
Automation Lessons Learned
Terry Washow

Senior Systems Analyst
American Airlines

ADVENTURES IN AUTOMATION

Having an interest in both aviation and computing, its rare to find a story that can cross both paths. I
would like to share a brief story that fits the bill:

There was a pilot flying a small single engine charter plane, with a couple of very important executives
on board. He was coming into Seattle airport through thick fog with less than 10m visibility when his
instruments went out. So he began circling around looking for landmark. After an hour or so, he starts
running pretty low on fuel and the passengers are getting very nervous.

Finally, a small opening in the fog appears and he sees a tall building with one guy working alone on the
fifth floor. The pilot banks the plane around, rolls down the window and shouts to the guy "Hey, where
am I?" To this, the solitary office worker replies "You're in a plane." The pilot rolls up the window,
executes a 275 degree turn and proceeds to execute a perfect blind landing on the runway of the airport 5
miles away. Just as the plane stops, so does the engine as the fuel has run out. The passengers are
amazed and one asks how he did it.

"Simple" replies the pilot, "I asked the guy in that building a simple question. The answer he gave me
was 100 percent correct but absolutely useless, therefore that must be Microsoft's support office and
from there the airport is just a few miles away."

Today, I would like to share with you a little bit about Maintenance Automation and the human factors
associated with the development, design and implementation of Client-Server PC-based applications at
American Airlines.

I would like to start out telling you a little bit about me, and how I became involved with Americans
Automation Program. As Supervisor or the Production Control Organization in Chicago, my challenge
was clear. I had to find a way to administratively deal with a planned doubling of head count and
workload in Chicago. I had to accomplish that goal with a minimum increase in administrative head
count. I consider my introduction into Automation, more an act of survival, than anything else! We were
however, blessed with a Local Management organization that was very pro-automation. This as I later
found out, was our biggest asset.

http://localhost/HFAMI/lpext.dll?f=FifLink&t=document-frame.htm&l=jump&iid=607cc687.1bc10c5d.0.0&nid=4e39#JD_M10bio-washow

Many of our organizations have spent enormous amounts of money and other resources for what
amounts toNot much. We spent these resources, with carefully justified ROI, using the latest,
carefully selected equipment in the hope of reducing the cost of doing business, improving efficiency
and other corporate goals. The economics of industry dictate ever increasing spans of control and the
need for real-time communication. The people being automated, however, take a different view of your
efforts. One of the issues all organizations struggle with is honestly facing this issue with our employees.
We ask them to assist in the design and development of what they see as a way to eliminate there jobs.
We feel the best approach, and the direction we have chosen to go is to describe the automation in terms
of giving management "options." The "options" we now have that we didn't previously include:

1. The ability to grow an operation without a proportionate increase in head
count.

2. The ability not to replace an individual in a given position following his transfer or
retirement

This is the way we have looked at it. The big reason we automate is to save money. That is the bottom
line. We need to be more accountable for the money we spend in maintenance. Maintenance is a cost of
doing business.

When making the determination to automate, three issues come to
mind:

1. What processes require repetitive entry of the same data? I am talking at the user level -- the
person who does the entries.

2. Who else in my organization has a similar need for that information? Nothing bothers me more
than to see a guy sit at a terminal, pull information up, write it down, turn around and enter it into
another computer. What we are trying to do is get away from that as much as we possibly can.

3. Who is the customer? In many cases, the sponsoring organization may not be the ultimate user
of the end product developed. Failure to include the final user leads to failed automation, as
explained below.

I do not intend to give you an in-depth look at each of the five applications we have developed at
American, nor do I have working models or demos of them. I do plan to identify how each of the
applications impacted our thought processes about automation and what we learned from each
application as we went along. What I hope to provide you is one individual view of the human impact of
introducing PC-based applications to a non-automated environment.

APPLICATION 1: CD-ROM Based Maintenance and Parts Manuals

Engineering thought they were the customer. American Airlines at one point contracted with Maxwell
Data, now Jouve Data Management to convert all of our maintenance manuals into a digital format, by
converting all the aircraft manufacturer's maintenance data. One of the first things we ran into was that
the data we were getting from Aircraft Manufacturers was inconsistent. What we found was that if the
manual says "Boeing 767-200", the "0" which is the number "0" may be the character "O". To the casual
reader, this difference is invisible. If one is trying to convert this data to digital information however,
one has a problem.

The end user application created by Maxwell is a Microsoft Windows-based product. We made the
assumption that the end-user, the Technician, had the skills to use it. Being a Windows-based product;
we assume the technician knew what a mouse is, and knows not to step on it. We are assuming he/she
knows how to type. People resist change. Technicians quickly became very possessive of their
microfiche. We started to talk about words like AMTOSS...what is it? The original "Pinpoint" interface
was not intuitive. It represented the thought processes of an Engineer, not a Line Technician. The
lessons we learned about our CD-ROM maintenance manuals were:

1. Involve the user group in the design of the
interface.

2. Find user
advocates.

Go into a facility and sit down with a group of technicians. Out of a group of twenty technicians, I
would probably get two or three that really were "turned on" by the computer application. They really
liked it; and recognized its potential. They became my advocates. They were the on-site peer-level guys
other technicians could go to and ask questions. These individuals are the salespersons who are going to
sell your automation for you. These individuals should receive special training, and attention! This will
assure they can answer their peers' questions.

3. Do not get in their way. The end-users will find ways to use the applications you never
 dreamed.

4. The last lesson we learned about CD-ROMs
was:

"Automation developed and not used is an absolute waste of time and money."

APPLICATION 2: Entering PIREPs into a Computer Tracking System

All air carriers are required to have logbooks in their aircraft. Most have some sort of large mainframe-
computer based system to record and track Pilot and Maintenance write-ups. We find in most cases the
data structure needed to enter these items are cryptic, involving difficult codes and sequences. Most
entries also require multiple transactions to obtain any useable data. You end up with some very
interesting write-ups too. I have a few examples here to share with you. The name of the airline will not
be mentioned, to protect the guilty:

The first discrepancy:

PIREP: Test flight after maintenance OK, auto land very rough.
SIGNOFF: Auto land not installed on this aircraft.

Another example:

PIREP: The auto pilot does not..... (Apparently, the pilot was distracted and failed to finish his
entry.)
SIGNOFF: It does now.

Yet another:

PIREP: Number two propeller seeping fluid.
SIGN-OFF: Propeller seepage within normal limits, aircraft OK to go
NEXT PIREP: Propellers one, three, and four lack normal seepage.

This one had to be military, as this never happens in the airlines:

PIREP: The pilot crew bunk mattress is lumpy and not comfortable enough for sleeping
SIGN-OFF: Mattress ground checked OK by night shift

The resolution to this cryptic data entry problem was the creation of little application that we call
PCFMR. We have recently converted this application to a Microsoft Window's(r) platform and call it
WINFMR. "FMR" is the acronym for "Field Maintenance Reliability" program for American Airlines.
We found as we went into a large station with users experienced on the old system that they looked at
our new platform and said, "This is slow." I was crushed. We spent all this time and money developing
this neat thing and they did not like it. We later found that as we deployed it to the smaller down line
stations where no clerk existed to input the PIREPS, where we had the crew chief or line technician
doing the cryptic entry, the acceptance level went way up. Life was good again.

Training is another issue one really needs to consider. We found ourselves using the user-advocate
concept developed with the CD-ROM maintenance manuals for all our automation. Another issue is --
this is really common issue, as I discovered from talking with my counterparts in various airlines -- Can
the MIS group support your new applications? Development groups are often separated from the local
field-level MIS group. We found that as we migrated from a host-based "dumb-terminal" system, to a
client-server, PC-based system, we changed the field support guy's job and never told him. To our
group's credit, they have really come around, but it has not been without pain. On the plus side, it forced
us to come up with a standard interface to ease the support issues. Our standard interface now for our
client-server-based applications is Windows 3.1 and the WINFMR product.

Application 3: WORKLOAD PLANNER

Over night workload planning at a line station is common throughout the industry. Most cities end up
with anywhere from 15 to 50 airplanes nightly (depending on the station) for hubs in the common hub-
and-spoke system. A common scenario is that planning has identified 30 airplanes for overnight
maintenance by noon. Then by four o'clock in the afternoon, 20 of those are gone and you have got 30
different aircraft. Now you are up to 40 planes. It is very hard to do overnight-line planning that truly
keeps up with the real world. It takes a lot of people. There is a lot of information coming from different
places. In our case, we get our information coming from Dallas systems operational control group.
(SOC) We get maintenance bill-of-work information from our maintenance control group in Tulsa.
(MOC) Everyone has the information on the computer, but it's not really in a user friendly format. There
are lots of ways to get bit. If an airplane comes in at night and the Planning group does not have the parts
or people to work on it, the airplane does not go out in the morning. Nobody wants to hear about it. That
was the problem with work load planning at American Airlines. Our solution was an application called
"Workload Planner." This is one of the lessons we learned. We actually sat the developer down and
taught him manually to plan a night workload. We had his undivided attention for about three days. He
was very happy to go back to his office after that three-day period, but at the end of it he knew exactly
what he had to do. The application developed accurately reflects the job tasks and processes. Initial
Application Development should be limited to a single site to maximize speed. However, input should
always be requested from all different end-user groups to assure universal buy-in. Chicago has served as
the beta test site for all the automation for aircraft maintenance for American Airlines.

After we developed this application, and while still in Beta form, we deployed Workload Planner to
Dallas-Fort Worth (DFW). Dallas is a little bigger than Chicago, and a little busier. We loaded the
application on the server. The station planner asked, "How does it work?" I asked him to begin planning
their over night workload the old way and I would start the new way. Three minutes later, I handed him
his completed workload, printed. He had not yet completed pulling the reports required to be able to
begin planning manually. I sat down with him for ten minutes, to show him how the application worked.
As it was a user-designed the interface, he immediately saw the benefit. He said, "Get out of here -- I
know what to do." I had a convert.

Application 4: M and E Administrator

We know the problems with employees -- they must have a work schedule; they must have vacation
time; they must be paid correctly. You do not ever want to mess with the technicians' pay. It is just
wrong. Operations Management people have their own needs. Their big concerns are:

l How many guys will be in tonight to
work?

l I need eight technicians for four hours of overtime from midnight to four in the morning. How do I
get them?

l Who is on
vacation?

l Who is their vacation
relief?

We need to be able to answer all those questions. We found that of all the applications that we did, this
was the most money saving application we developed. The whole concept behind the administration
program is to empower the employee. If the employee's address changes or phone number changes, the
employee enters the changes into the computer. Once this entry is made, all information related to the
phone number receives an update. He is now accountable for that information. In this system, the
employee also wins.

Let's look at technicians' shift changes. If two technicians want to swap shifts, if it is a man-for-man
swap, with no loss of time, most Supervisors would approve it without question. Why do I care who it
is? If the technician can input the change into the computer automatically and if it is within certain
station guidelines, such as entering it more than 24 hours in advance, the computer simply just accepts it.
The beauty of this procedure is that only the guy working the change-shift (CS) has to sign up. For the
employee asking to be off his shift, the working technician puts whom he is relieving into the system.
Crew lists and overtime information are automatically updated to reflect this change. From a
management perspective, this is what happens: the technician who has agreed to work the shift change
shows up to work. The worst thing that can happen is that the supervisor notes that two employees show
up for one slot. The employee who signed up for the change and is working and the guy who wanted to
be off that day, but may have forgotten, or never asked for or approved the change. So what do we do?
We send the CS work guy home. The employee normally scheduled to work stays. What is the problem?
Miscommunication occurred at the employee level, not the management level. Management got the
coverage needed. The problem is between the two guys who agreed to the shift change. Management
stays out of the discussion of who screwed up, saving lots of hassle.

Application 5: Work card Management System (WCMS)

We all have manuals and they are a pain to work with or modify. Changes are difficult to track and
distribute reliably. The current revision process may not lend itself to automation. Most maintenance
organizations have work or task cards. American is in the process of going from a document printing
organization to a document publishing environment. Here is the difference. Let's start with is a ten-page
work or task card, which is not uncommon in most environments. Each page of the card is stamped with
the last revised date for that page. It is easier to copy and replace a single page of a multiple page card
that reproduce the card in its entirety. The engineer wants to make a change to page 6 of ten. In most
processes, he pulls page 6, makes his change, inserts a newly dated page 6, and slides it back in the
stack. At this point, I have nine pages of my ten-page card with one date and one page (page 6) with
another date. It's not hard to imagine all ten pages with different dates. Now lets go into a publishing
environment. In a publishing environment, we track a document by a version number into a "library."
Let's take the same ten-page document, and check it into the library. As in the previous example, lets say

then that I check it out of the library to make a revision to page 6. What am I changing? Am I changing
the version of the document? Am I changing version of page 6 of the document? In the old system, each
page of the work card became a discrete document with a version date. In a publishing environment, the
dates of each of the ten pages of the revised card are updated to reflect the date of the latest change,
regardless of the page revised. This change was a major effort for our engineering group to comprehend.
It is OK to change the date on every page of the document, even though no information on that specific
page changed. After grappling with the concept for a while, and realizing that safety and accuracy would
not in any way be compromised, we were able to make the change.

Once again, the question was "who is to customer?" Engineering thought they were the customers for
the work cards. They write them, approve them, and store and track them. The real customer is the
technician on the floor. The technician is the one working with the card, is the one who really needs to
use the data in the maintenance of the aircraft. Due to financial constraints, we were asked to limit some
of the functionality of the application as designed. The functions were:

l The technician can download a card into a local workstation, make changes to the text of the card,
and submit the changes directly to engineering for update, right on line. The revision is tracked from
point of origin and the status of the suggested change can be checked at any time.

l The system must provide data relating to work hours needed and parts required for each card
associated with a maintenance check. This function provides a major return on investment related to
inventory control and personnel tracking.

l The
work card
revision part
stayed. The
return-on-
investment
part was
placed on a
back burner.
Again, who
is the
customer?
The
technician on
floor needs
the ability to
communicate
easily with
engineering
on card
changes.

This is a
significant
Human
Factors
issue.

LESSONS LEARNED: A Summary

Big Ship. Little Rudder.

Organizations resist change. Just like a big boat, when the rudder turns, nothing happens for awhile.
Accept the fact that it is going to take time to turn that big boat around. Things that are obvious to you
may take time to be embraced by others.

Re-engineering

Re-engineering is actually questioning how you are doing business and what value you create for the
customers. The question remains -- who is the customer? That is the important thing. Re-engineering
often calls for drastic changes.

Return on the investment may not be the
priority.

This is a tough one. We need to educate people on this. Return may be difficult to quantify at the
beginning. Your business and operations instincts tell you that the automation makes sense, but it's not
easily quantifiable. The most dramatic returns-on-investment of automation projects are invisible to
those not involved directly, but make the financial go-no go decisions.

Baby Steps

Do not make big changes fast, as we are talking safety aircraft here. We are not going to do anything
stupid while we re-engineer or invent a process. Most organizations have realized their success on doing
some things the same way for 50 years or more. Most aviation professionals are the same, and live by
the creed "If it ain't broke don't fix it." What we are really telling them is that it's not broken but there is
a better way to do it.

Know when to say when

Senior management in most organizations is very skeptical of development groups. The people who sign
the checks want to know that the development process is going to end at some point, and want to be able
to quantify and realize their return on their investment in your programs. Programmers are paid and live
to do one thing: develop. Know when to stop. Develop an application, get as much input as you can lock
it down, roll it out and STOP. Large organizations spread across the country will have large variations in
their ability to absorb automation. Don't be afraid to reap benefits of the automation you have developed.
If you do not take time to reap the benefits, you are going to lose the support of senior management.

Automation not used is a waste of time and money.

Involve the development group in your business. Involve the users in your design. Give the users free
access to the development group, and make the developers accountable to them. Do not try to change too
fast. Remember the big ship with the little rudder. Give products time to deploy and mature and give the
end user community time to get used to the changes. Use your development group to support and
maintain their applications during this deployment time. You have invested a significant amount of
money and time in exposing them to the intricacies of your business, and you don't want to lose them or
have to train new programmers. As users fully gain confidence in and embrace your technology, they
will detail changes to your application that increase its effectiveness beyond your imagination! Just one
more short story before I close:

The British Airways 747 was executing an ILS into London Heathrow. All the way down, he was out to
the left of the localizer, but landed safely. The tower controller cleared him off the active runway, and
then said: "...and for your information, you were slightly to the left of the centerline on that approach."
The Captain came straight back: "That's correct and my First Officer was slightly to the right".

May you share the same level of confidence in your efforts.

	Meeting 10
	A Human Factors Approach
	AppendixA
	Automation Lessons Learned
	Closing Remarks
	Communication-1
	Communication
	Crew Cordination
	Electronic Ergonomic
	Environmental Requirements
	Field Evaluation
	Introduction
	Keeping Quality-1
	Keeping Quality
	Keynote Address
	Maintenance Human FactorsatNW
	Maintenance Resource Management
	Meeting 10
	Panel Pres-Goglia
	Panel Pres-Kania
	Panel Pres-Mortensen
	Panel PresTRM Training-Johnson
	Panel PresTRM Training-Komarniski
	Panel PresTRM Training-Russell
	Speakers
	Team Situation Awareness
	Team Training
	Useofthe Maintenance Error

	IGEPIOEMHPBKGDNKEEABIIGAGMLAKAAJ:
	form1:
	x:
	f1: 0

