IP Header�

UDP Header�

SNMPv3 Header�

SNMPv2 PDU�

_890400153

_890927334

