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Executive Summary

Although a considerable amount of research has focused 
on the relationship between sector characteristics and 
controller workload or perceived complexity, relatively 
few studies have examined the relationship between 
sector characteristics and the occurrence of operational 
errors (OEs). In many early studies of OE causal factors, 
examinations of sector characteristics were limited to 
purely theoretical relationships or to traffic counts and 
altitude transitions of the involved aircraft. When sector 
characteristics were examined, they consisted primarily 
of ratings rather than objective measures. Most of this 
work has been conducted without reference to routine 
operations (ROs).  Yet, for every OE that occurs i n a 
sector, there are hundreds (possibly thousands) of hours 
in which an OE did not occur. To truly understand the 
environmental and contextual factors that contribute to 
OEs, it is necessary to identify what was different about 
the sector environment at the time the OE occurred.

In the present study, OE and RO traffic samples were 
compared using logistic regression analysis. Two separate 
logistic regression analyses were conducted for low- and 
high-altitude sectors. The OE sample was drawn from 
119 OEs occurring in the Indianapolis en route airspace 
from 9/17/2001 through 12/10/2003. Of these, 40 oc-
curred i n the low-altitude sectors and 79 occurred i n 
the high-altitude sectors. The RO traffic samples were 
recorded between 5/8/2003 and 5/10/2003.  These 
data were processed in 5-minute intervals using custom 
software designed to calculate objective measures from 
routinely recorded National Airspace System (NAS) data. 
This produced a total of 2763 RO traffic samples. The 
79 high-altitude OE traffic samples were combined with 
79 randomly-selected high-altitude RO traffic samples 
to produce a total of 158 traffic samples for the high-
altitude sector analysis

In logistic regression analysis of the low-altitude sec-
tor samples, Average Control Duration, the Number of 
Handoffs, the Number of Heading Changes, the Number 
of Intersecting Flight Paths, the Number of Point Outs, 
and the Number of Transitioning Aircraft were submitted 
as the initial set of predictors. Backward stepwise elimina-
tion reduced the variables in the final low-altitude sector 
model to the Number of Intersecting Flight Paths, the 
Number of Point Outs, and the Number of Handoffs. 
In the low-altitude sector model, each intersecting flight 
path increased the likelihood that the traffic sample was 
an OE by 189%, each point out increased the likelihood 
by 57%, and each handoff increased the likelihood that 
the traffic sample was an OE by 19%. Of the 40 ROs in 
the low-altitude sample, 32 (80%) were correctly classified 

and 8 (20%) were misclassified as OEs. Of the 40 OEs 
in the sample, 28 (70%) were correctly classified and 12 
(30%) were misclassified as ROs. Overall, the low-altitude 
model had 75% classification accuracy.

In logistic regression analysis of the high-altitude sec-
tor samples, Average Control Duration, the Number of 
Handoffs, the Number of Heading Changes, the Number 
of Intersecting Flight Paths, the Number of Point Outs, 
and the Number of Transitioning Aircraft were submit-
ted as the i nitial set of predictors.  Backward stepwise 
elimination reduced the variables in the final high-alti-
tude sector model to the Number of Intersecting Flight 
Paths, the Number of Heading Changes, the Number of 
Transitioning Aircraft, and Average Control Duration. 
In the high-altitude sector model, each one-unit increase 
in the Number of Intersecting Flight Paths increased the 
likelihood that a traffic sample was an OE by 100%, each 
one-unit increase in the Number of Heading Changes 
increased the likelihood by 36%, every Transitioning 
Aircraft increased the likelihood by 27%, and each one-
second increase in Average Control Duration increased 
the likelihood by 1%. Of the 79 ROs in the high-altitude 
sample, 64 (81%) were correctly classified and 15 (19%) 
were misclassified as OEs. Of the 79 OEs in the sample, 
60 (76%) were correctly classified and 19 (24%) were 
misclassified as ROs. Overall, the high-altitude model 
had 79% classification accuracy.

The results of the logistic regression analyses indicate 
that sufficient models may be constructed from sector 
characteristics variables. Overall classification accuracy be-
tween 75-79% is remarkable for models constructed solely 
of environmental and contextual factors. After all, other 
factors (e.g., human elements, organizational influences) 
also contribute to the occurrence of OEs. Unfortunately, 
all the logistic regression models were better at classifying 
ROs than OEs. Classification of OEs ranged from as low 
as 70% in the low-altitude sector sample to 76% in the 
high-altitude sample.  Although this level of accuracy 
would be unacceptable for most automation tools, it is 
unrealistic to expect definitive results from one or two 
analyses. Moreover, the sector characteristic variables used 
in these analyses do not represent an exhaustive list of all 
the potential predictors of OEs.

Although logistic regression cannot be used to identify 
causal factors directly (i.e., prediction is not the same as 
causation), the logistic regression coefficients do provide 
information about the likelihood of an OE relative to the 
predictors in the model. Thus, the results have immedi-
ate heuristic v alue i n that they i nvite questions about 
how the dynamic predictors i nteract with static sector 
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characteristics.  Dynamic elements lend themselves to 
automation applications, but static characteristics must be 
addressed for sector restructuring. The dynamic predictors 
that make up the logistic regression models are indicants 
of conditions that discriminate between OEs and ROs. 
These indicants may be used to reveal aspects of the sector 
environment that might be altered to reduce the number 
of OEs. For example, the combination of the Number 
of Point Outs and the Number of Handoffs in the low-
altitude sector model may indicate that the location of 
sector boundaries increases coordination workload and 
complexity. On the other hand, the combination of the 
Number of Point Outs and the Number of Intersecting 
Flight Paths may point to problems with the orientation 
of traffic paths relative to those boundaries. The com-
bination of the Number of Heading Changes and the 

Number of Transitioning Aircraft i n the high-altitude 
sectors is suggestive of traffic complexity in high-altitude 
sectors adjacent to low-altitude arrival or departure sec-
tors. Average Control Duration may be a function of the 
size of high-altitude sectors.

Given the sample size and consequent restriction of 
the predictor set, there is no guarantee that these results 
will generalize to other samples. Multiple studies, with 
samples sizes that allow for a more inclusive list of predic-
tors, must be conducted at a number of facilities before 
such models might be reliable enough for practical ap-
plications. Nevertheless, the methodology of comparing 
OE and RO traffic samples i s promising.  Continued 
investigations along these lines may highlight complexity 
factors that must be addressed to ensure that separation 
is maintained.
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Environmental Systems (ACES), average complexity and 
density ratings drawn from the 1995 annual facility review, 
and complexity factor ratings provided by one Airspace 
and Procedures specialist from each area in the facility. 
Several statistical techniques were employed to predict 
OE occurrence in the Atlanta sectors. In a linear multiple 
regression analysis, ratings of radio frequency congestion 
and the effects of restricted airspace accounted for 31% 
of the variance i n the number of OEs per sector. The 
same two predictors generated a function that classified 
OE frequency groups (i.e., sectors with no OEs, fewer 
than four OEs, and sectors with four or more OEs) with 
58% accuracy in a discriminant function analysis. Ratings 
of weather influences, radio frequency congestion, and 
complexity were significantly different in a MANOVA of 
OE frequency groups. The authors stated that the overall 
Hotellings F(16, 68) = 1.60, p = .094 of the MANOVA 
was acceptable due to the exploratory nature of the study 
and emphasis on data exploration. Sector size failed to 
emerge as a significant contributor in any of these mod-
els, but a t-test between the combined no- and low-OE 
groups and the group consisting of sectors with four or 
more OEs was statistically significant (p<.05).

In both the Grossberg (1989) and Rodgers, Mogford, 
and Mogford (1998) studies, sector characteristics were 
evaluated against the number of OEs per sector. The risk 
of OE occurrence increases as a function of the number 
of hours a sector is in operation (i.e., exposure increases 
the risk of occurrence). If OE incidence is not adjusted 
for this, the internal validity of the analysis may be com-
promised. However, there is no evidence to suggest that 
these adjustments were made in either study.

Another disadvantage of OE incidence as a dependent 
variable i s that i t restricts the number of i ndependent 
variables that may be analyzed without detriment to 
external validity. With most statistical analyses, the risk 
that results will fail to generalize increases as the number 
of independent variables approaches the number of cases. 
In spite of this, Rodgers, Mogford, and Mogford (1998) 
submitted 28 predictors for stepwise linear multiple 
regression analysis of OE incidence in 45 sectors at the 
Atlanta ARTCC (i.e., a ratio of 1.6 cases for each predic-
tor). A correlation matrix of the predictors revealed 26 
comparisons with r ≥ . 60. The authors relied on tests 
for tolerance i n the stepwise procedure to eliminate 
redundancies and reduce the number of v ariables i n 
the predictor set. However, in stepwise linear multiple 

In the current Air Traffic Control (ATC) system, an 
Operational Error (OE) occurs when there is a violation of 
aircraft separation minima as defined by Federal Aviation 
Administration regulations (FAA, 2007). Although the 
FAA has called for a reinvention of the National Airspace 
System (NAS), i t i s reasonable to assume that future 
systems will also include some kind of aircraft separation 
standards. As changes to procedures and airspace structure 
are being considered, it becomes increasingly important 
to understand the environmental and contextual factors 
(often referred to as sector characteristics) that contrib-
ute to the loss of separation to ensure that safety is not 
compromised.

A considerable amount of research has focused on the 
relationship between sector characteristics and controller 
workload or perceived complexity (e.g., Buckley, De-
Barysche, Hitchner, & Kohn, 1983; Chatterji & Sridhar, 
2001; Christien & Benkouar, 2003; Kopardekar & Mag-
yarits, 2003; Laudeman, Shelden, Branstrom, & Brasil, 
1998; Mogford, Murphy, & Guttman, 1994; Robertson, 
Grossberg, & Richards, 1979). However, relatively few 
studies have examined the relationship between sector 
characteristics and the occurrence of OEs. In many early 
studies of OE causal factors, examinations of sector char-
acteristics were limited to purely theoretical relationships 
(e.g., Arad, 1964; Schmidt, 1976) or to traffic counts and 
altitude transitions of the involved aircraft (e.g., Kershner, 
1968; Schroeder, 1982; Spahn, 1977).

Grossberg (1989) expanded on this by collecting 
ratings from 97 controllers and supervisors regarding 
various aspects of the sector environment.  He found 
that the highest-rated sector complexity factors i n the 
Chicago Air Route Traffic Control Center (ARTCC) 
were control adjustments (e.g., merging, spacing, and 
speed changes), climbing and descending flight paths, 
and mix of aircraft types. An index based on these factors 
was significantly correlated (r = .74) with the number of 
OEs occurring in 27 Chicago sectors over 21 months in 
1987 and 1988.

Rodgers, Mogford, and Mogford (1998) evaluated 
the relationship between sector characteristics and the 
incidence of OEs at the Atlanta ARTCC. OE data were 
extracted from Facility Operations and Administration 
reports for 85 OEs occurring over a three-year period 
from 1992 to 1995. Sector characteristics variables were 
derived from a number of sources and included static sec-
tor characteristics from the facility’s Adaptation Control 
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regression, a minimum of 40 cases for each predictor is 
necessary to ensure the solution will generalize to other 
samples (Tabachnick & Fidell, 2006).

Perhaps the biggest drawback to OE frequency as a 
dependent measure is that it affords no comparison with 
routine operations (ROs). Yet, for every OE that occurs 
in a sector, there are hundreds (possibly thousands) of 
hours during which an OE did not occur. Variables that 
correlate with sector OE frequency do not describe what 
was different about the sector at the time of the OE. 
To truly understand the environmental and contextual 
factors that contribute to OEs, it is necessary to identify 
what was different about the sector environment at the 
time the OE occurred.

Pfleiderer and Manning (2007) conducted an investi-
gation to determine whether logistic regression analysis 
of objective sector characteristics could discriminate 
between OE and RO traffic samples. Prior to this study, 
investigations of the contribution of sector characteristics 
to the occurrence of OEs relied heavily on attributed 
causal factors and subjective ratings. Although interviews 
and ratings about the importance of complexity factors 
are beneficial i n the early stages of research, practical 
prediction models must eventually be calculated from 
objective measures. After all, it is the actual characteristics 
of the sectors that must be addressed when developing 
strategies to reduce OEs rather than opinions or beliefs 
about those characteristics. Two separate logistic regres-
sion analyses were performed for high- and low-altitude 
sector samples at the Indianapolis ARTCC (ZID).  In 
the high-altitude sector sample, a logistic regression 
model comprising the Number of Heading Changes, the 
Number of Transitioning Aircraft, and Average Control 
Duration was able to accurately classify 80% of the 
OE and RO traffic samples. In the low-altitude sector 
sample, variables included in the final model were the 
Number of Point Outs, the Number of Handoffs, and 
the Number of Heading Changes. This model was able 
to accurately classify 79% of the low-altitude OE and 
RO traffic samples.

Unfortunately, the Pfleiderer and Manning (2007) 
study was flawed. Available traffic data consisted of OEs 
from 9/17/2001 to 12/10/2003 and ROs from 2/25/2005 
to 3/3/2005. Clearly, the time differential between the 
OE and RO traffic samples was a confounding influence 
because it represented an uncontrolled, systematic dif-
ference between the two groups. 

A second problem with the Pfleiderer and Manning 
(2007) design involved pairing OE and RO traffic samples 
(by sector, day of week, and time of day). Logistic re-
gression analysis assumes that all cases are independent 
of one another. Violation of this assumption results in 
over-dispersion, which produces an inflated Type I error 

rate for tests of predictors (Tabachnick & Fidell, 2006). 
Although there is no reason to assume that errors would 
be correlated between the OE and RO traffic samples 
(particularly in light of the disparate time frames from 
which the samples were drawn), neither is there evidence 
to the contrary. Random selection of RO traffic samples 
would have guaranteed that the assumption of indepen-
dence had been met.

Another possible source of inflation for tests of predic-
tors involved the variables Number of Heading Changes 
and Number of Transitioning Aircraft. When controllers 
become aware that an OE is developing, they may issue 
clearances in an attempt to resolve the situation. Inclu-
sion of altitude or heading changes made in response to 
such clearances would i nflate the contributions of the 
Number of Transitioning Aircraft (based on the number 
of altitude changes) and the Number of Heading Changes 
as predictors of OEs. The choice of processing interval 
(four minutes prior to loss of separation and one minute 
after) may have magnified this effect.

In the present study, OE and RO traffic samples are 
again compared using logistic regression analysis, but some 
important modifications were made to the design. Both 
the OE and RO traffic samples used to build the logistic 
regression model were from 2003, thus eliminating the 
confound of the previous analysis. A randomly-selected 
sub-sample of the RO traffic data was designated for 
model building.  The remaining RO cases and traffic 
samples from OEs occurring in the ZID airspace from 
2001-2002 were set aside for cross v alidation. No at-
tempt was made to match the RO traffic samples to the 
OE samples, thus meeting the assumption of indepen-
dence and eliminating the potential for Type I errors for 
tests of predictors. The Number of Heading Changes 
and Number of Transitioning Aircraft were adjusted to 
eliminate changes made in response to control actions to 
avoid an imminent OE (described in detail in the Method 
section) to guard against inflated contributions by these 
two predictors. In addition, the processing interval for 
the OE traffic samples was changed to include only the 
five minutes prior to initial loss of separation.

Unfortunately, restricting the OE traffic samples to 
a single year reduces the sample size.  This prohibits 
separation of low- and high-altitude sector samples for 
individual analyses, even though there is reason to suspect 
they constitute heterogeneous sub-samples. To begin with, 
OE incidence differs between strata. Of 119 OEs in the 
full sample, 40 occurred in low-altitude sectors, and 79 
occurred in the high-altitude sectors. Inclusion of sector 
strata as a binary categorical variable would provide no 
information beyond this fact. Second, separate logistic 
regression analyses of the low- and high-altitude samples 
produced two very different models in the Pfleiderer and 
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Manning (2007) study.  It i s possible that combining 
low- and high-altitude sector samples would produce 
a model that fits the high-altitude sectors poorly and 
the low-altitude sectors not at all. Cross validation can 
be used to determine whether the 2003 data are similar 
enough to the 2001-2002 data to justify pooling the 
OE samples. If OE classification is similar in the model-
building and cross-validation results, this suggests that 
the model works equally well for both samples and that 
they may be similar enough to be pooled. If that is the 
case, the OE data will be pooled, and separate logistic 
regression analyses will be conducted for the low- and 
high-altitude sector samples.

The sector characteristics used as independent variables 
in this study are based on measures that have previously 
demonstrated a relationship with workload, complexity, 
or the occurrence of OEs. These variables are described 
in detail in the following paragraphs.

Predictor Variables
Average Control Duration. Aircraft control duration 

is influenced by a number of factors, including aircraft 
performance characteristics, Traffic Management Initia-
tives (TMI), and sector size – all of which have been as-
sociated with sector workload or complexity (Grossberg, 
1989; Mogford, Murphy, & Guttman, 1994; Pfleiderer, 
Manning, & Goldman, 2007). Average Control Duration 
is the mean of the durations (in seconds) of all aircraft 
controlled by the sector within a processing i nterval. 
Control time occurring before or after the interval was 
not included in the calculations.

Number of Handoffs. Although traffic count remains the 
best single predictor of the number of OEs on a national 
level, previous research suggests that it is not an effective 
predictor of OEs at the sector level (e.g. Schroeder, 1982; 
Schroeder, Bailey, Pounds, & Manning, 2006; Spahn, 
1977). Aside from doubts about its effectiveness as a pre-
dictor, perhaps the biggest drawback to traffic count is that 
it tends to be highly correlated with other traffic-related 
measures. As a result, traffic counts create redundancies 
that may overshadow more effective predictors. Handoffs, 
however, are correlated with the number of aircraft i n 
the sector, but they are not synonymous with it. In the 
ZID traffic samples used in this study (described in the 
Method section), the total number of aircraft and the 
total number of handoffs had a Spearman’s correlation of 
r

s
 = .66 (N = 2763). Handoff counts capture elements of 

communication workload and required attention. Handoff 
initiates (i.e., outbound handoffs from the current sector 
to another sector or facility) are generally associated with 
the i ssuance of a frequency change clearance. Handoff 
accepts (i.e., i nbound handoffs from another sector or 
facility to the current sector) are accompanied by an 

eventual (but not necessarily concurrent) verification that 
aircraft coming into the sector are tuned to the appropriate 
frequency. Handoff counts also provide information about 
coordination and required procedures.  Although most 
handoffs are fairly automatic, some require coordination 
with other sectors. In some instances, aircraft must com-
ply with altitude or other restrictions before they can be 
handed off or a handoff can be accepted. Handoffs may 
also reflect the impact of sector geography. According to 
Couluris and Schmidt (1973), the number of handoffs, 
coordination, and point outs “result from, or are influenced 
by, the existence and design (shape) of the sectors. The 
additional work created can be thought of as the cost of 
sectorization” (p. 657). The Number of Handoffs is the 
total number of handoff i nitiates and handoff accepts 
occurring within the 5-minute processing interval.

Number of Heading Changes. Heading changes have 
demonstrated a relationship with controller ratings of ac-
tivity (e.g., Laudeman et al., 1998), workload (e.g., Stein, 
1985), and complexity (e.g., Kopardekar & Magyarits, 
2003).  Heading changes are i nvolved with a number 
of procedures such as merging and spacing, Standard 
Terminal Arrival Routes (STARs), Standard Instrument 
Departure Routes (SIDs), and holding. The Number 
of Heading Changes is a count of all turns in excess of 
10 degrees per 12-second radar update that continue in 
the same direction for at least three updates. Heading 
changes made in an attempt to avoid an imminent OE 
were excluded from the counts for OE traffic samples. 
The criteria for these exclusions are described i n the 
Method section.

Number of Intersecting Flight Paths. This factor was 
one of the highest rated complexity factors in the high-
altitude and super high-altitude sectors in the Pfleiderer, 
Manning, and Goldman (2007) study, in which a sample 
of 32 controllers and 4 supervisors from ZID provided 
ratings for a set of 22 sector complexity factors. In ad-
dition, the Number of Intersecting Flight Paths was 
associated with a component (i.e., composite factor 
score) that demonstrated a reliable relationship with 
the number of OEs in the ZID sectors. A similar factor 
(several traffic flows converging at the same point) was 
among the top-rated complexity factors in an investiga-
tion of Maastricht airspace conducted by Eurocontrol 
(2006). The Number of Intersecting Flight Paths is the 
maximum number of flight paths that might be expected 
to intersect, irrespective of altitude, within a 10-minute 
projected time frame given the current speed and trajec-
tory of the aircraft. Projections were calculated at each 
12-second radar update within each minute of data. The 
length and slope of the projected paths were based on 
the distance and angle of the current and previous radar 
position coordinates.
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Number of Point Outs. Coordination between control-
lers was one of the events selected by Schmidt (1976) for 
his Control Difficulty Index even though he considered 
it to be one of the most difficult to process – with good 
reason. Coordination i s not often recorded. However, 
point out entries represent one of the few instances in 
which coordination between sectors i s recorded.  The 
Number of Point Outs is the total number of point out 
entries made by the Radar and Radar Associate controllers 
during the 5-minute processing interval.

Number of Transitioning Aircraft. The amount of climb-
ing and descending traffic has long been recognized as 
a contributor to the difficulty of working a sector (e.g., 
Arad, 1964). Grossberg (1989) observed that one of the 
factors most often identified as being responsible for sector 
complexity in the Chicago ARTCC was climbing and 
descending flight paths. More recently, Kopardekar and 
Magyarits (2003) found that the number of descending 
aircraft and the number of altitude changes greater than 
750 feet per minute both contributed significantly to the 
explanation of variance in a linear regression model of 
subjective complexity ratings collected at the Fort Worth, 
Atlanta, Cleveland, and Denver ARTCCs. The Number 
of Transitioning Aircraft represents the number of aircraft 
making one or more altitude changes during the 5-minute 
processing interval. To be counted as a change, altitude 
must increase or decrease by a minimum of 200 feet per 
12-second radar update and must continue to change 
in the same direction for at least three updates. Altitude 
changes resulting from last-minute clearances made in 
an attempt to avoid the OE were excluded from counts 
for the OE sample. The criteria for these exclusions are 
described in the Method section.

Exclusion of Static Predictor Variables
Sector complexity factors are generally described in two 

ways: static and dynamic (Mogford, Guttman, Morrow, & 
Kopardekar, 1995). The predictor variables just described 
represent dynamic sector characteristics because they 
change over time. Static sector characteristics are those 
that change infrequently or not at all and are generally 
related to airspace design (e.g., size of the sector, number 
of shelves or tunnels). Static sector characteristics may 
vary between sectors, but they do not vary within sectors. 
Consequently, the variance of static variables would be 
seriously limited in the present study because multiple 
OEs occurred in many of the same sectors in the sample. 
Even if static sector characteristics were related to OEs, 
it i s unlikely this relationship would be detected. For 
this reason, predictors were restricted to dynamic sector 
characteristics. These were submitted to logistic regres-
sion analysis to determine the degree to which they could 
discriminate between OE and RO traffic samples.

Method

Data Sources
Traffic Samples. All traffic samples were initially derived 

from System Analysis Recordings (SARs) generated by 
en route Host Computer Systems. The Host features 
data reduction programs that generate text reports of 
selected subsets of SAR data. The information used to 
calculate the predictor variables was extracted from Log 
and Track reports produced by one of these programs, 
the Data Analysis and Reduction Tool (DART).  Log 
reports include controller entries and information sent 
to the radar display and the auxiliary text display (e.g., 
data blocks and list items). Track reports contain detailed 
information (e.g., altitude, heading, ground speed, and 
position) from the Host computer’s internal radar track 
database.

OE traffic samples were derived from Systematic Air 
Traffic Operations Research Initiative (SATORI; Rodgers 
& Duke, 1993) files. SATORI files contain reconfigured 
DART information (i.e., log and track reports in a slightly 
different format). SAR data are difficult to obtain from 
facilities because they require a prohibitive amount of 
storage space. SATORI re-creations require less space and 
so these files are often the only traffic data saved after an 
OE. Therefore, the primary constraint on the size and 
range of the data set was the availability of SATORI re-
creations. SATORI data meeting processing criteria (i.e., 
five minutes prior to the initial loss of separation) were 
only available for 119 OEs occurring in the ZID airspace 
from 9/17/2001 through 12/10/2003. OE traffic samples 
from 2003 (n = 48) were used for model building, and 
the remaining OE traffic samples (n = 71) were used for 
cross validation.

The RO traffic samples were derived from ZID SAR 
data recorded on 5/8/2003 (15:55 to 17:05, 18:55 to 
20:10, and 20:50 to 22:15 ZULU), 5/9/2003 (0:00 to 
1:10 ZULU), and 5/10/2003 (11:20 to 12:40 ZULU). 
DART log and track text reports were first encoded into 
database files and then processed in 5-minute intervals 
using custom software designed to calculate objective 
measures from routinely recorded NAS data. This pro-
duced a total of 2644 RO traffic samples. A randomly-
selected set (n = 48) were used for model building, and 
the remaining samples (n = 2596) were set aside for 
cross v alidation.  Random selection was accomplished 
by first sorting traffic samples by date, time, and sector 
number, then assigning each sample a random number 
(generated by the Microsoft Excel RAND function), and 
then resorting the samples according to this value. The 
first 48 cases (equal to the number of OE samples) were 
assigned to the model-building sample. A list of the ZID 
sectors and the number of associated traffic samples in the 
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model-building and cross-validation samples is provided 
in Table A1 of Appendix A.

In the model-building sample, the number of samples 
in the RO and OE groups is equivalent. This is important 
because widely disparate group size produces logistic re-
gression models that favor (i.e., over-represent) the largest 
group. Equal group size also ensures that classification 
accuracy in excess of 50% represents improvement over 
chance. On the other hand, group size does not matter 
in the cross-validation sample because these cases are not 
used to build the model. The existing model is simply 
being applied to the sample.

Transitioning Aircraft and Heading Change Adjustments
Altitude and heading changes made in an attempt to 

avoid an imminent OE were excluded from the analysis 
using summary incident narratives from the Operational 
Error Investigation form and lists of computer-detected 
changes.  The summary i ncident narratives described 
events leading up to the loss of separation. The lists in-
cluded the aircraft identifier, start time, stop time, and 
direction of all computer-detected altitude and heading 
changes used in the calculation of the Number of Tran-
sitioning Aircraft and Number of Heading Changes.

The time at which the controller became aware of a 
potential OE and any action taken to avoid loss of sepa-
ration were usually described in the narrative. The time 
and content of the clearances obtained from the narrative 
were then compared with the list of computer-detected 
changes for the OE traffic sample. If the listed clearance 
matched one of the changes (i.e., matched by aircraft 
identifier, time, and direction), it was marked for exclu-
sion. In the event that the controller was not aware that an 
OE was about to occur or the clearance information was 
not contained in the narrative, all altitude and heading 
changes occurring after the conflict alert warning (i.e., 
the alert just prior to the loss of separation) were marked 
for exclusion. The exclusions were then subtracted from 
the summary measures (i.e., Number of Transitioning 
Aircraft and Number of Heading Changes).  Altitude 
changes were evaluated by aircraft rather than tabulated 

changes. The value of the Number of Transitioning Air-
craft remained unaltered if an aircraft with one excluded 
altitude change had other changes not associated with an 
OE. If an aircraft made only one change or all altitude 
changes were associated with the OE, then the aircraft 
was subtracted from the total value of the Number of 
Transitioning Aircraft.

Results

Preliminary Logistic Regression Analysis
Stepwise elimination was employed because such 

methods are extremely valuable in the exploratory stages 
of research when the focus is on identifying predictors. 
Backward elimination was used for selection because it is 
less prone to omit useful variables, since all variables are 
in the model at the beginning of the process (Menard, 
1995). The likelihood-ratio test, which compares the fit of 
the model with and without each predictor at every step, 
was the selection criterion used because it is more rigor-
ous than other methods (Norušis, 1990; Pampel, 2000; 
Tabachnick & Fidell, 2006).  Hosmer and Lemeshow 
(2000) recommend using criterion levels as high as .15 or 
.20 to ensure that all relevant variables are included in the 
logistic regression model. However, a more conservative 
criterion level of .10 was used in this analysis.

Descriptive statistics for the model-building sample 
are shown in Table 1. Descriptive statistics for the cross-
validation sample are shown in Table 2. It is clear that 
several of the variables were not normally distributed. 
In the model-building sample, the distribution of the 
Number of Point Outs differed from normal by nearly 
10 standard deviations in skewness and 14 standard de-
viations in kurtosis. The Number of Intersecting Flight 
Paths deviated by 14 standard deviations i n skewness 
and by more than 40 standard deviations in kurtosis. In 
the cross-validation sample, departures from normality 
in skewness ranged from 13 (Average Control Duration) 
to more than 91 (Number of Point Outs) standard de-
viations. Departures from normality in kurtosis ranged 
from just under 4 (Number of Transitioning Aircraft) 

Average Control Duration (seconds) 182.05 50.91 -1.19 2.09
Number of Handoffs 4.54 3.05 .72 .02
Number of Heading Changes 2.19 2.19 1.27 1.28
Number of Intersecting Flight Paths .56 .97 3.54 19.67
Number of Point Outs 1.13 1.76 2.44 6.67
Number of Transitioning Aircraft 3.54 2.29 .54 -.27
1SE Skewness = .246; 2SE Kurtosis = .488

Table 1. Descriptive Statistics: Model-building Sample (N = 96)
Variable Mean SD Skew.1 Kurtosis2
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to more than 362 (Number of Point Outs) standard 
deviations. Beyond theoretical issues surrounding the use 
of frequency data in parametric statistics, such extreme 
departures from normality confirm the choice of a non-
parametric statistic.

Though logistic regression i s a “distribution-free” 
statistic, it is not assumption free. As with other forms 
of regression, multicollinearity among the predictors 
can lead to biased estimates (Menard, 1995). None of 
the Spearman’s correlation coefficients shown in Table 3 
are of sufficient magnitude to suggest multicollinearity 
in the predictor set. Tolerance values were >.45 for all 
predictors, far in excess of the <.20 that would indicate 
multicollinearity. Correlations of the predictors i n the 
cross-validation sample are shown in Table 4. Although 
all of the coefficients are statistically significant (no doubt 
due to the size of the sample), the pattern of associations 
is similar to that of the model-building sample.

The Model χ2 represents the difference between the 
-2 log likelihood for the model containing the predictor 
variables and that of the model with the constant only. 
Thus, the Model χ2 is analogous to the overall F in linear 
regression because it tests the null hypothesis that the coef-
ficients for all predictors in the model equal zero (Norušis, 
1990). The final logistic regression model for this sample 
generated a Model χ2(3, N=96) = 51.67, p <.01, indi-
cating significantly improved prediction over the model 
with the constant only. The Hosmer-Lemeshow Test is a 
particularly robust measure of fit. Cases are divided into 
deciles of predicted probabilities, and then observed and 
expected probabilities are compared within each decile. 
As with most goodness-of-fit measures, a non-significant 
result is desirable. The Hosmer-Lemeshow χ2 (7, N=96) 
= 6.10, p =.53 for this sample indicated that the model 
fit the data reasonably well. 

Table 3. Correlation Matrix: Model-building Sample (N = 96)
 1 2 3 4 5 
1 Average Control Duration         
2 Number of Handoffs -.29**        
3 Number of Heading Changes .23* .33**       
4 Number of Intersecting Flight Paths .40** .26* .56**     
5 Number of Point Outs .07 .08 .22 .17   
6 Number of Transitioning Aircraft .03 .38** .58** .38** .22* 

Spearman’s rho; **p < .01; *p < .05

Table 4. Correlation Matrix: Cross-validation Sample (N = 2667)
 1 2 3 4 5 
1 Average Control Duration         
2 Number of Handoffs -.10**        
3 Number of Heading Changes .26** .29**       
4 Number of Intersecting Flight Paths .27** .26** .33**     
5 Number of Point Outs .06** .23** .26** .19**   
6 Number of Transitioning Aircraft .13** .42** .45** .33** .23** 

Spearman’s rho; **p < .01; *p < .05

Average Control Duration (seconds) 173.13 53.60 -.63 .90
Number of Handoffs 3.75 2.70 1.01 1.82
Number of Heading Changes 1.45 1.57 1.58 3.77
Number of Intersecting Flight Paths .26 .52 2.10 5.18
Number of Point Outs .87 1.59 4.32 34.39
Number of Transitioning Aircraft 2.95 2.23 .80 .36
1SE Skewness = .047; 2SE Kurtosis = .095

Table 2. Descriptive Statistics: Cross-validation Sample (N = 2667)
Variable Mean SD Skew.1 Kurtosis2



�

Logistic regression coefficients (B), standard errors, 
estimated odds ratios (Odds), 95% confidence intervals 
for the odds ratios (95% CI), and significance v alues 
for the likelihood-ratio tests are provided i n Table 5. 
Note that neither the logistic regression coefficients 
nor standard errors are i nflated. The absence of large 
coefficients indicates a sufficient ratio of cases to predic-
tors. Variables included in the model were the Number 
of Intersecting Flight Paths, the Number of Heading 
Changes, and the Number of Handoffs. In this sample, 
every one-unit increase in the Number of Intersecting 
Flight Paths increased the likelihood by a multiplicative 
factor of 4.94 (i.e., increased the odds by e4.94). In other 
words, each intersecting flight path detected increased the 
likelihood that the traffic sample was an OE by 394%. 
Every heading change increased the likelihood by 58%, 
and each handoff increased the likelihood by 28% that 
a traffic sample was an OE.

Classification accuracy in the model-building sample is 
shown in Table 6. In this sample, 41 (85%) of the 48 ROs 
were correctly classified, and 7 (15%) were misclassified 
as OEs. Of the 48 OEs in the model-building sample, 
34 (71%) were correctly classified and 14 (29%) were 
misclassified as ROs. Overall, classification reached 78% 
accuracy in the model-building sample. This represents 

28% improvement over prior probabilities (i.e., the num-
ber that would be correctly classified by chance). 

Classification accuracy in the cross-validation sample 
is shown in Table 7. Keep in mind that relative group size 
does not matter in the cross-validation sample because 
these cases are not being used to build the model. The 
existing model i s simply being applied to the sample. 
Of the ROs in the cross-validation sample, 1829 (71%) 
were correctly classified and 767 (29%) were misclassi-
fied as OEs. Of the OEs in the cross-validation sample, 
51 (72%) were correctly classified and 20 (28%) were 
misclassified as ROs. Overall classification accuracy was 
71% in the cross-validation sample.

Although the loss of classification accuracy when the 
model was applied to the RO samples was somewhat 
disappointing, the question of whether the samples 
were similar enough for pooling applied only to the OE 
samples. The similarity between classification accuracy 
for the model-building (71%) and cross-validation (72%) 
OE samples suggested they were homogenous enough to 
justify pooling for separate logistic regression analyses of 
the low- and high-altitude sectors. 

In the pooled sample of OEs, 40 occurred i n the 
low-altitude sectors and 79 occurred in the high-altitude 
sectors. The 40 low-altitude OE traffic samples were 

Number of Intersecting Flight Paths  1.60 .50 4.94 1.86 13.12 .000
Number of Heading Changes .46 .21 1.58 1.05 2.37 .019
Number of Handoffs .25 .11 1.28 1.03 1.59 .019

Constant -3.10 .71 .05   

Table 5. Logistic Regression Summary (N = 96)

Variable B S.E. Odds 95% CI p

Predicted
 Routine Operation Operational Error Total 

Routine Operation 41 (85%) 7 (15%) 48 

O
bs

er
ve

d

Operational Error 14 (29%) 34 (71%) 48 

Table 6. Classification: Model-building Sample (N = 96)

Table 7. Classification: Cross-validation Sample (N = 2667)

Predicted
 Routine Operation Operational Error Total 

Routine Operation 1829 (71%) 767 (29%) 2596 

O
bs

er
ve

d

Operational Error 20 (28%) 51 (72%) 71 
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combined with 40 randomly-selected low-altitude RO 
traffic samples to produce a total of 80 traffic samples for 
the low-altitude sector analysis. The 79 high-altitude OE 
traffic samples were combined with 79 randomly-selected 
high-altitude RO traffic samples to produce a total of 158 
traffic samples for the high-altitude sector analysis. Back-
ward stepwise elimination using the likelihood-ratio test 
as selection criterion (p =.10) was employed for both the 
low- and high-altitude sector logistic regression analyses. 
Appendix A contains a list of the ZID sectors and the 
number of low-altitude (Table A2) and high-altitude 
(Table A3) traffic samples associated with each.

Logistic Regression Analysis: Low-Altitude Sectors
As shown in Table 8, the Number of Heading Changes 

is highly correlated with both the Number of Intersecting 
Flight Paths (r

s
=.62) and the Number of Transitioning 

Aircraft (r
s
=.68). The association between Number of 

Transitioning Aircraft and the Number of Handoffs 
(r

s
=.61) i s also of sufficient magnitude for concern. 

Nevertheless, Tolerance values were > .40 for all predic-
tors, indicating there is no reason to suspect bias due to 
multicollinearity in the low-altitude sector sample.

The logistic regression model for the low-altitude 
sample generated a Model χ2(3, N=80) = 23.82, p <.01, 
indicating significantly i mproved prediction over the 
model with the constant only.  The non-significant 
Hosmer-Lemeshow χ2 (8, N=80) = 1.61, p=.99 for the 
low-altitude sample signifies that the model fit the data 
well. Logistic regression coefficients (B), standard errors, 
estimated odds ratios (Odds), 95% confidence intervals 
for the odds ratios (95% CI), and significance v alues 
for the likelihood-ratio tests for the low-altitude sector 
sample are provided in Table 9. As with the full sample, 
neither the logistic regression coefficients nor standard 
errors are inflated, indicating a sufficient ratio of cases 
to predictors.

In the low-altitude sample model, the Number of In-
tersecting Flight Paths had the highest odds ratio (2.89), 
followed by the Number of Point Outs (1.57), and the 
Number of Handoffs (1.19). In other words, each inter-
secting flight path increased the likelihood that the traffic 

sample was an OE by 189%, each point out increased 
the likelihood by 57%, and each handoff increased OE 
likelihood by 19%. However, the confidence intervals for 
the Number of Point Outs and the Number of Handoffs 
suggest that the parameter estimates for these predictors 
might not generalize to another sample.

Classification accuracy i n the low-altitude sample 
(Table 10) was similar to that of the combined sample. 
Of the 40 ROs i n the low-altitude sample, 32 (80%) 
were correctly classified and 8 (20%) were misclassified 
as OEs. Of the 40 OEs in the sample, 28 (70%) were 
correctly classified and 12 (30%) were misclassified as 
ROs.  Overall, the low-altitude model had 75% clas-
sification accuracy.

Logistic Regression Analysis: High-Altitude Sectors
Although several of the Spearman’s correlations shown 

in Table 11 are statistically significant, none of coefficients 
are of sufficient magnitude to suggest multicollinearity. 
Accordingly, Tolerance values were high (.56 and above) 
for all predictors in this sample.

The logistic regression model for the high-altitude 
sample generated a Model χ2(4, N=158) = 73.01, p 
<.01, indicating significantly improved prediction over 
the model with the constant only. The non-significant 
Hosmer-Lemeshow χ2 (8, N=158) = 3.33, p=.91 for 
the high-altitude sample verified that the model fit the 
data. Logistic regression coefficients (B), standard errors, 
estimated odds ratios (Odds), 95% confidence intervals 
for the odds ratios (95% CI), and significance v alues 
for the likelihood-ratio tests for the high-altitude sector 
sample are provided in Table 12. As with the full sample, 
neither the logistic regression coefficients nor standard 
errors are inordinately large, indicating a sufficient ratio 
of cases to predictors.

In the high-altitude sample model, the Number of 
Intersecting Flight Paths had the highest odds ratio 
(2.00), followed by the Number of Heading Changes 
(1.36), the Number of Transitioning Aircraft (1.27), and 
Average Control Duration (1.01). In other words, each 
one-unit increase in the Number of Intersecting Flight 
Paths increased the likelihood that a traffic sample was 

Table 8. Correlation Matrix: Low-Altitude Sectors (N = 80)
 1 2 3 4 5 
1 Average Control Duration         
2 Number of Handoffs -.27*        
3 Number of Heading Changes .21 .40**       
4 Number of Intersecting Flight Paths .33** .32** .62**     
5 Number of Point Outs -.14 .17 .25* .06   
6 Number of Transitioning Aircraft .22 .61** .68** .56** .08 

Spearman’s rho; **p < .01; *p < .05
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Number of Intersecting Flight Paths 1.06 .36 2.89 1.43 5.83 .00
Number of Point Outs .45 .24 1.57 .98 2.52 .04
Number of Handoffs .17 .11 1.19 .97 1.46 .10

Constant -1.94 .57 .14   

Table 9. Logistic Regression Summary: Low-Altitude Sectors  (N = 80)

Variable B S.E. Odds 95% CI p

Predicted
 Routine Operation Operational Error Total 

Routine Operation 32 (80%) 8 (20%) 40 

O
bs

er
ve

d

Operational Error 12 (30%) 28 (70%) 40 

Table 10. Classification: Low-Altitude Sectors (N = 80 )

Table 11. Correlation Matrix: High-Altitude Sectors (N = 158)
 1 2 3 4 5 
1 Average Control Duration         
2 Number of Handoffs -.14        
3 Number of Heading Changes .36** .42**       
4 Number of Intersecting Flight Paths .49** .22** .51**     
5 Number of Point Outs .11 .24** .21** .24**   
6 Number of Transitioning Aircraft .16* .43** .53** .39** .19* 

Spearman’s rho; **p < .01; *p < .05

Number of Intersecting Flight Paths .69 .28 2.00 1.16 3.45 .01
Number of Heading Changes .31 .15 1.36 1.01 1.83 .03
Number of Transitioning Aircraft .24 .11 1.27 1.03 1.57 .02
Average Control Duration .01 .01 1.01 1.00 1.03 .01

Constant -4.43 1.11 .01   

Table 12. Logistic Regression Summary: High-Altitude Sectors (N = 158)

Variable B S.E. Odds 95% CI p
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an OE by 100%, each one-unit increase in the Number 
of Heading Changes increased the likelihood by 36%, 
every Transitioning Aircraft increased the likelihood by 
27%, and each one-second increase in Average Control 
Duration increased the likelihood by 1%.

Classification accuracy i n the high-altitude sample 
(Table 13) was slightly better than that of the low-altitude 
sample. Of the 79 ROs in the high-altitude sample, 64 
(81%) were correctly classified and 15 (19%) were mis-
classified as OEs. Of the 79 OEs in the sample, 60 (76%) 
were correctly classified, and 19 (24%) were misclassified 
as ROs. Overall, the high-altitude model had 79% clas-
sification accuracy. This represents a 29% improvement 
over prior probabilities (i.e., the number that would be 
correctly classified by chance).

Discussion

The results of the logistic regression analyses indicate 
that a sufficient model may be constructed from sector 
characteristics variables. Overall classification accuracy be-
tween 75-79% is remarkable for models constructed solely 
of environmental and contextual factors. After all, other 
factors (e.g., human elements, organizational influences) 
also contribute to the occurrence of OEs. Unfortunately, 
all the logistic regression models were better at classifying 
ROs than OEs. Classification of OEs ranged from as low 
as 70% in the low-altitude sector sample to 76% in the 
high-altitude sample.  Although this level of accuracy 
would be unacceptable for most automation tools, it is 
unrealistic to expect definitive results from one or two 
analyses. Moreover, the sector characteristic variables used 
in these analyses do not represent an exhaustive list of all 
the potential predictors of OEs.

One of the most unexpected findings was the unique-
ness of the preliminary analysis model. The Number of 
Handoffs had an odds ratio of 1.28, and yet this variable 
failed to demonstrate a similar level of influence in the 
low-altitude model and was conspicuously absent from the 
high-altitude model. The relative influence of the Number 
of Handoffs when low- and high-altitude sectors were 
combined is either an indictment of the use of regression 

techniques in general (i.e., they tend to capitalize on the 
unique characteristics of the sample) or an i ndication 
that traffic count becomes more salient as the level of 
analysis changes. Most dynamic variables correlate, to 
a greater or lesser degree, with traffic count. Therefore, 
traffic count may emerge as unique characteristics of the 
low- and high-altitude sectors are obscured. That traffic 
count remains the single best predictor of OEs at the 
national level, yet fails to predict well at the sector level, 
may be an example of this phenomenon. Consequently, 
differences between the low-altitude, high-altitude, and 
combined models might have implications for the suit-
ability of applying policies based on evaluations made at 
the national level at the sector level.

Low-Altitude Sector Model
The most i nfluential v ariable i n the low-altitude 

sector model was the Number of Intersecting Flight 
Paths (Odds = 2.89), followed by the Number of Point 
Outs, and the Number of Handoffs (Odds = 1.19). 
Aside from the addition of the Number of Intersecting 
Flight Paths, this model was similar to the low-altitude 
sector model in Pfleiderer and Manning (2007). In the 
previous study, the most i nfluential predictor was the 
Number of Point Outs (Odds = 3.30), followed by the 
Number of Handoffs (Odds = 1.54), and the Number 
of Heading Changes (Odds = 1.49). Doubts about the 
validity of the Number of Heading Changes as a genuine 
predictor in the previous study were due to concerns that 
much of its effect in the low-altitude model was related 
to clearances made in an attempt to resolve the OE. As 
anticipated, the Number of Heading Changes was not 
included in the low-altitude sector model once this vari-
able was adjusted. Both the Number of Point Outs and 
the Number of Handoffs lost a considerable amount of 
reliability, as evidenced by the range of the confidence 
intervals. On the other hand, the fact that the Number 
of Point Outs and the Number of Handoffs were also 
included in the previous model (based on a completely 
different sample of ROs) somewhat belies the contention 
that these parameter estimates might not generalize to 
another sample.

Predicted
 Routine Operation Operational Error Total 

Routine Operation 64 (81%) 15 (19%) 79 

O
bs

er
ve

d

Operational Error 19 (24%) 60 (76%) 79 

Table 13. Classification: High-Altitude Sectors (N = 158)
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On the whole, classification accuracy in the low-alti-
tude samples was inferior to that of the previous study. 
Although classification of the RO samples was improved 
(80% as opposed to 77% in the previous analysis), OE 
classification was not. The current model, as compared 
to 82% accurate classification in the previous analysis, 
accurately classified only 70% of the OE samples.

The predictive strength of the Number of Point Outs 
and the Number of Handoffs in the Pfleiderer and Man-
ning (2007) results suggested that coordination played 
a primary role in the development of OEs in the ZID 
low-altitude sectors. This i mpression was bolstered by 
the Pfleiderer et al.  (2007) data, i n which controllers 
and supervisors at ZID rated coordination as one of the 
primary sources of complexity i n low-altitude sectors. 
Consequently, the emergence of the Number of Inter-
secting Flight Paths as the most influential predictor in 
the current low-altitude logistic regression model was 
surprising, because controller and supervisor ratings for 
this complexity factor were moderate in the low-altitude 
sectors.  The results of the logistic regression analysis 
suggest that coordination may be a contributing fac-
tor, but converging traffic patterns might be of greater 
consequence.

High-Altitude Sector Model
The Number of Intersecting Flight Paths was the most 

influential predictor i n the high-altitude sector model 
(Odds = 2.00), followed by the Number of Heading 
Changes. As anticipated, there was a reduction i n the 
relative influence of the Number of Heading Changes 
after adjustments were made to exclude changes made 
in response to clearances to avoid an imminent OE (i.e., 
the estimated odds ratio was reduced from 2.28 in the 
previous study to 1.36 in the present study). Nevertheless, 
it remained a significant predictor in the high-altitude 
model. Other elements of the model were nearly identical 
to those of Pfleiderer and Manning (2007). The Number 
of Transitioning Aircraft had an estimated odds ratio of 
1.26 in the previous study and increased to 1.27 in the 
present one. Average Control Duration had an estimated 
odds ratio of 1.02 in the previous study and decreased 
to 1.01 in the present one. Classification accuracy in the 
high-altitude sample was also relatively consistent between 
the two studies. Both models correctly classified 81% of 
the ROs. However, 79% of the OEs were correctly clas-
sified in the previous analysis, whereas only 76% were 
correctly classified in this one.

The influence of the Number of Intersecting Flight 
Paths was no surprise in this sample, because ZID control-
lers and supervisors rated this complexity factor one of 
the most influential in the high- and super high-altitude 

sectors (Pfleiderer et al., 2007). The Number of Heading 
Changes remained i nfluential, despite changes to the 
processing interval and adjustments to the variable itself. 
This is consistent with Laudeman et al. (1998), in which 
heading changes received the highest beta weight i n a 
linear multiple regression analysis of controller ratings of 
activity in four sectors at the Denver ARTCC. In their 
discussion, the authors attributed the influence of heading 
changes to the “significant arrival traffic in all the sectors 
that were observed” (p. 7). Arrival and departure traffic 
complexity is generally considered to be a low-altitude 
phenomenon, but this perception may be inaccurate. In 
the present study, the Number of Heading Changes was 
extremely influential in the high-altitude model but failed 
to be included in the low-altitude sector model. 

The third most influential factor in the high-altitude 
logistic regression analysis was the Number of Transition-
ing Aircraft. Climbing and descending traffic has long been 
recognized as a contributor to the difficulty of working 
a sector (e.g., Arad, 1964; Grossberg, 1989; Kopardekar 
& Magyarits, 2003). This finding is also consistent with 
Pfleiderer et al. (2007), in which the complexity factor 
Climbing and Descending Traffic received the highest 
complexity rating for the high-and super high-altitude 
sectors.

The fourth v ariable i ncluded i n the high-altitude 
sample model was Average Control Duration. Odds ra-
tios in logistic regression are an indication of effect size. 
The closer the odds are to zero, the smaller the effect 
size. Consequently, a 1.01 odds ratio suggests that the 
effect for Average Control Duration is small. However, 
it i s i mportant to remember that logistic regression 
coefficients (i.e., the natural logs of the odds ratios) are 
not standardized. Average Control Duration is based on 
the number of seconds each aircraft was controlled by 
the sector. Thus, a minimal change in Average Control 
Duration produced a relatively large 1% change in the 
likelihood that a traffic sample was an OE.

Future Research
Although logistic regression cannot be used to identify 

causal factors directly (i.e., prediction is not the same as 
causation), the logistic regression coefficients do provide 
information about the likelihood of an OE relative to the 
predictors in the model. Thus, the results have immedi-
ate heuristic v alue i n that they i nvite questions about 
how the dynamic predictors i nteract with static sector 
characteristics.  Dynamic elements lend themselves to 
automation applications, but static characteristics must be 
addressed by sector restructuring. The dynamic predictors 
that make up the logistic regression models are indicants 
of conditions that discriminate between OEs and ROs. 
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These indicants may be used to reveal aspects of the sector 
environment that might be altered to reduce the number 
of OEs. For example, the combination of the Number 
of Point Outs and the Number of Handoffs in the low-
altitude sector model may indicate that the location of 
sector boundaries increases coordination workload and 
complexity. As Couluris and Schmidt (1973) observed, 
handoffs and point outs “result from, or are influenced by, 
the existence and design (shape) of the sectors” (p. 657). 
On the other hand, the combination of the Number of 
Point Outs and the Number of Intersecting Flight Paths 
may point to problems with the orientation of traffic 
paths relative to those boundaries.  The combination 
of the Number of Heading Changes and the Number 
of Transitioning Aircraft in the high-altitude sectors is 
suggestive of traffic complexity in high-altitude sectors 
adjacent to low-altitude arrival or departure sectors. Av-
erage Control Duration as a predictor of OEs may be a 
function of the size of high-altitude sectors.

Because of the research that remains to be accomplished, 
these results must be viewed as preliminary. Given the 
sample size and consequent restriction of the predictor 
set, there is no guarantee that these results will generalize 
to other samples. Multiple studies, with samples sizes that 
allow for a more inclusive list of predictors, must be con-
ducted at a number of facilities before such models might 
be reliable enough for practical applications. Nevertheless, 
the methodology of comparing OE and RO traffic samples 
is promising. Continued investigations along these lines 
may highlight complexity factors that must be addressed 
to ensure that separation is maintained.
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Appendix A
Indianapolis Air Route Traffic Control Center Traffic Samples

Table A1. Model-building and Cross-validation Samples

Number of Associated Traffic Samples 
Model-building Sample Cross-validation Sample 

Sector
Number 

Sector
Name 

Sector
Strata

Routine 
Operation 

Operational 
Error

Routine 
Operation 

Operational 
Error

18 Nabb LO 2 3 71 4 
19 New Hope LO 1 2 75 1 
20 Lexington LO 2 3 43 1 
21 London LO 3 0 73 1 
24 Parkersburg LO 0 0 76 1 
25 Hazard LO 0 1 60 0 
26 River LO 1 1 74 1 
30 Columbus LO 0 2 76 2 
31 Lytle LO 0 1 75 3 
32 Rosewood LO 0 1 70 1 
33 Muncie LO 3 0 73 1 
34 Shelbyville LO 3 1 73 3 
35 Terre Haute LO 0 0 62 3 
66 Madison HI 1 3 75 3 
69 Pike LO 2 1 74 2 
76 Batesville SH 2 0 63 1 
78 Springfield HI (IM) 1 1 75 1 
79 Bobcat HI (IH) 0 4 73 1 
80 King HI 1 1 73 2 
81 Pocket City HI 3 1 72 3 
82 Louisville HI 2 3 72 5 
83 Falmouth HI 3 1 74 1 
84 Rebel HI 2 0 74 0 
85 Charleston HI 2 1 74 4 
86 Beckley HI 1 3 75 2 
87 Appleton HI 3 3 73 2 
88 Dayton HI 2 2 72 6 
89 Indianapolis HI 1 2 75 5 
91 Impel SH 1 2 62 1 
92 Mystic SH 1 1 51 2 
93 Dacos SH 1 0 75 2 
94 Somerset SH 0 0 74 2 
95 Henderson SH 0 2 76 1 
96 Bluefield SH 0 1 74 0 
97 Lockbourne SH 3 0 73 1 
98 Patterson SH 1 0 48 0 
99 Wabash SH 0 1 68 2 

TOTAL 48 48 2596 71 
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Table A2. Low-Altitude Sector Sample

Number of Associated Traffic Samples Sector
Number 

Sector
Name 

Sector
Strata Routine Operation Operational Error 

18 Nabb LO 0 7 
19 New Hope LO 4 3 
20 Lexington LO 1 4 
21 London LO 2 1 
24 Parkersburg LO 4 1 
25 Hazard LO 2 1 
26 River LO 2 2 
30 Columbus LO 3 4 
31 Lytle LO 4 4 
32 Rosewood LO 3 2 
33 Muncie LO 0 1 
34 Shelbyville LO 2 4 
35 Terre Haute LO 6 3 
69 Pike LO 7 3 

TOTAL 40 40 

Table A3. High-Altitude Sector Sample

Number of Associated Traffic Samples Sector
Number 

Sector
Name 

Sector
Strata Routine Operation Operational Error 

66 Madison HI 6 6 
76 Batesville SH 3 1 
78 Springfield HI (IM) 5 2 
79 Bobcat HI (IH) 5 5 
80 King HI 4 3 
81 Pocket City HI 1 4 
82 Louisville HI 2 8 
83 Falmouth HI 1 2 
84 Rebel HI 4 0 
85 Charleston HI 1 5 
86 Beckley HI 1 5 
87 Appleton HI 4 5 
88 Dayton HI 3 8 
89 Indianapolis HI 2 7 
91 Impel SH 2 3 
92 Mystic SH 3 3 
93 Dacos SH 6 2 
94 Somerset SH 3 2 
95 Henderson SH 6 3 
96 Bluefield SH 7 1 
97 Lockbourne SH 5 1 
98 Patterson SH 1 0 
99 Wabash SH 4 3 

TOTAL 79 79 


