Analytical Approach for Quantifying Noise from Advanced Operational Procedures

Jacqueline Thomas
thomasj1@mit.edu

Professor John Hansman
rjhans@mit.edu

FAA Joint University Program—Quarterly Meeting
November 5th 2015
Motivation

- Significant reductions in population exposure to airport noise have been made over the past 25 years
 - Reduced engine noise
 - Noise abatement procedures
- Further noise footprint reduction may be possible through operational adjustments

Note: 65db DNL is FAA’s designation of significant noise exposure.

Source: Massport
Potential for Continued Noise Improvements

- **Advanced operational departure procedures**
 - Flight path adjustments
 - Derated takeoff thrust
 - Thrust cutback scheduling

- **Advanced operational approach procedures**
 - Continuous descent/steep approaches
 - Delayed deceleration approaches
 - RNAV/RNP approach trajectories

- **New Aircraft Configurations**
 - Cleaner Airframes
 - Engine Noise Shielding Effects

Figure: The Orange County Register

Figure: D8 Aircraft Concept, from NASA.gov
Project Goal

- Current industry standard noise analysis methods do not fully capture noise impacts from aircraft configuration or other operational techniques.
- Traditional aircraft noise analysis assumes that engine noise dominates aerodynamic noise.
 - Assumption may have been valid for earlier generation jet engines.

Project Goal: to expand analysis capabilities to enable the modeling the noise impacts of advanced operational procedures and aircraft configuration.
Current Analysis Methods: Aircraft Environmental Design Tool (AEDT)

- Industry standard model that evaluates aircraft noise impacts in the vicinity of airports
 - Normally used for DNL analysis
- Simple physics model
 - Low resolution
 - Not intended for high-fidelity single event modeling
 - Considers “Average Annual Day”
 - Assumes consistent sound energy dissipation with distance
 - Only considers atmospheric noise propagation
 - Does not capture shielding effects well
- Noise-Power-Distance (NPD) based

Figure: INM Technical Manual
Noise-Power-Distance Approach

- Single-event noise exposure calculated for each arrival/departure segment
- Requires thrust and distance interpolation from limited flight test data
- Crude accounting for different flap, landing gear settings
 - High-power approach curves assume dirty landing configuration
 - Ignores velocity effects on aerodynamic noise

![Noise Power Distance (NPD) Curves GE CF6-50 (Airbus A300)](image)

- Sound Exposure Level (dBA)
- Distance from Source (feet)

- 40,000lb Departure
- 25,000lb Departure
- 10,000lb Arrival
- 25,000lb Arrival
TASOPT and ANOPP Noise Modeling Approach

Transport Aircraft System OPTimization (TASOPT)

- Written by Prof. Mark Drela (MIT)
- Physics-based optimization program
- Based on mission requirements, generates an optimal transport aircraft design, including:
 - Engine performance and geometry
 - Aircraft performance and geometry

Aircraft NOise Prediction Program (ANOPP)

- NASA-developed program
- Computes far-field engine and airframe noise at an observer grid given various flight profile and configuration metrics
 - Semi-empirical calculations require detailed engine/aircraft performance inputs
 - e.g., Engine mass flow, areas, and temperatures, airframe geometry, etc.
- Models shielding, propagation effects
TASOPT - ANOPP Noise Analysis Framework

TASOPT Inputs:
- Operating/mission parameters
- Aircraft sizing/performance parameters
- Engine sizing/performance parameters

TASOPT Outputs:
- Aircraft/engine performance & geometry

Flight Procedure Type:
- Flight Path Angles
- Velocity
- Configuration

Flight Procedure:
- Thrust, velocity, position, gear/flap settings per time

ANOPP Control Inputs:
- Propagation settings
- Observer locations

Flight Procedure Generator a force-balance model to determine required thrust levels given:
- User flight profile requirements
- TASOPT aircraft performance characteristics

ANOPP Outputs:
- Noise contours for each observer location
Noise Certification Data
Comparison Overview

- Effective Perceived Noise Level (EPNL) of known aircraft computed in ANOPP
 - Results compared to FAA certification noise data (reported in 14 CFR Part 36) for those aircraft for validation
- EPNL reported at 3 observer locations: Flyover, Approach and Sideline
- Flight profile requirements:
 - Flyover:
 - **Thrust:** Max TO to altitude 300m, then reduced to maintain 4% climb grad
 - **Velocity:** V2+10kt to V2+20kt
 - Approach:
 - **Thrust:** required to maintain 3° glide slope
 - **Velocity:** Vref+10kt
 - Sideline:
 - **Thrust:** Max TO
 - **Velocity:** V2+10kt to V2+20kt
Current Validation Results

- *Sideline noise error likely due to jet exhaust temperature over-prediction in TASOPT (required input for the ANOPP jet noise calculation) for max thrust conditions
- Calculated sideline noise error is reduced to within +/- 1 dB EPNL for each aircraft with an 8% reduction in TASOPT outputted jet exhaust temperatures

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>TO/AP Wt:</th>
<th>Engine:</th>
<th>ANOPP Calculated Effective Perceived Noise Levels (dB)</th>
<th>FAA Certification Noise Data (dB)</th>
<th>Error (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing 737-800</td>
<td>172300/146300 lbs</td>
<td>CFM56-7B26</td>
<td>Flyover: 87, Approach: 96.11, Sideline*: 97.61</td>
<td>86.7, 96.8</td>
<td>+0.3, -0.69</td>
</tr>
<tr>
<td>Boeing 777-300</td>
<td>636100/524000 lbs</td>
<td>RR Trent 892</td>
<td>Flyover: 94.87, Approach: 101.3, Sideline*: 99.88</td>
<td>94.2, 100.4</td>
<td>+0.61, +0.9</td>
</tr>
<tr>
<td>Embraer 195</td>
<td>111970/99200 lbs</td>
<td>CF34-10E5</td>
<td>Flyover: 87.46, Approach: 92.55, Sideline*: 98.72</td>
<td>86.5, 92.8</td>
<td>+0.96, -0.25</td>
</tr>
</tbody>
</table>

Sideline
Example Application: Thrust Cutback Location on Departure

- Typical takeoff procedure uses constant takeoff thrust throughout initial climb segment
 - Safety & efficiency benefits
- Thrust cutback after takeoff during initial climb can be used to reduce noise for nearby communities
 - Specific location of cutback determines overall noise impact of procedure
Impact of Thrust Cutback Location on Single-Observer Departure Noise

Boeing 737-800 Departures with Varying Thrust Cutback Location
Measurement Location: Extended Runway Centerline, 6.5km from Start of Takeoff Roll
Takeoff Weight: 172,300 lbs
Engine: CFM56-7B26

EPNL at Observer (dB)

Cutback Distance from Start of Takeoff (ft)

- No Cutback
- Cutback Location for Minimum Noise
- Observer Location

Preliminary
Impact of Thrust Cutback Location on Departure Noise Contour Geometry

Boeing 737-800 Departure Profiles

Takeoff Weight: 172,300 lbs
Engine: CFM56-7B26

Effective Perceived Noise Level (dB), Boeing 737-800 Departure

Minimum Noise Cutback
No Cutback

Preliminary
Example Application: Delayed Deceleration Approach

- In conventional approaches, aircraft decelerate early in the approach
 - Often commanded by air traffic control for spacing traffic flows
- In DDA approaches, initial flap speed velocity held as long as possible during approach to lower drag and thrust requirements
 - Lower thrust levels and reduce engine noise
 - Higher velocities increase airframe noise
Delayed Deceleration Approach Profile: Glideslope Intercept from Level Flight

Boeing 737-800 Flight Profile
Landing Weight: 146,300 lbs
Engine: CFM56-7B26
Impact of Delayed Deceleration Approach on Noise Contour Geometry

Boeing 737-800 Flight Profile
Landing Weight: 146,300 lbs
Engine: CFM56-7B26
Effective Perceived Noise Level (dB), Boeing 737-800 Approach

Observer X Locations (nmi)
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Observer Y Locations (nmi)
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Delayed Deceleration Approach
Constant Speed Approach

Preliminary
Example Application: Modeling New Aircraft Configurations

- New aircraft configurations, compared to existing baseline aircraft with the same passenger number and range requirements, may feature:
 - Cleaner, lighter airframes, engine noise shielding
 - Reductions in fuel burn, emissions, community noise
Boeing 737-800 vs. D8.2 Concept
Aircraft Approach Profile

Boeing 737-800 vs. D8.2 Concept
Landing Weight: 146,300 lbs (B738) vs. 102,000 lbs (D8.2)
Boeing 737-800 vs. D8.2 Concept

Aircraft: Noise Contour Comparison

Boeing 737-800 vs. D8.2 Concept

Landing Weight: 146,300 lbs (B738) vs. 102,000 lbs (D8.2)

Effective Perceived Noise Level (dB), Boeing 737-800 vs. D8.2 Approach

Preliminary
Moving Forward

- Continue developing flight procedure generator
- Continue validating the TASOPT/ANOPP program noise results with FAA data for more aircraft types
- Use TASOPT/ANOPP program for computation of noise for more aircraft types and operational procedures
Acknowledgements and References

- Acknowledgements:
 - Prof. John Hansman, Prof. Warren Hoburg, Dr. Brian Yutko, & Luke Jensen – MIT
 - Prof. Philip Morris & Prof. Victor Sparrow – Penn State University
 - Tom Reynolds & Lanie Sandberg – MIT Lincoln Lab
 - Chris Dorbian & Joe DiPardo – FAA
 - Flavio Leo & Frank Iacovino - Massport

- References:

This work was completed in conjunction with Aviation Center of Excellence Project 23 under the US Federal Aviation Administration Office of Environment and Energy. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.
Appendix
TASOPT Calculation Flow

TASOPT Inputs (user defined):
- Aircraft sizing/performance parameters
- Operating/mission parameters
- Engine sizing/performance parameters

TASOPT Calculation Flow:
- Fuselage/Wing/Tails sizing and weight computations
- Drag build-up
- Engine sizing, weight, performance computations
- Trajectory computations
- Mission fuel computations
- Final weight computation

TASOPT Outputs:
- Aircraft Performance
- Airframe geometry
- Engine performance
- Engine geometry
ANOPP Calculation Flow:

TASOPT Outputs:
- Aircraft Performance
- Engine Performance
- Airframe Geometry

Flight Profile Generator:
- Thrust, velocity, position, gear/flap settings

User Inputs:
- Observer array

ANOPP Calculation Flow:
- Flight profile definition
- Source to observer geometry
- Engine and airframe noise computations
- Propagation and ground effects
- Wing shielding effects

ANOPP Outputs: Noise contours for each observer location
Flight Profile Generator: Detailed Methodology

- **Goal:** to generate position, velocity, and thrust of an aircraft flight profile from a combination of user specified requirements at each profile segment, including:
 - Flap and gear settings: \(\delta_{\text{flap}}, \delta_{\text{gear}} \)
 - Segment end velocity: \(V_{\text{end}} \)
 - Deceleration: \(a \)
 - Thrust: \(T \)
 - Glideslope: \(\gamma \)
 - Segment end position: \(x_{\text{end}} \) or \(z_{\text{end}} \)

- **The user initially specifies:**
 - Aircraft weight, wing area, air density: \(W, S, \rho \)
 - Drag coefficients: \(C_D(\delta_{\text{flap}}, \delta_{\text{gear}}, C_L) \)
 - Initial position, altitude, velocity: \(x_{\text{start}}, z_{\text{start}}, V_{\text{start}} \)
 - Number of profile segments
Flight Profile Generator: Computation Methodology

- At each segment:

 The user specifies:
 \[
 \delta_{\text{flap}}, \delta_{\text{gear}}
 \]
 One of: \(a, V_{\text{end}}, \text{ or } T\)
 & two of: \(x_{\text{end}}, z_{\text{end}}, \text{ or } \gamma\)

 The generator computes:
 remaining three variables not yet specified, using the equations below:

 \[
 a = \sum_{m}^{F} m = \frac{T + W \sin(\gamma) - D}{W / g}
 \]
 \[
 \frac{(V_{\text{end}})^2 - (V_{\text{start}})^2}{2a} = \frac{x_{\text{end}} - x_{\text{start}}}{\cos(\gamma)} = \frac{z_{\text{end}} - z_{\text{start}}}{\sin(\gamma)}
 \]
 \[
 D = \frac{1}{2} \rho V^2 S C_D (\delta_{\text{flap}}, \delta_{\text{gear}}, C_L)
 \]
 \[
 C_L = \frac{W \cos(\gamma)}{\frac{1}{2} \rho V^2 S}
 \]

- \(x_{\text{end}}, z_{\text{end}}, V_{\text{end}}\) of one segment become \(x_{\text{start}}, z_{\text{start}}, V_{\text{start}}\) of the next segment

Segment sign conventions; negative value of \(\gamma\) indicates climb
Flight Profile Generator: Computation Methodology

• To get thrust (or reverse thrust) profile T (T_{reverse}) on the runway, the user specifies (with V_{start} the velocity upon liftoff or upon touchdown):
 - Takeoff/Landing roll length: L_{Roll}
 - Runway coefficient of friction: μ

\[
\frac{(V_{\text{start}})^2}{2L_{\text{Roll}}} = a \quad a = \sum_{m} \frac{F}{m} = \frac{-T + T_{\text{reverse}} + D + \mu(W - L)}{W / g}
\]

\[
D = \frac{1}{2} \rho V^2 SC_D(\delta_{\text{flap}}, \delta_{\text{gear}}, C_L) \quad L = \frac{1}{2} \rho V^2 SC_{L,\text{start}} \quad C_{L,\text{start}} = \frac{W}{\frac{1}{2} \rho (V_{\text{start}})^2 S}
\]

• Lastly, the user specifies the lateral aircraft position profile $y(s)$ with $s = \sqrt{x^2 + z^2}$

Sample Approach Profile: Boeing 737-800 including Landing Roll
Drag Coefficients for Flight Profile Generator

- Drag coefficients for existing aircraft currently obtained from Base of Aircraft DAta (BADA)

- BADA provides aerodynamic drag coefficients for various flap and gear configurations of supported aircraft types:

\[C_D = C_{D0}(\delta_{flap}, \delta_{gear}) + C_{D2}(\delta_{flap})^2 (C_L)^2 \]
Delayed Deceleration Approach Profile: Continuous 3-degree Glideslope

Boeing 737-800 Flight Profile
Landing Weight: 146,300 lbs
Engine: CFM56-7B26

Aircraft y Position (ft)

Aircraft x Position (nmi)

Velocity (knots)

Flaps 5
Flaps 15
Flaps 30
Flaps 30

Aircraft x Position (nmi)

Reverse Thrust Onset
10000

Thrust (lbs/eng)

Aircraft x Position (nmi)

2000 Idle Thrust
Impact of Delayed Deceleration on Noise Contour

Boeing 737-800 Flight Profile
Landing Weight: 146,300 lbs
Engine: CFM56-7B26

Effective Perceived Noise Level (dB), Boeing 737-800 Approach

Delayed Deceleration Approach
Constant Speed Approach

Observer X Locations (nmi)
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Observer Y Locations (nmi)
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

65 75 85 95

Preliminary