
1
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Testing in a
Non-Deterministic World
Donald Firesmith

Robert V. Binder

2
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003917

3
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Topics

Testing
Determinism Assumptions
Trends
Non-Deterministic World
Testing Ramifications
Recommendations

4
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

© 2016 Carnegie Mellon University
[Insert Distribution Statement Here]

Testing in a Non-Deterministic World

Testing

5
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Testing – 1

Testing compares a system’s actual behavior with its expected
behavior so that discrepancies (bugs) can be analyzed to uncover
associated defects and thereby determine quality.
Testing involves:

• Establishing known test preconditions
• Providing known test inputs
• Comparing actual with expected test outputs
• Comparing actual with expected test postconditions

Discrepancies can be:
• Visible failures (incorrect visible behavior)
• Hidden faults (incorrect encapsulated mode, state, or data)

6
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Testing – 2

Testing requires:
• Controllability to establish preconditions and create inputs
• Observability to verify correctness
• Oracle to provide expected behavior (e.g., requirements, design)

Controllability Observability

Test Oracle

Test
Preconditions Test

Inputs

System
Under
Test

(SUT) Test
Outputs

Test
Postconditions

?

? Expected
Postconditions

Expected
Outputs

7
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

© 2016 Carnegie Mellon University
[Insert Distribution Statement Here]

Testing in a Non-Deterministic World

Determinism Assumptions

8
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Determinism Assumptions

Many developers assume:
• Preconditions and inputs can be controlled.
• System behavior (outputs and postconditions) are deterministic.
• Oracle provides single outcome (outputs and postconditions)

given same preconditions and inputs.
• Tests are therefore repeatable

(i.e., The same test will always yield the same result.)
These assumptions are not always true, resulting in bugs that are:

• Rare
• Intermittent
• Difficult to reproduce, localize, and diagnose

Recent technology trends increase the likelihood that these
assumptions are false.

9
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

© 2016 Carnegie Mellon University
[Insert Distribution Statement Here]

Testing in a Non-Deterministic World

Trends

10
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Trends

Agile development relies on continuous integration achieved via
repeatable regression testing. This is only feasible with automated
testing, which assumes deterministic behavior.
Use of multicore processors and virtual machines increases
concurrent processing and associated concurrency defects.
Increasing use of systems of systems increases concurrent system
behaviors and concurrent system-system communications.
Increasing reliance on cyber-physical systems (including
autonomous vehicles) increases non-deterministic environmental
inputs (e.g., from sensors) and preconditions.

Non-Deterministic World

11
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

© 2016 Carnegie Mellon University
[Insert Distribution Statement Here]

Testing in a Non-Deterministic World

Non-Deterministic World

12
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Types of Non-determinism

Reality:
• Actual vs. apparent

Source:
• Natural (inherent in the nature of reality)
• Emergent behavior
• Concurrent (due to concurrency)
• Exceptional (fault and failure behavior)

Location:
• Nondeterministic preconditions
• Nondeterministic inputs
• Nondeterministic system responses

Cause:
• Lack of controllability
• Lack of visibility (hidden variables)

Non-Deterministic World

13
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Sources of Non-Determinism
Non-Deterministic World

SensorsActuators

SensorsControlled
Processes

SensorsEnvironmental
Factors

SensorsSensors

Internal Networks

SensorsMulticore Computing
Hardware

SensorsMiddleware + Virtual
Machines + OS

SUT Other
SW

(N,C,E)

(C,E)(C,E)

(N,C,E)

(C,E)

(C,E)

(C,E)

(C,E) (C,E)

SensorsDatabase
Servers

SensorsStorage
Devices

SensorsExternal
Systems

SensorsExternal
Networks

(C,E) (C,E)

SensorsInternal
Networks

(C,E)

HMI Output
Devices

HMI Input
Devices

(C,E)(C,E)

(C,E) (C,E)

Users, Operators

N = Naturally Nondeterministic
C = Concurrency
E = Exceptional Behavior

Source of Indeterminism

Legend

Attackers

(N,C,E)

(N,C,E)

14
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Examples of Nondeterministic Systems

Cyber-physical systems:
• Process control (chemicals, petrochemicals, medicines)
• Vehicle control (manned and autonomous)
• Internet of Things (IoT)
• Power generation and distribution
• Systems of Systems (SoS), federated systems

Mobile computing
Cloud computing
Computing involving:

• Multicore processors
• Multiple processors (or computers or devices)
• Virtual Machines
• Multithreading and concurrent programming languages

Non-Deterministic World

15
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Non-Deterministic Environments

Environments may not be Deterministic:
• Development Environments
• Developmental Test Environments
• Operational Test Environments
• Physical Operational Environment

Non-Deterministic World

16
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Non-Deterministic Defects – 1

Developers and testers fail to adequately take the following into
account when designing software and associated test suites:
Concurrency Defects:

• Classic Defects:
Deadlock, livelock, starvation, suspension, priority inversion,
(data) race conditions, order violations, atomicity violations, lock
and semaphore defects

• Multicore Defects:
Interference between cores due to sharing common resources
(e.g., L2/L3 caches, RAM and disc memory, I/O, system bus),
improper allocation of SW to HW, unacceptable jitter in
processing times

• Virtual Machine Defects:
VM escapes and interference between VMs, improper allocation
of SW to Virtual Machines, hypervisor defects

Non-Deterministic World

Presenter
Presentation Notes
Deadlock is a failure condition that exists when one thread or process cannot proceed because it needs to obtain a resource that is held by a second thread, while the first thread holds a resource that the second thread needs. All involved threads are in a waiting state as they wait for other threads to release the resource they need.
Livelock is a failure condition that exists when one thread or process is waiting on a resource that will never become available, while a CPU is busily releasing and acquiring the shared resource. The state of the waiting thread is constantly changing, with the thread frequently executing but never reaching completion.
Starvation is a failure condition that exists when a thread or process is ready to execute but is indefinitely delayed because other processes are continually given preference.
Suspension is a failure condition that exists when a thread or process is forced to wait too long before it can access a shared resource. The thread eventually obtains the resource but too late.
Data Race is a failure event that occurs when at a thread or process writes to an unprotected memory location while others are simultaneously accessing it.
Order Violation is a failure event that occurs when two or more threads or processes execute in an incorrect order.
Atomicity Violation is a failure event that occurs when a code block that must run to completion without disruption is interrupted by the execution of another code block.

17
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Non-Deterministic Defects – 2

Performance Bugs:
• Missed deadlines (latency and response time)
• Unacceptable jitter
• Incorrect order

Reliability Defects:
• Buffer overflow, automatic garbage collection

Robustness Defects:
• Missing, inadequate, or incorrect error, fault, failure, and

environmental tolerance
Security Defects:

• Vulnerabilities
• Defects in security controls (e.g., incorrect configurations)

Non-Deterministic World

18
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Non-Deterministic Defects – 3

Rare alignments of cyclic behaviors that result in intermittent and
non-reproducible failures
Positive feedback under stress propagated through a system’s
environment triggering showstoppers or dangerous loss of control
Bizarre responses that are internally consistent but externally
dangerous

Non-Deterministic World

19
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Related Issues – 1

Testing autonomous systems:
• Verify reasoning process
• Verify models match reality

Testing AI systems:
• Verify learning and adaptation

Fuzzy success criteria (boundary of correct behavior space):
• Pass, fail, partially pass/fail, unclear
• Stochastic pass/fail

Lack of oracle:
• Lack of verifiable requirements
• Excessively complex oracle

Non-Deterministic World

20
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Related Issues – 2

False positive and false negative test results
Hard vs. software real-time
Black swan events:

• Definition:
- Rare (outlier),
- Impact (big & negative)
- Explainable (after the fact)

• Types:
- Failures and faults
- Accidents and near-misses

Non-Deterministic World

21
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

© 2016 Carnegie Mellon University
[Insert Distribution Statement Here]

Testing in a Non-Deterministic World

Testing Ramifications

22
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Testing Ramifications

Many developers and testers are not adequately familiar with non-
deterministic defects.

• Many developers and testers do not know how to test for non-
deterministic defects and unwanted emergent behavior.

Limits test automation (comparison of actual behavior to oracle):
• More complex oracle (success criteria is a set, not an instance)

- Oracle as complex as system
- Previous system version is less precise/accurate than new system

• Manual determination of success
• Operational testing
• Unlikely at unit test level (more system or system system)

Need to use simulation/modeling rather than operational
environment (test preconditions and environmental inputs) to
obtain controllability and visibility.

23
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

© 2016 Carnegie Mellon University
[Insert Distribution Statement Here]

Testing in a Non-Deterministic World

Recommendations

24
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Recommendations – 1

Explicitly address non-determinism in test planning.
Provide training and mentoring in non-deterministic defects and
how to test for them.
Augment testing with concurrency analysis of architecture and
design.

• Allocation of SW to threads, VMs, and cores
• Potential interference paths between threads, VMs, and cores
• Use of thread-safe class libraries

Emphasize automation of unit and integration testing, which are
more likely to be deterministic.

• Static analysis
• Code coverage and boundary values (including range checking)

Instrument non-deterministic elements.
• Scrutinize logs for rare timing and other anomalies.

25
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Recommendations – 2

Ensure existence of verifiable quality requirements.
Perform specialty engineering testing of quality requirements:

• Capacity testing including time-varying load testing, stress
testing, and volume testing

• Performance testing for latency, jitter, response time, and
throughput

• Reliability testing including soak testing
• Robustness testing of rare exceptional situations
• Safety testing based on hazard analysis (STAMP, misuse cases,

or FMECA)
• Security testing based on threat analysis (abuse cases, attack

trees, attack surfaces)

26
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Recommendations – 3

Use modeling and simulation:
• Use M&S to control non-deterministic hardware and

environmental inputs.
• Use very large numbers of simulation runs to find rare events.

Google simulates 3 million miles of autonomous driving per day.
• Use combinatorial testing to achieve reasonable coverage.
• Verify models and simulations, which can also contain defects.

Create test suites that interleave high levels of realistic, high-risk,
behavioral and rate variations.
Evaluate test results using general postcondition goals as oracles
rather than irrelevant intermediate-behavior differences.

• Use statistical analysis when desired behavior is stochastic.
Emphasize end-to-end mission thread operational testing.

27
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Recommendations – 4

Use “standard best practices”:
• Continuous integration and testing
• Model-based testing (MBT)
• Use a Test Asset Management System, and treat test assets as

first class work products.
Unit Testing:

• Test all externally controlled and non-deterministic exceptions,
failures, and aberrant behaviors with extreme points

• Add scalable run-time invariant checking, enable and check
Component Testing:

• Test every cause and every effect at least once, separately
• Test every “illegal” sequence for an appropriate response

System Testing:
• Test crash, recovery, and restart under realistic conditions

28
Testing in a Non-Deterministic World
September 15, 2016
© 2016 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Contact Information

Presenter
Donald Firesmith
Principal Engineer
Telephone: +1 412.268.6874
Email: dgf@sei.cmu.edu

mailto:dgf@sei.cmu.edu

	Testing in a�Non-Deterministic World
	Slide Number 2
	Topics
	Testing in a Non-Deterministic World
	Testing – 1
	Testing – 2
	Testing in a Non-Deterministic World
	Determinism Assumptions
	Testing in a Non-Deterministic World
	Trends
	Testing in a Non-Deterministic World
	Types of Non-determinism
	Sources of Non-Determinism
	Examples of Nondeterministic Systems
	Non-Deterministic Environments
	Non-Deterministic Defects – 1
	Non-Deterministic Defects – 2
	Non-Deterministic Defects – 3
	Related Issues – 1
	Related Issues – 2
	Testing in a Non-Deterministic World
	Testing Ramifications
	Testing in a Non-Deterministic World
	Recommendations – 1
	Recommendations – 2
	Recommendations – 3
	Recommendations – 4
	Contact Information

