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Icing: Introduction/Methodology

Introduction

Motivation
o Wing icing is a serious issue for pilots

o Massive flow separation, lower lift + higher drag
o Unpredictable stall

o Wing ice shapes exhibit wide variation, sensitivity to physical parameters
o Complex physics (coupled airflow-thermodynamics)
o Uncertainty in physical parameters
Research Goals

o How can observed variations in ice shape be modeled efficiently with a low
number of parameters?

o How does uncertainty in the ice shape create uncertainty in aerodynamic
performance?
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Experimental /Computational Variation in Ice Shape
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o Wide variation in experimental /computational ice shapes®' 2

o Suggests sensitivity to perturbations in underlying physical processes

o UQ approach: parameterize the shape variation and study its effects on
aerodynamics

1Beaugendre H., Morency M., and Habashi W.G. Development of a Second Generation
in-Flight Icing Simulation Code. Journal of Fluids Engineering, ASME, 2006.

2Wright W. and Potapczuk, M.G. Semi-Empirical Modeling of SLD Physics, AIAA
2004-412. 4274 AIAA Aerospace Sciences Meeting, Reno, NV, 2004.
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Input-Process Modeling

o Heuristic

o lce shape parameters are selected by intuition
o Examples: horn height, angle

o Data-Based: Proper Orthogonal Decompoasition 3
o Analyze database of M shapes from experiments/simulations

o Each individual ice shape can be represented by a vector x € RV
o Approximate x using some basis vectors v;:

P
X = Z a,'I/),'
i=1

o Choose basis vectors to be the eigenvectors of the dataset covariance matrix

R’([)k = )\k’l,bk where:

3Holmes P. et. al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry,
Cambridge University Press, New York, 2012.
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Polynomial Chaos Expansions (PCE)

o Polynomial Chaos Framework *
o Let Z=(Zy...Z,) be d random variables with PDF p(Z) that
parameterize ice
o Let {®,} denote the set of polynomials which are orthogonal w.r.t. p(Z)
o Let y(Z) denote the mapping from Z to an aerodynamic performance metric

o Probabilistic Collocation Method:
o Representation

N
¥(Z)= D yi®i(2)
[i]=0
o Orthonormality

(f.g) = | f(2)g(2)p(2)dz

o Quadrature

Q
Vi =y, ®) = D y(ZH) 0 (2w
i—o

4Xiu D. Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press, 2010.
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PCE with Sparse Grids
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Full Tensor Product vs. Sparse Grid Anisotropic Grid
o Sparse Grids®
o Efficient: Only a subset of the full quadrature grid is used
o For d >> 1, number of samples scales as 2" (V) << (N 4 1)¢
o Adaptive: Start with a coarse mesh, adaptively refine until achieve desired
resolution
o Anisotropic: Refine grid in most “important” directions
o Implemented in DAKOTAS (open-source UQ code)
5LeMaitre O. Spectral Methods for Uncertainty Quantification. Springer, 2010.
SAdams et. al. DAKOTA, A Multilevel Parallel Ob_;ect Oriented Framework for Design
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Heuristic Input Processes
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o Heuristic approach’

@ 2-D shape parameter space
"DeGennaro A., Rowley C.W., and Martinelli, L. Uncertainty Quantification for Airfoil Icing
using Polynomial Chaos Expansions. To appear in Journal of Aircraft, 2015.
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Data-Based Input Processes: 3D Wing

o NASA Common Research Model (CRM), 65% scale®
o 45 min accretion time, altitude = 10,000 ft, velocity = 232 knots,
temperature = —4° C, MVD = 20 um, LWC = 0.55 g/m3
8Broeren A. et. al. Swept-Wing Ice Accretion Characterization and Aerodynamics, AIAA
2013-2824.
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Data-Based Input Processes: 3D Wing
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2
N(s) = h{N(as + b) + Z cidi(as + b)}
i=1
o h, a, b are scaling parameters
@ c1, ¢ are POD coefficients
o This collapses 100 different snapshots into 5 parameters
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Data-Based Input Processes: 3D Wing
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o 2 POD coefficients (shape) + width, height, position parameters (scaling)
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Data-Based Input Processes: 2D Shapes

0.0

—0.06

o Business jet clean airfoil geometry®
o 54 ice shapes, exposed to wide range of various icing conditions consistent
with FAA certification guidelines

o POD dataset will consist of binary values defined on a static Cartesian
mesh (‘1" if mesh point is on the ice, ‘0" if not)

9Addy, H.E. Ice Accretions and Icing Effects for Modern Airfoils. NASA TR 2000-210031.
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Data-Based Input Processes: 2D Shapes

0.06 Ho.oos
0.00 !
—00%1 0.0 01 0.2 -0.005
Mode 1
0.06, 0.005 0.06, Ho.oos
0.00 %’ 0.00 o
& — = |
—00%1 0.0 01 02 ~0.005 —0.0% 1 0.0 01 02 ~0.005
Mode 2 Mode 3
0.06, 0.005 0.06 !o.oos
000 7 0.00 \\
T — — i
“09%1 o0 0.1 0.2 ~0.005 00% 1 o0 01 0.2 —0.005
Mode 4 Mode 5

o 8 Modes retained; this is where POD eigenvalue magnitudes have decayed
by an order of magnitude
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Data-Based Input Processes: 2D Shapes
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Statistics: 3D Wing

1
40
S Ebso
.85 0.90 0.95 1.00 1.05 1.10 1.15 0.02 0.03 0.04 0.05 0.06
c, cp
C. Statistics Cp Statistics
Width  Position Height POD 1 POD 2
T (CL) 0.03 0.69 0.15 0.11 0.14

o Our surrogate is an explicit polynomial function of the input variables,
making statistical inference easy/quick
o PCE surrogate computed using 1,103 sparse grid points

Sobol index T; = %‘%‘i)] is a measure of how much Z; contributes

to the total variance of Y(Z)
For our parameter ranges, position perturbation accounts for most of the

statistical variation
Anthony DeGennaroMark LohryClarence W. Rowley I11Luigi Mar]
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Statistics: 3D Wing

o Analyze statistical clustering of horns that produce bottom and top 10%
of C. variation
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o Wider/rounded o Sharper/narrower

o Lower surface o Upper surface

o Shorter o Taller

o Gentle downward skew o Sharp, upper skew shape
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Flow Solutions

Unfavorable shape

Favorable shape skew
skew
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Icing: Computational-Based UQ

Motivation

o Investigate uncertainty in the physical process of icing
o What is the statistical effect of uncertainty in physical parameters?
o Free-stream temperature
o Angle of attack
o Convective heat transfer
o Droplet diameter distribution
o Accretion time

Anthony DeGennaroMark LohryClarence W. Rowley 1L uigi i ification for Ice Accretion and Cargo Hold Fire
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Icing Code Flowchart

Solver

Droplet
Advection
Module

Thermodynamic
Module

Clean Airfoil
Geometry

Final Iced
Airfoil Geometry
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Droplet Advection

dx
dt
dv
g

=V

1
= S peComr®llvg —vll(vg — v) + mg




Icing: Computational-Based UQ

Thermodynamics

oh . .
Pw {aitf +V. (ufhf)} = Mimp — Mice
2
Pw M + V- (ufthW T) = |w Td + ﬁ rhimp
ot 2
+ (qus — Cice T)mice
+ CH(Too - T)

o Mass

o Enters through impinging droplets
o Exits via evaporation/sublimation and freezing

o Energy
o Enters through impinging droplets, freezing of ice
o Exits via evaporation/sublimation, radiation, convection
o Solved explicitly using finite volume discretization with Roe scheme
upwinding
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Icing: Computational-Based UQ

Preliminary Intermediate Results: Ice Shapes

o NACAQ012, @ = 4°, T = 256K, Uss = 103 m/s, MVD = 20 um, LWC
= 0.55 g/m?, Re = 4.14 million, AT = 7 min

o Low temperatures: convective heat transfer high enough to freeze all
incoming droplets instantly (rime)
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Icing: Computational-Based UQ

Work In-Progress

Implement rough-wall extension in Spalart-Almaras turbulence model

Implement neglected mass/energy transfer mechanisms

Verify icing calculations against published results

Perform UQ studies, investigate sensitivity to physical parameters

o Temperature, convective heat transfer coefficient, Reynolds number, MVD,
LWC, angle of attack, etc.
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Fires: Introduction/Methodology

Motivation

o Cargo hold fires are a significant safety hazard

o Tight constraints for detection/suppression
o FAA requires detection of cargo fire within 60 seconds of ignition!0: 11

00:46:3

Cargo hold fire generated from Cargo hold fire generated from
lithium-ion battery e-tablet

1%Blake, D. et. al. 2014 Fire Safety Highlights. Federal Aviation Administration. Research
Summary, 2014.

1 0Oztekin, E. S. Heat and mass transfer due to a small-fire in an aircraft cargo
compartment. Journal of Heat and Mass Transfer Vol. 73, 2014, pp. 562-573.
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Fires: Introduction/Methodology

Motivation

o Current detection systems are overly conservative'?

o 200-to-1 false alarm ratio (1995-99)
o Unscheduled landings are expensive

et

L mmmmﬁﬂ .
FEEESEREYREEIRIRRERRERERES: é

Alarms and Unscheduled Landings False/Verified Alarms

12B|ake. Aircraft cargo compartment smoke detector alarm incidents on U.S.-registered
aircraft. FAA technical note FAA-TN00/29, 2000.

cation for Ice Accreti
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Fires: Introduction/Methodology

Motivation

o Fire dynamics are sensitive to boundary condition uncertainty
o Fire source location and temperature within cargo hold can vary

o Cargo hold is cluttered with baggage, packages, pipes, etc.
o Spatio-temporal fire plume development is affected by this uncertainty

Effect of Source Position

Cargo hold clutter

ar  Uncertainty Qual cation for Ice Accreti
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Fires: Introduction/Methodology

Motivation

o Experiments are expensive
o Destructive full-scale cargo hold fire experiments (FAA Tech Center)!3
o Each experiment destroys an entire cargo hold
o Investigating boundary condition uncertainty is not feasible

(Y
NI

00:46:39:03

Destructive cargo hold fire
Boeing 707 cargo hold experiment

130ztekin, E. S. Modeling of smoke spread and gas transport in an aircraft. 7
International Fire and Cabin Safety Research Conference, 2013.
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Fires: Introduction/Methodology

o Computational methods must be accurate

o Previous attempts at applying CFD to cargo hold fires have used low-order
finite-volume solvers on meshes that do not conform to boundary!4

Non-conformal Cartesian mesh

140ztekin, E.S et. al. Flow induced by a small fire in an aircraft cargo compartment. AIAA
2012-0311.
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Fires: Introduction/Methodology

Motivation

o Computational methods must be accurate
o Vorticity dominated, buoyancy-driven flows require high computational
accuracy

for lce Accretion and Cargo Hold F
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Fires: Introduction/Methodology

Objectives

o Apply accurate CFD tools to the cargo hold problem
o Boundary-fitted meshes for good boundary resolution
o Discontinuous Galerkin (DG) high-order method for high accuracy
o Apply UQ tools to study effects of uncertainty in cargo hold problem

o Polynomial Chaos Expansions (PCE)
o Efficient sampling methodology
o Accurate surrogate construction

o Methodology gives (1) accurate computational tool for simulating cargo

hold fires and (2) efficient framework for investigating cargo hold
uncertainty
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Discontinuous Galerkin (DG) Method

o High-resolution CFD method*® 16

o Domain is divided into cells, collocation nodes computed within each cell
o N-S equations projected onto span of polynomials (of arbitrary degree)
o Flow variables within each cell represented in polynomial basis

- High-order methods
~
[~ ~
~ Error level for RANS
~ ‘ ‘
b ~ Simulations
& RS
w - ~
\g’, N
o S ~ Low order methods
~
>
[ Error level for ~
N ~
acoustic wave ~
[T  propagation
Log(Cost)

Generic error vs cost plot

'®Wang et. al. An eulerian-lagrangian DG method for transient advection-diffusion
equations. Numerical Methods for Partial Differential Equations, 2007.

16Hesthaven & Warburton. Nodal Discontinuous Galerkin Methods, 2008.
for Ice Accretion and Cargo Hold F
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Discontinuous Galerkin (DG) Method

Method Synopsis

Conservation law: % +V-f(u)y=0

Weak formulation: —ugﬁj dv +/ V -f(u)p; dV =0
v Ot v

Integrate by parts: %(ﬁj dv —/ Voj-fdV + % of -AdS=0

ur Dy uid 8“'¢'¢, dv — /w, fi i dv+7§¢ﬁ¢, fdS=0

v
M;j*’ :/ Vo; 3 on dV-l—?{(]ﬁjF;qS; -A dS
dt v s

Polynomial Basis
o Collocation nodes are defined in each individual cell
o Chebyschev-like schemes used (to avoid Runge-phenomenon)

o Associated Lagrange interpolators form the polynomial basis ¢«
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Discontinuous Galerkin (DG) Method

Time-Stepping
@ We now have a system of ODEs to solve for each DG mode:
du

_ ’
0 = f(u,u’,t)

o CFL condition for explicit time-stepping gives At = O(&%)
o Mesh volume Ax can be small
o State dimension N grows rapidly with increasing polynomial order
o Thus, implicit time-stepping is used, which gives the large nonlinear
system:
F(u)=0
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Discontinuous Galerkin (DG) Method

Solution Procedure
o Newton's method gives sequence of linear systems:
JM)ou* = —F(u"), o =u* + sk

o J is prohibitively large to compute/store
o Jacobian-Free Newton-Krylov iteration
o Action of Jacobian on a vector is approximated as:

Jv = [F(u+ev) — F(v)]/e

o du* is solved for using Krylov iteration (GMRES, BiCGSTAB)
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omial Chaos Expansions (PCE)

o Overview!":
o Method for quantifying parametric uncertainty
o Expand output in terms of basis polynomial functions of random variables
N

F&) =D aii(9)

i

o Pros:
o Efficient sampling methodology
o Explicit surrogate model
o Easy statistical post-processing (eg., sampling, ANOVA)

) w
X Computation/ NS
Experiment <

3 f(6)

Input Output

17Xiu & Karniadakis. The weiner-askey polynomial chaos for stochastic differential
equations. SIAM Journal of Scientific Computing, 2002.
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Polynomial Chaos Expansions (PCE)

Setting
o Stochastic input process parameterized by d independent random variables
& -+ €4 with joint PDF p(€)
o Objective: approximate statistical dependence of an output variable f(§)
Method Synopsis

Polynomial basis:  {¢x}ez:s , (Wi, ;) = 65
(f.g) = / F(©)B(E)p(€)de

N

Output Representation: (&) =~ Z a;ji (&)
Projection: ax = <\;:2)w||k2>
k
Q . . -
Quadrature:  (f, ) ~ Z (&) (E)w'
i=1
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Polynomial Chaos Expansions (PCE)

1.0

0.8
0.6
]
0.4
0.2
0'8.0 02 04 06 08 1.0
1

Monte Carlo Polynomial Chaos

Q
y Ry ai(€)
y =~ (€ — &) i
o Draw random samples o Take data at collocation points
o Data exist at discrete points o Construct global surrogate

Anthony DeGennaroMark LohryClarence W. Rowley 1L uigi i ification for Ice Accretion and Cargo Hold Fire



Fires: Example study

© Fires: Example study

Anthony DeGennaroMark LohryClarence W. Rowley igi i ification for Ice Accretion



Fires: Example study

Input Processes

Parameters: Fire source temperature and location
o Empty cargo hold

o Uniform distribution for both independent parameters

-

Temperature

N
7]
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Fires: Example study

Input Processes

Parameters: Fire source temperature and location
o Empty cargo hold

o Uniform distribution for both independent parameters

Position
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Fires: Example study

Output Measurements

Problem
o UQ for the entire flow field is difficult
o Spatio-temporal behavior varies significantly
o Need a more tractable set of observables
Solution
o Reduce spatial dimensionality
o Ceiling temperature is most important for detection
o Separate time and space

o Intuition: buoyant plumes convect upwards at some characteristic time tg
dominated by source temperature

o Easier to compare ceiling temperatures at their respective values of tg than
at same time after ignition

Output Measurements
tr(Z) = (Rise time)

1 tr(Z)+At
Tc(X;Z) = 7/ T(_'(X,t;Z)dt
At Jig(2)
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Results: Rise Time

0.4
14 }\ 0.3
LY =02
B <
° 0.1
2 G~ % 8 10 12 14
tp
PCE surrogate map of tr(Z) Probability density function
o tg is dominated by source o Nonlinear mapping deforms
temperature (initially uniform) PDF
o Clearly, hotter source gives o Tail caused by low
shorter rise time temperature and wall effect
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Results: Ceiling Temperature

ONMOUNMOUuo

TC
OppEPER R
OCOOHKENNWW

-1.0 -0.5 0.0 0.5 1.0
z

Mean and Confidence Intervals
o (68%, 95%) C.I.
o Profile skewed right of center

o Wide variation in temperature
range and locations possible

1.
x 0.8
()
206
S04
o
¥ 0.2
%5 =65 00 05 10

T

Sobol indices

o (xs, Ts)

o Fraction of variance
attributable to each individual
parameter

o Ts: dominant near maximum

o xs: dominant near periphery

cation for Ice Accreti
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Results: Related Statistics

4
8 3
54 22
2 1
.0 1.1 1.2 1.3 -1.0 -0.5 0.0 0.5 1.0
max(T,) Location of max(T)
PDF of max(T¢) PDF of Location(max(Tc))

o Can estimate statistics of quantities derived from output measurements

o The maximum ceiling temperature and its location are of practical
engineering interest
o For this example, a temperature sensor must:

o Be able to detect temperatures roughly in the range T¢ € [1.05,1.35] X T
o Be placed on the ceiling in roughly in the range x¢ € [—0.25,0.5]
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Conclusions/Future Work

Problem

o Airfoil icing/cargo hold fire safety is important and subject to uncertainty

o Experiments are expensive

o CFD methods must be high-resolution
Solutions: Icing

o Data-based modeling of shape variation

o Computational-based UQ
Solutions: Fires

o Discontinuous-Galerkin solver for high CFD resolution

o Polynomial Chaos for efficient sampling and accurate surrogate/statistics
Future Work: Fires

o Cargo holds in practice are not empty

o Extend framework to handle cargo hold clutter (baggage, pipes, etc.)
Future Work: Icing

o Extend efforts to 3D wing icing

o Continue development and testing of icing code

o Use icing code to investigate statistical variation of ice shape
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