10.0 Safety Culture in the Nuclear Power Industry

Mr. Edward R. Frederick, Corrective Action Process Supervisor,
Three Mile Island Nuclear Generating Station,
Middleton, Pennsylvania, USA

The Way We Were
- Protect against the big problem, and that should cover the small problems that may arise
- Provide detailed procedures for each anticipated problem
- Train the operators about the theory underlying the systems and the details of system design and construction

Protect against the Big Problem
- Our anticipated big problem was a large leak in the Reactor Coolant System
- The protection for this consists of several independent methods of injecting water into the system to replace that which leaks out
- As long as these systems functioned on demand, the reactor would be protected from damage

Detailed Procedures
- The procedures were written such that if an operator could identify the failure; the appropriate recovery steps would be provided in the procedure
- All of the training, memorizing and simulating was aimed at identification of the failure and initiation of the appropriate recovery procedure

Operator Training
- The operator’s training was heavily loaded with system design and interaction information
- The belief was that if something unexpected occurred, the operators would be able to improvise a solution

Arrogance in Design
It’s not going to happen

Inability to observe fundamental parameter
- The fundamental safety rule is to keep the core cool
- There were no temperature indicators in the core
- Core temperature was inferred from water temperature at the exit of the reactor vessel - it assumes forced flow through the core

Inability to see the problem
- Core damage would be indicated by temperatures above the boiling point for the given pressure
- No instrumentation for boiling conditions
- No temperature instruments ranged above normal operating range (700F)

Ambiguity in displays
- The back-up cooling system was intended to provide cool water flow to the boilers to remove heat from the core
- There were no flow indicators for that system - flow was inferred from having the pumps turned on and the valves open
Flaws in controls & displays
- A relief valve was installed to reduce the upward pressure excursion anticipated on a loss of heat sink. It was expected that the valve would open briefly.
- No direct position indication was provided for the relief valve even though it was known to fail frequently - valve position was inferred from the “demand” signal.

Mistakes in Design

Failure to test the design assumptions in the real world

The alarm system
- Over 1300 alarm indicators were available in the control room on overhead panels.
- The alarms were not prioritized, color coded nor logically grouped.
- Each alarm was labeled with a phrase describing a failure or unwanted condition.
- The alarms were linked to a klaxon horn which sounded each time a new alarm was activated.

The “computer”
- A “computer” was available to list the alarms as they actuated.
- The output of the computer was an IBM Selectric Typewriter with tractor feed paper.
- The typewriter often jammed.
- It was unable to type more than about 6 lines of text per minute.

Opacity
- no visual feedback
- no audio feedback
- no feel for the machine

Operation by exception
- the operator’s mental model of the plant is modified by exception to normal system operation.
- The assumption in the model is that the component and system are functioning normally unless the instruments or alarms provide an exception.

All of this and more
- Industry’s safety assumption
- Flawed procedures
- Subjective training goals
- Instrumentation flaws and omissions

... And the human element
Dr. Reason’s Irony

"... it is an irony of automation that we drill operators to follow written instructions and then put them in a system for the sole purpose of providing knowledge-based intelligence and IMPROVISATION."

A new approach

AA Safety Culture grows slowly

Improved Instrumentation
- Wide range temperature indication installed in the reactor core
- Real-time boiling point information displayed and minimum margin established
- Secondary instrumentation added to the relief valve to indicate position

Improved instrumentation
- Enhanced meter face designs & digital
- Key parameter cluster graph displays
- Improved flow mimicking on panels
- Control room & plant re-labeled
- Prioritization of alarm system
- Three new computers with multiple display
- Increased staffing

New ideas
- Several systems upgraded to “safety grade” - better instrumentation and design
- Audio and visual instrumentation added to the control room

Improved Procedures
- Symptom-based procedures introduced

A new Safety Culture
- Self reporting of problems
- Application of resources to solve problems
- Development of a learning organization

New tools
- On-site replica simulators mandatory
- Industry communication tools developed
- Accredited training centers established

Corrective Action Process
- INPO learned it from the airline industry in 1984
- Began development at TMI in 1988
- Infant system in 1992
- Effective system in place in 1996
- Continue to refine and improve