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Introduction

Motivation

Wing icing is a serious issue for pilots
Massive �ow separation, lower lift + higher drag
Unpredictable stall

Wing ice shapes exhibit wide variation, sensitivity to physical parameters
Complex physics (coupled air�ow-thermodynamics)
Uncertainty in physical parameters

Research Goals

How can observed variations in ice shape be modeled e�ciently with a low
number of parameters?

How does uncertainty in the ice shape create uncertainty in aerodynamic
performance?
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Experimental/Computational Variation in Ice Shape

(a) Habashi, 2006 (b) Wright, 2004

Wide variation in experimental/computational ice shapes1, 2

Suggests sensitivity to perturbations in underlying physical processes

UQ approach: parameterize the shape variation and study its e�ects on
aerodynamics

1Beaugendre H., Morency M., and Habashi W.G. Development of a Second Generation
in-Flight Icing Simulation Code. Journal of Fluids Engineering, ASME, 2006.

2Wright W. and Potapczuk, M.G. Semi-Empirical Modeling of SLD Physics, AIAA

2004-412. 42nd AIAA Aerospace Sciences Meeting, Reno, NV, 2004.
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Relation to Previous Work
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Previous study examined parameterized ridge and horn ice shapes3

Approach was heuristic, not directly based on observed shape variations
Parameter space was low dimensional; no low-dimensional modeling

3DeGennaro A., Rowley C.W., and Martinelli, L. Uncertainty Quanti�cation for Airfoil Icing
using Polynomial Chaos Expansions. To appear in Journal of Aircraft, 2015.
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Low-Dimensional Modeling

The space of all ice shapes is in�nite dimensional

Consider small number of parameters that describe likely shapes

Analyze database of shapes from experiments/simulations

Proper Orthogonal Decomposition 4

Assume database of M ice shapes
Each individual ice shape can be represented by a vector x ∈ RN
Approximate x using some basis vectors ψi :

x ≈
P∑
i=1

aiψi

Choose basis vectors to be the eigenvectors of the dataset covariance matrix

Rψk = λkψk where:

R =
1

M
XX

T and: X =

x1 · · · xM


4Holmes P. et. al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry,

Cambridge University Press, New York, 2012.
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Polynomial Chaos Expansions (PCE)

Polynomial Chaos Framework 5

Let Z = (Z1 . . .Zd ) be d random variables with PDF ρ(Z) that
parameterize ice
Let {Φk} denote the set of polynomials which are orthogonal w.r.t. ρ(Z)
Let y(Z) denote the mapping from Z to an aerodynamic performance metric

Probabilistic Collocation Method:
Representation

y(Z) ≈
N∑

|i|=0

yiΦi (Z)

Orthonormality

〈f , g〉 =

∫
Γ
f (z)g(z)ρ(z)dz

〈Φi ,Φj 〉 = δij

Quadrature

yk = 〈y ,Φk〉 ≈
Q∑
i=0

y(Z(k))Φk(Z(k))wk

5Xiu D. Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press, 2010.

DeGennaro, Rowley Martinelli Modeling/UQ for Icing



Motivation/Background
Methodology

Simulation Dataset
Computational-Based UQ

PCE with Sparse Grids

Full Tensor Product vs. Sparse Grid
Anisotropic Grid

Sparse Grids6

E�cient: Only a subset of the full quadrature grid is used

For d >> 1, number of samples scales as 2N
(
N+d
d

)
<< (N + 1)d

Adaptive: Start with a coarse mesh, adaptively re�ne until achieve desired
resolution
Anisotropic: Re�ne grid in most �important� directions
Implemented in DAKOTA7 (open-source UQ code)

6LeMaitre O. Spectral Methods for Uncertainty Quanti�cation. Springer, 2010.
7Adams et. al. DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design

Optimization. . . V. 5.3 User's Manual. SAND2010-2183.
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Dataset Description

NASA Common Research Model (CRM), 65% scale8

45 min accretion time, altitude = 10,000 ft, velocity = 232 knots,
temperature = −4o C, MVD = 20 µm, LWC = 0.55 g/m3

8Broeren A. et. al. Swept-Wing Ice Accretion Characterization and Aerodynamics, AIAA
2013-2824.
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Low-Dimensional Modeling of Dataset
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N(s) = h{N̄(as + b) +
2∑
i=1

ciΦi (as + b)}

h, a, b are scaling parameters

c1, c2 are POD coe�cients

This collapses 100 di�erent snapshots into 5 parameters
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5-Dimensional UQ Study
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2 POD coe�cients (shape) + width, height, position parameters (scaling)
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Statistics
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Width Position Height POD 1 POD 2

T (CL) 0.03 0.69 0.15 0.11 0.14

Our surrogate is an explicit polynomial function of the input variables,
making statistical inference easy/quick
PCE surrogate computed using 1,103 sparse grid points

Sobol index Ti =
E[Var(Y |Z−i )]

Var(Y )
is a measure of how much Zi contributes

to the total variance of Y (Z)
For our parameter ranges, position perturbation accounts for most of the
statistical variation
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Statistical Inference

Analyze statistical clustering of horns that produce bottom and top 10%
of CL variation

Favorable Horns

Wider/rounded

Lower surface

Shorter

Gentle downward skew

Unfavorable Horns

Sharper/narrower

Upper surface

Taller

Sharp, upper skew shape
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Flow Solutions

Favorable Position

Favorable shape skew

Unfavorable Position

Unfavorable shape
skew
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Motivation

Investigate uncertainty in the physical process of icing
Distribution of droplet diameters a�ects collection e�ciency

How sensitive is collection e�ciency to perturbations in MVD distribution?

Temperature, LWC, and convective heat transfer strongly a�ect icing
conditions

Glaze: warmer temperature, lower convective heat transfer, higher LWC �>
horn shapes
Rime: colder temperature, higher convective heat transfer, lower LWC �>
�blob� shapes
Convective heat transfer is strongly a�ected by surface roughness (di�cult to
model accurately)

DeGennaro, Rowley Martinelli Modeling/UQ for Icing
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Droplet Diameter Distribution

Freezing Drizzle MVD PDF Freezing Rain MVD PDF

Several MVD distributions exist for di�erent �ight conditions 9

Each gives a di�erent collection e�ciency

How sensitive are collection e�ciency and ice shape to perturbations in
MVD distribution?

9Airplane and Engine Certi�cation Requirements in Supercooled Large Drop, Mixed Phase,
and Ice Crystal Icing Conditions; Final Rule. Federal Register, Vol. 79, No. 213.
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Roughness Variations

Roughness Growth

Surface roughness varies with parameters 10

Roughness height increases with temperature and LWC
Beginning of roughness varies with temperature, speed, LWC

Surface roughness a�ects shape/aerodynamics 12

Roughness elements probably protrude out of boundary layer and cause
transition
Irregularity of shape should be calculated by ice accretion code, not treated
as part of roughness model

10Shin, J. Characteristics of Surface Roughness Associated with Leading-Edge Ice Accretion.
Journal of Aircraft, Vol. 33, No.2, April 1996.

DeGennaro, Rowley Martinelli Modeling/UQ for Icing



Motivation/Background
Methodology

Simulation Dataset
Computational-Based UQ

Glaze vs. Rime Accretion

Rime (left) vs. Glaze (right) Accretion

Glaze Ice 11

Warmer temperature, higher LWC Ice shape follows distribution of
convective heat transfer over airfoil surface
�Horn� shapes

Rime Ice
Colder temperature, lower LWC
Ice shape follows distribution of incoming water (collection e�ciency)
�Blob� shapes

11Beaugendre H., Morency M., and Habashi W.G. Development of a Second Generation
in-Flight Icing Simulation Code. Journal of Fluids Engineering, ASME, 2006.
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Airfoil Icing Code Flowchart

Clean Airfoil
Geometry

Mesh/Flow
Solver

Droplet
Advection
Module

Thermodynamic
Module

Iced Airfoil
Geometry

Final Iced
Airfoil Geometry
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Droplet Advection

dx

dt
= v

m
dv

dt
=

1

2
ρgCDπr

2||vg − v||(vg − v) + mg
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Preliminary Intermediate Results: Mass Flux
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Collection e�ciency is the ratio of surface to free-stream water �ux
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Thermodynamics

ρw

{
∂hf
∂t

+∇ · (ufhf )

}
= ṁimp−ṁevap − ṁice

ρw

{
∂(hf cWT )

∂t
+∇ · (ufhf cWT )

}
=

[
cWTd +

u2d
2

]
ṁimp

−0.5(Levap + Lsub)ṁevap

+ (Lfus − ciceT )ṁice

+εσ(T 4
∞ − T

4)

+ cH(T∞ − T )

Mass
Enters through impinging droplets
Exits via evaporation/sublimation and freezing

Energy
Enters through impinging droplets, freezing of ice
Exits via evaporation/sublimation, radiation, convection

Solved explicitly using �nite volume discretization with Roe scheme
upwinding
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Preliminary Intermediate Results: Ice Shapes
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NACA0012, α = 4o , U∞ = 103 m/s, MVD = 20 µm, LWC = 0.55 g/m3,
Re = 4.14 million, T = 7 min

Low temperatures: convective heat transfer high enough to freeze all
incoming droplets instantly (rime)

High temperatures: low amount of ice accretion with liquid �lm on top
(glaze)
Intermediate temperatures (glaze/rime mix)

Convective heat transfer is minimal at stagnation point and then rises
sharply before decaying
Results in familiar horn shapes
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Sources of Error

Convective Heat Transfer
Convective heat transfer calculation is lower than published benchmark test
results
Habashi,2006 uses rough-wall modi�cation of Spalart-Almaras turbulence
model (speci�cally developed for icing applications)
Ice shapes are very sensitive to heat transfer by convection
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Neglected Thermodynamic Mechanisms
Neglected mass/energy transfer via evaporation/sublimation and radiation
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Work In-Progress

Implement rough-wall extension in Spalart-Almaras turbulence model

Implement neglected mass/energy transfer mechanisms

Verify icing calculations against published results

Perform UQ studies, investigate sensitivity to physical parameters
Temperature, convective heat transfer coe�cient, Reynolds number, MVD,
LWC, angle of attack, etc.
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Conclusions/Future Work

Conclusions

Airfoil icing is a process subject to much uncertainty
Wide variation in ice shapes
Sensitivity to perturbations in physical conditions

We have brie�y demonstrated three approaches to quantifying uncertainty
in this problem

Heuristic parameterization
Data-based parameterization
Computational-based UQ

Future Work

Parameterized UQ
Investigate e�ect of more shape parameters
Extend e�orts to 3D wing icing

Computational modeling
Continue development and testing of icing code
Use icing code to investigate statistical variation of ice shape
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