FAA NIMS Phase 2
FAA BITS Contract No. DTFA01-98-C-00065
Integration Contractor Task
Task Order 010

Federal Aviation Administration (FAA)

NAS Infrastructure Management System (NIMS) Phase 2

[image: image1.jpg]
NIMS Configuration Management Plan
 Revision 4
Submitted to:

Mr. Stephen Zywusko
NIMS Product Team TOR, AUA-750

400 7th Street, S.W., Room 2336

Washington, DC 20590
Prepared Under:

FAA BITS Contract No.: DTFA01-98-C-00065

Task No.: 0010

Prepared By:

Digicon Corporation

1355 Piccard Drive, Suite 200

Rockville, Maryland 20850

September 30, 2003
Document No.: NIMS-IC-P2S2-M011, Version 1.0

Revision Chart

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	Draft
	Jason Tapp
	Initial draft created for distribution and review comments
	1/9/02

	Preliminary
	Jason Tapp
	Second draft incorporating initial review comments, distributed for final review
	2/6/02

	Final
	Jason Tapp
	First complete draft, which is placed under change control
	2/8/02

	Final-Revision 1

	Jason Tapp
	Revised upon CRB review
	3/8/02

	Final-Revision 2

	Jason Tapp
	Added definitions for CR Severity
	6/19/02

	Final-Revision 3

	Jason Tapp
	Updated Versioning Standard and Change Management Procedures
	9/20/02

	Final-Revision 4

	Cecilia Olumba
	Added approved proposed changes into the CM Plan
	9/30/03

Document Contents
Table of Contents

71
Introduction

71.1
Purpose

71.2
Scope & Objectives

81.3
Applicable Documentation

91.3.1
Documentation Relationships

91.4
CMP Revision Procedure

101.5
References

112
Objectives and Roles

112.1
Objectives

112.2
Process Management

123
Configuration Management Activities

123.1
Configuration Identification

123.1.1
CI Categories

123.1.2
Baseline Establishment

133.1.2.1 Individual Configuration Item Baseline Establishment

133.1.2.2 Component Baseline Establishment

133.1.2.3 Project Baseline Establishment

133.1.3
Configuration Item Identification Schema

143.1.4
Configuration Item Selection Procedure

143.1.4.1 Individual Configuration Item Selection Procedures

143.1.4.2 Component Baseline Configuration Item Selection Procedure

153.1.4.3 Project Baseline Configuration Item Selection Procedure

153.1.5
Configuration Item Key Characteristics

163.2
Change Control Procedure

163.2.1
Life Cycles of Work Products

163.2.1.1 Work Product Life Cycle

173.2.2
Goals of the Change Control Procedure

183.2.3
CCP Revision Procedure

183.2.4
Formative Development

193.2.5
Acceptance

193.2.6
Proposing Changes

203.2.7
Change Request Classification

213.2.8
Change Request Identification Schema

213.2.9
Assessing the Impact of Change Requests

213.2.10
Integration Contractor Change Review Board (IC-CRB)

223.2.11
NIMS Change Review Board (NIMS CRB)

233.2.12
Defect Tracking System

233.2.13
Processing Change Request

233.2.13.1 Change Request Record Type Descriptions

233.2.13.2 Change Request State Descriptions

243.2.13.3 Change Request Disposition Descriptions

283.2.14
Emergency Change Procedures

283.2.15
Version Control

283.2.16
Automated Tools for Configuration Control

293.2.17
Changes to COTS/CAS Products Embedded in NIMS Product Baselines

293.2.17.1 Roles and Responsibilities

313.2.17.2 Procedures

313.3
Configuration Status Accounting

313.3.1
CM Library

323.3.1.1 CI Check-in/Check-out Procedure

323.3.2
Backup and Recovery Process and Procedures

323.3.2.1 Backup Process

333.3.2.2 CM Library Backup Procedure

333.3.2.3 Recovery Process

343.3.3
Configuration Management Reporting

343.3.3.1 Periodic Reports

343.3.3.2 Aperiodic Reports

353.3.3.3 Ad Hoc Reports (as needed)

353.4
Configuration Audits and Reviews

353.4.1
Configuration Internal Audit Procedure

353.4.1.1 Inputs

363.4.1.2 Output

363.4.1.3 Roles

363.4.1.4 Steps

373.4.2
Functional Configuration Audit Procedure

373.4.3
Physical Configuration Audit Procedure

394
Software Release

394.1
Regular Software Release Process

394.1.1
Development

394.1.2
Integration Contractor (IC) Test

404.1.3
FAA Test Facility

404.1.4
Production

404.2
Emergency Software Release Process

404.2.1
Development

414.2.2
Integration Contractor (IC) Test

414.2.3
FAA Test Facility

414.2.4
Production

425
CM Resources

436
Software Development and Integration Life Cycle

436.1
Requirements and Specifications Phase

446.2
Design and Implementation Phase

446.2.1
Design

446.2.2
Implementation

456.3
Testing and Acceptance Phase

456.3.1
Unit Testing

456.3.2
Integration Testing

456.3.2.1 Progression Testing

466.3.2.2 Regression Testing

466.3.2.3 Performance Testing

466.3.2.4 Test Builds

476.4
Operational Testing

487
Versioning Standard

487.1
Component Versioning Standard

487.1.1
Spiral Number

497.1.2
Build Number

497.1.3
Drop Number

497.2
NIMS Adaptation Versioning Standard

497.2.1
Spiral Number

507.2.2
Build Number

518
Secure Off-Site Storage Procedures

518.1
Purpose

518.2
Storage Procedures

518.2.1
Deposit Preparation

518.2.2
Deposit

529
Compilation and Build Procedures

5310
Media Production Procedures

5310.1
Staging Environment Preparation

5310.2
Label Production

5310.3
Media production

5310.4
Media inventory

5411
Approval Signatures

55Appendix A: Definitions, Acronyms, and Abbreviations

60Appendix B: Change Review Board Members

61Appendix C: Change Request Submission Form

62Appendix D: Change Request Generated Report

Appendix D: Report Generated Report Example
32
Table of Figures

9Figure 1.
NIMS CM Document Relationships

16Figure 2.
Life Cycles of Work Products

20Figure 3.
High Level Change Proposal Process

27Figure 4.
Processing Change Request Flow cont.

43Figure 5.
Software Development and Integration Life Cycle Phases

48Figure 6.
Component Versioning Standard

49Figure 7.
Project Versioning Standard

1 Introduction

1.1 Purpose

The purpose of this plan is to describe the policy and procedures, organization and responsibilities administered by the National Airspace System (NAS) Infrastructure Management System (NIMS) Product Team (PT) in the implementation of Configuration Management (CM) requirements for the NIMS.

This Configuration Management Plan (CMP) provides a method to identify and document the functional and physical characteristics of each Configuration Item (CI), control changes to those characteristics, and record and report the processing of changes and the status of releases. The CMP is in response to CM requirements and in accordance with Acquisition Management System (AMS) Configuration Management Policy Guide, Section 4.1 General Configuration Management Policy.

The plan applies to those involved in the administration, development, implementation, maintenance and execution of the associated project. CM procedures and guidelines will be applied consistently throughout the project life cycle
1.2 Scope & Objectives
The scope of this plan covers the control, status accounting, interface control and audits of the configuration items for the NIMS program. The CM disciplines will be assimilated into all program phases.

Configuration Management is the discipline applied to the activities performed in developing and maintaining the products of an engineering project. To ensure the integrity of the products, CM systematically controls changes to the configuration of particular items, called Configuration Items (CI) and provides traceability throughout the project’s life cycle for each CI. Configuration Management procedures shall be applied to all elements of the system including requirements, COTS application software, documentation, hardware, software, and host processing equipment.

The objective of CM within the NIMS Product Team (PT) is to validate and document the requirements and benefits resulting from NIMS development and/or enhancement. Achievement of requirements, as detailed in the NIMS Systems Level Specification (SLS) and subsystems specifications are verified through system tests, change audits, and reviews. This validation objective is accomplished by applying the following CM core functions:

a.
Planning

b.
Configuration Identification

c.
Configuration Control

d.
Software/Hardware Specific Configuration Management

e.
Status Accounting

f.
Configuration Audits

1.3 Applicable Documentation

Listed below are the reference documents that pertain to the CM discipline which have been applied to the NIMS program.

· NIMS
AOP-1000 CCB Charter
NAS Infrastructure Integrated Program Plan (IPP) for NIMS Phase 2

· FAA Policies
FAA Acquisition Management System (AMS)
FAA iCMM PA 16 Configuration Management

· FAA Specification
FAA-E-2912

NIMS System Level Specification (SLS)
FAA-E-2911

System Level Specification for NIMS Managed Subsystems

· FAA Standards
FAA-STD-002D

Facilities Engineering Drawing Preparation
FAA-STD-005E

Preparation of Specifications and Standards
FAA-STD-016A

Quality Control Systems Requirements
FAA-STD-018A

Computer Software Quality Program Requirements
FAA-STD-025D

Preparation of Interface Control Documentation
FAA-STD-026A

Software Development for the National Airspace System (NAS)
NAS-DD-1000

National Airspace System Level 1 Design Document
NAS-SR-1000

NAS System Requirements Specification
NAS-SS-1000

Facility Requirements for the National Airspace System
NAS-MD-001

National Airspace System, Master Configuration Index Subsystem
Baseline Configuration and Documentation Listing

· Military Standards
MIL-STD-2549

Configuration Management Data Interface

· Military Handbooks
MIL-HDBK-502

Acquisition Logistics
MIL-HDBK-287

Defense System Software Development Handbook
· Federal Documents
DOD-STD-100C

Engineering Drawing Practices
DOD-D-100B

Drawing Engineering and Associated Lists
· FAA Orders
FAA-ORDER-1800.66

National Airspace System Configuration Management

1.3.1 Documentation Relationships

Figure 1, NIMS CM Document Relationships, depicts the relationships between CM documents applying life cycle CM for the NIMS program. The NIMS PT complies with guidance, which is promulgated by the AOP Board. With regard to CM the AOP-CCB has drafted two documents, a Charter for the AOP Configuration Control Board in support of Life Cycle Management of the NAS and Standard Operating Procedures for the AOP Change Control Process. The NIMS CMP uses the guidance provided in these documents to articulate its approach. The iCMM CM Process augments the NIMS CMP and provides greater detail on the process that will be enforced to execute the provisions of the NIMS CMP.

Figure 1. NIMS CM Document Relationships
1.4 CMP Revision Procedure

The NIMS CMP is intended to be a tool for staff and managers involved with NIMS engineering projects. Updates and changes to the CMP must be carefully controlled to ensure that the document’s integrity is maintained and that all associated staff uses a consistent tool. The CMP will be reviewed and updated as needed.

1.5 References

1. Microsoft Press, Software Project Survival Guide, Steve McConnell, 1998.

2. Addison-Wesley, Software Configuration Management Strategies and Rational ClearCase: A Practical Introduction, Brian A. White, 2000

2 Objectives and Roles
2.1 Objectives
For the purposes of NIMS Configuration Management, CM includes tracking and control of software development, COTS tool integration, and all project life cycle activities. That is, the management of software development and integration projects with respect to issues such as multiple developers working on the same code\script at the same time, supporting multiple versions, and controlling the status of code\script promotional levels. The two main areas of responsibility are Process Management and Software\Hardware Maintenance.

2.2 Process Management

Process Management is control of the software development and integration activities. For example, checking to ensure that a Change Request (CR) exists, has been properly approved for implementation, and that the associated design documentation and review activities have been completed. Process Management is essential for a prompt and well-organized release cycle. Configuration Management plays an important role in the organization and delivery of a release by assisting in the management of the daily development processes. CM is responsible for:

· Establishing a flexible build schedule and coordinating the delivery of builds to testing staff according to that schedule. This includes delivery of each component as a single deliverable.

· Performing “Smoke Tests” of each software component prior to delivery to testing staff to assure that the deliverable is complete and that general high level requirements have been met
· Coordinating with the Documentation personnel to include all new help files and online documentation for each component.

· Creating and attaching the installation processes for each software component or as a bundle.
· Managing and altering the software development life cycle to meet the needs of the development environment.
3 Configuration Management Activities

3.1 Configuration Identification

Configuration identification involves classifying a system’s structure, uniquely identifying individual system components (CIs), and documenting the component’s functional and physical characteristics. The goals of configuration identification are to identify a system’s components throughout the life cycle and to provide traceability between the system and related system products. Configuration identification includes:

· Selection of CIs.

· Establishment of a baseline for system CIs.

· Issuance of numbers and other identifiers affixed to the CIs.

Subsection 3.1.1 describes the procedure for selecting CIs. Subsection 3.1.2 introduces the concept of a baseline and describes when CIs will be baselined. Subsection 3.1.3 describes the numbering schema used for identifying CIs. Subsection 3.1.4 describes procedures for selection CIs. Subsection 3.1.5 describes key characteristics that must be identified for each CI.

3.1.1 CI Categories

A CI is any item that project management wants to place under configuration control. CIs will be classified into different categories including: documentation, scripts, source, hardware, etc.

3.1.2 Baseline Establishment

A “baseline” identifies an agreed-upon description of a system component at a discrete point in time and provides a known configuration from which changes are addressed. Baselines provide the foundation for change control for individual CIs, for subproject baselined CIs, and for system CIs. Baselines are established to:

1. Distinguish among different system CI releases and versions.

2. Help ensure complete and up-to-date technical product documentation.

3. Enforce Quality Assurance (QA) standards.

4. Serve as a means of promoting CIs and their components from one project phase to the next.

This section describes three levels of baseline establishment:

1. The initial loading of individual project CIs into the CM tool.

2. Component baselines, which include all CIs constituting the component at the time the baseline is established.

3. Project baselines that include all production CIs among all components.

3.1.2.1 Individual Configuration Item Baseline Establishment

Individual CIs will be established at the project and component levels. An individual CI is considered to be baselined when the required information about that CI is successfully loaded into the CM tool, accompanying electronic media and/or hard copy documentation is checked into the CM tool or library respectively, and a CI number is assigned by the CM tool.

3.1.2.2 Component Baseline Establishment

A component baseline is a snapshot of the CIs constituting the production version of a component at a particular point in time. This baseline will comprise the CIs within the baselines of a given component. The Configuration Manager will be responsible for establishing component level baselines throughout the project life cycle. A component baseline may be established at any point at the discretion of the Project Manager or Development Leads.

3.1.2.3 Project Baseline Establishment

A project baseline is a snapshot of the CIs constituting the production version of the system at a particular point in time. This baseline will comprise the CIs within the production baselines of each of the individual components. The Configuration Manager will be responsible for establishing project level baselines throughout the project life cycle. A project baseline may be established at any point at the discretion of the Project Manager.

3.1.3 Configuration Item Identification Schema

This section describes the configuration item identification schema that will be used by the project and components to uniquely identify CIs. The configuration item identification schema for CIs will be applied and controlled through the project CM tool (Rational ClearCase). The details of the CI identification schema are documented in the CM tool’s administration and user’s guides.
3.1.4 Configuration Item Selection Procedure

This section details three CM procedures for selecting CIs. The three CI selection procedures are:

1. Selection of individual CIs.

2. Selection of component baseline CIs.

3. Selection of project baseline CIs.

3.1.4.1 Individual Configuration Item Selection Procedures

The following steps detail the CM procedure for initial individual CI selection.

1. The Configuration Manager will coordinate a meeting with the Project Manager.

2. The Project Manager will supply a subproject work plan and deliverable schedule to the Configuration Manager as soon as they are available.

3. At the meeting, the Project Manager and Configuration Manager will review the task deliverables and supporting products for potential CIs.

4. This group decides which items or classes of items will be placed under configuration control.

5. As each CI reaches its required baseline point, the Configuration Manager will load the CI information into the CM tool.

6. Based on the information provided about the CI, the CM tool will automatically assign a CI identifier to the item.

In the event that an item is identified as a potential CI after the initial CI selection review described above, the following steps will apply:

1. An individual working on a component identifies an item as a potential CI.

2. The Configuration Manager will review the item and determine whether it should be a CI.

3. When the CI reaches its first required baseline, the Configuration Manager will load the CI information into the CM tool.

4. Based on the information provided about the CI, the CM tool automatically will assign a CI identifier to the item.

3.1.4.2 Component Baseline Configuration Item Selection Procedure

The following steps detail the procedure for initial component baseline CI selection.

1. At the point that a component baseline is to be created, the Configuration Manager will coordinate with the Project Manager to obtain a listing of the CI numbers that comprise the baseline.

2. The Configuration Manager will coordinate the creation of a component baseline CI and will ensure that the component baseline CI information is loaded into the CM tool.

3.1.4.3 Project Baseline Configuration Item Selection Procedure

The following steps detail the procedure for initial project CI selection required when a component successfully establishes a baseline.

1. After successful creation of the component production baseline, the Configuration Manager will coordinate with the Project Manager to obtain a listing of the CI numbers that comprise the production release.

2. The Configuration Manager will identify all CIs that need to be included in this project baseline.

3. The Configuration Manager will coordinate the creation of a system CI that includes the CIs from the components and integration-level CIs.

The procedure for establishing a project baseline CI at any other baseline point will be the same as the above procedure
3.1.5 Configuration Item Key Characteristics

All information related to CIs will be entered directly into the CM tool. The following is the minimum set of information that will be provided when a CI is loaded into the CM tool:

· Submission Date - Date the CI information is entered into the CM tool.

· Submitted By - Name of the person entering the CI information into the CM tool.

· Project/Component Code - Name of the project subproject submitting the CI.

· Review or Baseline - The review or baseline the CI has reached.

· Life Cycle Status - What stage of the life cycle is the CI.

· CI Number - CI identifier.

· Item Name - CI name.

· Item Description - CI description.

· Related CIs - Other CIs associated with this CI.

· Comments - Other comments added to further describe the CI.

· Version - Version number associated with the CI.

3.2 Change Control Procedure
The Change Control Procedure is the process by which changes to system components are managed. Change control begins after CIs are formally identified and refers to the evaluation, coordination, approval or disapproval, and implementation of changes to those CIs. The goal of change control is to establish mechanisms that will help ensure the production and maintenance of quality system components.

Change control activities include:

· Establishing change control processes and procedures.

· Tracking and documenting changes.

· Processing system component changes.
3.2.1 Life Cycles of Work Products

Within any given project, each work product developed during the project will progress through a series of stages from initial concept to final release. This is demonstrated in Figure 2:

[image: image2]
Figure 2. Life Cycles of Work Products
3.2.1.1 Work Product Life Cycle
Note that the work product initially begins life in a state of formative development. As the work product develops, changes are made informally and work progresses using revision control. When the work product reaches an expected state of completeness, it undergoes formal review and acceptance. Once accepted, the work product enters a state of acceptance where changes are no longer permitted to the item without formal change control (which this document describes). Finally, after final acceptance, the work product is frozen in preparation for being released.

Note the distinction being made between informal revision control and formal change control. Informal revision control refers to the use of tools, which allow changes to a rapidly evolving work product to be sequentially captured and retraced, if necessary. This allows a work product to undergo rapid development while retaining the safety of backup copies and some measure of control. Formal change control refers to a procedure by which changes to an accepted work product are carefully proposed, assessed, conditionally accepted, and applied. Formal change control provides a measure of stability and safety beyond that of the underlying revision control tools in use.

3.2.2 Goals of the Change Control Procedure

An effective change control procedure should:

· Provide a mechanism for accepting changes that improve the product overall while rejecting those that degrade it.

· Facilitate changes to work products during their initial formative development while avoiding unnecessary overhead or formality.

· Provide revision control and backup safety for work products during their formative development.

· Allow for formal acceptance (approval) of work products after their initial formative development has been completed.

· Facilitate efficient changes to work products after their initial acceptance, recognizing that the impact of a change to a work product is dramatically different after the work product has been accepted.

· Allow all parties materially affected by proposed changes to accepted work products to assess the resource, schedule, and/or product impact of the changes.

· Allow changes to accepted work products to be proposed and evaluated, schedule and quality impact assessed, and approved or rejected into work products in a controlled manner.

· Notify interested parties on the periphery of development regarding change proposals, their assessed impact, and whether the changes were approved or rejected.

· Provide an historic trail of the development of work products, including all proposed changes.
3.2.3 CCP Revision Procedure

The NIMS Change Control Procedure (CCP) is intended to be a tool for staff and managers involved with NIMS engineering projects. Updates and changes to the NIMS CCP must be carefully controlled to ensure that the document’s integrity is maintained and that all associated staff uses a consistent tool. The CCP will be reviewed and updated as defined in the NIMS Project Plan.

3.2.4 Formative Development

During this initial stage of creation, the work product is undergoing frequent and rapid change before it becomes stable. At this stage, it is ineffective to apply formal change control to the work product since the overhead of controlling changes merely obstructs efficient creation of the work product. However, this stage of development may comprise a significant body of work, which would be quite costly to lose. Therefore, an informal determination will be made on the part of the developer(s) of the work product as to when to place the work product under revision control.

Revision control differs from change control in that it provides automated support for saving and restoring versions of project work products such as documents and computer source code without the burden of a formal change process.

We expect the following procedures to provide adequate control during formative development of work products:

· Work products will be placed under the control of a revision control tool (Rational ClearCase).

· All work products under revision control will reside on a master project file server (which itself is under a formal backup schedule to secondary off-line media).

Since change control at this stage of development is informal, it is the responsibility of each developer to use prudent judgment and professional practice to store revisions of the work product at appropriate intervals and to be diligent in maintaining master sources of the work product on the project file server. Although, the revision control tool (ClearCase) will be configured to automatically enforce proper Unified Change Management (UCM) procedures to assure that all revisions meet an acceptable entrance criteria. The entrance criteria are outlined in the Software Development Lifecycle Process Standards.

3.2.5 Acceptance

At the close of formative development, each work product reaches a stage where it represents a complete body of work. The determination of this point in the development process is best performed by the developer(s) of the work product (guided by the project milestones and deliverables identified by the Project Plan). At this point, the work product undergoes a formal acceptance procedure, which includes:

· Review of the work product content to determine whether it is complete and fairly represents the needs of its customers.

· Formal versioning of the work product by the developer.
At this point, we say the work product has been “accepted” (thereafter known as an accepted work product) and enters into formal change control. That is, subsequent changes to the work product must be tracked via the defect tracking system (ClearQuest) and all “scope threatening” issues must be escalated to the Change Review Board as described below.

3.2.6 Proposing Changes

Whenever it is determined that some aspect of an accepted work product should be changed, a change request is created by submitting a NIMS Test Trouble Report (TTR) to the IC Configuration Manager.

(See Figure 3: High Level Change Proposal Process)
(See Appendix B: Test Trouble Report Example)
(See Section 3.2.13: Processing Change Requests).

The change proposal:

· Identifies the work product in question.

· Describes the aspect of the work product that the party feels is in need of change.

· Includes a description of the impact, from the submitting party’s point of view, of leaving the work product as-is compared with incorporating the suggested change. This gives the reviewing PT members a better understanding of why the change is being submitted and what importance it has from the perspective of the submitter.
[image: image3.png]
Figure 3. High Level Change Proposal Process
3.2.7 Change Request Classification

A CR is a formal request by an individual to change a CI. A CR may involve changes to individual hardware, software, or documentation CIs, or it could require changes to multiple CIs in combination. CRs may be very limited in impact, or may have a large impact system-wide. CRs are assigned a Severity upon submission. The following Severities are applicable:
· 1 – Critical: Business process halted. Change Request made in response to sudden or unpredicted behavior that ceased any further actions to be performed. System integrity or significant costs will be at risk as a result of inaction.
· 2 – Major: Business process significantly interrupted. A considerable anomaly has been discovered and the defect will cause the interruption of important business functions.
· 3 - Average: Business process interrupted. An abnormality in the system has been revealed and deserves the attention of an engineer. These tribulations should be resolved in due time and properly verified.

· 4 – Minor: Business process has been delayed. A slight flaw in the system has been identified. Simple maintenance such as correction of grammar\spelling, reorganization of information, or additional explanatory information is required.
· 5 – Enhancement: Business process could be improved. An area of deficiency has been identified that will require a change to the system architecture, design, or requirements.
3.2.8 Change Request Identification Schema

All CRs will be assigned a unique identification number and will be tracked throughout their lives using that number. CRs will be maintained within the change control tool, ClearQuest, and the change control tool will assign CR numbers automatically when the CR is created.

3.2.9 Assessing the Impact of Change Requests

Once a change request has been submitted to the Integration Contractor (IC) Team, the IC Change Review Board (IC CRB) will assess the impact of the change request, which is then circulated to anybody identified by the reviewers as possibly being impacted by the change. The impact assessment will include:

· Statement of problem
· Status

· System impact

· Required resources

· Cost

· IC recommendation

· Risks

In the interest of efficiency, the IC CRB may recommend to queue a series of change requests to be processed as a group.

3.2.10 Integration Contractor Change Review Board (IC-CRB)
Once the impact of the proposed change is assessed, the IC CRB will forward the change request to the NIMS CRB for review and disposition. The IC CRB may recommend a proposed change request be rejected if it determines that the cost of implementing the change outweighs its perceived benefit, unless the change is needed to meet a specific requirement.

Requirements are not considered change requests. Requirements are detailed in the NIMS System Level Specifications (SLS) and are implemented through the NIMS Software Development and Integration Life Cycle

(See Section 6: Software Development and Integration Life Cycle).
It is suggested that those parties who have a stake in the development of the product may register their interest with the IC CRB and NIMS CRB. The IC CRB will meet twice per month, depending on the volume of change requests, and evaluate the status of all new change requests. For any particular project, the IC Change Review Board consists of the following members:

· CRB Chairman

· IC Program Managers
· NIMS Product Lead(s)
· IC Configuration Manager
3.2.11 NIMS Change Review Board (NIMS CRB)
In order to manage the change control process in an efficient and stable manner, the NIMS Change Review Board is established. The NIMS CRB serves as the focal point for change management and retains the authority for deciding which new requirements and other changes actually get incorporated into project deliverables.

If a change request is accepted by the NIMS CRB, the assessed impact on the development schedule must be incorporated into the existing schedule and a new schedule produced. If the IC CRB or NIMS CRB deems it necessary, trade-offs between time, function, and manpower may be made in an attempt to mitigate the effects of change to the existing schedule. However, in no circumstances will changes be approved without sufficient consideration of their associated schedule implications.

For any particular project, the Change Review Board includes the following individuals:

· CRB Chairman

· CRB Co-Chairman

· FAA-NIMS TOR

· IC Program Managers
· Work Group Lead(s) (as needed)

· NIMS Product Lead(s)

· AOP-1000 Representative

· AOS Representative
· IC Configuration Manager
· CM Secretariat
The Configuration Manager will act as the NIMS CRB facilitator and will serve as the focal point for collecting change request data and coordinating meetings. These meetings may take place in person or over the telephone on a monthly basis.

The NIMS CRB will provide notification of meetings and their agenda and disseminate the results of its actions. Interested parties may request to attend the NIMS CRB meeting in order to represent their interests.

(See Appendix B: Change Review Board Members)
3.2.12 Defect Tracking System

A problem tracking system (ClearQuest) will be used to gather and manage information relating to requested modifications of work products under formal change control. This tool will provide a central data base which contains important information as described in the preceding sections and facilitates efficient queries of the captured data in order to gain visibility over the state and number of changes to a given work product.

Regardless of whether a change is approved or rejected, the following information is recorded by the defect tracking system (ClearQuest) and made available to the party submitting the change proposal (and any other interested parties that desire to monitor the progress of the work product):

· The date, description, and party submitting the proposed change.

· The estimated impact of the change on the development areas listed above.

· The date when the change was accepted, rejected, or deferred.

· The overall impact on the project schedule (which includes the effects of any mitigating strategies and their descriptions).

· If rejected, the reason for rejection.
3.2.13 Processing Change Request
(See Figure 4: Processing Change Request Flow)
3.2.13.1 Change Request Record Type Descriptions
Defect- A change request made by FAA NIMS personnel due to a NIMS failure to meet approved NIMS requirements.

Enhancement- A change request made by FAA NIMS personnel intended to improve NIMS operational functionality or performance.

3.2.13.2 Change Request State Descriptions

New- Not used currently.

Open- The NIMS CRB has agreed that the change request must be fixed. IC Configuration Management (CM) will generate a Test Trouble Report (TTR) or an Enhancement Request (ER) in the change request database. The NIMS Product Lead for the spiral against which the change request was opened will validate the request and assign it to a developer for investigation and resolution. The TTR or ER will remain in an Open state during all evaluation, development and test of the resolution.

Closed- After all the work is completed and the resolution has been verified by both the IC and FAA testers, the change request will be reviewed by the NIMS CRB for final disposition and state change. After the review is completed and approval is given to close the change request, CM will change the state of the change request to Closed.
3.2.13.3 Change Request Disposition Descriptions

Declined- The NIMS CRB, with input from the IC CRB, decides not to address the submitted change request for whatever reason. The change request is entered into ClearQuest with a status of Closed.

Software- The NIMS CRB, with input from the IC CRB, decides to address the submitted change request, and determines that the resolution requires a change to NIMS software. Such changes include NIMS original and adapted software, NIMS workstation and server configuration, or COTS software.

Documentation- The NIMS CRB, with input from the IC CRB, decides to address the submitted change request, and determines that the resolution requires a change to NIMS documentation.

Training- The NIMS CRB, with input from the IC CRB, decides to address the submitted change request, and determines that the resolution requires a change to NIMS training materials.

Fixed- The owner of the change request has completed the resolution; be it code, documentation or training. “Fixed” is defined as a resolution that has been successfully unit tested and documented (if required) or a defect that has been overcome by events.
IC Verified- IC testers verify that the defect has been fixed.

PT Verified- FAA testers verify that the defect has been fixed. The change request is closed at this point.

Duplicate- The NIMS CRB, with input from the IC CRB, determines the defect to be an exact duplicate of an open TTR or ER. The change request is closed at this point.
Deferred- At some point, after the approval of the change request, the FAA requests that work on the request be deferred until a later date. The FAA will assess why work was deferred and review the condition periodically. Once the condition has been satisfied, the FAA will direct IC to resume work on the request. Open deferred requests will be closed after each major release of NIMS.

Needs More Info- The owner of the change request requires some information to continue resolution of the defect. The information request will be monitored using the standard FAA action item tracking process. If the requested information has not been received within 60 calendar days, the change request will be closed. Open requests requiring information will be closed after each major release of NIMS.

Not Reproducible- The defect cannot be reproduced by the owner of the change request. The submitter of the change request must attempt to reproduce the defect with the owner present in order to proceed. If the defect cannot be reproduced with the owner present, the change request will be closed.

PMR- The owner of the change request determines that the resolution of the defect requires a change to the COTS application. The owner opens a change request with the COTS vendor and tracks the request until resolved.

COTS Limitation- The COTS vendor determines that a change request (PMR) is outside of the scope of their design and must be addressed as an enhancement request. The IC CRB will review the change request given the new information and make a recommendation with an impact analysis to the NIMS CRB. If the NIMS CRB decides not to pursue the enhancement request, the change request will be closed.

COTS ER- The NIMS CRB decides to pursue a vendor enhancement request to resolve a defect. The request is opened with the vendor and an FAA NIMS Product Team representative tracks the enhancement request until resolved.

	STEP 1
	STEP 2
	STEP 3
	STEP 4

	NIMS CRB opens TTR/ER with recommendation from IC CRB
	Assignee reviews and/or attempts to resolve TTR/ER
	Next action based on STEP 2
	Next action based on STEP 3

	Action
	State
	Disposition
	Action
	State
	Disposition
	Action
	State
	Disposition
	Action
	State
	Disposition

	
	
	
	
	
	
	
	
	
	
	
	

	NIMS CRB decides not to pursue resolution of submitted issue
	Closed
	Declined
	

	
	
	
	
	
	
	
	
	
	
	
	

	Resolution requires change to software
	Open
	Software
	Assignee directly or indirectly fixes TTR/ER
	Open
	Fixed
	Fix passes IC verification test
	Open
	IC Verified
	Fix passes PT verification test
	Closed
	PT Verified

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Fix fails IC verification test
	Open
	Disposition from STEP 1
	Fix fails PT verification test
	Open
	Disposition from STEP 1

	Resolution requires change to training materials
	Open
	Training
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	FAA requests that the TTR/ER be deferred
	Open
	Deferred
	FAA directs IC to work on TTR/ER
	Open
	Disposition from STEP 1
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Information needed to continue
	Open
	Needs More Info
	Next action, state and disposition can vary based on information needed and provided.

	Resolution requires change to NIMS documentation
	Open
	Documentation
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Assignee discovers defect is an exact duplicate of an open TTR/ER. CRB concurs.
	Closed
	Duplicate
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	STEP 1
	STEP 2
	STEP 3
	STEP 4

	NIMS CRB opens TTR/ER with recommendation from IC CRB
	Assignee reviews and/or attempts to resolve TTR/ER
	Next action based on STEP 2
	Next action based on STEP 3

	Action
	State
	Disposition
	Action
	State
	Disposition
	Action
	State
	Disposition
	Action
	State
	Disposition

	
	
	
	
	
	
	
	
	
	
	
	

	Resolution requires change to software
	Open
	Software
	IC Developer cannot reproduce defect
	Open
	Not Reproducible
	Submitter reproduces defect with IC developer
	Open
	Software Go to STEP 1
	
	
	

	
	
	
	
	
	
	Submitter cannot reproduce defect with IC developer
	Closed
	Not Reproducible
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	COTS fix required to resolve defect
	Open
	PMR
	Vendor determines fix is out of scope
	Open
	COTS Limitation
	CRB decides to pursue fix. IC opens vendor enhancement request.
	Open
	COTS ER

	
	
	
	
	
	
	Vendor provides fix
	Open
	Software Go to STEP 1
	CRB does not wish to pursue
	Closed
	COTS Limitation

Figure 4. Processing Change Request Flow cont.
3.2.14 Emergency Change Procedures
Emergency changes are defined as maintenance-only changes to the production environment to correct operational problems that hinder normal business activity. Emergency changes must be closely scrutinized to ensure that they remain the exception rather than the rule. An emergency change request must be communicated to the IC, who will make a recommendation to the NIMS Product Team (PT) Lead. If approved, the change must be confirmed by written message within 24 hours and must be followed by a formal change requests within 3 days after the first communication.

3.2.15 Version Control

To track the changes that occur to a CI over its lifetime, different versions of that CI need to be identified and stored. This allows the CI’s status at any specified point in time to be maintained and, if necessary, changes can be rolled back to previous versions of the CI. Version control refers to the identification of the points in a CI’s life when a new version must be created, and the rules surrounding the assignment of a new version number.

Each time a CI is checked into the CM tool after a change has been made, a new version of the CI will be created that gives traceability between the current state of the CI and the state of the CI prior to the change. The version number associated with each CI consists of a release number and a release version. A new release represents a major change to a CI, such as the implementation of a new phase of a subproject. A new release version represents a more minor change, and there may be multiple release versions between each release of a CI.
(See Section 7: Component and Project Versioning Standard)
3.2.16 Automated Tools for Configuration Control

Tracking CRs and the CIs to which they relate is an administratively complex process. The use of automated tools for CM mitigates much of this complexity and reduces the probability of manual errors and omissions. The NIMS CM and defect tracking tool is the Rational’s ClearCase and ClearQuest. These products are expected to provide the scalability and flexibility required to support NIMS engineering projects for the foreseeable future.
3.2.17 Changes to COTS/CAS Products Embedded in NIMS Product Baselines
NIMS product baselines include Commercial Off-The-Shelf (COTS) hardware and Commercially Available Software (CAS) configuration items that are not exclusive to NIMS. They are used, or are available for use, in other Government or commercial applications. These COTS/CAS products are subject to change as a result of forces separate from NIMS, resulting from actual or perceived commercial marketplace needs, correction of undesirable attributes arising from use in other applications, or functionalities, interfaces, or product features desired by other customers. Manufacturers, vendors, and suppliers of COTS/CAS products routinely make changes to these products without coordinating with individual customers. These changes, even though not originating from use in NIMS, will potentially have impact on NIMS operation and/or supportability. Changes to COTS/CAS products must therefore be subject to the same procedural rigor used for proposed changes to NIMS-specific portions of the NIMS product baseline, or for changes made to common elements arising directly from use in NIMS.

As all releases of COTS products do not provide benefit to the NIMS system, COTS software upgrades to the NIMS baseline will be evaluated at major version releases and hardware changes will be evaluated when baseline hardware approaches end of life. Software upgrades within the same version level (dot releases) will be evaluated for incorporation into the baseline if the upgrade will fix an identified COTS limitation, or if it incorporates a COTS enhancement request made by the NIMS PT.

3.2.17.1 Roles and Responsibilities

3.2.17.1.1 IC Team

The IC has responsibility to:

· Maintain contact with manufacturers, vendors, and suppliers of COTS products included in NIMS product baselines.
· On a quarterly basis, identify changes that have occurred and the level of the change (dot release/version upgrade/hardware EOL). Within the IC Team, the CM Manager is responsible for this function.
· As required, perform an engineering assessment of the impact of the change, to include:
· functionality internal to the item being changed;
· interface with NIMS operators and administrators;
· interface and version compatibility with other NIMS hardware and software;
· interfaces with NAS subsystems, hardware items, software applications, or data systems connected to NIMS;
· impact of the change on commercial support agreements, warranties, or licenses;
· impact of the change on support elements such as maintenance plans, technical documentation, provisioned items, training materials or courses, or FAA processes, practices, or procedures;
· data migration issues associated with the change;
· risks associated with the change;
· costs associated with the change.
· Coordinate with FAA functional subject matter experts when appropriate.
· Forward engineering assessment to the NIMS TOR.
· Develop the incorporation plan and schedule for NIMS CRB-approved changes.

3.2.17.1.2 NIMS TOR

The NIMS TOR is responsible for initiating change requests as a result of the IC Teams’ engineering assessment.

3.2.17.1.3 NIMS CRB
The NIMS CRB is responsible for the disposition of change requests related to vendor-introduced COTS changes. In fulfilling this responsibility, the NIMS CRB will ensure that all FAA stakeholders are notified of the known or potential impacts of the change and soliciting input to the change request process.

3.2.17.1.4 NIMS Product Team Lead
The NIMS Product Team Lead is responsible for:
· Identifying and coordinating FAA documentation/processes required for approval of the change to the configuration of the NAS and for field notification and implementation of the change.
· Developing a support plan for approved changes.
· Coordinating the completion of required support actions for approved and disapproved changes, including the providing of necessary funding where appropriate.
3.2.17.1.5 FAA Test Team
The FAA Test Team is responsible for developing test plans, as appropriate, for official acceptance of the change. The test plans must be approved by the NIMS PT, NIMS TOR, and AOS.

3.2.17.2 Procedures
Vendor-introduced COTS changes that warrant an engineering assessment will be treated as change requests. The IC Team will notify the NIMS TOR when a vendor-introduced COTS change requires an engineering assessment. Upon receipt of the assessment, the NIMS TOR will initiate a change request, using the NIMS Test Trouble Report, with the assessment attached. The change request will then follow the process described in section 3.2.11.
3.3 Configuration Status Accounting

Configuration status accounting (CSA) is the administrative tracking and reporting of all CIs. CSA ties together all other CM functions: configuration identification, configuration control, and configuration audit. CSA ensures the storage of CM activity information for subsequent retrieval and reporting. CSA will enhance the capabilities to identify, produce, inspect, deliver, operate, maintain, and repair CIs in a timely, efficient, and economical manner.

The CM tool will act as the main repository for storing, tracking, and reporting information related to CM activities. A supplemental physical library will also be created and maintained for storage of CIs that cannot be loaded into the CM tool. The Configuration Manager will be responsible for implementing, operating, and maintaining the CM tool. The Configuration Manager will establish appropriate user groups and individual users in the CM tool, and will assign the appropriate permissions for access, checkout, and check-in procedures. The Configuration Manager will also be responsible for the backup and recovery of the CM library.

Subsection 3.3.1 describes the CM library and CI checkout and check in procedures. Subsection 3.3.2 describes the CM library backup and recovery processes and procedures. Subsection 3.3.3 describes the types of reports that will be provided, and details their content, format, and intended audience.

3.3.1 CM Library

The CM library will consist of a software tool to automate CM functions and a secure storage facility to store those portions of the CM library that cannot be maintained electronically. The Configuration Manager will administer the CM library. The Configuration Manager will review the CI information entered into the CM library to ensure consistency across all components. If a CI’s information is found to be erroneous in content or level of detail, the Configuration Manager will inform the CI originator and will request specific corrections. The originator will be responsible for correcting the CI’s deficiencies within five business days.

The CM library will maintain a repository of all CIs and information related to those CIs. All CIs will be stored within the library in electronic format, if possible. In the case of CIs that must be stored in hard copy, their CI information will be entered into the CM library and a CI number will be assigned. The CI information will include a list of the items that are stored externally to the CM tool. The items stored as hard copy will each be labeled with the system-assigned CI number and will be stored in a secure location.

The Configuration Manager will have full access to the entire contents of the CM library. The Configuration Manager may inspect any CI at any time to determine what CI(s) and components a proposed CR will impact, and what that impact will be to the CI(s) or subproject. The Configuration Manager will administer the CM library at the component level. The Configuration Manager will set permissions for CIs to allow specific component team members to check-in and checkout CIs.

3.3.1.1 CI Check-in/Check-out Procedure

CI Check in/out procedures describes the process that an individual will follow to check in or check out a CI from the CM library or CM tool. These procedures will be used for all organizational levels requiring check in/out capabilities. A detailed description of these procedures may be found in the ClearCase User’s Guide, “Developing Software with ClearCase” located at the NIMS Development Lab or at:

http://www.rational.com/support/documentation/manuals/clearcase.jsp (Requires a User Profile login account. You may register for one at http://www.rational.com/login/profile.jsp).
3.3.2 Backup and Recovery Process and Procedures

The CM library backup and recovery processes and procedures provide comprehensive data backup and recovery capabilities. The processes and procedures allow CM library files to be recovered from as recently as the previous night, to as early as the beginning of the development effort. The Configuration Manager will ensure that all backup and recovery processes and procedures are followed. If one or more CIs need to be recovered, any team member can submit a request to the Configuration Manager. The request will specify which CI(s) need to be recovered.

3.3.2.1 Backup Process

Three forms of backups will be used: incremental, weekly, and monthly. Used together, these backups will provide comprehensive CM library file recovery. Incremental backups store all CM library files that were created or altered since the preceding backup, whether that backup was an incremental, weekly, or monthly backup. Incremental backups will be run on a nightly basis with the exception of evenings upon which weekly backups are run.

Incremental backups will store to a pool of tapes labeled “Incremental.” The incremental pool will not be removed from the backup device and will not be recycled for one month. This allows CM library files to be recovered from the end of any day for the previous month.

Weekly backups will store the entire CM library. The Configuration Manager will decide upon what night of the week these backups will be run. These backups will be run in the same evening of every week. The weekly backups are stored to a pool of tapes labeled “Weekly.” The weekly pool capacity will be at least two times the projected size of the CM library so that it may contain entire CM library every week with room for unexpected growth. The Configuration Manager will designate a day of the week, upon which this weekly pool will regularly be removed from the backup device. The weekly pool will be recycled every five weeks, which allows CM library files to be recovered from the end of any week for five weeks.

Monthly backups store the entire CM library. Monthly backups will be run on the same day at the beginning of every month (designated by the Configuration Manager), immediately after the weekly backup. The monthly backups are stored to a pool of tapes labeled “Monthly.” The monthly pool capacity will be at least two times the projected library size so it may contain the entire CM library every week with room for unexpected growth. The monthly pool will be removed from the backup device the following Monday morning. The monthly pool will be stored off-site in a secure facility, which allows files to be recovered from the end of any month for the lifetime of the project.

3.3.2.2 CM Library Backup Procedure

For detailed CM library backup instructions please see the ClearCase Administration Guide, “Administering ClearCase” located at the NIMS Development Lab or at:

http://www.rational.com/support/documentation/manuals/clearcase.jsp (Requires a User Profile login account. You may register for one at http://www.rational.com/login/profile.jsp).

3.3.2.3 Recovery Process

To recover files from the previous two weeks, the files in question will be restored first from the most recent weekly backup preceding the loss. The compromised files will be restored then from each incremental backup following the weekly restoration up to the day that suffered the loss.

To recover files from the previous five weeks, the files will be restored first from the most recent weekly backup preceding the loss. The files will be restored then from each incremental backup following the weekly restoration up to the day that suffered the loss, if possible. Due to the nature of the incremental backups, if files are not often changed, the incremental pool of backups may store files much longer than the weekly backup, possibly up to several months.

To recover files from before the preceding five weeks, the CM library files first will be restored from the most recent monthly backup preceding the loss. The CM library files then will be restored from each incremental backup following the weekly restoration up to the day that suffered the loss, if possible. In case of a catastrophe that compromises the entire on-site backup facility, files will only be recoverable from the monthly backups stored off-site.

(See Section 8: Secure Off-Site Storage Procedures)

3.3.3 Configuration Management Reporting

Three types of reports will be produced: periodic, aperiodic, and ad hoc. Periodic reports will be produced according to the schedule of their specific audience. These reports will be produced and distributed by the Configuration Manager to their target audience. The Configuration Manager may create the aperiodic and ad hoc reports at any time. Any periodic report may also be produced on an as-needed basis.

3.3.3.1 Periodic Reports

a. Entered CRs
b. Assigned CRs
c. Resolved CRs
d. Rejected CRs
e. In review CRs
f. Stage of development life cycle

3.3.3.2 Aperiodic Reports

a. Concluded CRs
b. File versions in a release

c. File names in a release

d. Current file names in development

e. Current versions in development

f. Duplicate CRs
3.3.3.3 Ad Hoc Reports (as needed)
3.4 Configuration Audits and Reviews

Configuration Management audits (CMA) will ensure that all CM processes and procedures for configuration management are being followed, are effective, and are efficient. Additionally, configuration audits will ensure that a CIs’ functionality accurately reflects the requirements, specifications, and CRs associated with its development.

The Configuration Manager will perform three types of audits:

1. CM Internal Audits (IA).

2. Functional Configuration Audits (FCA).

3. Physical Configuration Audits (PCA).

CM internal audits will check the CM library for consistency. FCAs will ensure that each CI’s development followed the developmental methodology requirements of the project. The PCAs will ensure that the correct CIs are delivered.
3.4.1 Configuration Internal Audit Procedure

The CM IA reviews the CM library and CM organization. The CM IA ensures that the CM library is providing full CM capabilities and that the CM organization is effectively and efficiently adhering to CM processes and procedures.

The CM IA will provide answers to the following:

· Have CM process and procedures been adhered to?

· Have CM procedures been followed in processing change requests?

· Do all component CIs exist and are they up-to-date?

· Is the CM library up to date?

· Is the CM library being backed up?

· Are all reports being fully produced in a timely manner?

The Configuration Manager will conduct a minimum of one CM IA per year.

3.4.1.1 Inputs

1. Random samples of hardware, software, and documentation CIs from across the project.

2. A random sample of CRs. Every subproject that is contributing CIs to the audit should have at least one CR that it initiated and reviewed.

3. A random sample of reports produced.

3.4.1.2 Output

The CM IA report

3.4.1.3 Roles

Configuration Manager: Appoints individuals from the CM team to each role within the audit. Reviews and authorizes release of the CM IA Report. Leads the CM IA effort and controls the audit. Provides access to the backup facility.
CM IA Team Members: Reviews the CIs, CRs, and reports; inspects the backup facility.

Secretariat: Creates the CM IA agenda. Records actions items, issues, and decisions made by the CM IA members. Creates the CM IA minutes and CM IA Report. Supplies necessary inputs for the CM IA and answers questions and supply additional materials to the CM IA team during the course of the audit.

3.4.1.4 Steps

1. The CM IA team will select from the project, at least five percent of the CIs of each type that exists in the system. At least one CI of each type that exists in a system will be reviewed.

2. The Secretariat will provide the CM IA team with requested CIs, CRs, and reports.
3. The Secretariat will create an agenda for the CM IA based on the scope of the materials provided, and will distribute the agenda to the CM IA members.

4. The CM IA team will review all CIs for completeness. The CM IA team will check that the Configuration Manager reviewed all CIs at the point they were initially entered into the tool.

5. The CM IA team will review all CRs for completeness. The CM IA team will check that all CRs followed proper approval procedures. The CM IA team will also check that all completed CRs followed proper approval/disapproval procedures before being completed. All CRs that have been neither approved nor disapproved for more than 30 days will be noted.

6. The CM IA team will review all reports for completeness of content. The CM IA will check that the reports were produced in a timely fashion.

7. The CM IA team will inspect the backup facility. The CM IA team will check that backups are being run properly.
8. The Configuration Manager will review all findings with the CM IA team.

9. The Secretariat will create minutes documenting the audit and distribute them to all participants. The Secretariat will produce the CM IA report reflecting the outcome of the CM IA and deliver it to the Configuration Manager.

10. The Configuration Manager will review and approve/disapprove the CM IA Report. The Configuration Manager will deliver the approved CM IA Report to the IC Project Manager(s). The Configuration Manager will send disapproved CM IA Reports back to the CM IA team with a list of deficiencies to be corrected.

3.4.2 Functional Configuration Audit Procedure

The FCA reviews CI development. FCAs are used to ensure that CIs are developed according to NIMS CM standards. The FCA inspects CIs to verify that they have passed through all defined stages of the NIMS Software Development and Integration Life Cycle.

The Configuration Manager will conduct an FCA on all CIs that comprise the production baseline immediately prior to its establishment. CIs may not be baselined unless they pass an FCA to the satisfaction of the Configuration Manager.

If the Configuration Manager determines from the FCA report that CIs should not be implemented as a production baseline, a CI deficiencies report will be produced. The CI deficiencies report will be sent to the CI’s development team. The development team responsible for the CI(s) in question will make corrections to the CI(s) based on the CI deficiencies report. The Configuration Manager will use the CI deficiencies report while conducting any follow-up FCA audits.

The FCA will provide answers to the following:

· Have NIMS CM standards been properly followed?

· Have NIMS CM procedures been followed in conducting change?

· Are all related CIs up to date?

· Did all CIs follow proper CM library check-in/check-out procedures?

· Did the Configuration Manager inspect all initial CI check-ins?

· Did the Configuration Manager inspect all CRs?

3.4.3 Physical Configuration Audit Procedure

The PCA reviews the CI development processes based on design. PCAs are used to ensure CIs are being developed and tested according to design specifications. PCAs are conducted concurrently with FCAs. The PCA will answer the following:

· Did all CIs properly implement all CRs?

· Do the CIs accurately reflect their design and development requirements?

· Were all CIs reviewed and tested at the predetermined points, and did the CIs pass the examinations?

· Is the CI the correct version number?

· Does the physical CI match the version stored in the CM library?

4 Software Release
4.1 Regular Software Release Process

Releases of updates that come as a result of change requests made in response to non-mission critical interruptions in business, or an area of improvement has been identified. Resolution of these items can include updates to COTS software applications.
4.1.1 Development

Open defects reported in the change request system are used to open ClearCase activities to resolve defects. The development teams are responsible to work on their assigned activities, unit test the resolution, and update/create related documentation and deliver the completed activities to Configuration Management (CM).
4.1.2 Integration Contractor (IC) Test

CM will schedule a code freeze on Tuesday of each week at the close of business (COB). The code freeze will indicate that all delivered activities are ready to be tested. CM will then generate deployment packages for the test environment. CM will mark the code freeze in ClearCase with a baseline label.

CM will release the deployment packages to the IC Test environment by COB the day after the scheduled code freeze. IC testers are responsible for the installation, configuration, and testing of the deployed activities in the IC Test environment.

IC testers will verify the developer’s fix to the described defect within the change request. The tester will use a defined plan to perform the verification. The plan will outline the required procedures to verify the fix and the expected and actual outcomes of the test. All inputs and outputs to the verification will be archived in ClearCase. If the fix passes the verification, the verifying tester will change the disposition of the change request to IC Verified. If the fix fails the verification, the tester will email this result, with test documentation attached, to the developer so, the developer can resubmit a fix for the failed change request.
4.1.3 FAA Test Facility

CM will schedule quarterly software releases to the FAA Test Facility. CM and IC testers will provide a list of change requests, ClearCase activities, a list of changed files, installation instructions, the change request’s description, and compile this information into a release notes document.

CM will provide the IC System Administrator (SA) with a list of files and directories verified on the IC Test environment. With this list the SA will generate deployment packages to be installed at the FAA Test Facility. The SA will stage the packages so CM can create a disc image to be burned onto a CD.

Four copies of the disc image will be created by CM and labeled with the information to indicate the released baseline. One copy will be released for the FAA Test Facility, two for the Technical Officer’s Representative (TOR), and one for the IC.

4.1.4 Production

The IC will schedule semi-annual releases, March and September, for the regular release process. The release will include as appropriate the tested adaptations, COTS upgrades, COTS patches, operation system upgrades, and firmware upgrades.

4.2 Emergency Software Release Process
Release of updates that come as a result of change requests made in response to sudden or unpredicted behavior results in the inability to perform mission-critical business functions. The release schedule will be accelerated to respond to the error condition identified in the production environment.
4.2.1 Development

The developer assigned to fix the emergency defect will follow the change request and development processes defined in Section 4.1.1.

4.2.2 Integration Contractor (IC) Test

CM will schedule a code freeze on the day the developer delivers the fix. CM and IC testers will follow the distribution and testing processes defined in Section 4.1.2.
4.2.3 FAA Test Facility

CM and SA will follow the packaging and distribution processes defined in Section 4.1.3.

4.2.4 Production

After the FAA testers verifies the fix at the FAA Test Facility the IC will immediately release the emergency fix to the production environment defined in Section 4.1.4.

5 CM Resources

NIMS Configuration Management personnel currently consists of two people:

· Cecilia Olumba, Configuration Manager

· Kathy Pearson, CM Engineer & Secretariat

Specific roles and responsibilities are still being identified. This section will be updated frequently.
6 Software Development and Integration Life Cycle

The NIMS Software Development and Integration Life Cycle is a three phased process including:

1) Requirements and Specification Phase
2) Design and Implementation Phase
3) Testing and Acceptance Phase

[image: image4]
Figure 5. Software Development and Integration Life Cycle Phases
6.1 Requirements and Specifications Phase

New requirements including enhancement and defect change requests are continuously generated from a myriad of sources, of which the most common are the End Users, FAA Test Team Members, and NIMS Product Team Members. All requirements are defined in the NIMS System Level Specification (SLS) and tracked accordingly. All requirements are given an SLS number that is used as a reference for all specification, design, implementation, and testing deliverables associated with that requirement. Once a requirement has been accepted, specified, and allocated to a spiral and\or phase, it is ready for Design and Implementation. Efforts to document the Unit, Integration, and System Test plans also begin at this time.
6.2 Design and Implementation Phase

6.2.1 Design

The Design portion of this phase serves as a first attempt by the NIMS Development team to outline a possible solution for a specific or group of requirements. The result of this effort is a Detailed Design Document. As part of the Detailed Design Document the responsible integrator(s)\developer(s) should include, if applicable, a System Sequence Diagram as well as a Conceptual Model, which serves as a general picture of the associations required by different components in the system, as well as their individual attributes.

With these two basic components outlined, there are other design aspects that should be completed next. A list of System Associations should be defined in order to establish system behavior, as System Associations describe the effect of operations upon the system. Finally, a General Interface Specification should be formalized including architectural details, look and feel particulars, and any standards that should be followed during Implementation. The IC team is also responsible for providing a Level of Effort (LOE) to assist the NIMS Project Managers in establishing project benchmarks.
During the Design phase of the Software Development and Integration Life Cycle a series of Design Reviews will be held regularly to assure that the final Design meets the specific requirements as defined by the SLS, and to measure progress.
6.2.2 Implementation

The Design Document is essential to this phase, as all coding and scripting is performed based on the information found in this document. At this point, all change requests and additional requirements must go through formal change control procedures, and design changes must be kept to a minimum and only performed when the design set forth in the Design Document fails to adapt to the realities of the environment. Any new change requests or requirements that are approved after Implementation has begun must be reflected in the Design Document and versioned accordingly.

6.3 Testing and Acceptance Phase

The Testing and Acceptance Phase consists of three separate levels of testing and should abide by the schedule of the associated Test Plan. These three levels are:
1) Unit Testing

2) Integration Testing

3) Operational Testing

6.3.1 Unit Testing

Realistically the Unit Testing phase and the Implementation phase will overlap, as the programming and scripting efforts are completed this testing will begin. The Unit Testing phase also serves as a formal step between Implementation and Integration testing. The Unit Test Plan will document all Unit Tests to be performed and will assert that all of the tests were successfully passed. The purpose of Unit Testing is to assess the functional behavior of individual components as defined by the requirements and designs. These tests are written and performed by the IC developers.
6.3.2 Integration Testing
The integration Testing effort is performed to assure that the deliverable meets all of the expected requirement(s) based on the SLS and also to assure that the communication between different components is working properly. Prior to handoff from the NIMS IC Team to the FAA, this effort will demonstrate that the FAA Operation Test (OT) team will be given the best possible product to begin the OT effort. The Integration Test Plan will be updated at the completion of the testing effort and will then be delivered to the OT team for reference prior to the Operational Test Readiness Review.
The Integration Test phase will consist of two independent efforts, Progression and Regression test execution:

6.3.2.1 Progression Testing

Progression Testing should demonstrate that the new functionality that was planned for the new release actually exists and operates properly based upon the specified requirement(s). The test cases for this effort will be derived from the SLS requirements, Detailed Design Document, and the Unit Test Plan. This effort may also identify cosmetic enhancements that may be made prior to or after release.

6.3.2.2 Regression Testing

Regression Testing is designed to assure that none of the pre-existing functionality has been negatively affected as a result of introducing new functionality and/or enhancements. The test cases will be scripted to perform all of the basic operations that existed prior to the integration of the new functionality for the release.

6.3.2.3 Performance Testing

Performance Testing is a form of testing that provides a relative measure of the capacity, stability, and scalability of a given system under expected user conditions prior to deployment and that aims to assure that the system performs in accordance with operational specifications as stated in the relative to an operationally agreed upon industry standards, or in relation to an established operational profile.
6.3.2.4 Test Builds
Both the Progression and Regression testing efforts will consist of two or more Test Builds. Each build will consist of numerous test cases.

As defects in the system are identified as a result of test case execution, change requests will be created and tracked within the NIMS Change Control Tool, ClearQuest. Once the initial Test Build (Build 1) is completed, meaning each of the test cases has been executed and all CRs have been fixed, then the next build (Build 2) will begin. Test Build 2 will consist of the exact same test cases from the initial build. If a questionable number of problems are identified in Build 2, then a third Test Build may be planned once the identified defects are repaired.

The Integration Test Plan will outline the exact test cases executed, available resources to execute the test cases, expected results, and IT schedule. This plan will be managed carefully and updates will be made frequently to demonstrate the status of the testing effort and any critical paths that may arise.
Once the Integration Test effort has come to an end and the expected results are met, the Integration Test Plan will be updated with the test results and submitted to the Operational Testing team as the Integration Testing Report to properly communicate what functionality has been implemented, tested, and delivered. Upon review/approval of this document and the results of the Integration Test effort the system will be migrated to the FAA Testing facilities for Operational Testing.
6.4 Operational Testing

The Operational Testing effort is conducted by FAA Testing personnel with full support from the IC Development and Testing teams. Operational Testing will be conducted based upon FAA testing standards and regulations. Anomalies identified during Operational Testing will be reported back to the IC Team for change control and managed accordingly.
7 Versioning Standard

In order to more clearly identify NIMS deliverables, a versioning standard has been established for both the individual components and NIMS Adaptations. This standard was modified from the original format after the first deployment of the NIMS Adaptation software to allow separate releases for individual components possible. This section outlines the versioning standard for all NIMS software components. This versioning standard will allow NIMS to better manage the source code, build archives, media, documentation, technical issues, and the project plan.
7.1 Component Versioning Standard

Figure 6. Component Versioning Standard

7.1.1 Spiral Number

Identifies the spiral number of a NIMS component as defined in the project’s work plans. The Spiral Model is a risk driven process model generator based on a cyclic approach to incrementally growing a system’s degree of definition and implementation.

7.1.2 Build Number

Identifies the build number of the NIMS component as defined in the project’s work plans. Spirals may be made up of multiple builds or a single build. Each NIMS component can be at a different build number, allowing the flexibility for each component to deliver when ready and not to be held up for another component (unless functionality requires).
7.1.3 Drop Number

Identifies the drop number of a particular component that has already been released. The NIMS IC Team delivers all component functionality and enhancements via “drops” or deliveries. For example: if the IC Team is building Netview v2.1, when the development team releases the first software deliverable the version number will be Netview 2.1.1. The second drop of this component with new enhancements and\or fixes will be versioned as Netview 2.1.2.
7.2 NIMS Adaptation Versioning Standard

Figure 7. Project Versioning Standard

7.2.1 Spiral Number

Identifies the spiral number of the entire NIMS Adaptation deliverable as defined in the project’s work plans. The Spiral Model is a risk driven process model generator based on a cyclic approach to incrementally growing a system’s degree of definition and implementation.

7.2.2 Build Number

Identifies the build number of the NIMS Adaptation as defined in the project’s work plans. Spirals may be made up of multiple builds or a single build. NIMS Adaptation builds are considered major releases and this number is only increased when major changes are applied to the system. Minor upgrades to individual components within the NIMS Adaptation may be upgraded without changing this number. The CM Build Schedule (see Appendix D) records which versions of the individual components make up the NIMS Adaptation and is updated as drops occur. For example:

NIMS Adaptation 2.1 may consist of:

· Netview 2.1.11

· TEC 2.1.12

· SC 2.1.25

· TMR 2.1.3

· Etc…
8 Secure Off-Site Storage Procedures
8.1 Purpose
The purpose of this section is to clearly define the process of off-site storage of all monthly CM Library back-up tapes. The primary reason for secure off-site storage procedures is to guard against fire or other catastrophe to the NIMS Development Lab.
8.2 Storage Procedures
8.2.1 Deposit Preparation

· The repository back-up system supports 4mm and 8mm tapes.
· All NIMS CIs are backed up from the CM to magnetic media tapes on a monthly basis.
· Two copies of the materials on magnetic media will be produced to protect against media errors and labeled by date. One copy is to remain at the NIMS Development Lab.
· NIMS Development team members will reload the magnetic tapes to check for errors before storing the second copy off-site at the NIMS Premier Facility (NPF).
· Included in each deposit will be one copy of the complete set of the materials and an inventory list of each item of the deposit.
8.2.2 Deposit

· Once the materials have been prepared by NIMS Configuration Management team, they will be delivered by the Configuration Manager to the NPF.
· The materials will be stored and locked.
9 Compilation and Build Procedures

The NIMS Compilation and Build Procedures are in progress. Detailed information is forthcoming.

10 Media Production Procedures

NIMS media is produced by Configuration Management personnel on the eve of each release. The procedures for media production are as follows:

10.1 Staging Environment Preparation

Prior to producing the actual media, a staging environment is built to store all of the data to be distributed. The data is drawn from the NIMS source management tool, ClearCase, and organized by disc. The staging environment is constructed in a stable and secure environment and consists of a group of storage directories.

10.2 Label Production

All NIMS media for distribution must be properly labeled. A template is used to create labels and the template is a versioned configuration item. All labels include the project name, component(s) name, and version number. Labels are to be applied AFTER media testing has been completed successfully.

10.3 Media production

All deliverables are burned onto CD-R 700MB compact discs. The CD burner is located at the NIMS Development Lab along with the other required supplies such as: write-able CDs, jewel case, and blank printer labels.

10.4 Media inventory

Any media that is produced as a deliverable is inventoried and assigned a NIMS tracking number. This number is applied to the CD and the CD case. All NIMS media is stored in the NIMS software library or on-site at a NIMS Development Lab.
11 Approval Signatures

We, the undersigned, accept this document as a stable work product to be placed under formal change control as described by the Change Control Procedure document.

Signed:
Date:

AOP-10
Signed:
Date:

AUA-750
Signed:
Date:

AOP-1000
Appendix A: Definitions, Acronyms, and Abbreviations

	CI
	Configuration Item

	CM
	Configuration Management

	CR
	Change Request

	CCB
	Change Control Board

	CCP
	Change Control Procedure

	CMA
	Configuration Management Audit

	CMP
	Configuration Management Plan

	COTS
	Common Off The Shelf (software products)

	CSA
	Configuration Status Accounting

	FCA
	Functional Configuration Audit

	IA
	Internal Audit

	PCA
	Physical Configuration Audit

	PMP
	Program Management Plan

	QA
	Quality Assurance

Allocated baseline: The initial, approved specifications governing the development of configuration items that are part of a higher level configuration item. Each specification defines the functional characteristics that are allocated from those of the higher level configuration item, establishes the tests required to demonstrate achievement of its allocated functional characteristics, delineates necessary interface requirements with other associated configuration items, and establishes design constraints, if any.

Allocated configuration identification: The approved allocated baseline plus approved changes.

Auditing: An element of configuration management that consists of independent examinations of work products and activities to assess compliance with designated criteria. For example, see configuration audit and software baseline audit.

Baseline: A specification or product that has been formally reviewed and agreed upon, thereafter serves as the basis for further development, and can be changed only through formal change control procedures.

1. A document or a set of such documents formally designated and fixed at a specific time during the lifecycle of a configuration item.

Block change concept: Once a product baseline is established, the accumulation and simultaneous implementation of a number of routine software changes to minimize the number of interim versions and related documentation.

Build: An operational version of a system or component that incorporates a specified subset of the capabilities that the final product will provide.

Change control: The process and procedures to identify, document, review, and authorize any changes to the software under configuration management. See also configuration control.

Change history: A description of how and why a revision of an item differs from its predecessors.

Computer program configuration item (CPCI): A configuration item for computer software.

Computer software configuration item (CSCI): A configuration item for computer software.

Configuration: The functional and physical characteristics of hardware or software as set forth in technical documentation or achieved in a product.

Configuration audit: See functional configuration audit and physical configuration audit.
Configuration control: An element of configuration management that consists of the systematic proposal, justification, evaluation, coordination, approval or disapproval of proposed changes, and the implementation of approved changes in the configuration of a configuration item (CI) after the configuration baseline(s) has been established for the CI. See also change control.

Configuration identification:

1. An element of configuration management that consists of selecting the configuration items for a system and recording their functional and physical characteristics in technical documentation.

2. The current approved technical documentation for a configuration item as set forth in specifications, drawings, associated lists, and documents referenced therein.

Configuration item (CI):

1. An aggregation of hardware or software or both that is designated for configuration management and treated as a single entity in the configuration management process.

2. A work product that is placed under configuration management and treated as a single entity.

Configuration management (CM): A discipline that applies technical and administrative direction and surveillance over the lifecycle of items to

· Identify and document the functional and physical characteristics of configuration items.

· Control changes to configuration items and their related documentation.

· Record and report information needed to manage configuration items effectively, including the status of proposed changes and implementation status of approved changes.

· Audit configuration items to verify conformance to specifications, drawings, interface control documents, and other contractual requirements.

The four key elements of configuration management are

1. Configuration identification.

2. Configuration control.

3. Configuration status accounting.

4. Auditing.

Configuration management library system: The tools and procedures to access the software baseline library.

Configuration status accounting: An element of configuration management that consists of the recording and reporting of information needed to manage a configuration effectively. This information includes a listing of the approved configuration identification, the status of proposed changes to the configuration, and the implementation status of approved changes.

Deltas: A technique to store versions by storing only the differences between versions as opposed to storing each version in its entirety. Forward deltas store the oldest version in its entirety and later versions as deltas. Reverse deltas store the most recent version in its entirety and previous versions as deltas.

Developmental configuration: The software code and associated documentation that define the evolving configuration of a computer software configuration item between the allocated baseline and the product baseline.

Developmental configuration management: The application of technical and administrative direction to designate and control the developmental configuration. Developmental configuration management is under the developing organization’s control.

Dynamic library or programmer’s library: A library used to hold newly created or modified software entities. This library is controlled by the programmer.

Engineering change: An alteration in the configuration of a configuration item or other designated item after formal establishment of its configuration identification.

Engineering change proposal (ECP): A proposed engineering change and the documentation by which the change is described and suggested.

Functional baseline: The initial, approved technical documentation for a configuration item. It prescribes all necessary functional characteristics, the tests required to demonstrate achievement of specified functional characteristics, the necessary interface characteristics with associated configuration items, the configuration item’s key functional characteristics and its key lower level configuration items, if any, and design constraints.

Functional configuration audit (FCA): An audit conducted to verify that the development of a configuration item has been completed satisfactorily, that the item has achieved the performance and functional characteristics specified in the functional and allocated configuration identification, and that its operational and support documents are complete and satisfactory.

Functional configuration identification: The approved functional baseline plus approved changes.

Man Hour Estimation (MHE): Approximate number of man hours to complete a particular task. The MHE is used in project planning and scheduling efforts to establish project benchmarks.
Physical configuration audit (PCA): An audit conducted to verify that a configuration item, as built, conforms to the technical documentation that defines it.

Product baseline: The initial, approved technical documentation defining a configuration item during the production, operation, maintenance, and logistic support of its lifecycle. It prescribes all necessary physical characteristics of a configuration item, the selected functional characteristics designated for production acceptance testing, and the production acceptance tests.

Product configuration identification: The approved product baseline plus approved changes.

Release: A configuration management action whereby a particular version of software is made available for a specific purpose.

Revision: A version that supersedes an earlier version, typically, to correct errors as opposed to a version that is an alternative version. See also variant.
SCM group: A collection of departments, managers, and individuals who are responsible for coordinating and implementing software configuration management for a project.

Software baseline audit: An audit by the SCM group to verify that a software baseline conforms to the documentation that defines it.

Software baseline library: The contents of a repository for storing configuration items and the associated SCM records.

Software configuration control board (SCCB): A group responsible for evaluating and approving or disapproving proposed changes to configuration items and for ensuring implementation of approved changes. Configuration control boards can be hierarchical.

Software configuration management (SCM): Configuration management applied to software systems. SCM involves identifying the configuration of the software at given points in time, systematically controlling changes to the configuration, and maintaining the integrity and traceability of the configuration throughout the software lifecycle.

Specification change notice (SCN): A document used in configuration management to propose, transmit, and record changes to a specification.

Variant: A version that is an alternative of another version. For example, variants allow a configuration item to meet conflicting requirements. Also called variation. See also revision.

Version: An instance of a configuration item. Once a version is baselined it cannot be changed without creating a new version.

Version control: A means to identify and manage configuration items as they change over time, usually provided by a software tool designed for configuration management.

Version description document (VDD): A document that accompanies and identifies a given version of a system or component. Typical contents include an inventory of system or component parts, identification of changes incorporated into this version, and installation and operating information unique to this version.

Work product: Any artifact from defining, maintaining, or using a software process.

Appendix B: Change Review Board Members

Integration Contractor Change Review Board (IC-CRB):

· CRB Chairman: Mike Sparks or appointed FAA representative
· IC Program Managers: Kelvin Medlock, Atacan Donmez, Adam Nouravarsani
· IC Software Development Lead(s): Mythili Kannan, Gregory Byrd

· IC Quality Assurance Manager\Lead(s): Narayanan Potti
· IC Documentation Manager\Lead(s): TBD

· IC Configuration Manager: Jason Tapp

· IC Secretariat: Kathy Pearson
NIMS Change Review Board (NIMS-CRB):

· CRB Chairman: Richard Simmons

· CRB Co-Chairman: Jim Robb

· FAA-IC TOR: Mike Sparks

· Integration Contractor (IC) Program Managers: Atacan Donmez, Kelvin Medlock, Adam Nouravarsani
· Engineering Support Lead: Al Beard

· Work Group Lead(s) (as needed): Bev Clark, Bob Tyo, Gary Dickinson, Ron Jennings, Joe Talley, John Shea, Charlotte Powell , Howard Shectman, Kevin Lambreth
· Spiral Lead(s): Gary Dickinson (9), Mike Sparks (2 and 5a)

· AOP-1000 Representative: TBD

· AOS Representative: Lou Hodac
· Configuration Manager: Jason Tapp

· Secretariat: Kathy Pearson
Appendix C: Change Request Submission Form
[image: image5.jpg]
Appendix D: Change Request Generated Report
TTR#
ENHANCEMENT #
TYPE
STATUS
DISPOSITION
COMPONENT
SEVERITY
PRIORITY

001
Defect
Closed
PT Verified
PROXY
4-Minor
3-Normal Queu

DESCRIPTION:

In NetView, in the DPUnits and DPValue columns of logical unit data tables, h was displayed for null values

NIMS Version
SUBMITTER_TRACKING
SUBMITTED BY:
OWNER:
PMR#:

 #:v1.0.1

Tomra Condon

Mythili
CHRONOLOGY:

3/25/03: Fixed through NetView script (version of Tivoli SNMP we are using does not support this function)
5/15/03 - Per T. Condon, Titan/ACB-240, problem was corrected. TTR is closed.
7/17/03 - Per F. Bayne, ACB-240, after this TTR was closed, the DPUnits column was deleted. Thus, this TTR is no longer applicable.

04/02/03: Per F. Bayne, ACB-240, to resolve TTR 321, the Units column was reinserted into the Data Point Table in Version 2.3.

Requirements

and

Specifications

Testing

and

Acceptance

Configuration Management

Design

and

Implementation

Software Development and Integration Life Cycle Phases

Example:

FAA Order

1800.66

NAS-MD-001

FAA Order

1800.8E

AOP CCB

Charter

MIL-STD-2549

ICMM

PA16

NIMS IPP

Drop Number:

Identifies the drop number of a build.

AMS

NIMS

CM

Plan

Build Number:

Identifies the build number of a

component spiral.

Spiral Number:

Identifies the project spiral of

a component.

2.1.5

Example:

Fix defects and resolve all failed test cases

Fix defects and resolve all failed test cases.

Build

 3

Build

 2

Build

1

Change

Formal Change Control

Informal Revision Control

Final Acceptance

and Acceptance

Formal Review

Released

Accepted

Development

Change

Begin Development of Next Product Version

Created

Standard Operating Procedures

For the

AOP Configuration Control Board

Build Number:

Identifies the build number of a NIMS Adaptation spiral.

Spiral Number:

Identifies the spiral number of

a NIMS Adaptation.

2.1

Formative

PAGE

