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\Introduction'

* Microstrip patch antennas have numerous
GNSS applications:

» Small size, low profile, easily fabricated, low cost

» Ground plane structures can affect patch antenna
performance (e.g., choke rings, size/shape,
composition, components, etc.)

» limited interference suppression

* Phased arrays, i.e., Controlled Reception

Pattern Antenna (CRPA) can control pattern
» Typically much larger than a single-element

 Theory of Antenna Reciprocity applies
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\Design Configurationl

* A single-aperture (i.e., single-element) GNSS
patch antenna with pattern control:

» GNSS L5 frequency selected

» Circular symmetry configuration selected:
« Circular patch element, substrate, ground plane (120mm &
2 ft), and 4-feed probe structure illustrated here

» Amplitude and Phase Control Subsystem
« Analytical cavity model design used, then
refined with CEM CST

» Time & frequency domain solvers with waveport
* Substrate selection: Higher relative
permittivity; to support wide bandwidth signal
and ARINC 743A mounting requirements.
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Single-aperture
Antenna
(with 4 feeds)

\Design Configurationl
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\GNSS L5 Single-aperture Patch Antennal

Substrate Material: Rogers element

TMM 10i - substrate
Substrate relative 9.8 L~
permittivity [unitless]
Substrate height, [mm] 5.08
Substrate diameter, [mm] | 50.25
Feed position from 10.75

center, [mm]

Diameter of circular 50.25
patch element, [mm]

Diameter of circular 120
ground plane, [mm]
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Four-feed Circular Patch Phase
[0 90 180 270] — Baseline Results

Farfield 'farfield [f=1.17645] [baseline]' Directivity_Abs Theta

_______________________________________________________________________________________________

0 30 60 90 120 150 180 210 240 270 300 330 36000
Phi

Frequency =1.17645
Rad. effic. =-0.590903 dB Double-Click here to show
Tot. effic. = -5.03124 dB

0

Step Feed 1 phase (deg) | Feed 2 phase (deg) | Feed 3 phase (deg) | Feed 4 phase (deg)

0 0 90 180 270
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\Phase Control Summary for Pattern Controll

* Four-feed lllustration (for 360 deg rotation):
Port Number

Quadrant

where (for azimuth pattern control):
Aypo = 90 deg
Ayspp= 20 deg in CEM simulations, 80 deg in chamber
Yo = A¥opp< A¥apj < %o + Ayopp , to scan pattern in azimuth.

- Steps 0 (baseline), and 5, 14, 23, 32 illustrated here.
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\Pattern Control: [0 90 20 90]-First Quadrantl

Port Number

Quadrant 1 2 3 4

1 0 Ay poL _

2 AypoL | AYoprp | AY ap 0

3 Ayopr | AY ap3 0 Ay poL

4 Ay apj 0 Ay poL Ay opp

Step Feed 1 phase (deg) | Feed 2 phase (deg) | Feed 3 phase (deg) | Feed 4 phase (deg)
5 0 90 20 90
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\Pattern Control: [90 20 90 0]-Second Quadrant|

Port Number
Quadrant 1 2 3 4
1 0 AypoL | AYorp | AV aps
2 AY poL 0
3 Ayorr | AV apg 0 Ay poL
4 AY apy 0 AypoL | AYVopp
Step Feed 1 phase (deg) | Feed 2 phase (deg) | Feed 3 phase (deg) | Feed 4 phase (deg)
14 90 20 90 0
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\Pattern Control: [20 90 0 90]-Third Quadrantl

Port Number
Quadrant 1 2 3 4
1 0 AypoL | AYorp | AV ap
2 AypoL | AYoprp | AY ap 0
s | Avoer [NNBIM o | Areo
4 AY b 0 AypoL | AYVopp :
CDm!::::lio La;:eld [f=1.17643) [step 4]
Dir. 4.345 dBi h x
Step Feed 1 phase (deg) | Feed 2 phase (deg) | Feed 3 phase (deg) | Feed 4 phase (deg)
23 20 90 0 90
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\Pattern Control: [90 0 90 20]-Fourth Quadrantl

Port Number
Quadrant 1 2 3 4
1 0 AypoL | AYorp | AV ap
2 AypoL | AYoprp | AY ap 0
3 Ay ppy 0
4 0 Ay poL :
CDmZ::::lio r;:eld [f=1.17643) [step 4]
Dir. 4.549 dpi ﬁ x
Step Feed 1 phase (deg) | Feed 2 phase (deg) | Feed 3 phase (deg) | Feed 4 phase (deg)
32 90 0 90 20
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\Fabricated GNSS L5 Circular Patch, 4 probe feedsI

R 4

element - .~

ground plane
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\Fabricated GNSS L5 Circular Patch, 4 probe feedsI

6
; ; ; « Excellent match
\f I N - on each port
| ‘ i Exce"ent
I N P 1 agreement
(% \ between ports
i "¢ et Y S —Port -  Bandwidth of each
‘ —Port 2 port:
2 -~ Port3 ~100MHz
1 Port 4 (2:1 SWR metric)

1 1.1 1.2 1.3 1.4
frequency, [GHZ]
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Phase Control
& Combiner
(on backside)

A A & =

| ™

Aluminum GP /

(2 ft diameter)

Single-apertur

Patch antenna « Calibration

(on 120 mm - Elevation cuts (every 1deg)

Copper GP)  Varying Azimuth angles (every 5 deg)
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\Calibration Considerations|

* Phase shifter bench checked directly to VNA.
* L-band RHCP Helix transmission antenna

used
» AUT rotated to 4 port positions (with phase shifter

bypassed)
 Phase measurement not exactly 90 deg apart at
each port location; as much as 13 deg off.

* Port path calibration (with phase shifter in
place) at boresight
» Measured phase at each port, in 10deg steps

» Developed phase calibration table, at boresight,
and used for final commanded phase settings.
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\Step 0: Baseline with phases [0 90 180 270]'

CEM CST Simulation Results Anechoic Chamber Measured Results
‘
‘m g

- Measured results consistent with CEM results
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\Step 0: Baseline with phases [0 90 180 270]'

Baseline Phase Control: [0 90 180 270]

Filled later for

comparison to
Baseline on Left

Elevation Plane [deg]

180
Directivity (norm), [dBi]

== P1 & P3 plane, LS: ¢ =0 deg, RS: ¢ =180deg
=== P2 & P4 plane, LS: ¢ =90deg, RS: ¢ =270deg

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIVERSITY




\Pattern Control: [0 90 80 90]-First Quadrantl

CEM CST Simulation Results Anechoic Chamber Measured Results

Y4

«“High” directivity toward phi=270deg
*“Low” directivity towards phi=90deg
Measured results consistent with CEM results
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Pattern Control: [0 90 80 90]-First Quadrant

Far Field Patterns : Co - pol, Amp
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\Pattern Control-AZ-First Quadrantl

Baseline Phase Control: [0 90 180 270] Phase Control: [0 90 80 90]

Elevation Plane [deg]
Elevation Plane [deg]

180 180
Directivity (norm), [dBi] Directivity (norm), [dBi]

== P1 & P3 plane, LS: ¢ =0 deg, RS: ¢ =180deg
=== P2 & P4 plane, LS: ¢ =90deg, RS: ¢ =270deg
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Pattern Control-AZ-First Quadrant

Baseline Phase Control: [0 90 180 270]

Elevation Plane [deg]

180
Directivity (norm), [dBi]

= === P1 & P3 plane, LS: ¢ = 0 deg, RS: ¢ =180deg
== === P2 & P4 plane, LS: ¢ =90deg, RS: ¢ =270deg

Phase Control: [00 90 80 90]

Elevation Plane [deg]

180
Directivity (norm), [dBi]

= === P1 & P3 plane, LS: ¢ = 345deg, RS: ¢ =165deg
== === P2 & P4 plane, LS: ¢ =75deg, RS: ¢ =255deg

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIVERSITY




Pattern Control-AZ-
Second Quadrant

=5

«“High” directivity toward phi=0deg
*“Low” directivity towards phi=180deg
*Measured results consistent with CEM
Y  results
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\Pattern Control-AZ-Second Quadrantl

Baseline Phase Control: [0 90 180 270] Phase Control: [90 80 90 0]

Elevation Plane [deg]
Elevation Plane [deg]

180
Directivity (norm), [dBi] Directivity (norm), [dBi]

=== P1 & P3 plane, LS: ¢ = 0 deg, RS: ¢ =180deg
=== P2 & P4 plane, LS: ¢ =90deg, RS: ¢ =270deg
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\Pattern Control-AZ-Second Quadrantl

Baseline Phase Control: [0 90 180 270] Phase Control: [90 80 90 0]

Elevation Plane [deg]
Elevation Plane [deg]

180 180
Directivity (norm), [dBi] Directivity (norm), [dBi]

=== P1 & P3 plane, LS: ¢ = 350 deg, RS: ¢ =170deg
=== P2 & P4 plane, LS: ¢ =80deg, RS: ¢ =260deg
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Pattern Control-
AZ-Third Quadrant

y: straight in from origin

*“High” directivity toward phi=90deg

«“Low” directivity towards phi=270deg

*Measured results consistent with CEM
results
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Pattern Control-AZ-Third Quadrant

Baseline Phase Control: [0 90 180 270] Phase Control: [80 90 0 90]

Elevation Plane [deg]
Elevation Plane [deg]

-150
180 180

Directivity (norm), [dBi] Directivity (norm), [dBi]

== P1 & P3 plane, LS: ¢ = 0 deg, RS: ¢ =180deg
=== P2 & P4 plane, LS: ¢ =90deg, RS: ¢ =270deg

-150
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Pattern Control-AZ-Third Quadrant

Baseline Phase Control: [0 90 180 270] Phase Control: [80 90 0 90]

Elevation Plane [deg]
Elevation Plane [deg]

-150

180 180
Directivity (norm), [dBi] Directivity (norm), [dBi]

=== P1 & P3 plane, LS: ¢ = 345 deg, RS: ¢ =165deg
=== P2 & P4 plane, LS: ¢ =75deg, RS: ¢ =255deg
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\Pattern Control-AZ-Fourth Quadrantl

CEM CST Simulation Results Anechoic Chamber Measured Results

Y4

«“High” directivity toward phi=180deg
-“Low” directivity towards phi=0deg
Measured results consistent with CEM results
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\Pattern Control-AZ-Fourth Quadrantl

Baseline Phase Control: [0 90 180 270] Phase Control: [90 0 90 80]

Elevation Plane [deg]
Elevation Plane [deg]

180 180
Directivity (norm), [dBi] Directivity (norm), [dBi]

=== P1 & P3 plane, LS: ¢ = 0 deg, RS: ¢ =180deg
=== P2 & P4 plane, LS: ¢ =90deg, RS: ¢ =270deg
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\Pattern Control-AZ-Fourth Quadrantl

Baseline Phase Control: [0 90 180 270]

Elevation Plane [deg]

180
Directivity (norm), [dBi]

= === P1 & P3 plane, LS: ¢ = 0 deg, RS: ¢ =180deg
== === P2 & P4 plane, LS: ¢ =90deg, RS: ¢ =270deg

Phase Control: [90 0 90 80]

Elevation Plane [deg]

180
Directivity (norm), [dBi]

= === P1 & P3 plane, LS: ¢ = 345deg, RS: ¢ =165deg
== === P2 & P4 plane, LS: ¢ =75deg, RS: ¢ =255deg
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\Conclusions'

Single-aperture GNSS L5 patch antenna design, with
dynamic pattern control was demonstrated.
Circular geometry selected: element, substrate, ground

plane, 4 port feed structure shown here.

» Excellent port performance in terms of SWR,
repeatability, BW~100MHz

Configuration supports a four-feed, RF front-end,
amplitude & phase control (phase done here), and
combine.

Control area of “high” directivity and commensurate
area of “low” directivity in:

» Azimuth (full 360 deg), varying the A4y,,, parameter, and
quadrant phase approach.
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\Conclusions (cont.)l

 Measured results from fabricated antenna are
consistent with CEM CST simulations
« Gain (i.e., directivity suppression) at, above, and below
the horizon at commanded angles has been shown:
» Using RHCP Helix Transmission antenna, and boresight

calibration:
« At the horizon, varied from ~4-13 dB on principle axis

direction
* Null depth on the order of 20-28 dB off principle axis.

 Dynamic pattern control advantageous for:

» Baseline/Benign operations
» Interference operations, where interference sources are

above, at, or below the local horizon.
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Single-aperture Patch Antenna
with Pattern Control

Thank You !!!
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