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ABSTRACT 

Air Traffic Management organizations are part of a complex socio-technical system. In a 
tightly coupled, intractable system like ATM, it is not possible to identify many incident 
and accident causes or system risks by using the safety management methodologies in 
place today. This paper explores how using resilience engineering and deep learning 
neural networks together could help an air navigation service provider develop its resilient 
performance potential to recognize and manage unexpected situations when they present 
themselves. 

1 INTRODUCTION 
Commercial aviation is a very complex socio-technical system, yet it is defined as 

ultra-safe, where the risk of disaster is below one accident per one million operations, i.e. 
10-6 (Amalberti, 2001, p. 111). This paper will explore how today’s traditional approach to 
managing safety may not be enough in the complex, highly dynamic modern air 
transportation system. 

Since the early 2000s, the concept of resilience engineering (RE) has been studied, 
researched, and applied as a complement to today’s safety management systems. The 
premise of this concept is the notion that how an organization performs depends on its 
capability to perform and that its actual performance depends on potential performance. 
Resilience engineering allows an organization to develop and manage what Dr. Eric 
Hollnagel refers to as “resilience potentials” (Hollnagel, 2017, p. 23). While this paper is 
not a tutorial on resilience engineering or the tools available to assess resilience potentials, 
it will discuss how this concept could be used to supplement, or move beyond, a 
traditional Safety Management System (SMS). 

Artificial intelligence – we’ve all heard about it. It’s used in video games, pattern 
recognition to identify trends in social media posts and online buyers’ purchasing habits, 
intelligence and cybersecurity, and many other applications. The aviation industry uses 
forms of artificial intelligence to develop models that optimize airline seat pricing; 
develop predictive analytics used to determine aircraft maintenance needs; collect and 
analyze aircraft performance data on specific flight routes to predict optimum fuel loading; 
and manage the complexity of airline crew scheduling. The Air Traffic Management 
industry, with its large amounts of unstructured heterogeneous data sets, audio, video, 
images, text, etc., lends itself well to artificial intelligence solutions. This paper will 
investigate the application of Deep Learning Artificial Neural Networks to enhance an air 
navigation service provider’s resilience performance potentials.  
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2 RESILIENCE ENGINEERING – The Evolution of Safety Management 
The FAA Air Traffic Organization’s Safety Management Systems manual defines 

Safety Risk Management as follows: 
A process within the SMS composed of describing the system; identifying the 
hazards; and analyzing, assessing, and controlling risk. SRM includes processes to 
define strategies for monitoring the safety risk of the National Airspace System 
(NAS). 

This is the “traditional” approach to managing safety risk. It has worked well for 
decades and continues to do so. The process typically flows as follows: 

• Describe the system by decomposing it to understand the role of each system 
component. 

• Identify as many system hazards as you can. 
• If the risk any of those hazards pose is unacceptable, develop and implement a 

risk control (such as a rule, process, or other action to mitigate the risk), making 
sure prior to implementing the control that the control itself doesn’t impose 
another risk (substitution risk). 

• Use a safety assurance process to determine whether the controls are working as 
intended. 

This process is based on a linear, barrier model approach such as depicted in James 
Reason’s Swiss Cheese model. These models rely on what has been described as the 
causality credo, which states that every cause has an effect. The reverse of this idea (every 
effect has a cause) is prominent in most organizations’ safety management systems. The 
thinking is, if accidents happen as a combination of active failures and latent conditions 
(as implied by the Swiss Cheese model), then risks must be the likelihood of weakened 
defenses in combination with active failures (Hollnagel, 2014). 

Resilience engineering, as an approach to managing safety in complex systems, is said 
to have had its genesis in the early 2000s when safety scientists such as Eric Hollnagel and 
David Woods conducted studies and research. Currently there is an abundance of literature 
exploring resilience engineering in detail, hence this paper will not delve into the details. 
There is, however, one fundamental concept that Woods, Hollnagel, and their colleagues 
identified, and it serves at the core of RE: Safety II. 

2.1 Holistic safety – aka Safety II 
Before discussing Safety II (sometimes referred to as the New View of safety), a 

review of how most organizations think about safety (usually called Safety I) is important. 
Safety in high-risk industries today primarily focuses on maintaining a system where as 
few things as possible go wrong. When things do go wrong, it is assumed that they do so 
because of a system component failure – whether it be procedures, technology, workers, or 
the organization itself. In most cases, the human is viewed as the most likely culprit, as 
humans are the most variable component in the system. Safety management systems 
respond to this breakdown by attempting to eliminate causes or improve barriers. 
Procedures are revised, additional training is provided, or new rules are put in place to 
keep the same thing from happening again (Hollnagel, Wears, & Braithwaite, 2015). 

This Safety I view came into practice in the 1960s when systems were thought to be 
less complex and could be completely understood (tractable), therefore easily 
decomposed. System components either worked or they didn’t; in other words they were 
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bimodal. These assumed characteristics led to improving safety by looking for causes and 
fixing them. Almost every safety management system today is built around these 
assumptions. As an example, the FAA Air Traffic Organization 2015 Safety Report states, 
“Collect, Find, Fix describes how we improve the safety of our airspace” (FAA, 2015). To 
summarize, the starting point for traditional safety management (Safety I) is that either 
something has gone wrong or a risk has been identified. In either case, the find and fix 
approach is used. 

In the latter part of the 20th century, as safety professionals and the safety science 
research community studied the safety landscape in complex socio-technical industries 
such as nuclear power plant management, medicine, and aviation, it became apparent that 
while learning from accidents and identifying system risks were still viable and important 
endeavors, something more was needed. The core Safety I assumptions discussed above 
were no longer valid in complex systems such as air traffic management. These systems 
(and their components) were tightly coupled and could not be completely decomposed – 
they were intractable. They were also not bimodal – components didn’t either succeed or 
fail. Yes, sometimes there were acceptable outcomes and sometimes the outcomes were 
unacceptable, but neither outcome could be attributed to components working or not 
working. 

Two concepts will help illustrate why this is the case. The first is work-as-imagined. In 
the case of ATM, for example, facilities, technical requirements, and operational work 
requirements are designed and engineered by a diverse range of people, including 
engineers, technicians, technical writers, policy makers, and numerous others. Their 
thinking and subsequent work products are a result of how they “imagine” the system 
should work to produce the most efficient and safest operations in the NAS. While these 
teams will always include controllers – those who do the work – their work products will 
never be in complete alignment with how the work is done. This is not due to a lack of 
effort, but happens because the system is intractable (not completely understood) and 
works in different ways depending on the interactions of all the various components, i.e. 
complexity. There will always be a gap between work-as-imagined and work-as-done. The 
more intractable the system is, the larger the gap is likely to be. 

Safety II recognizes this gap. Safety II (unlike Safety I) sees the human component as 
the reason almost every outcome is successful because of humans’ ability to adapt their 
actions to the situation at hand. The question became; if successful outcomes occur so 
much more often than unsuccessful ones do, why do we measure safety by focusing on 
“the lack of safety,” i.e. when things don’t go well? Safety II advocates suggested that “we 
should avoid treating failures as unique, individual events, and rather see them as an 
expression of everyday performance variability” (Eurocontrol, 2013). The focus of safety 
management is moving away from preventing something from going wrong to instead 
trying to learn why so much goes right and how to support activities that contribute to 
those many successful outcomes. Managing safety with this in mind is the focus of 
resilience engineering. 

2.2 Resilience engineering – the basics 
Webster’s Dictionary defines resilience as “the quality of being resilient”; that is, the 

ability to recover or bounce back. This definition is problematic from a safety 
management perspective – the problem being, how do you know if a person or an 
organization is resilient? How do you measure it (resilience)? In many ways, it’s like 
safety culture – a monolithic concept that everyone seems to understand yet which cannot 
be measured or assessed in any scientific way. And as the saying goes, to manage 
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something, you must be able to measure it. To do that, one cannot think of resilience as 
something an organization has but rather as a characteristic of how an organization 
performs – in other words, what it does and how it does it. The most recent definition of 
resilience in this context (it has evolved over the last 20 years) is as follows: 

Resilience is an expression of how people, alone or together, cope with everyday 
situations – large and small – by adjusting their performance to the condition. An 
organization’s performance is resilient if it can function as required under expected 
and unexpected conditions alike (changes/disturbances/opportunities). (Hollnagel, 
2017) 

Resilience engineering, in the context of the above definition, looks at everything an 
organization does, not just safety. It looks at what goes wrong and what goes right. The 
objective is to focus on how an organization performs. To do that, RE focuses on work-as-
done. Understanding how the work is done (versus how it is imagined) is critical to ensure 
that as many good outcomes as possible emerge from the organization’s activities. Dr. 
Hollnagel and his colleagues in the resilience engineering community suggest that all 
organizations have a potential for resilient performance and have identified four domain-
independent abilities (they refer to them as “potentials”) that are necessary (for resilient 
performance) and can be assessed, monitored, developed, and continuously improved. The 
four potentials and brief definitions1 are as follows (Hollnagel, 2017): 

• The potential to respond. This potential refers to knowing what to do when 
regular and irregular changes, disturbances, and opportunities are recognized. 
Note that this isn’t about responding just when things go wrong but also when 
opportunities to create new ways of doing things present themselves. 
Responding includes activating prepared actions such as, in the case of ATM, 
contingency plans. 

• The potential to monitor. This potential is about knowing what to look for that 
could affect an organization’s performance (positively or negatively) in the near 
term. Monitoring includes not just looking at the external environment but 
looking at the organization’s internal performance as well. 

• The potential to learn. This includes knowing what has happened and learning 
from experiences.  

• The potential to anticipate. An organization that exhibits resilient performance 
can anticipate potential disruptions or new opportunities. This potential looks 
further into the future. 

The most important thing to know about these four potentials is that they are dependent 
on each other. Most organizations look at these functions and say, “We do this already.” 
And in most cases, especially in an air traffic management organization, they most 
emphatically do. However, organizations must ask themselves: Can we do more? What are 
we capable of doing? What is our resilient potential? Tools and methods (such as the 
Resilience Analysis Grid [RAG] and the Functional Resonance Analysis Method 
[FRAM]) are available to help answer these questions. Numerous research papers, books, 
tutorials, and training classes exist that delve much deeper into resilience engineering and 
the use of the tools and methods for assessing and developing resilient potentials. The 
author will leave it up to you, the reader, to search out what’s most appropriate for your 
organization. But perhaps there’s more that can be done. Can artificial intelligence help 

                                                           

1 For a detailed explanation of resilient potentials, see Safety II in Practice (Hollnagel, 2017). 



 

 2019 ATCA Tech Symposium 5 

organizations learn more about themselves and the socio-technical systems they are a part 
of? The remainder of this paper will explore these questions. 

3 ARTIFICIAL INTELLIGENCE  

Today almost every industry is using artificial intelligence to help it operate more 
efficiently, increase revenue growth, and target the right customers for its products and 
services. Automobiles, homes, commercial aircraft, and millions of other physical devices 
can connect to the internet where they collect and share data. This concept, the Internet of 
Things, or IoT, generates vast amounts of data that can in turn be analyzed and help 
industries and companies make rapid improvements in their products. We are all familiar 
with intelligent voice-enabled assistants like Siri and Alexa. Mobile phones use facial 
recognition in place of passwords that allow users to access their phones as well as many 
of the applications on their phones. Most of these AI applications are based on a subset of 
artificial intelligence known as machine learning, which enables systems to predict 
outcomes by learning patterns in data. The learning evolves as the data changes without a 
need for rules-based programming. Arthur Samuel, a machine learning pioneer, defined 
machine learning in 1959 as “a field of study that gives computers the ability to learn 
without being explicitly programmed” (Bell, 2015). Deep learning is a subset of machine 
learning that makes use of multi-layered artificial neural networks that learn to recognize 
specific patterns in data through a training process (Rueckert, 2017). Deep learning 
requires significant processing power (now available through dedicated graphics 
processing units or GPUs) and excels at classification and prediction tasks. Using 
computers to understand and process human language, whether written or spoken, is very 
difficult. This is the focus of Natural Language Processing or NLP. Deep learning artificial 
neural networks have made significant advancements in the development and 
implementation of NLP solutions over the last few years. This technology could be helpful 
in the future to help Air Traffic Management organizations assess and develop their 
resilient performance potentials. 

3.1 Artificial neural networks – an overview 
Artificial neural networks (ANN) are sets of computer algorithms modeled loosely after 

the human brain that are designed to recognize patterns and make predictions. They are 
capable of processing large amounts of diverse data and grouping that data into specific 
categories. Neural networks can classify data when they have been “trained” with labeled 
data sets. During the training process, input data is compared to the labeled data and are 
processed through the neurons (nodes) of the ANN input layer using a variety of 
algorithms that are chosen based on the objective of the network. Errors that arise based 
on classifications that are different from the labeled data are fed back to the input layer, 
where small adjustments in how the nodes are weighted (which cause them to fire or not) 
are made. Through this process the weights are continuously adjusted until the incoming 
data is classified to a specified degree of accuracy. This type of learning (classifying data 
based on labeled data sets) is known as supervised learning. 

Data can also be grouped based on the input data’s similarities. This is known as 
clustering and is used when there are no labeled data sets to train on. This is the case when 
the input data is unstructured. Sound, text, images, and video are examples of unstructured 
data. Most of the data in the world is unstructured, i.e. not labeled. Learning about the 
similarities in unstructured data is called unsupervised learning. Different types of 
algorithms (than those used in supervised learning) are used to find clusters or subgroups 
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in the input data set. The goal is to learn interesting things about the data that are useful 
and could help an organization meet its objectives. 

There is a middle ground that makes use of both labeled and unlabeled data. It is 
referred to as semi-supervised learning. Labeled data can be difficult and expensive to 
obtain. Using unlabeled data is subjective and may require a significant effort to adjust the 
network’s weightings so the groups of clusters make sense and are useful for the intended 
application. With semi-supervised learning, a small labeled data set can be used to train a 
larger unstructured data set. With this high-level understanding of artificial neural 
networks and the three common types of learning methodologies they use, we can explore 
deep learning and how deep learning artificial networks can be used to analyze human 
language in both spoken and written forms. 

3.2 Deep learning and natural language processing 
Deep learning neural networks are differentiated from the neural networks described 

above by the number of hidden layers between the input and output layer. If there is more 
than one hidden layer, the network is referred to as a “deep” neural network. In deep 
learning networks, each layer processes data using distinct features that are based on the 
previous layer’s output. The more layers that are present, the more the nodes are able to 
recognize more complex features since they aggregate and recombine features from the 
previous layer (Skymind, 2015). 

Natural Language Processing, or NLP, uses deep learning artificial neural networks to 
process, analyze, and understand human language. In the past few years, there have been 
substantial advancements in this subfield of artificial intelligence. Much of this 
advancement involves new techniques to process unlabeled data using unsupervised or 
semi-supervised learning. One such technique, or feature set, is word embeddings. Word 
embeddings attempt to capture similarity between words and are typically pre-trained and 
used in the first hidden layer of a deep learning ANN. Traditional word embeddings tried 
to consider all the sentences in a document or other source where a word is present and 
then create a global representation of that word. That didn’t always work – for example, 
the word “bank.” Is it a financial institution or land next to a body of water? This dilemma 
spawned the more recent development of “contextualized” word embeddings that produce 
word embeddings based on the context rather than using a global perspective. In short, 
artificial intelligence’s rapid technological advancements are making significant strides in 
improving a computer’s ability to process human language. The industry expects that the 
rapid change seen over the last few years will be a stepping stone from NLP to natural 
language understanding (Young, Hazarika, Poria, & Cambria, 2018). 

3.3 The use of AI in air traffic management 
Several research and technical papers have been published over the last few years that 

have recognized possible applications of AI in aviation systems such as air traffic 
management for both manned and unmanned aircraft. At the 2018 Civil Air Navigation 
Services Organization (CANSO) Global ATM Summit and 22nd Annual General Meeting, 
CANSO Director General Poole noted, “Digitisation … has the potential to transform 
Global ATM performance, bringing huge benefits … in terms of increased efficiency and 
enhanced safety” (CANSO, 2018). Similarly, a working paper published for use at the 
2018 ICAO Thirteenth Air Navigation Conference recognized how AI can contribute to 
ATM, as evidenced by this statement: 

Faced with the challenges of growing traffic, resource demands, increasing 
uncertainties, and operational complexity, ATM can exploit the power of AI to 
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empower current operators and boost productivity through the capability of 
decision making under uncertainties of optimized situational strategies that 
procedures or simple algorithms cannot provide. (ICAO, 2018) 

Using Natural Language Processing deep learning solutions to classify and analyze 
aviation safety reports is the basis for a paper published in 2016. This paper notes how 
data contained in numerous aviation safety databases (such as the Aviation Safety Report 
System [ASRS] and the European Coordination Center for Accident and Incident 
Reporting Systems [ECCAIRS]) “is extremely valuable for learning lessons from past 
incidents and accidents” (Tanguy, Tulechki, Urieli, Hermann, & Raynal, 2016). Very 
important and meaningful revelations come from this paper. First, the authors noted that a 
human-based manual analysis of the diverse reports in many data sets requires numerous 
resources and is very complex. Their solution was to investigate how NLP tools based on 
supervised machine learning techniques could help to automatically classify the text-based 
data. Second, this work took place four to five years ago. As noted in section 3.2 of this 
paper, NLP processing tools have evolved substantially (mostly in 2018) since this work 
was done. While this work was based on machine learning; today’s NLP initiatives focus 
on using deep learning artificial neural networks with algorithms that are much better 
suited to identifying patterns and data anomalies that could help ATM service providers 
provide more efficient, safer operations in the airspace they manage. 
 

4 CONCLUSIONS 

Safety in the aviation industry has always focused on identifying what can or does go 
wrong. This approach to managing safety is characterized in two important ways. First, 
incidents and accidents are investigated in order to identify the cause, whether it be an 
“active” failure or a “latent” condition. Considerable effort is usually undertaken to 
identify that single (usually human component failure) root cause most likely responsible. 
And second, to minimize the probability of incidents and accidents occurring, 
organizations implement their risk management process. This process looks at the entire 
system, attempts to identify any possible hazards, and then analyzes these hazards to 
determine risk. If the risk assessment results in a particular risk exceeding a predetermined 
threshold whereby it is deemed “unacceptable”, risk controls are put in place to reduce the 
risk to an “acceptable” level. The safety assurance process then takes over and through 
audits and other monitoring processes, the system is continuously evaluated to verify 
whether the risk controls are working. If the number of incidents is reduced or audits don’t 
raise any concerns, safety is assumed. Safety, then, is when nothing happens. It is 
measured by the lack of things going wrong. This approach to safety management has 
worked well and continues to do so, as the fact that commercial aviation is ultra-safe 
appears to imply. 

However, over a period of several decades, the aviation system has become very 
complex. Because of the system’s tight coupling and intractability, it is no longer possible 
to identify all the potential hazards and risks. Components (human and technical) of the 
larger socio-technical system can (and will) interact with the environment, each other, and 
daily operations in ways that cannot be identified in advance. In the late 1990s and early 
2000s, safety professionals and safety scientists began to research ways in which 
organizations could be better prepared for the sometimes unexpected and unplanned-for 
events that occurred. The outcome of this research was the concept of safety-based 
resilient engineering. The research concluded that since organizations cannot identify all 
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the hazards and risks in their system, then they must increase their ability to manage 
unexpected situations. It made more sense, to this new resilient engineering community, to 
look at safety in a more holistic way – not from the concept of being unsafe when things 
go wrong, but from the concept of being safe when so many more things go right – and 
focus on learning why things go right most of the time and ensure the organization does 
more of those things. 

The reason things go right most of the time is because of the human’s ability to adapt to 
a situation. This normal human behavior of adjusting one’s performance to meet the 
demands of the situation became the foundation of resilience engineering. It seemed to the 
RE community that developing an organization’s ability to adapt (increasing its resilient 
performance) would increase its ability to better function under both expected and 
unexpected conditions. Over the last two decades, tools and methods have been developed 
to assess, develop, and manage an organization’s resilient performance potentials. These 
potentials, respond, monitor, learn, and anticipate, are dependent on each other and are 
key to an organization’s ability to be prepared for unexpected developments it might 
encounter. 

While tools (such as the Resilience Analysis Grid and FRAM – both referenced in this 
paper) exist, the information used by an organization’s safety department (or consultants) 
to populate and use these tools is mostly a manual process. There are many databases that 
contain performance and safety information of interest, including the Bureau of 
Transportation Statistics, the FAA’s operational contingency plan database, the Air Traffic 
Safety Action Program, the Technical Operations Safety Action Program, and the Aviation 
Safety Report System. 

This paper posits that the organization could learn more about the environment they are 
part of (the ATM community, for example) by collecting data from the abovementioned 
databases and others and processing this diverse structured and unstructured data through 
a deep learning artificial neural network using natural language processing algorithms. 
The ability of an NLP neural network to identify patterns quickly, automatically, and with 
high levels of correlation to specific safety and performance categories and clusters could 
contribute to an organization’s ability to increase its resilient performance and therefore be 
better prepared to react and perform when an unexpected situation presents itself. 
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