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Abstract 

This paper presents a systems viewpoint for developing an advanced decision support system for aircraft safety 
inspectors. Research results from a Federal Aviation Administration (FAA) sponsored project to use neural network and 
expert systems technology to analyze aircraft maintenance databases are summarized. One of the main objectives of this 
research is to define more refined "alert" indicators for national comparison purposes that can signal potential problem 
areas by aircraft type for safety inspector consideration. 

Integration aspects are addressed on two levels: (i) integration of the various technical components of the decision 
support system, and (2) integration of the decision support system with individual behavior, management systems and 
organizational structure, as well as corporate culture acfi?ss both formal and informal dimensions. The paper summarizes 
the creation of strategic "inspection profiles" for aging air~raft and reliability curve fitting for structural components both 
based upon using neural network technology. Also, the potential use of a model-based expert system to facilitate field 
inspection diagnostics is presented. Finally, a framework for developing an intelligent decision system to support aircraft 
safety inspections is proposed that links expert systems, neural networks, as well as a paradigm of the decision making 
process typically used in unstructured situations. 
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1. Introduction to the problem of aircraft safety inspection 

Effective and efficient maintenance management is essential not only for production systems but 
for large-scale service systems, such as air and surface transport systems. These repairable systems 
are subject to aging mechanisms, such as wear, fatigue, cf~eep, and stress corrosion. Inspection and 
diagnostic activities are integral components of an effective maintenance strategy in an attempt to 
ensure system safety, reliability, and availability. 
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As an example of a large-scale service system, the Federal Aviation Administration (FAA) in the 
United States is responsible for regulating aircraft traffic and safety. An expected increase in usage 
of domestic flights in the next few years coupled with an aging population of aircraft has led the 
FAA to initiate new aircraft safety research efforts. Domestic passenger enplanements increased 
from 250 to 450 million annually between 1977 and 1987 [1]. The FAA anticipates that domestic 
enplanements will reach 800 million in the year 2000, and exceed a billion by 2010 for increases of 
128% and 272%, respectively I-1]. It is also expected that by the year 2010 there will be a 55% 
increase in aircraft operations including takeoffs and landings at towered airports; a 62% increase 
in instrument operations in terminal areas; a 73% increase in air carrier hours; and increases of 
62% and 75% in the air carrier and commuter fleets, respectively [1]. This steady growth of aircraft 
transport and aircraft traffic density places increasing pressure on safety inspection activities. 

The inspection of aircraft involves a number of complex technical, social, political, economic, 
and human issues. Inspection frequencies, procedures, and criteria may vary for alternative types of 
aircraft. Alternative safety equipment and measurement accuracies are required for different 
components. There may be delays in inspections due to coordination and scheduling conflicts. 
Expertise is required in diagnosing potential safety problems and in making probability assess- 
ments. An aging population of Aviation Safety Inspectors (ASIs) has created concern within the 
FAA that the expertise associated with aircraft inspection will not be preserved. A sense of urgency 
exists concerning the capturing and codification of existing aircraft inspection knowledge. 

Due to the growth in the number of aircraft, there is an increasing number of structural 
components to monitor. There is a need to develop new techniques for maintaining airworthiness 
of aging aircraft and for improved methods for accurate prediction of residual life of repaired 
structures. The use of new prediction methods, such as artificial neural networks, may prove useful 
for forecasting of removal and inspection dates for engines, assemblies, and components. 

Replacement inspections focus on a specific component or components that have been scheduled 
for replacement at specific intervals. The component that was in service may undergo further 
testing in the supply area and repaired if necessary and returned as a usable spare. If it is 
determined that it is not cost effective to repair the worn component, it will be discarded. Also, 
a replacement inspection may result in the safety inspector making a decision to defer replacement 
of the inspected component. 

New safety indicators need to be defined that will enable inspectors to identify airlines that 
present a greater safety risk and warrant heightened surveillance. These alert indicators can be used 
to define upper and lower control limits and to monitor adverse trends. Efficient inspection 
activities will facilitate timely aircraft maintenance and minimize the cost of aircraft unavailability. 

While it is true that prediction models for determining aircraft maintenance requirements could 
be based on simply forecasting aggregate failure rates by aircraft type for all planes repaired at the 
same depot or forecasting failure rates for each plane assigned to a different, regional repair facility, 
the primary purpose of the research reported in this paper focuses on the composite inspection 
activities of a regulatory agency that is responsible for ensuring that national safety standards are 
met. 

For modern aircraft systems, there is a high degree of reliability built in which means that there 
are infrequent failures. When failures are infrequent, it becomes difficult to detect and isolate the 
problem quickly. The development of a knowledge base for fault detection and isolation for aircraft 
will enable the codification of existing inspection expertise before this expertise leaves the FAA 
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organization. Once captured, this knowledge can be efficiently applied on a continuous basis via an 
expert system to enhance the decision-making productivity and consistency of both novice and 
experienced aircraft safety inspectors. 

2. Vision of intelligent decision support for aircraft safety 

Currently under development by the FAA, the Safety Performance Analysis System (SPAS) 
will be an analytical tool that is intended to support FAA inspection activities [2, 3] and 
will contain indicators of safety performance that can signal potential problem areas for inspector 
consideration. SPAS will function as a decision support system by enabling inspectors to access 
existing FAA maintenance databases and by identifying airlines that pose a greater safety 
risk and merit heightened surveillance. SPAS is novel for FAA inspection activities because it 
attempts to integrate data on air operator, air agencies, aircraft types, and air personnel compo- 
nents into a unified decision support system and differs from the current use of decentralized 
databases. 

The FAA has established a Center for Computational Modeling of Aircraft Structures (CMAS) 
at Rutgers University. One CMAS research project concentrates on the Service Difficulty Report- 
ing (SDR) database that contains data related to the identification of abnormal, potentially unsafe 
conditions in aircraft or aircraft components/equipment. The major objectives of this research are 
to develop meaningful SDR indicators that establish national air operator "profiles" for compari- 
son purposes and to investigate the use of artificial neural networks and expert systems to analyze 
maintenance databases. The creation of "'inspection profiles" will assist in the characterization of 
aircraft with respect to what needs to be inspected, when it needs to be inspected, and how often 
should inspection occur based upon monitoring operations data from different "classes" of aircraft 
types. 

The emergence of Decision Support Systems (DSSs) or computerized information systems that 
contain domain-specific knowledge and analytical decision models to support decision making for 
complex and ill-structured tasks began in the 1960s at the Sloan School of Management at the 
Massachusetts Institute of Technology, the Harvard Business School, and the Business School 
HEC in France [4]. Although research results are equivocal, a DSS is intended to enhance 
individual learning by providing easier access to problem recognition, problem structure, informa- 
tion, statistical tools, and methodological knowledge [5]. A DSS is designed to enable easier and 
faster generation of alternatives and to increase awareness of deficiencies in the current decision 
making process. 

Holtzman [6] uses the new terminology of an "Intelligent Decision System" to describe a hybrid 
computer-based technology for aiding decision makers in complex decision situations. The tools 
build upon the methodology of decision analysis and the technology of expert systems. The idea is 
to use expert systems technology to automate the skills and factual knowledge of the expertise of 
a few individuals and to use the normative characteristics of decision analysis to improve the 
quality of the decisions made. The goal is to reduce the time, cost, and training needed to make 
decisions in complex problem domains. Intelligent decision systems may also be used to make 
probability assessments in specific situations. Fig. 1 depicts the elements of Holtzman's paradigm 
for an Intelligent Decision System. 
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Fig. 1. Holtzman's [6] paradigm of an intelligent decision system. 

In complex decision-making situations, research suggests that a decision maker attempts to 
deal with the unstructuredness by decomposing these situations into familiar, structurable 
decision elements l-7, 8]. Mintzberg et al. [9] develop a model of strategic decision making 
that attempts to portray the decision-making process as consisting of three phases - identification, 
development, and selection. Seven distinct, familiar decision "routines" comprise these phases 
and there are three "supporting" decision routines and six dynamic factors that may influence 
the decision-making process. Fig. 2 illustrates the Mintzberg et al. model. Although real 
decision making is not as static or sequential as the figure presents, nevertheless, this model 
provides insight as to the unique phases of decision making and positions the technology for 
decision support. 

For example, neural networks are especially useful at monitoring data and detecting trends or 
implicit patterns that can signal potential problems. Thus, neural networks are especially appropri- 
ate for supporting the problem recognition and diagnosis decision routines of trying to compre- 
hend external stimuli and assessing cause-effect relationships. Expert systems are better suited for 
encoding explicit domain knowledge, exploring alternative decisions, and for providing explana- 
tions of reasoning processes. Thus, i n the Mintzberg et al. decision modeling framework, expert 
systems are especially appropriate for supporting the search and design routines of the decision- 
making process that lead to the generation of one or more solutions. Also, expert systems are 
appropriate for supporting the screening and evaluation-choice routines as these systems are able 
to search a decision space, develop alternatives, make inferences, and provide explanations and 
traces of how conclusions were reached. 
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Fig. 2. Mintzberg et al. I9] model of the decision-making process in unstructured situations. 

This paper presents a framework or systems viewpoint for developing the components of 
an intelligent decision system for aircraft safety inspection. Integration aspects are addressed 
on two levels. First, integration of the various technical components of the intelligent decision 
system, such as neural networks, expert systems, influence diagrams, and models of decision 
making are examined. Second, the connections that a decision support system has to individual 
behavior, management systems and organizational structure, and organizational culture are also 
discussed. 

The eventual goal of the CMAS research is to develop an intelligent decision system that will be 
a hybrid of expert system and neural network technology supported by aviation databases to 
facilitate maintenance requirements planning, organizational coordination, and efficient workload 
scheduling for safety inspectors. 

3. Decision support for aircraft safety inspections 

One of the first steps in the development of any preventive or predictive maintenance program is 
to determine what needs to be inspected and the inspection intervals. The inspection frequency is 
usually a function of the type of equipment, its age and condition, the utilization, the operating 
environment, and the consequences of equipment unavailability due to failure. 

The CMAS research effort attempted to explore the ability of artificial neural networks to 
capture and retain complex underlying relationships and nonlinearities by investigating the 
patterns that may exist between an aircraft's operations and maintenance data and SDR reporting 
profiles. Knowledge of the SDR reporting profiles with respect to an "alert" indicator facilitates 
a determination of inspection workload requirements for Aviation Safety Inspectors. The current 
planned SDR performance indicator is S which is simply the number of SDR records for the airline 
operator for the defined period. The count of records is not normalized. If S > 0, the indicator 
status is set as "expected"; if S = 0, the indicator status is set as "'advisory" [3]. This "alert" 
indicator is too general to be of practical value. 
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3.1. Neural network-based approaches to inspection 

Neural networks are computing systems that imitate intelligent behavior and are composed of 
a number of simple, highly connected processing elements that process information by a dynamic 
state response to external inputs 1-10]. Neural networks are "taught" to give acceptable results. The 
ability of artificial neural networks to capture and retain complex patterns has been researched and 
documented in a number of papers since the "rebirth" of neural networks in 1982 when researchers 
"rediscovered" their important characteristics I- 11-13]. Fault diagnosis usually requires the collec- 
tion and processing of large amounts of data which are frequently incomplete. Fault diagnosis is 
typically composed of fault detection, based upon either off-line or on-line inspection procedures, 
and then fault isolation. Neural network inspection systems have been developed for detecting and 
isolating equipment malfunctions in complex aircraft such as the Grumman X-20, the National 
Aerospace Plane (NASP or X-30), the F-16 Falcon, and for NASA's space shuttle 1,14]. The use of 
neural networks for equipment monitoring and fault detection has led to the development of new, 
on-line "predictive" maintenance paradigms 1,,15, 16]). 

The most common type of neural network architecture is backpropagation which is especially 
useful for pattern recognition. The initial program employs an analog, three layer, backpropaga- 
tion network. Fig. 3 shows the basic configuration of the three-layer backpropagation network. To 
develop a backpropagation model, a training set of data patterns which consist of both inputs and 
the actual outputs observed must be developed. During training the neural network processes 
patterns in a two-step procedure. In the first or forward phase of backpropagation learning, an 
input pattern is applied to the network, and the resulting activity is allowed to spread through the 
network to the output layer. The program compares the actual output pattern generated for the 
given input to the corresponding training set output. This comparison results in an error for each 
neurode in the output layer. In the second, or backward phase, the error from the output layer is 
propagated back through the network to adjust the interconnection weights between layers. This 
learning process is repeated until the error between the actual and desired output converges to 
a predefined threshold 1,17]. Backpropagation neural network "learning" parameters include the 

Output 
buffer 

Hidden 
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Input t 
buffer 

Fig. 3. Three-layer backpropagation neural network. 
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"learning rate" which is used to specify the magnitude of the weight changes, the "momentum" 
factor which specifies the proportion of the last weight change that is added to the new weight 
change, and an "initial weight" that is used to initialize the weights between the network's 
connections prior to "training". 

In neural network modeling, the R 2 value compares the accuracy of the model to the accuracy of 
a trivial benchmark model where the prediction is simply the mean of all the sample patterns. 
A perfect fit would result in a n  R 2 value of 1, a very good fit near 1, and a poor fit near 0. If the 
neural network model predictions are worse than one could predict by just using the mean of the 
sample case outputs, the R 2 will be 0. Although not precisely interpreted in the same manner as the 
R 2 value in regression modeling, nevertheless, the R 2 value from neural network model may be 
used as an approximation when evaluating model adequacy. 

The neural network models were developed on an IBM-PC compatible computer using the 
NeuroShell 2 [18] computer program. This program requires Microsoft Windows, a minimum of 
4mb of RAM, and at least a 386 microprocessor. The program implements several different types of 
neural network models. Initial model development focused on the use of backpropagation net- 
works. 

3.1.1. SDR prediction 
Inputs for the SDR neural networks were flight hours, landings, and the age of the plane. The 

output  was the expected number of SDRs. The data consisted of the 1308 cases of merged SDR and 
Aircraft Utilization data developed by Battelle for the DC-9. However, when cases with missing 
data were eliminated, there were a total of 1229 usable data cases. The data were not grouped in 
any way. All of the training patterns were for individual aircraft. 

Backpropagation models can be configured in several different ways. Models can be developed 
consisting of three, four, or five layers of processing elements. In the standard backpropagation 
configuration, the processing elements of one node are connected only to the following layer. It is 
also possible to provide additional connections, called jump connections so that all layers of the 
network are fully connected. 

One problem in developing neural networks is to determine the point in training where 
the neural network provides the best results. Often, training a neural network to provide a 
minimum error when presented with the training set produces a neural network that cannot 
generalize. The NeuroShell 2 software overcomes this problem with a feature called "NET- 
PERFECT".  This feature requires breaking the input data into two different groups. One group is 
the training set that the neural network trains on. The other group is the test set, that is tested 
periodically to determine the error produced. The network that produces the minimum error with 
the test set is saved. 

3.1.1.1. Data description. The CMAS research team was provided with a subset of the SDR 
database that had been merged with the Aircraft Utilization (ARS) database for the same set of 
planes. The SDR database essentially contains qualitative descriptions of potentially unsafe 
components or systems by aircraft serial number. The ARS database contains quantitative data 
related to the operations of the aircraft, such as flight hours and number of landings. The merged 
database was supplied by Battelle [19] and consisted of 1308 observations for the DC-9 aircraft for 
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Table 1 
Sample "merged" SDR and ARS data [19] 

Aircraft Serial SDR date Part name Part location Part condition Estimated Estimated Estimated 
model number a age flight hours landing 

DC9 333 84-03-22 Skin E + E COMPT Cracked 17.74 32619.03 
DC9 333 84-03-22 Skin AFT BAG BIN Cracked 1 7 . 7 4  32619.03 
DC9 333 86-07-07 Skin FUSELAGE Cracked 20.03 36836.23 
DC9 444 80-06-20 Skin GALLEY DOOR Cracked 1 3 . 2 4  34396.44 
DC9 444 81-12-01 Skin FS625 Corroded 14 .69  38160.55 
DC9 444 87-05-11 Skin RT WHEEL WELL Cracked 20.14 52299.10 
DC9 444 87-05-11 Skin STA 580-590 Cracked 20.14 52299.10 

53999.20 
53999.20 
60980.56 
33888.77 
37597.32 
51527.19 
51527.19 

aFictious serial # ' s  are used due to confidentiality of data. 

the period April 1974 to March 1990. Table 1 displays sample data. The database only contained 
quantitative data on the following: 

- Age 
- Estimated flight hours 
- Estimated number of landings. 

Since actual data on flight hours and landings were not being reported directly in the SDR 
database, the estimated flight hours and estimated landings are derived values based upon the 
original delivery date of the plane to the first operator, the date of the ARS data reference, and the 
SDR date. The equations developed by Battelle for these derived values are reported in [19] and 
are given below: 

Estimated flight hours = [(SDR date-service date)/(ARS date-service date)] • FHSCUM 

Estimated number of landings = [(SDR date-service date)/(ARS date-service date)] • LDGSCUM, 

where SDR date is the date of the SDR (SDR database), Service date is the original delivery date of 
the plane to the first operator (ARS database), ARS date is the date of the ARS data (ARS 
database), FHSCUM is the cumulative fuselage flight hours (ARS database) and LDGSCUM is 
the cumulative fuselage landings (ARS database). 

Since the ARS date time lagged the SDR date, Rice extrapolated the quantitative ARS data on 
flight hours and landings to the SDR date. He developed a multiplier by calculating the ratio of 
(SDR date-service date/ARS date-service date) and then extrapolated the flight hours and landings 
at the ARS date to the date of the SDR. 

In this initial stage of neural network development it was concluded that neural networks 
created with ungrouped data did not provide acceptable results across a variety of backpropaga- 
tion architectures and different learning parameters. It became necessary to transform the input 
data. 
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3.1.1.2. Data grouping strategies. In an attempt to create "robust" SDR prediction models that 
will provide SDR profiles for a "representative" DC-9, different data "grouping" strategies were 
used. Such an approach was used in [20-26] to create large-scale logistics models for the US Navy. 
These "population" models were developed to determine both maintenance and system re- 
pair/replacement strategies for large groupings of similar equipment based on operating hours, 
operating environment, failure mode, etc. 

Using data grouping strategies of "age", "estimated flight hours", and "estimated landings", 
neural network models were developed based upon a smaller data set of"averaged" merged data to 
predict the total expected number of SDRs/year, the number of SDRs/year for cracked cases, and 
the number of SDRs/year for corrosion cases for the DC-9 aircraft. In this example, fictious aircraft 
serial numbers are used, since the actual aircraft serial numbers are confidential information. 

To provide a means for checking the SDR predictions against existing data, the data were 
sub-divided into two different sets based on aircraft serial numbers. The first set was used to build 
the prediction model and the second set was used to evaluate the prediction model's performance 
on new data. Such an approach is useful for testing prediction model generality [27]. This 
approach is typically used in neural network modeling to create a "training" set of data to build the 
model and a "production" set of data to evaluate model performance on new, unfit data. These 
terms are used in the paper to distinguish between the two data sets. 

After the data has been subdivided into "training" and "production" sets, then a grouping strategy 
is similarly applied to each data set. The grouping procedure based on "age" is outlined below: 

1. Group the data to create age "cohorts". 
0 ~ < A G E < I  l s t g r o u p  N E W A G E = 0  
I ~ < A G E < 2  2 n d g r o u p N E W A G E = l  
... and so on ... 

2. Calculate the "average" flight hours and number of landings. 
Data set 
NEWAGE SERIAL # EST. F L I G H T  HOURS EST. LANDINGS 
9 111 26677.78 27410.47 
9 111 25718.65 25947.47 
9 222 21383.77 21731.40 
9 222 22253.71 17263.51 
9 222 24139.99 26998.77 

New data set 
# OF SDRs NEWAGE AVG. FHR AVG. LDG 
5 9 24034.78 23870.324 

3. Calculate the average number of SDRs based upon the number of aircraft serial numbers that 
comprise each age "'cohort". 

Previous data set 
# OF SDRs NEWAGE AVG. FHR AVG. LDG 
5 9 24034.78 23870.324 
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Modified data set (e.g. suppose 2 aircraft serial numbers accounted for the 5 SDRs from step 2) 
# OF SDRs NEWAGE AVG. FHR AVG. LDG 
2.5 9 24034.78 23870.324 

As a result of the grouping strategy, all interpretations are now with respect to the average 
number of SDRs per year. The output  variable becomes the average number of SDRs for 
a "representative" DC-9 with a "profile" of estimated flight hours and estimated landings as defined 
by its associated age cohort. An important  point to remember when using this data grouping 
procedure is that one must have a sufficiently large data sample for the DC-9 in order to compute 
"averages" of estimated landings and flight hours for a specified aircraft age. The more data that 
one has, the better one can model a "representative" aircraft using the data grouping strategy as 
previously discussed. 

The grouping procedure resulted in the following: 

# of data records "Grouped" # of data records 
Model Training Production Training Production 
Overall # of SDRs 805 424 16 14 
# SDRs (cracking) 572 306 16 16 
# SDRs (corrosion) 242 127 10 9 

3.1.1.3. SDR neural network models for the whole of the DC-9 aircraft. The results from the SDR 
backpropagtion neural networks models are summarized in Tables 2-4. Training times for the 
backpropagation models were insignificant. Since prediction accuracy was deemed to be most 
important, the Mean square error (MSE) was used to select the "best" neural network configura- 
tion. These neural network models may be used to predict the average number of SDRs using 
a data grouping strategy of one year time increments for the overall number of SDRs and for the 
number of corrosion cases. To predict the average number of SDRs for cracking cases, it was 
determined that the best data grouping strategy was based on increments of 4000 flight hours. Note 
that although the neural network for the corrosion case performs well on the training data set 
(RZ= 0.9411, MSE = 0.086), the MSE on the production set increased significantly (MSE = 
3.125). It should also be observed that the model for corrosion cases had the least number of 
training and production patterns derived from data groupings with the least number of observa- 
tions of the three models constructed. Thus, this model should be used with caution on new, unfit 
data as it does not appear to generalize well. 

As in regression modeling, 90% or 95% "confidence intervals" could be developed for the overall 
number of SDRs and the number of SDRs for cracking and corrosion cases. These confidence 
intervals could be displayed in a fashion analogous to quality control charts serving as more 
refined "alert" indicators that specify upper and lower safety control limits by aircraft type. 

Luxhoj et al. 1-28] report on the promising development of a two stage "hybrid" neural network 
model for SDR prediction. Tables 2-4 also summarize the results of these hybrid neural networks. 
The first stage uses a Probabilistic Neural Network (PNN) to classify the average age of a DC-9 
aircraft into its corresponding class for the expected number of SDRs. A P N N  is a supervised 
neural network that is used to train quickly on sparse data sets [29-31]. Training a PNN is very 
fast because it requires that each pattern be presented to the network only once during training. 
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Table 2 
Neural network models for overall number of SDRs (data grouped by age, time increment = 1 year) 

391 

Input variables 
Output variables 
Number of training patterns 
Number of production patterns 

Backpropagation neural network model 

Number of hidden node 6 
Learning rate 0.1 
Momentum 0.1 
Initial weight 0.3 

Hybrid neural network model 

AGE, FHR, LDG 
Number of SDR/airplan 
16 
14 

Learning time 00: 06: 32 
R z (training data) 0.9452 
MSE (training data) 0.152 
MSE (production data) 0.541 

Step 1 - PNN 

Input AGE, FHR, LDG Patterns classified 16 
correctly (training data) 

Output Class 1 ~ 0 ~< s < 2 Patterns classified 0 
Class 2 ~ 2 ~< s < 4 incorrectly 
Class 3 --* 4 ~< s < 6 (training data) 
Class 4 --* 6 ~< s < 8 

Learning time 00: 00: 03 Patterns classified correctly 12 
(production data) 

Smoothing factor 0.02 Patterns classified incorrectly 2 
(production data) 

Step 2 - Backpropagation 

Input AGE, FHR, LDG, Class 1, Class 2, Class 3, Class 4 
Output Number of SDR Learning time 00: 22: 55 
Number of hidden node 7 R z (training data) 0.9603 
Learning rate 0.1 MSE (training data) 0.110 
Momentum 0.1 MSE (production data) 2.626 
Initial weight 0.3 

T h e  neura l  n e t w o r k  separates  input  pa t te rns  into some defined o u t p u t  categories.  In the process  
of  t raining,  the P N N  clusters pa t te rns  by  p roduc ing  act ivat ions  in the o u t p u t  layer.  Th e  
value of  the ac t iva t ions  c o r r e s p o n d  to  the p robab i l i ty  densi ty  func t ion  es t imate  for  tha t  ca tegory.  
All o u t p u t  values of  a P N N  should  be ei ther  0 or  1 and  only  the o u t p u t  value  in the mos t  p ro b ab l e  
ca tegory  is 1. Increas ing  the " s m o o t h i n g  fac tor"  of  a P N N  causes m o r e  relaxed surface fits t h r o u g h  
the data.  

T he  P N N  in this s tudy  is used to  classify SDRs  in to  one  of  4 classes, class 1 for  0 ~< S ~< 2, class 

2 for 2 < S ~< 4, class 3 for  4 < S ~< 6; and  class 4 for 6 < S ~< 8 where  S represents  the n u m b e r  of  
SDRs.  The  P N N  is used in the first stage to  classify the average  age of  a DC-9  aircraft  into its 
co r r e spond ing  class for  expec ted  n u m b e r  of  SDRs.  This  vec tor  of  average  age and  class then  is fed 
into a b a c k p r o p a g a t i o n  neura l  ne twork  to  predic t  the n u m b e r  of  SDRs.  Th e  second stage then  
feeds the classified o u t p u t  a long  with the above  quan t i t a t ive  d a t a  to  a b a c k p r o p a g a t i o n  neura l  
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Table 3 
Neural network models for SDR cracking cases (data grouped by flight hours, increment = 4000 h) 

Input variables 
Output variables 
Number of training patterns 
Number of production patterns 

Backpropaoation neural network model 

Number of hidden node 5 
Learning rate 0.1 
Momentum 0.1 
Initial weight 0.3 

Hybrid neural network model 

Input AGE, FHR, LDG 

Step 1 - PNN 

Output Class 1 --* 0 ~< s < 1.5 
Class 2 --* 2 ~< s ~> 1.5 

Learning time 00: 00: 02 

Smoothing factor 0.02 

AGE, FHR, LDG 
Number of SDR/airplan 
16 
14 

Learning time 
R 2 (training data) 
MSE (training data) 
MSE (production data) 

Patterns classified correctly 
(training data) 
Patterns classified 
incorrectly (training data) 
Patterns classified correctly 
(production data) 
Patterns classified incorrectly 
(production data) 

Step 2 - Backpropagation 

00:03:45 
0.6899 
0.009 
0.409 

16 

0 

10 

5 

Input AGE, FHR, LDG, Class 1, Class 2 
Output Number of SDR Learning time 00:17: 35 
Number of hidden 7 R 2 (training data) 0.8404 
node 
Learning rate 0.1 MSE (training data) 0.005 
Momentum 0.1 MSE (production data) 0.019 
Initial weight 0.3 

network to predict the number of SDRs for combined cracking and corrosion cases. SDR 
prediction results using multiple regression techniques, backpropagation, and "hybrid" neural 
networks are compared in [28]. In all cases, the prediction results were better on the training data 
sets than from solely using a backpropagation architecture. However, the MSEs for the production 
data only improved in the cracking case. Further  investigations are required with larger data sets to 
determine the extent of the benefits of a two-stage approach, as the training time significantly 
increases with a hybrid model. 

3.1.1.4. SDR neural network models for  components o f  the DC-9 aircraft. In an attempt to explore 
further the use of neural networks to create "safety alerts", Shyur et al. [32] report on the 
development of SDR prediction models for the DC-9 aircraft that use neural networks for 19 major 
structural groupings, such as the cargo door, elevator, radome, spoiler, tail cone, etc. The neural 
network models use the three-layer backpropagation learning architecture to predict the expected 
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Table 4 
Neural network models for SDR corrosion cases (data grouped by age, time increment = 1 year) 
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Input variables 
Output variables 
Number of training patterns 
Number of production patterns 

Backpropagation neural network model 

Number of hidden node 5 
Learning rate 0.1 
Momentum 0.1 
Initial weight 0.3 

Hybrid neural network model 

AGE, FHR, LDG 
Number of SDR/airplan 
10 
9 

Learning time 00: 02: 40 
R 2 (training data) 0.9411 
MSE (training data) 0.086 
MSE (production data) 3.125 

Step 1 - PNN 

Input AGE, FHR, LDG Patterns classified correctly 10 
(training data) 

Output Class 1 ~ 0 ~< s < 2 Patterns classified 0 
Class 2 ~ 2 ~< s < 4 incorrectly 
Class 3 ~ s >I- 4 (training data) 

Learning time 00:00:01 Patterns classified correctly 6 
(production data) 

Smoothing 0.1 Patterns classified incorrectly 3 
factor (production data) 

Step 2 - Backpropagation 

Input AGE, FHR, LDG, Class 1, Class 2, Class 3 
Output Number of SDR Learning time 00: 05: 44 
Number of hidden node 7 R 2 (training data) 0.9727 
Learning rate 0.1 MSE (training data) 0.04 
Momentum 0.1 MSE (production data) 3.502 
Initial weight 0.3 

number of SDRs for cracking cases. A structural schematic of the DC-9 Model 30 aircraft is 
presented in Fig. 4. 

For the 1308 sample data observations, there are only 569 data observations for the DC-9 Model 
30 aircraft, and only 390 observations identify the part location. As there were insufficient and 
incomplete input data for each part location, the part locations were categorized into 19 larger 
"groupings" as presented in Table 5. Note that the part location numbers in Table 5 do not 
correspond to the part location numbers in Fig. 4 due to the "grouping" strategy. Approximately, 
70% of the cracking cases for the sample data occurred in the aircraft main fuselage area and the 
"Fuselage STA 588 to 996" includes 20.8% of the cracking cases. 

A three-layer backpropagation architecture is used to classify the SDR cracking cases for data 
grouped by age in increments of 0.5 years. Moreover, the number of SDRs for one aircraft in 
a certain age group is calculated. Due to the age "grouping" strategy, only 18 input patterns can be 
used to train the neural network model. The model includes 3 input neurons (aircraft age, flight 
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Fig. 4. Schemat ic  of  the D C - 9  mode l  30 aircraft  (Source." DC-9 structure repair manual, Doug las  Aircraft  Co.,  Inc.). 
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Table 5 
SDR component neural networks for cracking cases 

395 

Initial parameters 
Learning rate = 0.05 
Momentum = 0.05 
Initial weight = 0.3 
Patterns = 18 

Input layers = 3 (AVG-AGE AVG-FHR AVG-LDG) 
Hidden layers = 15 
Ouput layer = 19 (# of SDR for each part location) 

Part # Part description R2-value 

1 Radome 0.9432 
2 Fuselage nose structure 0.8001 
3 Fuselage station 229 to 588 0.7095 
4 Fuselage station 588 to 996 0.7961 
5 Fuselage station 996 to 1087 0.8767 
6 Tail cone 0.9137 
7 Fuselage tail structure 0.8467 
8 Rudder 0.9600 
9 Pylon AFT panel 0.9035 

10 Wing 0.7988 
11 Passenger forward entrance door 0.8901 
12 Elevator 0.9814 
13 Main gear door 0.7605 
14 Cargo door 0.9654 
15 Vertical stabilizer 0.7017 
16 AFT nose gear door 0.4891 
17 Horizontal stabilizer 0.9413 
18 AFT press BLKHD 0.8484 
19 Spoiler 0.9743 

Data grouped by age (range = 0.5 years) 

hours ,  and  n u m b e r  of  landings) and  19 o u t p u t  neu rons  tha t  identify the n u m b e r  of  SDRs  in 19 
different pa r t  locat ions.  

As d isp layed in Tab le  5, 13 of  the 19 models  have R 2 values above  0.800 which suggests tha t  
a b a c k p r o p a g a t i o n  neura l  n e t w o r k  is very  effective in predic t ing the n u m b e r  of  SDRs  for m a jo r  
s t ruc tura l  g roup ings  of  pa r t  locat ions.  Eight  of the 19 models  have  R z values of  0.9000 or  higher.  
The  "bes t"  par t  loca t ion  b a c k p r o p a g a t i o n  models  in this s tudy  are for  the e leva tor  (R z = 0.9814), 
spoiler  (R 2 = 0.9743), ca rgo  d o o r  (R z = 0.9654), r udde r  (R 2 = 0.96), r a n d o m e  (R 2 -~ 0.9432), hor i -  
zonta l  stabil izer ( R 2 =  0.9413), tail cone  ( R Z =  0.9137), and  py lon  A F T  panel  ( R Z =  0.9035). 
However ,  the mode l  c anno t  predic t  well in the " A F T  Nose  G e a r  D o o r "  case (R z = 0.4891). Th e  
n u m b e r  of  obse rva t ions  for each of  the 19 par t  loca t ions  is one  m a jo r  fac tor  tha t  has an influence 
on  the accu racy  and  efficacy of  the model .  

3.1.2. Component reliability curve fitting 
A rela ted C M A S  s tudy  involved  invest igat ing the use of  neural  ne tworks  for rel iabil i ty curve  

fitting of  aging aircraft  s t ruc tura l  componen t s .  DC-9  c o m p o n e n t  failure data ,  such as cumula t ive  
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Fig. 5. Comparison of reliability curve-fitting techniques for part code 105-31754 (Helicopter Model Type B). 

time before failure, were not available from either the SDR or ARS databases. However, Luxhoj 
and Shyur [33] report on the use of artificial neural networks for reliability curve fitting for aging 
helicopter components in the presence of sparse data sets. Both mathematical-function based and 
neural network models were investigated. The sample data included part code, cumulative 
operational hours of the helicopter, and cumulative time before the part failed. Although the 
models are developed for aging helicopter components, the modeling techniques presented in this 
paper may be extended to the DC-9 aircraft. 

Backpropagation neural networks were investigated and the results suggest that the neural 
networks appear to capture the nonlinearities in the data better than mathematical-function-based 
approaches. Fig. 5 displays comparative curve fitting techniques for a Helicopter Model Type 
B component. This ongoing research appears very encouraging for using neural networks for 
estimating component reliability and for predicting component removal and inspection dates. 

3.2. A potential model-based expert system for safety diagnostics 

There have been numerous expert systems developed in the maintenance and fault diagnosis 
problem area. Maintenance of complex equipment involves a number of diagnostic procedures that 
utilize rules and judgements. The large number of rule-based expert systems developed for fault 
diagnosis prohibit their documentation here, but a survey of applications is provided in [34]. 
However, classical rule-based expert systems for diagnostics have been recently criticised since the 
large number of rules for commercial applications result in knowledge bases that frequently are 
unmaintainable, untestable, and unreliable [35]. 

With the increased computational power of modern computers, the use of Bayesian probability 
theory to construct expert systems has been revived. As reported in [36] current expert systems for 
fault diagnosis suffer from an inability to handle new faults, an inability to recognize when a fault is 
beyond the consultation system's scope, inadequate explanation of the final diagnosis, excessive 
requests for new information, and difficulties in construction. 

HUGIN [37] is a software for the construction of knowledge-based systems based on causal 
probabilistic networks or CPNs. The software incorporates new, efficient algorithms to support 
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'q:l Engine . . '~I Head Ll.~ht I i:.~ I Parking Light 
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Istopped ,I! , , , stopped S! . . . .  I stopped Z! . . . .  

Fig. 6. HUGIN network for maintenance diagnostics. 

Bayesian probability calculations and offers an alternative to traditional rule-based programming. 
The CPNs, also known as belief networks or influence diagrams, represent a possible means to 
model efficiently the uncertain relationships among components of a system. Moreover, model- 
based expert systems incorporate causal knowledge by including a representation of a system's 
structure, function, and behavior. 

The model uses a number of statements about the problem domain (e.g. "The patient has 
lung cancer") and a number of causal relationships between such statements. Each statement 
is assigned a number of states (e.g. "yes" and "no"), and each state is assigned a probability. 
Causal dependencies are given as conditional probabilities for a state given the states of the parent 
node. 

In a safety diagnostics model, for example, the knowledge embedded in the cause-effect links 
between nodes in the CPN will be answers to questions such as "If the direct cause represented by 
node X is known to have a given value, what is the probability that the effects, given in node Y, will 
have a certain outcome?" In the CPN illustrated in Fig. 6, one could ask "If the engine in the car 
gets hot, what is the probability that the carburetor will stop working?" In normal rule-based 
systems, the question would probably be "If the carburetor stops working, will the engine then get 
hot (yes/no)?" With HUGIN,  the inference engine allows evidence to be entered into nodes and the 
effect of such evidence to be propagated to other nodes which provides for a very efficient reasoning 
process. 
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Horvitz et al. 1-38] describe an application of H U G I N  to develop a probabilistic diagnostic 
model for NASA's space shuttle propulsion-system engines. A causal probabilistic network for the 
shuttle's Orbital Maneuvering System (OMS) was developed with the support of experienced flight 
controllers at Space Shuttle Mission Control in Houston, Texas. The "belief network" shows how 
the values of helium pressure affect the pressure readings as reported by the two independent 
pressure sensors on an OMS helium tank. However, these pressure readings can also be affected, 
with uncertainty, by the errors in the sensor mechanisms themselves. An experienced user in sensor 
failures can code his or her belief about the relative rate of failure of alternative critical sensors in 
the system. 

The use of such a model-based expert system is being investigated as a possible computerized 
technique to support aircraft safety inspectors. Such a system would provide the ability to consider 
alternative hypotheses under uncertainty when diagnosing aircraft systems. The use of a Bayesian 
model could provide two types of assistance to the safety inspector. First, information related to the 
status of the aircraft could be presented and safety alert information could be displayed. Second, 
the conditional reasoning properties of the Bayesian network will enable the safety inspector to 
formulate "What if?." questions on the current condition of the aircraft and experiment with 
possible causes for the observed symptoms. 

4. A framework for developing intelligent decision support 

There are many proposed components to the SPAS research effort. A general framework or 
systems viewpoint for integrating the use of artificial neural networks for SDR prediction and the 
use of a model-based diagnostics tool for aircraft safety inspections is needed. Holtzman's I-6] 
notion of an "Intelligent Decision System (IDS)" is useful for designing a decision aid for aircraft 
safety inspectors that integrates both domain specific knowledge and decision theoretic knowledge 
(such as influence diagrams). 

The knowledge base of an IDS for Aviation Safety Inspectors could be divided into the following 
components: 

(1) Domain knowledge related to specific aircraft or to a class of aircraft. 
(2) Preference knowledge which is used to elicit a certain type of preference model regarding 

decision criteria from the safety inspector. 
(3) Probabilistic knowledge which addresses the problem of probability assessments in specific 

situations. 
(4) User data that contains facts to define the circumstances of the safety inspector 
(5) Process knowledge that guides the safety inspector through the process of decision analysis 

for aircraft inspections. 

Fig. 7 illustrates a conceptual drawing of an IDS for the strategic level in aircraft safety 
inspections. Based upon input which is obtained from existing FAA data sources, such as the 
Service Difficulty Reporting (SDR) and Aircraft Utilization (ARS) databases, data are entered into 
a computer-based model for SDR prediction. The decision model could be either a neural network 
or multiple regression model. Based on the given inputs, the model then creates "inspection 
profiles" for the overall expected number of SDRs, and the number of SDRs for cracking and 
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Fig. 7. Strategic level for intelligent decision system (IDS). 

Integrated Decision Support 
Model-Based Expert System 

(Probability "Assessment) 

~,ircraft Configuratio~ 

Aircraft Maintenance 
History 

Apparent Symptoms 

Inspection Procedures 
and Criteria 

Inspection Tools/ 
Instruments 

Component Reliability 
~Curves • 

Field Level 

Fig. 8. Field level for intelligent decision system (IDS). 

Inspection 
Diagnosis J 

corrosion cases by aircraft type. This strategic analysis facilitates workload estimation for safety 
inspectors by aircraft type and is essential for the efficient scheduling of inspection routes at 
terminals. 

The next phase of the IDS involves a field-level analysis and uses a model-based expert system, 
such as HUGIN,  to assist the safety inspector with making probability assessments in specific 
aircraft diagnostic situations. As illustrated in Fig. 8, the expert system could also provide 
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a consultation service on aircraft configuration, maintenance history, apparent symptoms, inspec- 
tion procedures and criteria, inspection tools/instruments, and component reliability curves. The 
integration of both the strategic and field levels of decision support comprises an IDS for aircraft 
safety insepctions. 

5. Decision support connected to organizational learning 

One of the critical issues in designing decision support systems for modern organizations is to 
ensure that these systems are integrated and foster cross-functional learning. Riis and Neergard 
1-39] present a new paradigm that considers the perspectives of individual behavior, decision 
support systems, management systems and organizational structure, as well as corporate culture. 
These multi-perspective learning model, presented in Fig. 9, also includes the formal and informal 
dimensions of an organization. 

systems & | 
rganisati°nal I ~--..._[ L . J  / support [ 
structure | " 

Individual Collective 
Dimension Dimension 

Formal 
Dimemion 

Informal 
Dimension 

The Decision 
Support 

Perspective 

The Individual 
Behaviour 

Perspective 

The Management 
Systems and 

Organisational 
Structure Perspective 

The Corporate 
Culture 

Perspective 

III  

Fig. 9. Riis-Neergaard [39] model of multi*perspective learning. 
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If the intelligent decision system for Aviation Safety Inspectors is to have a successful implemen- 
tation, these additional perspectives need to considered during the system design process. A Dan- 
ish-Norwegian survey [40-1 reports that most enterprises tended to introduce technological means 
first and afterwards adjust the imbalance by applying organizational means. 

To ensure that technology better, organizational development, and corporate strategy are 
coupled, the Riis-Neergaard model can be used to ask key questions during the system develop- 
ment process such as: 

- What will be the consequences for the four types of learning of introducing the new decision 
support technology for Aviation Safety Inspectors? 
- Which changes are required in the FAA's management systems, information technology, organ- 
izational structure and culture, as well as individual behavior in order to fully utilize the new 
decision support technology? 

Such an approach will prevent the situation where the new decision support technology is 
developed in isolation and views the decision system development as an interactive, collaborative 
process with due regards to the mutual interrelationships to the other three learning perspectives. 
This integrative approach encourages the development of individual qualifications for Aviation 
Safety Inspectors rather than exclusively relying on the knowledge embedded in an expert system. 
The approach also places awareness on collective learning processes as implemented by formal 
organizational structure and management systems for planning and control of aircraft safety 
inspections and recognizes the role that informal systems play in operationalizing decision support 
concepts. Such an understanding is essential for a successful implementation of new decision 
support technology in large, complex organizations, such as the FAA. 

6. Conclusions 

The value or contribution of this research exists in the methods or techniques used to develop an 
integrated decision support system for aircraft inspection activities. Integration was examined on 
two levels: (1) integration of the various technical components of the decision support system and 
(2) integration of the decision support system with individual behavior, management systems and 
organizational structure, and organizational culture across both formal and informal dimensions. 

The issue of multiple fault diagnostics where one symptom leads to several faults, many 
symptoms lead to one fault, or many symptoms lead to many faults creates a challenging problem 
for Aviation Safety Inspectors. Available symptom data may be misinterpreted or unused which 
may lead to the incorrect removal of an aircraft's component. This paper presents research into 
several aspects of safety inspections - predicting workload requirements, defining safety indicators, 
estimating component reliability, and making probability assessments during diagnostic proced- 
ures. 

The Mintzberg et al. model was presented as one possible framework for understanding the 
inherent elements of the decision-making process in complex problem domains. This model is 
viewed as providing insight as to what decision making phases can best be supported by advances 
in computerized technology. The proposed framework presented in this paper for the development 
of an Intelligent Decision System for aircraft inspection activities has general applicability and 
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attempts to combine the reasoning features of artificial intelligence techniques with decision- 
theoretic models such as influence diagrams. Research is underway to combine the components of 
neural networks and model-based expert systems to create a prototype IDS for Aviation Safety 
Inspectors. 
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