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This Advisory Circular (AC) provides guidance for an applicant to identify computing system 

safety items, develop safety requirements for each computing system safety item, and mitigate 

the risks presented by computing system safety items, in accordance with Title 14 of the Code of 

Federal Regulations (14 CFR) § 450.141. An applicant must identify all computing system safety 

items and implement safety requirements for each computing system safety item based on level 

of criticality, in accordance with § 450.141(a) and (b). An applicant must then implement a 

development process appropriate for each computing system safety item’s level of criticality, in 

accordance with § 450.141(c). 

This AC describes acceptable means, but not the only means for demonstrating compliance with 

the regulatory requirements of § 450.141. It is intended to assist prospective applicants in 

obtaining commercial space authorizations and operating in compliance with commercial space 

regulations. The FAA will consider other means of compliance that an applicant may elect to 

present. The contents of this document do not have the force and effect of law and are not meant 

to bind the public in any way. The document is intended only to provide clarity to the public 

regarding existing requirements under the law or agency policies. 

If you have suggestions for improving this AC, you may use the Advisory Circular Feedback 

form at the end of this AC. 
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Principal Changes 

Revision A updates AC 450.141-1, Computing System Safety, dated 

October 15, 2020. This AC change includes the following principal changes. 

1. Moved paragraph 2.4 to paragraph 1.2 to maintain consistency across all AST 

ACs. 

2. For paragraphs 4.13 and 4.14, revised definitions of terms “risk,” and “risk 

mitigation.” 

3. For paragraph 6.1.2, revised second sentence to reference a functional hazard 

analysis. 

4. For paragraph 6.2.3.1, added the phrase, “to make them consistent with 

§ 450.141(a)(2) to the second sentence. 

5. For paragraph 6.2.3.2, clarified reasonably foreseeable faults for a computing 

system are being those that an analyst can discover through methodical 

assessment of the system and the factors that interact with it. 

6. For paragraph 6.2.4.1, added requirement regarding the level of criticality for 

computing system safety items. 

7. Added paragraph 6.2.4.5.1 describing what a fault tolerance analysis should 

identify and what its criteria should include. 

8. For paragraph 8.2.5, added a sentence that states configuration management 

processes start when an initial baseline configuration is identified. 

9. For paragraph 8.2.6, updated discussion of validation and verification to 

encompass lessons learned. 

10. Added footnote 3 on page 22 referencing the requirement of a system safety 

program be maintained during the lifecycle of a launch and reentry program. 

11. For paragraph 8.3.6, clarified how maintenance affects computing system 

software during the lifecycle of that system. 

12. Added paragraph 9.5 that clarifies the purpose of appendices D and E on lessons 

learned from historical space vehicle failures. 
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1 PURPOSE. 

1.1 This Advisory Circular (AC) provides guidance for identifying computing system safety 

items, developing safety requirements for each computing system safety item, and 

mitigating the risks presented by computing system safety items, in accordance with 

14 CFR § 450.141. It is intended to provide guidance for an applicant in developing 

software and computing system safety analyses and processes to comply with 

§ 450.141. 

1.2 Level of Imperatives. 

This AC presents one, but not the only, acceptable means of compliance with the 

associated regulatory requirements. The FAA will consider other means of compliance 

that an applicant may elect to present. Throughout this document, the word “must” 

characterizes statements that directly flow from regulatory text and therefore reflect 

regulatory mandates. The word “should” describes a requirement if electing to use this 

means of compliance; variation from these requirements is possible, but must be 

justified and approved as an alternative means of compliance. The word “may” 

describes variations or alternatives allowed within the accepted means of compliance 

set forth in this AC. In general, these alternative approaches can be used only under 

certain situations that do not compromise safety. 

2 APPLICABILITY. 

2.1 The guidance in this AC is for launch and reentry vehicle applicants and operators who 

are required to comply with 14 CFR part 450. The guidance in this AC is for those 

seeking a launch or reentry vehicle operator license, and a licensed operator seeking to 

renew or modify an existing vehicle operator license. 

2.2 The material in this AC is advisory in nature and does not constitute a regulation. This 

guidance is not legally binding in its own right and the FAA will not rely upon this 

guidance as a separate basis for affirmative enforcement action or other administrative 

penalty. Conformity with this guidance document (as distinct from existing statutes and 

regulations) is voluntary only, and nonconformity will not affect rights and obligations 

under existing statutes and regulations. This AC describes acceptable means, but not the 

only means, for demonstrating compliance with the applicable regulations. 

2.3 The material in this AC does not change or create any additional regulatory 

requirements, nor does it authorize changes to, or deviations from, existing regulatory 

requirements. 
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3 APPLICABLE REGULATIONS AND RELATED GUIDANCE DOCUMENTS. 

3.1 Applicable Statute. 

 51 U.S.C. Subtitle V, Chapter 509. 

3.2 Applicable FAA Commercial Space Transportation Regulations. 

The following 14 CFR regulations must be accounted for when showing compliance 

with § 450.141. You can download the full text of these regulations from the U.S. 

Government Printing Office e-CFR, or order a paper copy from the Government 

Printing Office, Superintendent of Documents, Attn: New Orders, PO Box 371954, 

Pittsburgh, PA, 15250-7954. 

 Section 401.7, Definitions. 

 Section 450.141, Computing System Safety. 

3.3 Technical Reports Related to Computing System Safety. 

1. Department of Defense, Standard Practice MIL-STD-882E, System Safety, 

May 11, 2012 

(https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=36027). 

2. International Organization for Standardization (ISO), ISO/IEC/IEEE 29119-3:2013, 

Software and systems engineering – Software testing – Part 3: Test documentation, 

https://www.iso.org/standard/56737.html. 

3. ISO/IEC TR 24772, Programming languages — Guidance to avoiding 

vulnerabilities in programming languages, ISO/IEC TR 24772, Programming 

languages — Guidance to avoiding vulnerabilities in programming languages. 

4. Institute of Electrical and Electronic Engineers, IEEE 1012-2016/Corrigendum 

1-2017, IEEE Draft Standard for System, Software and Hardware Verification and 

Validation – Corrigendum 1. https://standards-stg.ieee.org/standard/1012-2016-

Cor1-2017.html. 

5. Institute of Electrical and Electronic Engineers, IEEE 1228-1994, IEEE standard for 

Software Safety Plans, https://standards.ieee.org/standard/1228-1994.html. 

6. Institute of Electrical and Electronic Engineers, IEEE/ISO/IEC 12207, International 

Standards Systems and software engineering – Software life cycle processes, 

https://standards.ieee.org/standard/12207-2017.html. 

7. Joint Services Software Safety Committee, Software System Safety Handbook, 

Version 1, dated August 27, 2010, http://www.acqnotes.com/Attachments/Joint-

SW-Systems-Safety-Engineering-Handbook.pdf. 

8. National Aeronautics and Space Administration, NASA-STD-8739.8, Software 

Assurance and Software Safety Standard, 

https://standards.nasa.gov/standard/osma/nasa-std-87398. 

http://www.ecfr.gov/
http://www.ecfr.gov/
https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=36027
https://www.iso.org/standard/56737.html
https://avssp.faa.gov/avs/arm/Streamlining-Launch-Reentry-%20Reqs/All%20Documents/Advisory%20Circulars/ISO/IEC%20TR%2024772,%20Programming%20languages%20—%20Guidance%20to%20avoiding%20vulnerabilities%20in%20programming%20languages
https://avssp.faa.gov/avs/arm/Streamlining-Launch-Reentry-%20Reqs/All%20Documents/Advisory%20Circulars/ISO/IEC%20TR%2024772,%20Programming%20languages%20—%20Guidance%20to%20avoiding%20vulnerabilities%20in%20programming%20languages
https://standards-stg.ieee.org/standard/1012-2016-Cor1-2017.html
https://standards-stg.ieee.org/standard/1012-2016-Cor1-2017.html
https://standards.ieee.org/standard/1228-1994.html
https://standards.ieee.org/standard/12207-2017.html
http://www.acqnotes.com/Attachments/Joint-SW-Systems-Safety-Engineering-Handbook.pdf
http://www.acqnotes.com/Attachments/Joint-SW-Systems-Safety-Engineering-Handbook.pdf
https://standards.nasa.gov/standard/osma/nasa-std-87398
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9. National Aeronautics and Space Administration, NASA-STD-8739.9, Software 

Formal Inspections Standard, https://standards.nasa.gov/standard/osma/nasa-std-

87399. 

10. National Aeronautics and Space Administration, NASA-GB-8719.13, NASA 

Software Safety Guidebook, dated March 31, 2004, 

https://standards.nasa.gov/standard/nasa/nasa-gb-871913 

11. National Aeronautics and Space Administration, NASA-HDBK-2203, NASA 

Software Engineering and Assurance Handbook, dated April 4, 2020, 

https://standards.nasa.gov/standard/nasa/nasa-hdbk-2203. 

12. Range Commanders Council, Range Safety Group, Flight Termination System 

Commonality Standard, RCC 319-19, White Sands, NM, 2019, 

https://www.wsmr.army.mil/RCCsite/Documents/319-19_FTS_Commonality/319-

19_FTS_Commonality.pdf. 

13. Society of Automotive Engineers, GEIA-STD-0010A, Standard Best Practices for 

System Safety Program Development and Execution, dated October 18, 2018, 

https://www.sae.org/standards/content/geiastd0010a/?src=geiastd0010. 

  

https://standards.nasa.gov/standard/nasa/nasa-gb-871913
https://standards.nasa.gov/standard/nasa/nasa-hdbk-2203
https://www.wsmr.army.mil/RCCsite/Documents/319-19_FTS_Commonality/319-19_FTS_Commonality.pdf
https://www.wsmr.army.mil/RCCsite/Documents/319-19_FTS_Commonality/319-19_FTS_Commonality.pdf
https://www.sae.org/standards/content/geiastd0010a/?src=geiastd0010
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4 DEFINITION OF TERMS. 

For this AC, the terms and definitions from § 401.7 and this list apply: 

4.1 Commercial off-the-shelf (COTS) software. 

Operating systems, libraries, applications, and other software purchased from a 

commercial vendor and not custom built for the applicant’s project. 

4.2 Computing system safety item. 

Any software or data that implements a capability that, by intended operation, 

unintended operation, or non-operation, can present a hazard to the public. A computing 

system safety item often contains several software functions assembled to meet a group 

of related requirements (e.g. an autonomous flight safety system (AFSS) or GPS). 

4.3 Degree of control. 

A computing system safety item’s importance in the causal chain for a hazard, in either 

causing or preventing the hazard. 

4.4 Failure. 

The inability of a computing system item to fulfill its operational requirements. 

4.5 Failure Modes and Effects Analysis (FMEA). 

An analysis of each potential failure in a system to determine the effects of each 

potential failure on the system and to classify each potential failure according to its 

severity and likelihood. 

4.6 Fault. 

An imperfection or deficiency in a computing system item that may contribute to a 

failure. 

4.7 Fault Tree Analysis (FTA). 

An analysis that identifies potential faults in the system and determines how those faults 

lead to a failure of the system to achieve its purpose. An FTA can include deductive 

system reliability analysis that provides qualitative and quantitative measures of the 

propensity for failure of a system, subsystem, or event. 

4.8 Firmware. 

Computer programs or data loaded into a class of memory that cannot be dynamically 

modified by the computer during processing. Firmware is treated as software. 
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4.9 Government off-the-shelf (GOTS) software. 

Operating systems, libraries, applications, and other software obtained from a 

government entity and not custom built for the applicant’s project. 

4.10 Level of criticality. 

The risk posed by a computing system safety item, which is a combination of the 

severity of the hazards associated with the computing system safety item and the 

computing system safety item’s degree of control. 

4.11 Memory. 

Parts of an electronic digital computer that retain instructions and data for some interval 

of time. Memory is the electronic holding place for instructions and data that the 

microprocessor of a computer can access. 

4.12 Risk. 

Measure that takes into consideration, for hardware, the probability of occurrence and 

the consequence of a hazard to a population or installation. For computing systems, risk 

takes into consideration the computing system’s contributions to hazard causation or 

mitigation and the consequence of a hazard to a population or installation. 

4.13 Risk mitigation. 

Process of reducing either the likelihood or the severity of a risk for hardware. For 

software, risk mitigation is the process of reducing the severity, reducing the degree of 

control, or validating and verifying correct control. 

4.14 Safety-critical computer system function. 

Any computer system function whose proper recognition, control, performance, or 

tolerance, is essential to ensuring public safety and the safety of property. 

4.15 Safety requirement. 

A computing system requirement or software requirement defined for a computing 

system safety item that specifies an attribute or function that presents, mitigates, or is 

otherwise involved in a hazard to the public. 

4.16 Software. 

Computer programs, databases, and, possibly, associated documentation and data 

pertaining to the operation of a computer system. Operating system software that 

controls the basic functions of the computer system and application software that 

enables the computer to perform tasks are included, as are configuration files, 

databases, firmware, and supporting data structures. 
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4.17 Validation. 

An evaluation to determine that each safety measure derived from a system safety 

process is correct, complete, consistent, unambiguous, verifiable, and technically 

feasible. Validation ensures that the right safety measure is implemented, and that the 

safety measure is well understood. 14 CFR 401.7. 

4.18 Verification. 

An evaluation to determine that safety measures derived from a system safety process 

are effective and have been properly implemented. Verification provides objective 

evidence that a safety measure reduces risk to acceptable levels. 14 CFR 401.7. 
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5 MEANS OF COMPLIANCE. 

The guidance in chapters 6 through 9 of this AC details methods that an operator may 

use to demonstrate compliance with each of the requirements in § 450.141. 

5.1 RCC 319-19 Tailoring. 

An applicant may choose to demonstrate compliance with § 450.141 by tailoring Range 

Commanders Council, Range Safety Group, Flight Termination System Commonality 

Standard, RCC 319-19. The FAA will work with applicants to tailor RCC 319-19 to 

comply with § 450.141. A tailored RCC 319-19 used as a means of compliance for 

§ 450.141 should be submitted to the FAA for acceptance prior to being included in a 

license application.1 

  

                                                 

1 RCC 319-19 is a flight termination system design standard. Applicants should carefully consider the requirements 

throughout RCC 319-19 prior to tailoring the requirements for systems other than flight termination systems. 
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6 IDENTIFICATION OF COMPUTING SYSTEM SAFETY ITEMS. 

6.1 Identifying each Computing System Safety Item. 

6.1.1 Section 450.141(a)(1) requires the applicant to identify any software or data that 

implements a capability that, by intended operation, unintended operation, or 

non-operation, can present a hazard to the public. In order to meet the requirement of 

§ 450.141(a), an operator should define computing system safety items in a way that 

encompasses all of the software functions that work together in a given component. It is 

possible to isolate or partition a computing system safety item from non-safety 

functionality on a single hardware component such that the non-safety functions would 

not be part of the computing system safety item. RCC 319-19, Appendix A, discusses 

partitioning in greater detail.2 An applicant’s list of computing system safety items 

should at least include software that performs common safety-related functions, such as: 

1. Software used to control or monitor safety-related systems. 

2. Software that transmits safety data, including time-critical data and data about 

hazardous conditions. 

3. Software used for fault detection in safety-related computer hardware or software. 

4. Software that responds to the detection of a safety-related fault. 

5. Software used in a flight safety system. 

6. Processor-interrupt software associated with safety-related computer system 

functions. 

7. Software that schedules the execution of safety related functions. 

8. Software that computes safety-related data. 

9. Software that accesses or manages safety-related data. 

10. Software that displays safety data. 

11. Software used for wind weighting. 

6.1.2 Computing system safety items and their effects on public safety should be evident 

from the applicant’s functional hazard analysis, performed in accordance with 

§ 450.107(b), as described in AC 450.107-1. If a system or subsystem hazard analysis 

identifies any software or data as potential hazard sources or hazard controls, then the 

applicant should perform a software hazard analysis, or extend the functional hazard 

analysis, to assess the hazard and the degree of control of any computing system safety 

item over the hazard, in accordance with § 450.141(a). Software hazard analyses 

identify potential software faults and their effects on the computing system and the 

system as a whole, as well as mitigation measures that can be used to reduce the risk. 

                                                 

2 If an operator isolates or partitions non-safety functionality from computing system safety items on a single 

hardware component, then the isolation or partition would become a safety requirement that must be verified by 

testing appropriate for the highest criticality function performed by the hardware component, in accordance with 

§ 450.141(b). 
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Typical software hazard analyses include Software Failure Modes Effects Analysis 

(SFMEA) and Software Fault Tree Analysis (SFTA). Appendix B of this AC and the 

Joint Services Software Safety Committee (JSSSC) Software System Safety Handbook 

provides examples of SFMEA and SFTA. The analytical method and level of detail in 

the analysis should correspond to the complexity of the software and computing system, 

intricacy of the operations, and scope of the program. An applicant’s software hazard 

analyses should consider a range of potential error conditions, as described in Table 1 of 

this AC. Appendix B of this AC provides an example of a classification scheme for 

software and computing system errors that an applicant can use to develop its hazard 

analysis. 

Table 1.1 – Examples of Calculation or Computation Errors 

Error Condition Examples 

Incorrect algorithms The software may perform calculations incorrectly because of 

mistaken requirements or inaccurate coding of requirements. 

Calculation overflow or 

underflow 

The algorithm may result in a divide by zero condition. 

Table 2.2 – Examples of Data Error Conditions 

Error Condition Examples 

Improper data The software may receive out of range or incorrect input data; 

no data because of transducer drop out; wrong data type or 

size, or untimely data; produce incorrect or no output data, or 

both. 

Input data stuck at 

some value 

A sensor or actuator could always read zero, one, or some 

other value. 

Large data rates The software may be unable to handle large amounts of data 

or many user inputs simultaneously. 

 

  



08/16/2021  AC 450.141-1A 

11 

Table 3.3 – Examples of Logic Errors 

Error Condition Examples 

Improper or 

unexpected commands 

The software may receive bad data but continues to run a 

process, thereby doing the right thing under the wrong 

circumstances. 

Failure to issue a 

command 

The software may not invoke a routine. 

Command out of 

sequence 

A module may be executed in the wrong sequence, or a 

system operator may interrupt a process leading to an out of 

sequence command. 

Race 

condition/incorrect 

timing 

Software processes may have timing dependencies, within or 

between processes, which cause unintended data alterations at 

random times. System operators can interrupt processes 

causing a problem in timing sequences, or processes may run 

at the wrong times. 

Table 4.4 – Examples of Interface Errors 

Error Condition Examples 

Incorrect, unclear, or 

missing messaging 

A message may be incorrect, unclear, or missing, leading to 

the system operator making a wrong decision. 

Poor interface design 

and layout 

An unclear graphical user interface can lead to an operator 

making a poor decision. 

Inability to start or exit 

processing safely 

A system operator may be unable to start or stop a test of a 

flight safety system once the automated routines have started. 

Multiple events 

occurring 

simultaneously 

A system operator may provide input in addition to expected 

automated inputs during software processing. 

 

  



08/16/2021  AC 450.141-1A 

12 

Table 5.5 – Examples of Software Development Environment Errors 

Error Condition Examples 

Improper use of tools Turning on the compiler option to optimize or debug the code 

in production software may lead to a software fault. 

Changes in the 

operating system or 

commercial software 

module 

Upgrades to an operating system may lead to a software fault. 

Table 6.6 – Examples of Hardware-Related Errors 

Error Condition Examples 

Unexpected shutdown 

of the computing 

system 

Loss of power to the CPU or a power transient may damage 

circuits. 

Memory overwriting Improper memory management may cause overwriting of 

memory space and unexpected results. 

 

6.2 Assessment of Computing System Criticality. 

6.2.1 Section 450.141(a)(2) requires an applicant to identify the level of criticality of each 

computing system safety item, commensurate with its degree of control over hazards to 

the public and the severity of those hazards. A level of criticality is specified by the 

combination of the severity of hazards associated with a computing system safety item 

and the computing system safety item’s degree of control over those hazards. 

6.2.2 To satisfy § 450.141(a)(2), an applicant should first define the severities of hazard 

consequences of interest for its system, then assign degrees of control to computing 

system safety items using a framework that will enable the FAA to validate the 

appropriate severity and control categorization. An applicant could assess degrees of 

control using any of the following methods: 

1. Assumption of high criticality: An applicant could simplify the assessment of the 

criticality of each computing system safety item by assuming that all computing 

systems have the highest criticality level. 

2. RCC 319-19, Section A.3.1.1, defines software categories for flight safety systems. 

3. MIL-STD-882E, Section 4.4, or GEIA-STD-0010A, Section A.6 defines software 

control categories and a software criticality index. 
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4. NASA-GB-8719.13, Section 3.1.2 defines software control categories and a 

software risk index. 

5. Fault tolerance: an applicant could also use the fault tolerance method described in 

this section to assess system level criticality. 

6.2.3 Consequence Definitions. 

To assess the criticality of computing system safety items, an applicant should first 

define the hazard consequences of interest for its system. Applicants should define 

hazard consequences such that computing system safety items fit in one or more 

consequence categories. An applicant should consider the FAA’s definitions of the 

words “mishap,” “anomaly,” “casualty,” “public,” and “safety critical” in § 401.7 when 

composing its consequence definitions. 

6.2.3.1 Option 1: Public Safety Consequence Categories. 

Guidance document MIL-STD-882E and GEIA-STD-0010A define 

hazard consequence categories (see references [1] and [13] of 

paragraph 3.3 of this AC). Since the severity categories in these standards 

do not explicitly identify public safety consequences, an applicant for a 

Part 450 license must tailor the MIL-STD-882E or GEIA-STD-0010A 

severity tables for public safety to make them consistent with 

§ 450.141(a)(2). This may result in something similar to Table 2, Public 

Safety Severity Categories, with revisions in bold underline.  
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Table 7 – Public Safety Severity Categories 

Description Severity 

Category 

Hazard Consequence 

Catastrophic 1 Could result in one or more of the following: death or 

permanent total disability of a member of the public, 

or irreversible significant environmental impact. 

Critical 2 Could result in one or more of the following: permanent 

partial disability, injuries, or illness that may result in 

hospitalization of a member of the public, or reversible 

significant environmental impact. 

Marginal 3 Could result in one or more of the following: injury or 

occupational illness resulting in one or more lost work 

day(s) to a member of the public, or reversible 

moderate environmental impact. 

Negligible 4 Could result in one or more of the following: injury or 

occupational illness not resulting in a lost workday, or 

minimal environmental impact. 

6.2.3.2 Option 2: Functional Hazard Assessment Hazard Consequence 

Classifications. 

Computing system hazard consequences could also be determined in the 

course of a functional hazard assessment. In a Functional Hazard 

Assessment, such as that required by § 450.107(b) or § 450.109, the 

applicant must assess the effects on the public for all reasonably 

foreseeable hazardous events, and computing system safety assessments 

can use the consequence classifications from the functional hazard 

assessment to classify computing system hazard severity. The reasonably 

foreseeable faults for a computing system are those that an analyst can 

discover through methodical assessment of the system and could depend 

on such factors as the programming language, hardware configuration, and 

any other computing systems that interact with the operator’s computing 

system. The advisory circulars associated with § 450.107(b) and § 450.109 

provide guidance on functional hazard assessment consequence 

classifications.  
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6.2.4 Method of Assigning Levels of Criticality. 

The following are methods that an applicant could use to assess the degree of control of 

a computing system safety item has over a hazard to assign system level criticality. 

6.2.4.1 Option 1: Assumption of High Criticality. 

An applicant could determine analytically the highest criticality computing 

system safety item involved in its operations, and then define a 

development process that develops and tests all computing system safety 

items in a manner sufficient to mitigate the risks presented by its highest 

criticality computing system safety item. By subjecting all software to the 

process controls needed at its highest criticality level, an applicant could 

eliminate the need to characterize the criticality and degree of control of 

each computing system safety item, and FAA would accept that approach 

satisfying the requirement to identify the level of criticality of each 

computing system safety item under § 450.141(a)(2). Applicants could 

find this approach overly conservative. 

6.2.4.2 Option 2: RCC 319-19 Software Categories. 

An applicant could identify each of its computing system safety items as 

safety-critical, support-critical, or non-critical, according to the definitions 

in RCC 319-19, Section A.3.1.1. This method for identification of level of 

criticality and degree of control is appropriate for systems where an FTS is 

the only part of the system that contains computing system safety items 

because RCC 319-19 is an FTS standard. 

6.2.4.3 Option 3: MIL-STD-882E/GEIA-STD-0010A Software Control 

Categories. 

An applicant could identify each of its computing system safety items in 

the appropriate software control category from MIL-STD-882E, 

Section 4.4, or GEIA-STD-0010A, Section A.6 (see references [1] and 

[13] of paragraph 3.3 of this AC). These categories are described in detail 

in Table 3, MIL-STD-882E and GEIA-STD-0010A Software Control 

Categories. 
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Table 8 – MIL-STD-882E and GEIA-STD-0010A Software Control Categories 

Level Name Description 

1 
Autonomous 

(AT) 

Software functionality that exercises autonomous control authority 

over potentially safety-significant hardware systems, subsystems, or 

components without the possibility of predetermined safe detection 

and intervention by a control entity to preclude the occurrence of a 

mishap or hazard. 

(This definition includes complex system/software functionality with 

multiple subsystems, interacting parallel processors, multiple interfaces, 

and safety-critical functions that are time critical.)  

2 
Semi- 

Autonomous 

(SAT) 

Software functionality that exercises control authority over 

potentially safety-significant hardware systems, subsystems, or 

components, allowing time for predetermined safe detection and 

intervention by independent safety mechanisms to mitigate or control 

the mishap or hazard. 

(This definition includes the control of moderately complex system/software 

functionality, no parallel processing, or few interfaces, but other safety 

systems/mechanisms can partially mitigate risks. System and software fault 

detection and annunciation notify the control entity of the need for required 

safety actions.) 

Computing system safety item that displays safety-significant 

information requiring immediate operator entity to execute a 

predetermined action for mitigation or control over a mishap or 

hazard. Software exception, failure, fault, or delay will allow, or fail 

to prevent, mishap occurrence. 

(This definition assumes that the safety-critical display information may be 

time-critical, but the time available does not exceed the time required for 

adequate control entity response and hazard control.)  

3 
Redundant 

Fault 

Tolerant 

(RFT) 

Software functionality that issues commands over safety-significant 

hardware systems, subsystems, or components requiring a control 

entity to complete the command function. The system detection and 

functional reaction includes redundant, independent fault tolerant 

mechanisms for each defined hazardous condition. 

(This definition assumes that there is adequate fault detection, 

annunciation, tolerance, and system recovery to prevent the hazard 

occurrence if software fails, malfunctions, or degrades. There are 

redundant sources of safety-significant information, and mitigating 

functionality can respond within any time-critical period.) 

Software that generates information of a safety-critical nature used to 

make critical decisions. The system includes several redundant, 

independent fault tolerant mechanisms for each hazardous condition, 

detection, and display.  
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Level Name Description 

4 
Influential Software generates information of a safety-related nature used to 

make decisions by the operator, but does not require operator action 

to avoid a mishap. 

5 
No Safety 

Impact 

(NSI) 

Software functionality that does not possess command or control 

authority over safety-significant hardware systems, subsystems, or 

components that does not provide safety-significant information. 

Software does not provide safety-significant or time sensitive data or 

information that requires control entity interaction. Software does not 

transport or resolve communication of safety-significant or time 

sensitive data. 

6.2.4.4 Option 4: NASA-GB-8719.13 Software Control Categories. 

An applicant could categorize each of its computing system safety items 

using the software control categories from NASA-GB-8719.13, 

Section 3.1.2.1 (see reference 10 of paragraph 3.3 of this AC). These 

categories are described in detail in Table 4, NASA-GB-8719.13 Software 

Control Categories. 
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Table 9 – NASA-GB-8719.13 Software Control Categories 

Software Control 

Categories 

Descriptions 

IA 

 

Partial or total autonomous control of safety-critical functions by 

software. 

Complex system with multiple subsystems, interacting parallel 

processors, or multiple interfaces. 

Some or all safety-critical functions are time critical. 

IIA & IIB* 

 

Control of hazard but other safety systems can partially mitigate. 

Detects hazards, notifies human operator of need for safety actions. 

Moderately complex with few subsystems and/or a few interfaces, 

no parallel processing. 

Some hazard control actions may be time critical but do not exceed 

time needed for adequate human operator or automated system 

response. 

IIIA & III B* 
* A = software control of 

hazard. B = Software 

generates safety data for 

human operator 

 

 

Several mitigating systems prevent hazard if software 

malfunctions. 

Redundant sources of safety-critical information. 

Somewhat complex system, limited number of interfaces. 

Mitigating systems can respond within any time critical period. 

IV 

 

No control over hazardous hardware. 

No safety-critical data generated for a human operator. 

Simple system with only 2-3 subsystems, limited number of 

interfaces. 

Not time-critical. 
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6.2.4.5 Option 5: Fault Tolerance. 

An applicant could perform a detailed analysis to specify the system’s 

tolerance to faults in computing system safety items. The system’s 

tolerance to software faults should be the basis for degree of control 

assessments at the following levels, with additional levels as appropriate: 

1. Zero fault tolerant – a single fault in the computing system safety item 

could result in an adverse consequence. 

2. Single fault tolerant – a fault in the computing system safety item 

requires a second, independent fault in order to result in an adverse 

consequence. 

3. Dual fault tolerant – a fault in the computing system safety item 

requires two or more independent faults in order to result in an adverse 

consequence. 

4. Critical informational – a fault in the computing system safety item 

results in erroneous information that the operator could not readily 

perceive as erroneous, which can cause an operator to take actions that 

result in an adverse consequence. 

5. Informational – a fault in the computing system safety item results in 

evidently erroneous information that, if not detected, could cause an 

operator to take actions that result in an adverse consequence. 

6. Non-safety – a fault in the computing system safety item has no 

potential to result in an adverse consequence. 

6.2.4.5.1 A fault tolerance analysis should first identify the conditions under which 

each level of fault tolerance is acceptable for the proposed operation. For 

example, fault tolerance acceptability criteria might include “hazards that 

are catastrophic must be dual fault tolerant to computing system faults,” or 

“hazards that are critical must be single fault tolerant.” The FAA would 

evaluate any such conditions as part of the license evaluation. The analysis 

should identify each computing system safety item and document its fault 

tolerance, then describe the measures in place to limit risk, linked to tests 

and analyses that demonstrate their adequacy.  

6.2.4.5.2 These categories are not arranged in a hierarchical order; instead, each 

category represents a degree of control that a computing system safety 

item could exert on the system through nominal or faulty operation. For 

example, a computing system safety item that can cause an adverse 

outcome with a single fault, and for which no other system could credibly 

prevent an adverse outcome as a result of that fault, is zero fault tolerant. 

A computing system safety item that can cause an adverse outcome with a 

single fault, but that requires a hardware component to fail or a human to 

make a mistake in order for the software fault to cause an adverse 

outcome, may be one fault tolerant if the software fault is independent of 

the second fault. A computing system safety item that could misinform a 
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system operator in a way that the operator could independently and 

credibly detect and correct would be informational. A computing system 

safety item that could misinform a system operator in a way that the 

operator could not independently detect or correct would be critical 

informational. 

7 SAFETY REQUIREMENTS. 

7.1 Identification of Safety Requirements. 

7.1.1 In accordance with § 450.141(b)(1), applicants are required to develop safety 

requirements for each computing system safety item identified under § 450.141(a). 

Safety requirements specify the implementation of public safety-related functions, 

capabilities, or attributes in a computing system safety item. Safety requirements are not 

necessarily obvious, which makes their methodical and explicit identification an 

important step in understanding a system. In general, an increase in either the severity 

of hazards, or the computing system’s degree of control over those hazards, will 

increase the level of rigor applied to that computing system to protect the public. The 

requirements in § 450.141 are based on this relationship between a computing system’s 

potential consequences, its degree of control in the causal chain for those consequences, 

and the rigor applied to development and testing. Software requirements and safety 

requirements are frequently inherited or derived from system requirements. In addition 

to the examples listed in Appendix A of this AC, common safety requirements for 

computing system safety items might include: 

 Shall use metric units. 

 Shall compute vacuum instantaneous impact point. 

 Shall contain a boundary polygon that ensures that the consequence of any 

reasonably foreseeable failure mode, in any significant period of flight, is no greater 

than 1 × 10-3 conditional expected casualties. 

 Shall compare vacuum instantaneous impact point to boundary polygon. 

 Shall not use flight safety system memory or CPU. 

 Shall accept and execute “abort” command from ground control at any time. 

7.1.2 Deficient requirements are the largest single factor in software and computing system 

project failure, and deficient requirements have led to a number of software-related 

aerospace failures and accidents, some of which are described in Appendices C and D. 

Faults in requirements can originate from the adoption of requirements that are 

incomplete, unnecessary, contradictory, unclear, unverifiable, untraceable, incorrect, in 

conflict with system performance requirements, otherwise poorly written, or 

undocumented. It is important that operators properly identify and document safety 

requirements, and per industry standards, ensure that safety requirements are internally 

consistent and valid at the system level for the resulting computing system to work 

safely. Applicants should implement a process for managing safety requirements 
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throughout the lifecycle. IEEE 1012-2016 with Corrigendum 1-2017 (see reference [4] 

of paragraph 3.3 of this AC) provides examples of approaches that can assist in 

managing requirements. The IEEE 1228-1994 (reference [5]) and NASA GB 8719.13 

(reference [10]) also provide methods for managing and analyzing safety requirements. 

7.2 Ensuring Safety Requirements are Complete and Correct. 

Section 450.141(b)(2) requires that the applicant ensure that safety requirements are 

complete and correct. The applicant may use standards, such as NASA-STD-8739.9 

(see reference [9] of paragraph 3.3 of this AC) or similar formal inspection standards 

for software, to meet this requirement. 

7.2.1 Ensuring Safety Requirements are Complete. 

A complete set of safety requirements for a given computing system safety item is the 

set of requirements that includes all functionality and attributes associated with public 

safety. To ensure complete safety requirements, an applicant should have a robust 

interface between system safety and software safety, robust software documentation, 

and a process to close any gaps in requirements identified by testing or operation of the 

system. 

7.2.2 Ensuring Safety Requirements are Correct. 

A set of safety requirements is correct if it specifies exactly and only the functions and 

attributes intended by the applicant, and when that intention aligns with the 

requirements for a safe mission. To ensure correct safety requirements, an applicant 

should have processes for identifying and reviewing safety requirements at the system 

level and at the software level with coordination between levels, independent validation 

of safety requirements for safety-critical computing system safety items, and a process 

to close any gaps in requirements identified by testing or operation of the system. 

Reviews of safety requirements need not be single events but can be accomplished 

progressively as individual computing system safety items mature. 

7.3 Implementation and Verification of Safety Requirements. 

Section 450.141(b)(3) requires the applicant to implement each safety requirement. 

There need not be a separate implementation process for safety requirements; the 

applicant’s normal process for implementing software requirements is sufficient. This 

step is required as a bridge between §§ 450.141(b)(2) and 450.141(b)(4), and records 

produced during this step are important for meeting § 450.141(d)(5). 

7.3.1 Independent Validation and Verification. 

Applicants are required to validate and verify the implementation of each safety 

requirement by using a method appropriate for the level of criticality of the computing 

system safety item, in accordance with § 450.141(b)(4). This regulation requires that 

when testing a safety-critical computing system safety item, its validation and 

verification must include testing by a test team independent of the software 

development division or organization. This validation and verification should take place 

within the development cycle and contribute iterative findings to the design of the 

computing system safety item. 
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7.3.2 Choosing Appropriate Validation and Verification Methods. 

Validation and verification methods should be proportional to the level of criticality of 

the computing system safety item, meaning the method should produce a degree of 

certainty that leaves little risk of fault in the computing system safety item. One 

acceptable method of implementing validation and verification in proportion to 

criticality is provided by MIL-STD-882E (see reference [1] of paragraph 3.3 of this 

AC), in its discussion of “level of rigor tasks.” Acceptable methods of verification 

include analyses, formal inspections, and testing. In most cases, testing is the preferred 

verification approach. These methods are often used in combination, depending on the 

feasibility of the method and the maturity of the vehicle and operations. 

8 DEVELOPMENT PROCESS. 

8.1 Development Process Rigor. 

Once the applicant has determined the safety requirements needed for each computing 

system safety item based on the level of criticality of each item, the applicant can assign 

the appropriate development tasks to its computing system safety items. 

Section 450.141(c) requires an applicant to implement and document a development 

process for computing system safety items that is appropriate for the level of criticality 

of each computing system safety item. The FAA defines the performance objectives for 

software development tasks in § 450.141(c) but relies on the applicant to design the 

tasks that fit its development process while achieving the performance objectives. The 

tasks required to demonstrate the necessary rigor for a computing system safety item’s 

criticality should be assigned at the item level. The required tasks should be based on 

the highest criticality function of a computing system safety item and assigned through 

the software development process required by § 450.141(c). 

8.2 Development Process Requirements. 

8.2.1 Responsibility Assignments. 

An applicant must define development responsibilities for each task associated with a 

computing system safety item, in accordance with § 450.141(c)(1). Applicants may 

achieve this requirement in a wide variety of ways, including documentation of the 

engineers responsible for computing system safety items, logging of approvals for 

changes to requirements and software, and definition of software build or release 

processes. An applicant has met this requirement when the applicant can determine who 

conducted and approved each step in the development of a computing system safety 

item retrospectively. 
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8.2.2 Review and Approval Processes. 

In accordance with § 450.141(c)(2), an applicant must define processes for internal 

review and approval, including reviews that evaluate the implementation of all safety 

requirements, such that no person approves that person’s own work. This requirement is 

related to § 450.141(c)(1) because responsibility assignments need to be known in order 

to determine whether each review was conducted with the appropriate degree of 

independence. At a minimum, to meet that requirement, reviews and approvals should 

include reviews of safety requirements and approvals for their implementation, and 

reviews and approvals of validation and verification evidence. 

8.2.3 Training. 

Development personnel are required to be trained, qualified, and capable of performing 

their role, in accordance with § 450.141(c)(3). This training should include learning and 

practicing operations and procedures that protect the public, including operations and 

procedures for computing system safety item development. Training can be included as 

a risk mitigation measure in hazard analyses, as it limits the potential for a range of 

errors in computing system safety item development. The applicant should develop 

plans that describe its training process. This training should include, but is not limited 

to: training for development tools, development methods, installation and testing, 

hazard analysis approaches, computing system use, and software maintenance. Since 

training needs and methods are specific to each applicant, FAA’s application evaluation 

will verify that an applicant’s training process meets the performance objectives in this 

regulation. In its application review, the FAA does not intend to verify the 

qualifications of individual development personnel, but rather to verify that the operator 

has a process in place to put appropriately trained and experienced personnel in public 

safety roles. 

8.2.4 Traceability. 

An applicant must define processes that trace requirements to validation and 

verification evidence, in accordance with § 450.141(c)(4). This traceability enables the 

applicant to demonstrate that its validation and verification of each safety requirement is 

sufficient. An applicant should connect the computing system requirements to the 

analytical and test evidence that demonstrates their implementation in a manner suited 

to its development process. The connections should be verifiable and human-readable, 

and the connections for safety requirements should be included in the application 

materials. FAA does not prescribe the technical methods for making these traceability 

connections but will evaluate the selected method for possibilities of error. 
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8.2.5 Configuration Management. 

An applicant must define processes for configuration management that specify the 

content of each released version of a computing system safety item, in accordance with 

§ 450.141(c)(5). The applicant must also comply with § 450.103(c) in its configuration 

management approach.3 This is the minimum performance requirement for 

configuration management, but an applicant may need to use other aspects of 

configuration management (e.g., hardware supply chain requirements or administrative 

procedures) to achieve the performance requirement. The development process should 

produce a record of each version of its resultant software or data and each hardware 

component on which each software or data component is installed. The applicant should 

retain a record of the system configuration for each computing system safety item in 

order to demonstrate compliance with the regulatory requirements. Changes to the 

computing system, especially on safety-critical systems, can have significant impacts on 

public safety. This configuration management and control process should be in force 

during the entire life cycle of the program, from initiation of development through 

retirement, and should include control of project documentation, source code, object 

code, data, development tools, test tools, environments (both hardware and software), 

and test cases. Configuration management processes should be ready when each 

component reaches an initial baseline configuration and should be applied from that 

point forward. More information on configuration management can be found in 

paragraph A.Error! Reference source not found. of this AC. As required by §

 450.141(c)(5), the applicant must implement a process for configuration management 

that specifies the content of each released version of a computing system safety item. At 

a minimum, the process should: 

 Identify components, subsystems, and systems; 

 Establish baselines and traceability; and 

 Track changes to the software configuration and system documentation. 

8.2.6 Validation and Verification. 

Safety analyses generate top- and design-level safety requirements that the applicant 

uses to meet its system safety goals. These requirements typically result from 

implementation of mitigation measures, or operational controls to reduce risk. Other 

sources of safety requirements may include operating practices, standard industry 

practices, lessons learned, and regulations. Those of the system’s safety requirements 

that apply to computing systems will need validation and verification consistent with 

§ 450.141. Regardless of the source, effective management of the complete set of safety 

requirements is an essential component of system safety engineering, and safety 

requirements validation and verification depends on the integrity of the set of safety 

requirements. 

                                                 

3 Section 450.103 sets forth the requirements for implementing and documenting a system safety program 

throughout the lifecycle of a launch or reentry system. This system safety program includes configuration 

management and control requirements under § 450.103(c).  
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8.2.6.1 Testing. 

In accordance with § 450.141(c)(6), applicants are required to define 

processes for testing that validation and verify all safety requirements to 

the extent required by § 450.141(b)(4). Testing should verify the correct 

functionality of a computing system safety item and validate its 

performance in the system. Tests should check the implementation of 

safety requirements. To demonstrate that an applicant sufficiently tested 

its computing systems based on their criticality, an applicant must trace its 

validation and verification evidence to the requirements, as required by 

§ 450.141(c)(4). Applicants should describe the components of its testing 

process, such as the test plan, test cases, test logs, and the procedures for 

testing computing systems in representative environments. Validation and 

verification testing in appropriately representative environments may 

include tests performed on flight-like hardware, Monte Carlo simulations, 

branch and boundary tests, mathematical validation, fault injection testing, 

or other methods appropriate for the criticality of the computing system 

safety item. The degree of testing required by § 450.141(c)(6) will depend 

on the complexity of the system—that is, the nature of the computing 

system safety items and their criticality, as identified in § 450.141(b)(4). 

Computing system testing is conducted as part of a larger system and 

vehicle verification program. The system’s responses to computing system 

safety item faults should be tested whenever the system is part of the 

mitigation strategy for a fault or failure of a computing system safety item. 

8.2.6.2 Test Plan. 

A computing system testing process begins with a test plan that 

demonstrates how the results of testing will be used to validate and verify 

all safety requirements. An applicant should develop its test plan before 

verification testing begins. A plan normally prescribes the scope, 

approach, resources, and schedule of the testing activities. The applicant’s 

plan should include a description of the test environments, including 

software tools and hardware test equipment. Tests may include, but are not 

limited to those contained in Table 5, Testing Types, of this AC. 
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Table 10 – Testing Types 

Test Comments 

Unit Demonstrates correct functioning of critical software elements. 

Interface 
Shows that critical computer software units execute together as 

specified. 

System 
Demonstrates the performance of the software within the overall 

system throughout the planned mission duration. 

Stress 

Confirms the software will not cause hazards under abnormal 

circumstances, such as unexpected input values, overload conditions, 

or off-nominal mission timelines. 

Regression 
Demonstrates changes made to the software did not introduce 

conditions for new hazards. 

8.2.6.3 Test Cases. 

The applicant should also define specific test cases with pass and fail 

criteria. Test cases describe the inputs, predicted results, test conditions, 

and procedures for conducting the test. The applicant should design test 

cases to ensure that all safety requirements are covered. These test cases 

should include scenarios that demonstrate the ability of the software to 

respond to both nominal and off-nominal inputs and conditions. 

Off-nominal and failure test scenarios often come from the hazard 

analysis. 

8.2.6.4 Test Log. 

The applicant should record the results of the tests; this is often done in a 

test log. Anomalies discovered during testing should also be recorded. 

ISO/IEC/IEEE 29119-3:2013 provides additional information on test 

documentation. The recorded test results need to include the version of the 

software that was tested. See reference [2] of paragraph 3.3 of this AC. 

8.2.6.5 Verification Tests. 

Testing traditionally has been relied on to verify that computing system 

requirements have been met and have been implemented correctly. There 

are several types of tests available, shown in Table 6, and verification 

testing is normally a combination of many or all types. The applicant 

should use a combination of verification approaches that are appropriate 

for its software system (analysis, inspection, and test), including testing to 

the extent practicable. The applicant should also use proven methods to 

verify the software requirements, which include, but are not limited, to the 

verification tests listed in Table 6 of this AC. 
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Table 11 – Verification Tests 

Test Comments 

Equivalence 

partitioning 

Identifying valid and invalid classes of input conditions. If, for 

example, an input field calls for values between 1 and 10, 

inclusive, then a valid equivalence class would be all values 

between and including 1 and 10. Invalid equivalent classes 

would be values less than 1 and values greater than 10. 

Boundary value Testing at the extremes of an input condition, values close to 

those extremes, and crossing those boundaries. If, for example, 

an input field calls for values between 0 and 100 with a 

precision of 0.01, then test inputs could include 0, 100, -0.01, 

100.01, 0.01, and 99.99. Test inputs that exceed the implicit 

boundaries of allocated memory, such as 129 or -128 for an 

8-bit signed integer, should also be included. 

Error guessing Using empty or null lists and strings, negative numbers, null 

characters in a string, and incorrect entry types. 

Statement 

coverage 

Ensuring that each instruction is executed at least once and 

instruction execution produces the expected response. 

Decision coverage Ensuring that each decision takes on all possible outcomes at 

least once. For example, assuring that all “if” and “while” 

statements are evaluated to both true and false. 

Function 

coverage 

Determining whether each function or procedure was invoked. 

Call coverage Verifying that each function call has been completed at least 

once and produced the expected results. 

8.2.7 Previously Developed Software and Computing Systems. 

As required by § 450.141(c)(7), an applicant must validate and verify the safety 

requirements for reused computing system safety items. In addition, an applicant must 

validate and verify the safety requirements for third-party products, as required by 

§ 450.141(c)(8). Using previously developed computing system safety items can reduce 

development time, because those components have already undergone design and 

testing. However, analysis of accidents where software was a contributing factor shows 

the risks in this approach. Previously-developed computing system safety items include 

commercial off-the-shelf (COTS) software, government off-the-shelf (GOTS) software, 

and “reused” software. Although another vendor may have developed the software or 

product, reducing the risks of using third-party products remains the responsibility of 

the applicant. These risk reduction efforts should include evaluating the differences 
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between the computing system safety item’s role in the new system and its use in the 

previous system, including assessment of any identified issues found during use in the 

previous system and implementation of all preconditions for its use in the new system. 

For third-party computing system safety items, risk reduction efforts should include 

verification of compliance with the developer’s specified uses for third-party products 

and verification of safety requirements for its use in the system. 

8.3 Development Process Considerations. 

The rest of this chapter outlines considerations that may guide applicants in formulating 

development processes that satisfy § 450.141(c) and, more generally, the performance-

based requirements of § 450.141. 

8.3.1 Analysis. 

Analyses to verify that the software requirements are implemented correctly could 

include the components described in Table 7 of this AC. Additional information about 

software analysis methods is available in IEEE 1228-1994 and the Joint Services 

Software Safety Committee (JSSSC) Software System Safety Handbook. See references 

[5] and [7] of paragraph 3.3 of this AC. 
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Table 12 – Software Implementation Analysis 

Analysis Comments 

Logic Evaluates the sequence of operations represented by the coded 

program and detects programming errors that might create 

hazards. 

Data Evaluates the data structure and usage in the code to ensure each 

is defined and used properly by the program. Analysis of the data 

items used by the program is usually performed in conjunction 

with logic analysis. 

Interface Ensures compatibility of program modules with each other and 

with external hardware and software. 

Constraint Ensures that the program operates within the constraints imposed 

upon it by requirements, design, and target computer. Constraint 

analysis is designed to identify these limitations, ensure that the 

program operates within them, and make sure that all interfaces 

have been considered for out-of-sequence and erroneous inputs. 

Programming style Ensures that all portions of the program follow approved 

programming guidelines. 

Non-critical code Examines portions of the code that are not considered 

safety-critical code to ensure that they do not cause hazards. As a 

general rule, safety-critical code could be isolated from 

non-safety-critical code. The intent of this analysis is to prove that 

this isolation is complete and that interfaces between safety-

critical code and non-safety-critical code do not create hazards. 

Timing and sizing Evaluates safety implications of safety-critical requirements that 

relate to execution time, clock time, and memory allocation. 

8.3.2 Development Standards. 

The applicant may identify development standards that define the rules and constraints 

for the development process in accordance with § 450.141(c). The use of development 

standards can enable uniformly designed and implemented computing system safety 

items. They can prevent the use of methods that are incompatible with safety 

requirements. Referencing a standard may produce a compelling rationale for the 

acceptance of a development process. RCC 319-19 defines a development standard that 

is sufficient for a flight safety system. An applicant can meet § 450.141(c) by 

demonstrating compliance with RCC 319-19. See reference [12] of paragraph 3.3 of this 

AC. Regardless of the standard or its use in the proposed operation, the application 

could establish an understanding of the parts of each standard that has been adopted by 
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the applicant, how each part of each standard is used in the proposed development and 

operation, and how each part of each standard supports public safety. Development 

standards include requirements, design, coding, and safety standards, as follows: 

 Requirements standards may include methods for developing requirements and a 

description of how the requirements flow down to coding. 

 Design standards may include restrictions on the use of scheduling and 

interrupts, specification of usable code libraries, or rules for conditional 

branches to reduce complexity. 

 Coding standards may include specifications for the programming language; 

naming conventions for modules, variables, and constants; and constraints on 

the use of tools. 

 Safety standards may include approaches for analyzing risk and classifying 

hazards, such as MIL-STD-882 or GEIA-STD-0010A. See references [1] and 

[13] of paragraph 3.3 of this AC. 

8.3.3 Quality Assurance. 

Quality assurance may support the achievement of the performance objectives in 

§ 450.141. Quality assurance verifies that the objectives and requirements of the 

software system safety program are satisfied and confirms that deficiencies are detected, 

evaluated, tracked, and resolved. An acceptable quality assurance function should 

include audits and inspections of elements and processes, such as plans, standards, and 

problem tracking and configuration management systems. In addition, the quality 

assurance function could evaluate the validity of system safety data. NASA Software 

Assurance and Software Safety Standard (NASA-STD-8739.8), and NASA Software 

Engineering and Assurance Handbook (NASA-HDBK-2203) provide examples of 

acceptable software quality assurance methods. See references [8] and [11] of paragraph 

3.3 of this AC. 

8.3.4 Formal Inspections. 

Formal inspections are well thought out technical reviews that provide a structured way 

to find and eliminate defects in documentation products, ranging from a requirements 

document to the actual source code. These inspections differ from informal reviews or 

walkthroughs since there are specified steps to be taken and roles assigned to individual 

reviewers. As required by § 450.141(c)(2), a process must be defined for internal review 

and approval such that no person approves their own work. Further information 

regarding formal inspections can be found in NASA-STD-8739.9, Software Formal 

Inspections Standard. See reference [9] of paragraph 3.3 of this AC. 

  



08/16/2021  AC 450.141-1A 

31 

8.3.5 Anomaly Reports. 

To help prevent recurrence of computing system safety-related anomalies, the applicant 

could develop a standardized process to document anomalies, analyze the root cause, 

and determine corrective actions. Software anomaly reports (also known as problem 

reports) are a means to identify and record: 

 Computing system anomalous behavior and its resolution, including failure to 

respond properly to nominal and off-nominal conditions. 

 Development process non-compliance with software, requirements, plans, and 

standards, including improperly implemented safety measures. 

 Deficiencies in documentation and safety data, including invalid requirements. 

8.3.6 Maintenance and Repair of Computing System Hardware. 

While software does not wear out, maintenance engineering ensures that systems and 

subsystems will remain at the design safety level by minimizing computing system 

hardware wear-out failures through replacement of failed items and surveillance for 

possible degradation due to environments. Maintenance engineering personnel also 

participate in analyzing the safety implications of proposed maintenance procedures on 

the ground and in flight. Therefore, the applicant could perform activities to aid 

maintenance and repair of computing system hardware. 

8.3.7 Maintenance of Computing System Software. 

Software maintenance differs from hardware maintenance because software does not 

wear out or degrade in the same way that hardware does. However, software 

maintenance corrects defects; adds or removes features and capabilities; compensates 

for or adapts to hardware changes, wear-out, or failure; and accommodates changes in 

other computing system safety items or system components. Changes to both the 

hardware and software after deployment can produce computing system anomalies. An 

applicant could identify a process for verifying the integrity of the safety-critical 

software and computing systems after deployment. Examples of such verification 

methods include the use of checksums and parity bit checks to ensure proper data 

transfer, built-in or external measures for evaluating the software and its data, 

inspections to detect unauthorized modification of the software or its data, and 

regression testing. 

8.3.8 Building Maintainable Software. 

Because software changes can be expected over the lifecycle of the product, an 

applicant could build maintainable software to facilitate those changes and reduce the 

likelihood of introducing new hazards. NASA-GB-8719.13 provides additional 

information on software maintainability. See reference [10] of paragraph 3.3 of this AC. 

Considerations for building maintainable software include: 

 Planning early for expected changes. 

 Using strong configuration management practices. 
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 Using modular design, where appropriate, to minimize the overall impact of 

changes. 

 Implementing naming conventions for variables to improve code readability. 

 Using comment and style coding standards to improve code readability. 

 Implementing documentation standards to make important information easy to 

find. 

 Using a standardized set of development tools to reduce the chance of 

introducing errors in code changes. 

 Assuring that design and verification documentation, such as regression tests 

and test cases, are updated and maintained. 
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9 APPLICATION MATERIALS. 

This chapter provides guidance on satisfying the application requirements set forth in 

§ 450.141(d). In accordance with § 450.141(d), an application must include: 

 Descriptions of all computing system safety items involved in the proposed 

operations; 

 All safety requirements for each computing system safety item; 

 Documentation of the software development process that meets § 450.141(c); 

 Evidence of the execution of appropriate development processes for each 

computing system safety item; and 

 Evidence of the implementation of each safety requirement. 

9.1 Computing System Safety Items. 

An applicant must identify and describe all computing system safety items involved in 

its proposed operation, in accordance with § 450.141(d)(1). These descriptions should 

include the severity of hazards associated with each computing system safety item and 

the computing system safety item’s level of criticality regarding each hazard. The 

descriptions of computing system safety items and their criticality allow the applicant to 

know, and the FAA to verify, how each computing system safety item influences public 

safety when combined with the other requirements in § 450.141. 

9.2 Safety Requirements. 

An applicant must identify the safety requirements for each computing system safety 

item, in accordance with § 450.141(d)(2). Although § 450.141(d)(2) only requires 

applicants to identify safety requirements, an applicant may, and is encouraged to, 

submit all computing system requirements for its computing system safety items in 

order to effectively convey the software’s intended functionality to the FAA. State 

diagrams, user manuals, flow charts, and other documents are helpful to communicate 

computing system requirements. 

9.3 Development Process. 

Section § 450.141(d)(3) requires applicants to submit documentation of the 

development process that meets § 450.141(c), including the minimum attributes 

required by the regulation. Similarly, § 450.141(d)(4) requires an applicant to provide 

evidence of the execution of the appropriate development process for each computing 

system safety item. An applicant must demonstrate its development process for each 

computing system safety item in accordance with § 450.141(d)(3), and each 

development process must meet § 450.141(c). If a development process contains more 

than one distinct set of development process requirements, such as a set of development 

requirements for applicant-developed computing system safety items and another set for 

third-party products, then the applicant should specify which set was executed for each 

computing system safety item. The documentation required of an applicant to meet 

these requirements will vary among applications, depending on the complexity of the 

computing system safety item, but will generally include some combination of audit 
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results, milestone results, and outputs of automated code checking tools. Substantive 

guidance on demonstrating compliance with § 450.141(c) is provided in paragraph 8.2 

of this AC. A software hazard analysis is often needed to ensure that test cases address 

all necessary nominal and off-nominal conditions, and it expands in scope throughout 

the development process. Although the test cases trace to requirements, the hazard 

analysis validates the content of the tests. 

9.4 Providing Evidence of the Implementation of Each Safety Requirement. 

Section 450.141(d)(5) requires the submission of evidence of the implementation of 

each safety requirement. An applicant should submit the combination of test 

descriptions, test plans, test outputs, and analyses that verifies that each computing 

system safety item meets each applicable safety requirement. Applicants that plan 

repeated missions with identical computing system safety items may define a standard 

set of test reports. 

9.5 Examples of Lessons Learned from Previous Space Vehicle Failures. 

Appendices C and D of this AC provide examples of lessons learned from previous 

system failures in which software and its associated computing system hardware have 

played a significant role. The information provided in these appendices is intended to 

provide an understanding of the types of failures that have been observed in software 

and computing systems and provide lessons learned for the design of future systems. 
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APPENDIX A. GENERIC COMPUTING SYSTEM SAFETY REQUIREMENTS. 

This appendix provides generic computing system safety requirements that an 

applicant may use in the design and development of software and computing 

systems. These generic design requirements represent best practices used in the 

aerospace community, and are offered here as examples of safety requirements 

for any application under § 450.141. Additional information and sample 

requirements can be found in the following references: 

 FAA System Safety Handbook (2002) 

 Joint Services Software Safety Committee Software System Safety Handbook 

(1999) 

 NASA Software Safety Guidebook (2004) 

 Range Safety User Requirements Manual: Air Force Space Command Range 

Safety Policies and Procedures (2004) 

 Sample General Computing System Requirements.4 

A.1.1 Computer systems should be validated for operation in the intended use and 

environment. Such validation should include testing under operational 

conditions and environments. 

A.1.2 Under maximum system loads, CPU throughput should not exceed 80 percent of 

its design value. 

A.1.3 Computer system architecture should be single fault tolerant. No single software 

fault or output should initiate a hazardous operation, cause a critical accident, or 

cause a catastrophic accident. 

A.1.4 Safety-critical computer system flight architecture that will be exposed to 

cosmic radiation should protect against CPU single event upset and other single 

event effects. A single event upset occurs when an energetic particle travels 

through a transistor substrate and causes electrical signals within a component. 

A.1.5 Sensitive components of computer systems should be protected against the 

harmful effects of electromagnetic radiation, electrostatic discharges, or both. 

A.1.6 The computer system should verify periodically that safety-critical computer 

hardware and software safety-critical functions, including safety data 

transmission, operate correctly. 

                                                 

4 The requirements in this appendix are computing system design requirements as opposed to regulatory 

requirements. 
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A.1.7 The computer system should verify periodically the validity of real-time 

software safety data, where applicable. 

A.1.8 Software should process the necessary commands within the time-to-criticality 

of a hazardous event. 

A.1.9 Memory allocation should occur only at initialization. 

A.1.10 If the system begins to use areas of memory that are not part of the valid 

program code, the system should revert to a safe state. 

A.1.11 Memory partitions, such as RAM, should be cleared before loading software. 

A.1.12 Prerequisite conditions for the safe execution of an identified hazardous 

command should exist before starting the command. Examples of these 

conditions include correct mode, correct configuration, component availability, 

proper sequence, and parameters in range. If prerequisite conditions have not 

been met, the software should reject the command and alert the crew, ground 

operators, or controlling executive. 

A.1.13 Provisions to protect the accessibility of memory region instructions, data 

dedicated to critical software functions, or both, should exist. 

A.1.14 Software should provide proper sequencing, including timing, of safety-critical 

commands. 

A.1.15 Where practical, software safety-critical functions should be performed on a 

standalone computer. If that is not practical, software safety-critical functions 

should be isolated to the maximum extent practical from non-critical functions. 

A.1.16 Documentation describing the software and computing system should be 

developed and maintained to facilitate maintenance of the software. 

A.1.17 The software should be annotated, designed, and documented for ease of 

analysis, maintenance, and testing of future changes to the software. 

A.1.18 Interrupt priorities and responses should be specifically defined, documented, 

analyzed, and implemented for safety impact. 

A.1.19 Critical software design and code should be structured to enhance 

comprehension of decision logic. 

A.1.20 Software code should be modular in an effort to reduce logic errors and improve 

logic error detection and correction functions. 

A.1.21 The software should be initiated and terminated in a safe state. 
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A.1.22 Critical hardware controlled by software should be initialized to a known safe 

state. 

A.1.23 NASA Software Engineering Requirements (NPR 7150.2C) requirement 

SWE-134 provides an alternative set of requirements that is helpful in 

determining a full set of software requirements for safety critical applications. 

A.2 Computing System Power. 

A.2.1 Computer systems should be powered up, restarted, and shutdown in a safe 

state. 

A.2.2 A computer system should not enter a hazardous state as a result of an 

intermittent power transient or fluctuation. 

A.2.3 If a single failure of primary power to a computer system or computer system 

component occurs, then that system or some cooperating system should take 

action automatically to transition to a stable state. 

A.2.4 Software used to power up safety-critical systems should power up the required 

systems in a safe state. 

 Anomaly and Failure Detection. 

A.3.1 Single event system failures should be protected against by employing 

mitigating approaches, as appropriate, such as redundancy, error-correcting 

memory, and voting between parallel CPUs. 

A.3.2 Before initiating hazardous operations, computer systems should perform checks 

to ensure that they are in a safe state and functioning properly. Examples include 

checking safety-critical circuits, components, inhibits, interlocks, exception 

limits, safing logic, memory integrity, and program loads. 

A.3.3 Failure of software safety-critical functions should be detected, isolated, and 

recovered from in a manner that prevents catastrophic and critical hazardous 

events from occurring. 

A.3.4 Software should provide error handling to support software safety-critical 

functions. The following hazardous conditions and failures, including those 

from multiple sources, should be detected: 

 Input errors. Data or sequences of data passed to software modules, either by 

human input, other software modules, or environmental sensors, that are 

outside a specified range for safe operation. 

 Output errors. Data output from software modules that are outside a 

specified range for safe operation. 
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 Timing errors. The state when software-timed events do not happen 

according to specification. 

 Data transmission errors. 

 Memory integrity loss. 

 Data rate errors. Greater than allowed safe input data rates. 

 Software exceptions. “Divide by zero” or “file not found.” 

 Message errors. Data transfer messages corrupted or not in the proper 

format. 

 Logic errors. Inadvertent instruction jumps. 

A.3.5 Watchdog timers or similar devices should be used to ensure that the 

microprocessor or computer operates properly. For example, a watchdog timer 

should be used to verify events within an expected time budget or to ensure that 

cyclic processing loops complete within acceptable time constraints. 

A.3.6 Watchdog timers or similar devices should be designed, so the software cannot 

enter an inner loop and reset the timer or similar device as part of that loop 

sequence. 

 Anomaly and Failure Response. 

A.4.1 Software should provide fault containment mechanisms to prevent error 

propagation across replaceable unit interfaces. 

A.4.2 All anomalies, software faults, hardware failures, and configuration 

inconsistencies should be reported to the appropriate system operator, safety 

official, or both, consoles in real time, prioritized as to severity, and logged to an 

audit file. The display should: 

 Distinguish between read and unread anomaly alerts; 

 Support reporting multiple anomalies; 

 Distinguish between anomaly alerts for which corrective action has been 

taken and those that still require attention; and 

 Distinguish between routine and safety-critical alerts. 

A.4.3 Upon detecting anomalies or failures, the software should: 

 Remain in or revert to a safe state; 

 Provide provisions for safing the hardware subsystems under the control of 

the software; 

 Reject erroneous input; and 
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 Ensure the logging of all detected software safety-critical function system 

errors. 

A.4.4 Upon detecting a failure during vehicle processing, the software should maintain 

the Flight Safety System (FSS) in its current state and meet the requirements in 

paragraph A.4.3 of this appendix. The software should maintain the FSS in the 

safe state. After the FSS is readied, the software should retain the FSS in the 

readied state. When the FSS receiver is on internal power, the software should 

maintain the FSS receiver on internal power. During flight, all detected 

FSS-related system errors should be transmitted to the safety official. 

A.4.5 Details of each anomaly should be accessible with a single operator action. 

A.4.6 Automatic recovery actions taken should be reported to the crew, operator, or 

controlling executive. There should be no necessary response from crew or 

ground operators to proceed with the recovery action. 

A.4.7 Override commands should require multiple operator actions. 

A.4.8 Software that executes hazardous commands should notify the initiating crew, 

ground operator, or controlling executive upon execution or provide the reason 

for failure to execute a hazardous command. 

A.4.9 Hazardous processes and safing processes with a time-to-criticality such that 

timely human intervention may not be available should be automated. Such 

processes should not require human intervention to begin, accomplish interim 

tasks, or complete. 

A.4.10 The software should notify the crew, ground operators, or controlling executive 

during or immediately after completing an automated hazardous or safing 

process. 

A.4.11 After correction of erroneous entry, the software should provide positive 

confirmation of a valid data entry. The software should also provide an 

indication that the system is functioning properly. 
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 Maintenance, Inhibits, and Interlocks. 

A.5.1 Systems should include hardware and software interlocks and software 

controllable inhibits, as necessary, to mitigate hazards when performing 

maintenance or testing. 

A.5.2 Interlocks should be designed to prevent an inadvertent override. 

A.5.3 Interlocks that are required to be overridden should not be autonomously 

controlled by a computer system, unless dictated by a timing requirement. 

A.5.4 Interlocks that are required to be overridden and are autonomously controlled by 

a computer system should be designed to prevent an inadvertent override. 

A.5.5 The status of all interlocks should be displayed on the appropriate operator 

consoles. 

A.5.6 An interlock should not be left in an overridden state once the system is restored 

to operational use. 

A.5.7 A positive indication of interlock restoration should be provided and verified on 

the appropriate operator consoles before restoring a system to its operational 

state. 

A.5.8 Software should make available status of all software controllable inhibits to the 

crew, ground operators, or controlling executive. 

A.5.9 Software should accept and process crew, ground operator, or controlling 

executive commands to activate and deactivate software controllable inhibits. 

A.5.10 Software should provide an independent and unique command to control each 

software controllable inhibit. 

A.5.11 Software should incorporate the ability to identify and display the status of each 

software inhibit associated with hazardous commands. 

A.5.12 Software should make available the current status on software inhibits 

associated with hazardous commands to the crew, ground operators, or 

controlling executive. 

A.5.13 All software inhibits associated with a hazardous command should have a 

unique identifier. 

A.5.14 If an automated sequence is already running when a software inhibit associated 

with a hazardous command is executed, the sequence should complete before 

the software inhibit is started. 
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A.5.15 Software should have the ability to resume control of an inhibited operation after 

deactivation of a software inhibit associated with a hazardous command. 

A.5.16 The state of software inhibits should remain unchanged after the execution of an 

override. 

 Human-Computer Interface. 

A.6.1 The system should be designed such that the operator may exit current 

processing to a known stable state with a single action and have the system 

revert to a safe state. 

A.6.2 Computer systems should minimize the potential for inadvertent actuation of 

hazardous operations. 

A.6.3 Only one operator at a time should control safety-critical computer system 

functions. 

A.6.4 Operator-initiated hazardous functions should require two or more independent 

operator actions. 

A.6.5 Software should provide confirmation to the operator of valid command entries, 

data entries, or both. 

A.6.6 Software should provide feedback to the operator that indicates command 

receipt and status of the operation commanded. 

A.6.7 Software should provide the operator with real-time status reports of operations 

and system elements. 

A.6.8 Error messages should distinguish safety-critical states and errors from non-

safety-critical states and errors. 

A.6.9 Error messages should be unambiguous. 

A.6.10 Unique error messages should exist for each type of error. 

A.6.11 The system should ensure that a single failure or error cannot prevent the 

operator from taking safing actions. 

A.6.12 The system should provide feedback for any software safety-critical function 

actions not initiated. 

A.6.13 Safety-critical commands that require several seconds or longer to process 

should provide a status indicator to the operator indicating that processing is 

occurring. 
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A.6.14 Safety-critical operator displays and interface functions should be concise and 

unambiguous. Where possible, such displays should be duplicated using 

separate display devices. 

 Computing System Environment-Software Interface. 

A.7.1 The developer should identify the situations in which the application can corrupt 

the underlying computing environment. 

A.7.2 The developer should check for system data integrity at startup. 

A.7.3 The system should provide for self-checking of the programs and computing 

system execution. 

A.7.4 Periodic checks of memory, instruction, and data busses should be performed. 

A.7.5 Parity checks, checksums, or other techniques should be used to validate data 

transfer. 

 Operations. 

A.8.1 Operational checks of testable software safety-critical functions should be made 

immediately before performance of a related safety-critical operation. 

A.8.2 Software should provide for flight or ground crew forced execution of any 

automatic safing, isolation, or switchover functions. 

A.8.3 Software should provide for flight or ground crew forced termination of any 

automatic safing, isolation, or switchover functions. 

A.8.4 Software should provide procession for flight or ground crew commands in 

return to the previous mode or configuration for any automatic safing, isolation, 

or switchover function. 

A.8.5 Software should provide for flight or ground crew forced override of any 

automatic safing, isolation, or switchover functions. 

A.8.6 Hazardous payloads should provide failure status and health data to vehicle 

software systems, consistent with anomaly detection requirements and anomaly 

response requirements. Vehicle software systems should process hazardous 

payload status and data to provide status monitoring and failure annunciation. 

A.8.7 The system should have at least one safe state identified for each logistic and 

operational phase. 

A.8.8 Software control of critical functions should have feedback mechanisms that 

give positive indications of the function’s occurrence. 



 08/16/2021  AC 450.141-1A 

  Appendix A 

43 

A.8.9 The system and software should ensure that design safety requirements are not 

violated under peak load conditions. 

A.8.10 The system and software should ensure that performance degradation caused by 

factors, such as memory overload and counter overflow, does not occur over 

time. 

 Validation and Verification. 

A.9.1 A system safety engineering team should analyze the software throughout the 

design, development, and maintenance process to validate and verify that the 

safety design requirements have been implemented correctly and completely. 

Test results should be analyzed to identify potential safety anomalies that may 

occur. 

A.9.2 If simulated items, simulators, and test sets are needed, the system should be 

designed such that the identification of the devices is fail safe. The design 

should also assure that personnel could not inadvertently identify operational 

hardware as a simulated item, simulator, or test set. 

A.9.3 The vehicle operator should use a problem-tracking system to identify, track, 

and disposition anomalies during the verification process. 

A.9.4 The operator should have the ability to review logged system errors. 

A.9.5 For software safety-critical functions, the developer should provide evidence 

that testing has addressed not only nominal correctness but also robustness in the 

face of stress. Such testing may involve stimulus and response pairs to 

demonstrate satisfaction of functional requirements. This approach should 

include a systematic plan for testing the behavior when capacities and rates are 

extreme. As a minimum, the plan would identify and demonstrate the behavior 

of safety-critical software in the face of the failure of various other components. 

Examples include having no or fewer input signals from a device for longer 

periods than operationally expected or, conversely, receiving more frequent 

input signals from a device than operationally expected. 

A.9.6 The developer should provide evidence of the following: 

 Independence of test planning, execution, and review for safety-critical 

software; to that end, someone other than the individual developer should 

develop, review, conduct, and interpret unit tests. 

 Rate and severity of errors of software safety-critical functions exposed in 

testing diminishes as the system approaches operational testing. 

 Tests of software safety-critical functions represent a realistic sampling of 

expected operational inputs. 
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A.9.7 Software testing should include the following: 

 Hardware and software input failure modes. 

 Boundary, out-of-bounds, and boundary crossing conditions. 

 Minimum and maximum input data rates in worst-case configurations to 

determine the system’s abilities and responses to these conditions. 

 Input values of zero, zero crossing, and approaching zero from either 

direction and similar values for trigonometric functions. 

A.9.8 Interface testing should include operator errors during safety-critical operations 

to verify safe system response to these errors. Issuing the wrong command, 

failing to issue a command, and issuing commands out of sequence should be 

among the conditions tested. 

A.9.9 Software safety-critical functions in which changes have been made should be 

subjected to complete regression testing. The regression tests should be 

maintained and updated as necessary. 

A.9.10 Where appropriate, software testing should include duration stress testing. The 

stress test periods should continue for at least the maximum expected operating 

time for the system. Operators should conduct testing under simulated 

operational environments. In addition, software testing should examine the 

following items: 

 Inadvertent hardware shutdown and power transients. 

 Error handling. 

 Execution path coverage, with all statements completed and every branch 

tested at least once. 

A.9.11 The vehicle operator should evaluate equations and algorithms to ensure that 

they are correct, complete, and satisfy safety requirements. 

A.9.12 Non-operational hardware and software required for testing or maintenance 

should be clearly identified. 

A.9.13 Existing code compiled with a new compiler or new release of a compiler 

should be regression tested. 

A.9.14 Operators should not use beta test versions of language compilers or operating 

systems for safety-critical functions. 

A.9.15 An operator should document and maintain test results in test reports. 
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 Configuration Management. 

A.10.1 Software safety-critical functions and associated interfaces should be put under 

formal configuration control as soon as a software baseline is established. 

A.10.2 A software configuration control board should be created to set up configuration 

control processes and pre-approve changes to configuration-controlled software. 

A.10.3 The software configuration control board should include a member from the 

system safety engineering team, tasked with the responsibility of evaluating all 

proposed software changes for potential safety impacts. 

A.10.4 Object code patches should not be performed without specific approval. 

A.10.5 All software safety-critical functions should be identified as “safety-critical.” 

A.10.6 The software configuration management process should include version 

identification, access control, and change audits. In addition, the ability to 

restore previous revisions of the system should be maintained throughout the 

entire life cycle of the software. 

A.10.7 All software changes should be evaluated for potential safety impact, and the 

FAA should be advised of proposed changes that impact safety. 

A.10.8 All software changes should be coded with a unique version identification 

number in the source code, then compiled and tested before introduction into 

operational equipment. 

A.10.9 All software safety-critical functions and associated interfaces should be under 

configuration control. 

A.10.10 Appropriate safeguards should be implemented to prevent non-operational 

hardware and software from being inadvertently identified as operational. 

A.10.11 Test and simulation software should be positively identified as non-operational. 

A.10.12 The run-time build should only include software that is built from contractor-

developed software source modules, or COTS software object modules that are 

traceable to a requirement or derived requirement identified in the requirements 

or design documentation. 
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 Quality Assurance. 

A.11.1 A quality assurance function should be implemented to verify that objectives are 

being satisfied and deficiencies are detected, evaluated, tracked, and resolved. 

This quality assurance function includes audits; code walk-throughs; and 

inspections of elements and processes, such as plans, standards, problem-

tracking systems, configuration management systems, and system life cycles. 

A.12 Security. 

A.12.1 The software should be designed to prevent unauthorized system or subsystem 

interaction from initiating or sustaining a software safety-critical function 

sequence. 

A.12.2 The system design should prevent unauthorized or inadvertent access to or 

modification of the software (source or assembly) and object code. This security 

measure includes preventing self-modification of the code. 

 Software Design, Development, and Test Standards. 

Software should be designed, developed, and tested in a manner that complies 

with IEEE/ISO/IEC 12207, International Standards Systems and software 

engineering – Software life cycle processes, or its equivalent. 

 Software Coding Practices. 

Software developers should apply software engineering criteria to select a 

programming language, or languages, for the safety software. This includes 

utilizing the information provided in ISO/IEC TR 24772, Programming 

languages — Guidance to avoiding vulnerabilities in programming languages. 

Project coding guidelines should be defined for each programming language 

used in the safety software implementation and should include mitigation for the 

vulnerabilities described in the relevant parts of ISO/IEC TR 24772. 

  



 08/16/2021  AC 450.141-1A 

  Appendix A 

47 

 Software Reuse. 

Reused software encompasses software developed for other projects by the 

developer as well as any open source or public domain software selected for the 

project. Such software should be evaluated to determine if it is a software 

safety-critical function. Reused safety-critical software should comply with all 

safety-critical provisions required of newly developed software. For example, an 

operator should analyze reused software that performs a safety-critical function 

for the following items: 

 Correctness of new or existing system design assumptions and requirements. 

 Impacts on the overall system as the reused software runs on or interfaces 

with replaced equipment, new hardware, or both. 

 Changes in the environmental or operating conditions. 

 Impacts to existing hazards. 

 Correctness of the interfaces between system hardware; other software; and 

crew, ground operators, or controlling executive. 

 Safety-critical computing system functions compiled with a different 

compiler. 

 Commercial off-the-shelf (COTS) Software. 

A.16.1 When employing COTS software, an operator should ensure that every software 

safety-critical function that the software supports is identified and satisfies the 

safety requirements. 

A.16.2 Software hazard analyses should be performed on all COTS software used for 

software safety-critical functions. 

A.16.3 Software safety-critical functions identified in COTS software should comply 

with all safety requirements or be validated for intended use and environment. 

Compliance, validation method, and evidence are subject to FAA approval and 

should be documented. 
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APPENDIX B. SOFTWARE AND COMPUTING SYSTEM HAZARD 

ANALYSES. 

This appendix describes two methods for conducting software and computing 

system hazard analyses: Software Failure Modes and Effects Analysis (SFMEA) 

and Software Fault Tree Analyses (SFTA). Examples of the use of SFMEA and 

SFTA are provided. Other approaches may be acceptable to the FAA. Note that 

the analysis method used and the level of detail in that analysis will be made 

based on the complexity of the system, difficulty of the operations, and scope of 

the program. 

B.1 Software Failure Modes and Effects Analysis. 

As described in the FAA/AST Guide to Reusable Launch and Reentry Vehicle 

Reliability Analyses, a Failure Modes and Effects Analysis (FMEA) is a bottom-

up, inductive reliability and safety analysis method used to identify potential 

failure modes, effects on the system, risk reduction measures, and safety 

requirements. Although the steps to performing a SFMEA are similar to those of 

a hardware FMEA, an SFMEA differs in the following ways: 

 Hardware failure modes generally include aging, wear-out, and stress, while 

software failure modes are functional failures resulting from software faults. 

 Hardware FMEA analyzes both severity and likelihood of the failure, while 

an SFMEA usually analyzes only the severity of the failure mode. 

B.1.1 Typical SFMEA Procedural Steps. 

Software Failure Modes and Effects Analysis allows for systematic evaluation 

of software and computing system failure modes and errors. In addition, this 

analysis helps to prioritize the verification effort to focus on those functions that 

have the most influence on the safety of the system. One procedure for 

performing an SFMEA is as follows: 

1. Define the system to be analyzed. The system definition includes 

identification of modules. In addition, system definitions can include a 

description of interfaces between software and other systems, flow charts 

describing data flow or operations, logic diagrams, and user documentation. 

2. Categorize the system into elements to be analyzed. 

3. Identify potential software faults and computing system failure modes. 

4. Identify the potential causes (specific faults leading to the error or failure). 

Identifying the specific causes helps to define mitigation measures and test 

cases. 

5. Identify the local and system effects of each failure mode or software error. 

6. Identify controls and requirements to mitigate the risks for each failure 

mode. 
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7. Document the analysis using an SFMEA worksheet. 

B.1.2 In the majority of cases, failure modes for hardware components are understood 

and can be based on operational experience. A hardware FMEA can be based on 

the known hardware failures for a particular design or class of piece part, 

component, or subsystem. These hardware failures often result from such factors 

as wear-out, unanticipated stress, or operational variation. For software, such 

operational experience often does not exist. Software does not break or fall out 

of tolerance in the same way hardware does; therefore, software and computing 

system failure modes or software errors should be identified using generalized 

classifications. Error! Reference source not found. shows one example of a c

lassification set derived from information in such standards as IEEE STD 1044-

2009, IEEE Standard Classification for Software Anomalies, (Inactive). This 

table does not list all possible faults and failures; therefore, an operator should 

consider these and others specific to its system when performing software 

hazard analyses. 

Table B-1 Example Classification of Software and Computing System Errors 

Software and Computing 

System Failure Mode 

(Software Error) Class 

Specific Software and Computing System Faults and Failures 

Requirements  System responses not defined for all operating conditions. 

 Constraints not testable or left untested. 

 Safe states incorrectly defined. 

 Code documentation compiled inaccurately. 

 Programming practices not defined. 

 Test plan incorrect or incomplete. 

 Review processes incomplete or inaccurate. 

 Reused software not fully compatible with new application. 

 Program assumptions not documented. 

Calculation  Inappropriate equation for a calculation. 

 Incorrect use of parenthesis. 

 Inappropriate precision. 

 Round fault (or truncation fault). 

 Lack of convergence in calculation. 

 Operand incorrect in equation. 

 Operator incorrect in equation. 

 Sign fault. 

 Capacity overflow, underflow, or both. 

 Inappropriate accuracy. 
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Software and Computing 

System Failure Mode 

(Software Error) Class 

Specific Software and Computing System Faults and Failures 

 Use of incorrect instruction. 

Data  Undefined data. 

 Non-initialized data. 

 Data defined several times. 

 Incorrect adapt protection. 

 Variable type incorrect. 

 Range incorrect. 

 Wrong use of data (bit alignment, global data). 

 Fault in the use of complex data (record, array, pointer). 

 No use of data. 

 Data stuck at some value. 

Interface  Data corruption. 

 Bad parameters in call between two procedures. 

 No or null parameters in the call between two procedures. 

 Non-existent call between two procedures. 

 Wrong call between two procedures. 

 Inappropriate end-to-end numerical resolution. 

 Wrong message communication (bad error handling). 

 Empty or no message communication (bad or no error 

handling). 

 Incorrect creation, deletion, or suspension of a task. 

 Software responds incorrectly to no data. 

 Wrong synchronization between tasks (task not invoked 

because of its low priority). 

 Incorrect task blocking. 

 Wrong commands or messages given by the user, operator, 

or both. 

 No commands given by the user, operator, or both. 

 Commands not given in time by the user, operator, or both. 

 Commands given at wrong time by the user, operator, or 

both. 

Logic  Wrong order of sequences (modules called at wrong time). 

 Wrong use of arithmetic or logical instruction. 

 Wrong or missing test condition. 

 Wrong use of branch instruction. 

 Timing overrun. 
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Software and Computing 

System Failure Mode 

(Software Error) Class 

Specific Software and Computing System Faults and Failures 

 Missing sequence. 

 Wrong use of a macro. 

 Wrong or missing iterative sequence. 

 Wrong algorithm. 

 Shared data overwritten. 

 Unnecessary function. 

 Unreachable code. 

 Dead code. 

Environment  Compiler error. 

 Wrong use of tools options (optimize, debug). 

 Bad association of files during code link. 

 Change in operating system leads to software bug. 

 Change in third-party software leads to software bug. 

Hardware  CPU overload. 

 Memory overload. 

 Unexpected shutdown of the computer. 

 Wrong file writing. 

 Wrong interrupt activation. 

 Wrong data into register or memory. 

 Processor computation incorrect. 

 No file writing. 

 No interrupt activation. 

 No data into register or memory. 

 Loss of operator visualization (loss of screen display). 

 Untimely file writing. 

 Untimely data into memory or register. 

 Untimely interrupt activation. 

 Untimely operator visualization. 
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B.1.3 Error! Reference source not found. shows an SFMEA worksheet for functions a

nd computing system hardware components in a hypothetical RLV. While the 

analyses in these examples are focused on software functions, an SFMEA can be 

performed at any level, for example, a software package or module. Analyses at 

lower levels, such as at the code, provide the most information but also require 

the most resources. The scope of the analysis will depend on the particular 

software and development program. Examples of SFMEA developed for other 

industries are provided in Czerny (2005), Dunn (2002), Feng and Lutz (2005), 

Ozarin (2006), and Wood (1999). 

B.1.4 Performing an SFMEA as early as possible in the development process is 

desirable. Note, however, the software design is highly subject to change 

because designers continually make beneficial modifications during 

development. Therefore, updating the SFMEA throughout the development 

process to reflect these changes is important. 
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Table B-2 Example Software and Computing System Failure Modes and Effects Analysis Worksheet 

Item 

No. 

Software or 

Computing System 

Element  

Failure Mode 

or Software 

Error 

Error Cause (Specific 

Fault Type) 
Local Effect 

System Effect or 

Hazard 

Risk Mitigation 

Measures 

PS-1 Function: 

PROP_SENS 

Acquire temperature 

and pressure sensor 

inputs from 

propulsion system, 

and provide 

information to flight 

control modules and 

automated shutdown 

routines. 

Function fails to 

work or 

performs 

incompletely 

because of logic, 

data, or interface 

errors. 

 Wrong use of branch 

instruction. 

 Data out of range. 

 Missing data. 

 Non-existent or 

incorrect call between 

procedures. 

 Missing error-

handling routine. 

 Function called at 

wrong time. 

No sensor readings 

obtained from the 

propulsion system. 

 Continuing to 

operate with last 

sensor inputs.  

 Failing to detect 

out-of-range 

condition. 

 Failing to issue 

proper abort and 

propulsion 

shutdown 

commands. 

 Using a separate 

software execution 

monitoring function 

to detect whether 

the function was 

completed.  

 Verifying sensors 

before flight. 

PS-2 Function: 

PROP_SENS 

Acquire temperature 

and pressure sensor 

input from 

propulsion system 

and provide 

information to flight 

control modules and 

automated shutdown 

routines. 

Function works 

incorrectly 

because of 

calculation, 

logic, data, or 

interface errors. 

 Incorrect conversion 

calculation. 

 Wrong use of branch 

instruction. 

 Wrong use of data. 

 Data out of range. 

 Missing data. 

 Missing error- 

handling routine. 

 Function called at 

wrong time. 

Incorrect sensor 

signals received 

from the 

propulsion system. 

 Using incorrect 

input; therefore, 

providing incorrect 

output.  

 Failing to issue 

proper abort and 

propulsion 

shutdown 

commands. 

 Using a separate 

software function to 

detect out of range 

conditions for 

temperature and 

pressure.  

 Providing 

independent 

temperature and 

pressure readings to 

pilots to use for 

manual shutdown 

purposes.  

 Verifying sensors 

before flight. 



08/16/2021  AC 450.141-1A 

  Appendix B 

54 

Table B-2. Example Software and Computing System Failure Modes and Effects Analysis worksheet (cont’d) 

Item 

No. 

Software or 

Computing System 

Element  

Failure Mode 

or Software 

Error 

Error Cause (Specific 

Fault Type) 

Local Effect System Effect or 

Hazard 

Risk Mitigation Measures 

CV-1 Function: 

CLOSE_VALVE 

When limits are 

exceeded command 

the main fuel and 

oxidizer valves to 

close. 

Function fails to 

work or 

performs 

incompletely 

because of logic, 

data, or interface 

errors. 

 Wrong use of 

branch instruction.  

 Data out of range or 

incorrect. 

 Non-existent or 

incorrect call 

between procedures. 

 Missing error- 

handling routine. 

Signal is not 

sent to the 

valve actuators. 

Failing to close 

valves, resulting in 

continued thrust, 

flight outside of 

operating area, or 

possible loss of 

vehicle. 

 Using a separate software 

execution monitoring 

function to detect whether 

the function was completed.  

 Making manual shutdown 

procedures available. 

GPS-1 Function: 

GPS_RECEIVE 

 Acquire GPS 

signal.  

 Send vehicle 

position to other 

functions. 

 Abort if location 

data out of 

range. 

Function fails to 

execute or 

executes 

incompletely 

because of logic, 

data, or interface 

errors. 

 Wrong use of 

branch instruction. 

 Data out of range or 

incorrect (loss of 

GPS signal). 

 Non-existent or 

incorrect call 

between procedures. 

 Missing error-

handling routine. 

Position 

information is 

not provided. 

 Using incorrect 

input or having 

no GPS location 

data; therefore, 

providing 

incorrect output.  

 Failing to issue 

proper abort and 

propulsion 

shutdown 

commands. 

 Using a separate software 

function to detect out of 

range conditions, including 

location values and signal 

strength.  

 Having the main computer 

initiate an abort if 

conditions are out of range.  

 Performing GPS checks 

before flight. 
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Table B-2. Example Software and Computing System Failure Modes and Effects Analysis worksheet (cont’d) 

Item 

No. 

Software or 

Computing System 

Element  

Failure Mode 

or Software 

Error 

Error Cause (Specific 

Fault Type) 

Local Effect System Effect or 

Hazard 

Risk Mitigation Measures 

CS-1 Main CPU Loss of main 

computer. 
 Overload of CPU 

 Loss of power from 

on-board batteries. 

 Inadvertent 

shutdown. 

Loss of all 

safety-critical 

computer and 

software 

functions. 

 Continuing to 

operate with last 

sensor inputs. 

 Failing to detect 

out-of-range 

condition, 

causing failure to 

issue proper 

abort and 

propulsion 

shutdown 

commands. 

 Using a watchdog timer to 

detect computing system 

functionality and trigger a 

reboot of the main CPU. 

 Implementing CPU self-

tests and hardware 

diagnostics to detect failure. 

 Initiating abort sequences 

using a separate on-board 

CPU.  

 Making manual shutdown 

procedures available. 

WD-1 Watchdog timer Watchdog timer 

failure. 
 Loss of power. 

 Mechanical or 

electrical failure. 

No system 

available to 

monitor CPU 

loss. 

 Failing to detect 

loss of CPU. 

 Failing to issue 

proper abort 

commands if 

main CPU lost. 

 Running watchdog 

computer and main CPU off 

separate power sources.  

 Verifying watchdog timer 

before flight.  

 Making manual abort 

procedures available. 
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B.2 Software Fault Tree Analysis. 

B.2.1 A top-down, deductive study of system reliability, Fault Tree Analysis (FTA) 

graphically depicts the sequence of events that can lead to an undesirable outcome. An 

FTA generates a fault tree, which is a symbolic logic model of the failures and faults. 

As an aid for system safety improvement, an FTA is often used to model complex 

processes. For example, an FTA may be used to estimate the probability that a top-level 

or causal event will occur, identify systematically possible causes leading to that event, 

and document the results of the analytic process to provide a baseline for future studies 

of alternate designs. 

B.2.2 A Software Fault Tree Analysis (SFTA) is an extension of the system FTA in which 

software and computing system contributors to an undesirable event are identified and 

analyzed. While a hardware FTA can be quantitative or qualitative, an SFTA is not 

quantitative because of software’s non-probabilistic nature. An SFTA produces safety 

requirements that can then be implemented in the software life cycle. 

B.2.3 Standard logic symbols are used in constructing an SFTA to describe events and logical 

connections. Error! Reference source not found. shows the most common symbols. T

he FAA/AST Guide to Reusable Launch and Reentry Vehicle Reliability Analyses 

provides additional symbols and information on SFTA. The process for performing an 

SFTA is as follows: 

1. Identify the undesirable events that require analysis. Usually, these occurrences are 

called pivotal events – events that could ultimately lead to failure of the vehicle or 

system. Each pivotal event is a top event for the fault tree, and a new tree is required 

for each top event. The top event is often determined from other analyses, such as a 

hazard analysis, FMEA, or known undesirable event, such as a mishap. 

2. Define the scope of the analysis to determine the level of depth of the analysis 

needed for each undesirable event. The level of depth may be determined based on 

the application of the analysis. In some cases, for example, analyzing broad 

functions may suffice. Other cases may require analyzing errors in specific modules. 

3. Identify causes leading to the undesirable event, known as first-level contributors to 

the top event. Contributors should be independent of each other. For example, for a 

top event of “Incorrect navigation data on flight control display,” the events “data 

not calculated correctly” and “inappropriate equation used for calculations” are not 

independent events. Use of an inappropriate equation may have led to calculating 

the data incorrectly. To determine events and contributors, data gathering may be 

required. Sources of this information include requirements, drawings, and block 

diagrams. 

4. Link the first-level contributors to the top event by a logic gate. 

5. Identify the second-level contributors to the first-level events. 

6. Link the second-level contributors to the first-level contributors. 



08/16/2021  AC 450.141-1A 

  Appendix B 

 

Table B-3 Common Fault Tree Logic and Event Symbols 

Symbol Description 

 Top Event – Foreseeable, undesirable 

occurrence (also used for an 

intermediate event). 

 “OR” Gate – Any of the events below 

gate will lead to an event above the OR  
gate. 

 

 “AND” Gate – All events below gate 

must occur for event above gate to 
AND occur. 

 Undeveloped Event – An event not 

further developed because of a lack of 
 

need, resources, or information. 

 Initiator (Basic Event) – Initiating fault 

or failure, not developed further (marks 
 

limit of analysis). 
 

7. Repeat until the analysis reaches a desired level. The bottom-most contributors are 

known as initiators or basic events. 

8. Evaluate the tree to determine the validity of the input and failure paths. 

9. Identify specific safety requirements. 

10. Document the SFTA results. 

B.2.4 An SFTA allows for systematic evaluation of the risks of complex software and 

computing systems. Using an SFTA helps to discover common cause failures and 

single-point failures, critical fault paths, and design weaknesses and to identify the best 

places to build in fault tolerance. In addition, an SFTA helps to prioritize the 

verification effort to focus on those functions with a large amount of influence on the 

safety of the system. Czerny (2005), Dunn (2002), Dehlinger and Lutz (2004), and 

Gowen (1996) provide examples of SFTA developed for other industries. 

B.2.5 In developing an SFTA, a developer normally starts with a general FTA that describes 

the potential impacts of a safety-critical software function with respect to a large 

system. Figure B-1 shows an example of a fault tree for engine shutdown failure that 

57 
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includes hardware, software, and procedures. The contributing event, “Software or 

computing system error,” can be expanded further. Figure B-2 shows a portion of a fault 

tree expanding this undesirable event. Note that the “logic error,” “data error,” and 

“data input error” basic events could be expanded further if necessary to identify 

specific areas of concern, such as out of range variables, logic sequences out of order, or 

other faults identified in Table B-1. 

 

Figure B-1 Fault Tree for Engine Shutdown Failure. 

  

  

Incorrect 
procedure 

Improper 
training 

Unable to shutdown engine 
after cutoff 

Valve 2 fails 
to close 

Automatic controller fails to 
close valve (valve 1) 

Failure to close 

manual valve (valve 2) 

  

Software or 
computing 
system error 

Valve 1 fails to 
close 

 

Mechanical 
failure 

   

Mechanical 
failure 

Contamination 

Operator fails 
to close 

Contamination 
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Software or computing 
system error 

Shutdown module does not issue 
command to actuator 

Shutdown module does not 
receive shutdown command 

Power lost to 
CPU 

    

Backup 
battery 

loss 

Main 
battery loss 

  

Logic 
error 

  

Data 
error 

Computer system 

crash 

    

Watchdog 
timer/reboot 
failure 

Memory or 
CPU 
overflow 

  

Sensor 
failure 

  

Data 
input 
error 

Figure B-2 Fault Tree for Software or Computing System Errors 
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APPENDIX C. SPACE VEHICLES FAILURES AND AIRCRAFT ACCIDENTS 

C.1 Space Vehicle Failures. 

C.1.1 Software and its associated computing system hardware have played a significant role 

in the root cause of several high-profile space vehicle failures, as described in various 

accident investigation reports and studies. Although the following is not a 

comprehensive list of all failures where software played a role, the descriptions help 

provide an understanding of the types of failures that can be traced to software and 

computing systems and provide lessons learned for the design of future systems. 

C.2 PHOBOS 1. 

C.2.1 The Phobos 1 spacecraft was launched on July 7, 1988, on a mission to conduct surface 

and atmospheric studies of Mars. The vehicle operated normally until routine attempts 

to communicate with the spacecraft failed on September 2, 1988, and the mission was 

lost. Examination of the failure showed that a ground control operator had omitted a 

single letter in a series of digital commands sent to the spacecraft. The computer 

mistranslated this command and started a ground checkout test sequence, deactivating 

the attitude control thrusters. As a result, the spacecraft lost its lock on the Sun. Because 

the solar panels pointed away from the Sun, the on-board batteries were eventually 

drained, and all power was lost. 

C.2.2 A lack of requirements taking the human and software interface into account 

contributed to the failure. Additionally, error-checking functions had been turned off 

during the data transfer operation. 

C.2.3 Lesson Learned. 

Error checking and isolating test software from flight software are important aspects of 

software assurance (Norman 1990, Perminov 1999). 

C.2.4 References. 

 Norman, Don A. “Commentary: Human Error and the Design of Computer 

Systems.” Communications of the ACM, vol. 33, pp. 4-7. 1990. 

 Perminov, V. G. The Difficult Road to Mars: A Brief History of Mars Exploration in 

the Soviet Union. NASA Monographs in Aerospace History, no. 15. NP-1999-06-

251-HQ. 1999. 

C.3 CLEMENTINE. 

C.3.1 The Deep Space Program Science Experiment, also known as the Clementine 

spacecraft, was launched on January 25, 1994. The spacecraft entered lunar orbit, 

functioned flawlessly, and departed from the Moon on May 3, 1994, to rendezvous with 

its target, asteroid 1620 Geographos. However, four days later, a flaw in the software 
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resulted in the computer firing the attitude control thrusters until the supply of 

propellant had been exhausted. The malfunction left the spacecraft in a stable spin that, 

when combined with the spacecraft’s heliocentric orbit, would ultimately prevent the 

generation of adequate power to operate the spacecraft. This condition led to 

abandonment of the mission. 

C.3.2 Although the root cause of the problem could not be definitively determined, some 

researchers have suggested that a floating-point exception may have caused the 

computer to crash, allowing the thrusters to operate continuously. Inadequate testing, a 

tight schedule, and cost pressures also may have increased the chances of failure. 

C.3.3 Lesson Learned. 

A watchdog timer may have been used to reset the computer automatically and avert 

failure (Chapman and Regeon 1996, Ganssle 2000, Harland and Lorenz 2005). 

C.3.4 References. 

 Chapman, R. Jack and Paul A. Regeon. “The Clementine Lunar Orbiter Project.” 

Unpublished paper presented at the Austrian Space Agency Summer School, 

Alpbach, Germany, July 26 to August 3, 1995. 

 Ganssle, Jack G., “Crash and Burn.” Embedded Systems Programming, 2000. 

https://www.embedded.com/crash-and-burn/. 

 Harland, David M. and Ralph D. Lorenz, Space System Failures: Disasters and 

Rescues of Satellites, Rockets, and Space Probes. Berlin: Praxis Publishing Ltd. 

2005. 

C.4 ARIANE 501. 

C.4.1 On June 4, 1996, the Ariane 5 launch vehicle veered off course and broke up 

approximately 40 seconds into launch. The vehicle started to disintegrate because of 

high aerodynamic loads resulting from an angle of attack greater than 20 degrees. This 

condition led to separation of the boosters from the main stage, in turn triggering the 

self-destruct system of the launcher. This improper angle of attack was caused by full 

nozzle deflections of the solid boosters and the Vulcain main engine. The on-board 

computer software commanded these nozzle deflections based on data received from 

the active Inertial Reference System. Ultimately, these improper deflections resulted 

from requirement and design errors in the Inertial Reference System software, including 

improper error handling. An unexpected horizontal velocity component led to an 

overflow condition, which was not handled properly by the software. 

C.4.2 Reused software from the Ariane 4 program, including the exception handling code 

used in the Inertial Reference System, contributed to the failure. The source of the fault 

occurred in a function that was not required for Ariane 5, but rather was a function 

carried over from the Ariane 4 software. The development team believed that faults 

would be caused by a random hardware failure, handled by redundancy in the hardware. 

However, because the problem was a requirements problem instead of a random 

https://www.embedded.com/crash-and-burn/
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hardware failure, both the primary and backup Inertial Reference Systems shutdown 

nearly simultaneously from the same cause. In addition, no end-to-end tests were 

conducted to verify that the Inertial Reference System and its software would behave 

correctly when subjected to the countdown sequence, flight time sequence, and 

trajectory of Ariane 5. 

C.4.3 Lesson Learned. 

Multiple factors can contribute to failure, including a misunderstanding of the software 

risks, especially of reused software; complex software design; insufficient system 

engineering efforts; flawed requirements and failure to fully analyze those 

requirements; and insufficient testing (Lions 1996, O’Halloran 2005). 

C.4.4 References. 

 Lions, J. L., Ariane5: Flight 501Failure Report by the Inquiry Board. Paris: 

European Space Agency, 1996. 

 O’Halloran, Colin, et al. “Ariane 5: Learning from Failure.” Proceedings of the 23rd 

International System Safety Conference, August at San Diego, California, 2005. 

C.5 DELTA III/GALAXY. 

C.5.1 On August 27, 1998, the first Boeing Delta III ever flown was launched from Pad 17B 

at Cape Canaveral Air Station, Florida. Its mission was to place the GALAXY X 

commercial communications spacecraft into a nominal transfer orbit. At 65 seconds 

after liftoff, the air-lit Solid Rocket Motors (SRMs) ceased to swivel, leaving two 

motors in positions that helped overturn the vehicle. The vehicle yawed about 35 

degrees. Approximately 71 seconds after lift-off, it began to disintegrate at an altitude 

of about 60,000 feet. A destruct signal was sent 75 seconds into the flight, which 

completed destruction of the vehicle. Analysis revealed that between 55 and 65 seconds 

into the flight, roll oscillations around four Hz prompted the control system of the 

vehicle to gimbal its three swiveling SRMs. The control system software commanded 

the system to respond to the oscillation, and the SRMs gimbaled with these commands 

until the hydraulic system ran out of fluid. Once the hydraulic fluid was expended, the 

oscillations appeared to smooth out. Unfortunately, however, after the hydraulic fluid 

had been expended, two of the three swiveling SRMs were stuck in the wrong position, 

and wind shear forced the Delta III to yaw and break up seven seconds later. 

C.5.2 The review team concluded that the flight would not have failed if the control system 

software had not commanded the system to respond to the four Hz roll oscillations 

because the vehicle oscillations would have smoothed out on their own. As a result of 

the investigation, Boeing changed an instruction to the flight control system, so the 

software would identify and ignore the four Hz roll oscillation in subsequent Delta III 

flights. 
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C.5.3 Lesson Learned. 

An inadequate understanding of the interactions between software and hardware could 

lead to failure (Boeing 1998). 

C.5.4 References. 

 The Boeing Company. “Boeing Pinpoints Cause of Delta 3 Failure, Predicts Timely 

Return to Flight.” Boeing Press Release, 1998. 

C.6 ZENIT/GLOBALSTAR. 

C.6.1 On September 9, 1998, a two-stage Ukrainian-built Zenit 2 rocket, carrying 

12 Globalstar satellites, was launched from Baikonur, Kazakhstan. According to the 

National Space Agency of Ukraine, the second stage of the booster rocket shutdown at 

approximately 276 seconds into flight. The nose cone carrying the 12 satellites 

automatically disengaged from the booster rocket with the shutdown and fell to Earth in 

remote southern Siberia. The booster rocket followed. Although the root cause of the 

failure could not be definitively confirmed, a malfunction of the flight control 

computers or software, which led to the premature shutdown of the second stage, was 

the most likely cause. Telemetry data indicated that two of the three primary flight 

computers shut down, a situation that left the third computer unable to control the 

vehicle, resulting in the cutoff of the engine. 

C.6.2 Lesson Learned. 

A lack of understanding of the risks associated with software and computing systems 

can lead to failure (Wired News 1998, Woronowycz 1998). 

C.6.3 References. 

 Wired News. “12 Satellites Go Down in Russia.” dated September 10, 

1998.https://www.wired.com/1998/09/12-satellites-go-down-in-russia/. 

 Woronowycz, Roman. “Crash of Ukrainian Rocket Imperils Space Program.” The 

Ukrainian Weekly, vol. 66, no. 38, dated September 20, 1998. 

C.7 MARS CLIMATE ORBITER. 

C.7.1 The Mars Climate Orbiter (MCO) was launched on December 11, 1998, and was lost on 

September 23, 1999, as it entered the Martian atmosphere in a lower than expected 

trajectory. The investigation board identified the failure to use metric units in the coding 

of a ground software file used in the trajectory models as the root cause. These 

trajectory models produced data ultimately used to define the vehicle’s trajectory for the 

flight computer. Thruster performance data were in English units instead of metric. As a 

result, an erroneous trajectory was calculated which led to the vehicle crashing onto the 

surface rather than entering into an orbit around Mars. Formal acceptance testing failed 

to capture the problem because the test article used for comparison contained the same 

error as the output file from the actual unit. 

https://www.wired.com/1998/09/12-satellites-go-down-in-russia/
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C.7.2 Incomplete requirements were a contributing factor. The requirements did not dictate 

the units to be used. Also, a lack of warning marks in the original code, identifying the 

potential problem, contributed to the failure. The MCO investigators also cited 

inadequacies in risk identification, communication, management, and mitigation that 

compromised mission success. In part, these inadequacies resulted from cost and 

schedule pressures. 

C.7.3 Lesson Learned. 

Multiple factors can lead to failure, including inadequate testing, incomplete 

requirements, and inadequate risk management (Leveson 2004, Stephenson 1999). 

C.7.4 References. 

 Leveson, Nancy G. “The Role of Software in Spacecraft Accidents.” AIAA Journal 

of Spacecraft and Rockets, vol. 41, no. 4, pp. 564-575, 2004. 

C.8 MARS POLAR LANDER. 

C.8.1 The Mars Polar Lander (MPL) was launched on January 3, 1999. Upon arrival at Mars, 

communications ended according to plan as the vehicle prepared to enter the Martian 

atmosphere. Communications were scheduled to resume after the Lander and the probes 

were on the surface. However, repeated efforts to contact the vehicle failed. The cause 

of the MPL loss was never fully identified, but the most likely scenario was that the 

problem involved deployment of the three landing legs during the landing sequence. 

Each leg was fitted with a Hall Effect magnetic sensor that generated a voltage when 

the leg contacted the surface of Mars. A command from the flight software was to shut 

down the descent engines when touchdown was detected. The MPL investigators 

believed that the software interpreted spurious signals generated at leg deployment as 

valid touchdown events, leading to premature shutdown of the engines at 40 meters 

above the surface of Mars, resulting in the vehicle crashing into the surface. 

C.8.2 Although a possible failure mode whereby the sensors would falsely detect that the 

vehicle had touched down was known to exist, the software requirements did not 

account for this failure mode. Therefore, the software was not programmed to avoid 

such an occurrence. Although the validation and verification program was well planned 

and executed, the MPL failure report noted, analysis was often substituted for testing to 

save costs. Such analysis may have lacked adequate fidelity. Also, the touchdown 

sensing software was not tested with the Lander in the flight configuration. The MPL 

investigators specifically recommended that system software testing include stress 

testing and fault injection in a suitable simulation environment to determine the limits 

of capability and search for hidden flaws. 

C.8.3 Lesson Learned. 

Multiple factors can lead to failure, including insufficient system engineering efforts, 

insufficient testing, flawed review processes, and flawed requirements (JPL 2000, 

Leveson 2004). 
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C.8.4 References. 

 NASA, Jet Propulsion Laboratory. Report on the Loss of the Mars Polar Lander 

and Deep Space 2 Missions. JPL D-18709, 2000. 

 Leveson, Nancy G. “The Role of Software in Spacecraft Accidents.” AIAA Journal 

of Spacecraft and Rockets, vol. 41, no. 4, pp. 564-575, 2004. 

C.9 TITAN/CENTAUR-MILSTAR. 

C.9.1 On April 30, 1999, a Titan IV B vehicle (Titan IV B-32), with a Titan Centaur upper 

stage (TC-14) was launched from Space Launch Complex 40 at Cape Canaveral Air 

Station, Florida. The mission was to place a Milstar satellite into geosynchronous orbit. 

The flight performance of the Titan solid rocket motors and core vehicle was nominal, 

and the Centaur upper stage separated properly from the Titan IV B. The vehicle began 

experiencing instability about the roll axis during the first Centaur burn. That instability 

was greatly magnified during Centaur’s second main engine burn, resulting in 

uncontrolled vehicle tumbling. The Centaur tried to compensate for those attitude errors 

by using its Reaction Control System. Such attempts ultimately depleted available 

propellant during the transfer orbit coast phase. The third engine burn ended early 

because of the tumbling vehicle motion. As a result of the anomalous events, the Milstar 

satellite was placed in a low elliptical final orbit instead of the intended geosynchronous 

orbit. 

C.9.2 The Accident Investigation Board concluded that a failed software development, 

testing, and quality assurance process for the Centaur upper stage caused the failure of 

the Titan IV B-32 mission. That failed engineering process did not detect nor did it 

correct a human error in the manual entry of the roll rate filter constant entered in the 

Inertial Measurement System flight software file. Evidence of the incorrect constant 

appeared during launch processing and the launch countdown, but its impact was 

insufficiently recognized or understood. Consequently, this error was not corrected 

before launch. The incorrect roll rate filter constant zeroed any roll rate data, resulting 

in the loss of control. The Board noted that the manually input values were never 

formally tested in any of the simulations before launch, and simulator testing was not 

performed as the system was supposed to be flown. 

C.9.3 Lesson Learned. 

Flawed engineering processes, underestimation of the software risks, and inadequate 

software reviews can lead to failure (Leveson 2004, Pavlovich 1999). 

C.9.4 References. 

 Pavlovich, J. Gregory. Formal Report of Investigation of the 30 April 1999 Titan 

IVB/Centaur TC-14/Milstar-3 (B-32) Space Launch Mishap. Washington, D.C.: 

U.S. Air Force, 1999. 

 Leveson, Nancy G., “The Role of Software in Spacecraft Accidents.” AIAA Journal 

of Spacecraft and Rockets, vol. 41, no. 4, pp. 564-575, 2004. 
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C.10 SEA LAUNCH/ICO F1. 

C.10.1 On March 12, 2000, a Sea Launch Zenit lifted off from the Odyssey launch platform 

positioned on the Equator in the Pacific Ocean. The vehicle was carrying the ICO 

Global Communications F-1 satellite. Shortly before the launch, however, the ground 

software failed to close a valve in the pneumatic system of the second stage of the 

rocket. This system performed several actions, including operation and movement for 

the steering engine of this stage. Loss of more than 60 percent of the pneumatic 

system’s pressure reduced the capability of the engine; therefore, the rocket did not gain 

the altitude and speed necessary to achieve orbit. About eight minutes into the flight, as 

the Zenit’s second stage was nearing the completion of its firing, the launch was aborted 

under command of the on-board automatic flight termination system. The rocket issued 

the command once it sensed a deviation in attitude. Both the rocket and its satellite 

cargo crashed into the Pacific Ocean about 2,700 miles southeast of the launch site. 

C.10.2 The software error was traced back to a change of a variable name in the ground 

operations software. This name change resulted in a change to the software logic such 

that the valve failed to close before launch. Ultimately, Sea Launch discovered flaws in 

their configuration management and software engineering processes, including 

identifying changes in the system and verifying proper operation after those changes. 

C.10.3 Lesson Learned. 

Flawed configuration management and software engineering processes can lead to 

failure (AW&ST 2000, Ray 2000). 

C.10.4 References. 

 “Sea Launch Poised to Fly with PAS-9,” Aviation Week & Space Technology, dated 

July 3, 2000. 

 Ray, Justin, “Sea Launch Malfunction Blamed on Software Glitch.” Spaceflight 

Now, dated March 30, 2000. 

http://spaceflightnow.com/sealaunch/ico1/000330software.html. 

C.11 COSMOS/QUICKBIRD 1. 

C.11.1 On November 28, 2000, the QuickBird 1 satellite was launched aboard a Russian 

Cosmos-3M rocket from the Plesetsk Cosmodrome. However, ground stations did not 

detect signals from the satellite after launch. Investigators suggested that a computer 

error inside the satellite might have caused the U.S.-built spacecraft to deploy its 

electricity-generating solar arrays while the rocket was still climbing through the 

atmosphere. The computer error may have resulted from a hold in the launch, which 

was delayed one hour because a Norwegian tracking station was not ready to monitor 

the satellite. 

C.11.2 Russian officials proposed that an operator forgot to reset the satellite computer to 

account for the new launch time. As a result, the flight command sequence of the 

http://spaceflightnow.com/sealaunch/ico1/000330software.html
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spacecraft began at the original launch time and, following its preprogrammed time line, 

tried to deploy the solar panels while the satellite was still attached to the rocket during 

the early phase of the flight. 

C.11.3 Lesson Learned. 

Failure to understand software risks can lead to mission failure (Clark 2000). 

C.11.4 References. 

 Clark, Stephen, “Commercial Eye-In-The-Sky Appears Lost in Launch Failure.” 

Spaceflight Now, 21 November 21, 2002. 

http://spaceflightnow.com/news/n0011/20quickbird/. 

C.12 MARS ROVER SPIRIT. 

C.12.1 NASA’s Mars Exploration Rovers, Spirit and Opportunity, landed on Mars on 

January 4 and 25, 2004. On January 21, 2004, Spirit abruptly ceased communications 

with mission control. When contact was re-established, mission control found that Spirit 

could not complete any task that requested memory from the flight computer. 

Examination of the problem showed that the file system was consuming too much 

memory, causing the computer to reset repeatedly. The root cause of the failure was 

traced to incorrect configuration parameters in two operating system software modules 

that controlled the storage of files in memory. Effects of overburdened memory were 

not recognized or tested during ground tests. 

C.12.2 Mission operations personnel recovered Spirit by manually reallocating system 

memory, deleting unnecessary files and directories, and commanding the computer to 

create a new file system. Although the rover was recovered, the malfunction took 

14 days to diagnose and fix, thereby reducing the nominal mission duration. 

C.12.3 A post-anomaly review showed that memory management risks were not understood. In 

addition, schedule pressures prevented extensive testing and understanding of software 

functions.  

C.12.4 Lesson Learned. 

Memory management strategies are important for software assurance (Reeves and 

Neilson 2005). 

C.12.5 References. 

 Reeves, Glenn and Tracy Neilson, “The Mars Rover Spirit FLASH Anomaly.” Paper 

presented at the IEEE Aerospace Conference, Big Sky, Montana, March, 2005.  

http://spaceflightnow.com/news/n0011/20quickbird/
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C.13 CRYOSAT. 

C.13.1 On October 8, 2005, a Russian-built Rockot launch vehicle, carrying the CryoSat 

satellite, blasted off from Russia's northwestern Plesetsk Cosmodrome. Analysis of the 

telemetry data indicated that the first stage performed nominally. The second stage 

performed nominally until main engine cut-off was to occur. However, the second stage 

main engine failed to shut down at the proper time, and continued to operate until 

depletion of the remaining fuel. As a consequence, the second stage was not separated 

from the third stage, and the third stage engine was not ignited. This lack of engine 

capability resulted in unstable flight, causing the vehicle flight angles to exceed 

allowable limits. The on-board computer automatically ended the mission at 

308 seconds into flight. For the second stage shutdown to succeed, pressurization of the 

low-pressure tank of the third stage had to have been completed before issuance of the 

shutdown command. 

C.13.2 Failure analysis showed that the command to shut down the second stage engine was 

generated correctly. However, the completion time for the pressurization sequence was 

erroneously specified; therefore, pressurization completed after the shutdown command 

was generated. This failure case had not been identified in development and was not 

tested. No built-in tests existed for the pressurization time. 

C.13.3 Lesson Learned. 

Adequate consideration should be given to off-nominal inputs and conditions during 

design and verification (Briggs 2005, Eurocket 2005). 

C.13.4 References. 

 Briggs, Helen, “Cryosat Rocket Fault Laid Bare.” BBC News, dated October 27, 

2005. http://news.bbc.co.uk/1/hi/sci/tech/4381840.stm. 

 EUROCKOT Launch Services GmbH, “CryoSat Failure Analyzed – KOMPSAT-2 

Launch in Spring 2006.” Eurocket Press Release. Bermen, Germany, 

December 21, 2005, 

 

http://news.bbc.co.uk/1/hi/sci/tech/4381840.stm
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APPENDIX D. COMMERCIAL, MILITARY, AND EXPERIMENTAL AIRCRAFT 

ACCIDENTS 

D.1 Commercial And Military Software Failures. 

The space vehicle failures described here discuss incidents resulting in mission failures 

or anomalies without impacts to the uninvolved public. However, such incidents 

illustrate the importance of software and computing systems in the operation of space 

and launch vehicles. Unfortunately, software has been a cause of several accidents 

resulting in injury and loss of life in commercial and military aircraft. Some of those 

accidents are described below. 

D.2 X-31. 

D.2.1 An X-31 U.S. government research aircraft was destroyed when it crashed in an 

unpopulated area just north of Edwards Air Force Base while on a flight originating 

from the NASA Dryden Flight Research Center, Edwards, California, on 

January 19, 1995. The crash occurred when the aircraft was returning after completing 

the third research mission of the day. The pilot safely ejected from the aircraft but 

suffered serious injuries. 

D.2.2 A mishap investigation board studying the cause of the X-31 accident concluded that an 

accumulation of ice in or on the unheated pitot-static system of the aircraft provided 

false airspeed information to the flight control computers. The resulting false reading of 

total air pressure data caused the flight control system of the aircraft to automatically 

configure for a lower speed. The aircraft suddenly began oscillating in all axes, pitched 

up to over 90 degrees angle of attack and became uncontrollable, prompting the pilot to 

eject. 

D.2.3 The mishap investigation board also faulted the safety analyses, performed by Rockwell 

and repeated by NASA, which underestimated the severity of the effect of large errors 

in the pitot-static system. Rockwell and NASA had assumed that the flight software 

would use the backup flight control mode if this problem occurred. 

D.2.4 Lesson Learned. 

Estimating and mitigating software risks, including software used to mitigate hardware 

anomalies, are critical aspects of software safety (Dornheim 1995, Haley 1995). 

D.2.5 References. 

 Dornheim, Michael A. “X-31 Board Cites Safety Analyses, But Not All Agree.” 

Aviation Week & Space Technology, pp. 81-86, dated December 4, 1995. 

 Haley, Don. “Ice Cause of X-31 Crash.” NASA Dryden Flight Research Center, 

Edwards, California. NASA Press Release 95-203, 1995. 
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D.3 F-22 RAPTOR. 

D.3.1 On February 11, 2007, a flight of 12 F-22’s, on their first deployment to Japan from 

Hawaii, encountered a multiple system failure at the International Date Line. When the 

fighters crossed the line, they lost all navigation and attitude indication systems, and 

parts of their communication and fuel systems including their radios. Fortunately, they 

were re-fueling at the time and were able to follow the tankers back to Hawaii. The 

errors were fixed in about 48 hours, and the planes completed their deployment 

following the software fix.  

D.3.2 Lesson Learned. 

Software should be tested across the entire environment in which it will operate 

(Defense Industry Daily, 2007). 

D.3.3 References. 

 “F-22 Squadron Shot Down by the International Date Line.” Defense Industry 

Daily, 2007. http://www.defenseindustrydaily.com/f22-squadron-shot-down-by-the-

international-date-line-03087/. 

 

http://www.defenseindustrydaily.com/f22-squadron-shot-down-by-the-international-date-line-03087/
http://www.defenseindustrydaily.com/f22-squadron-shot-down-by-the-international-date-line-03087/
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