

Common Testing Problems:
Pitfalls to Prevent and Mitigate –
Checklists of Symptoms, Consequences, and
Recommendations
Donald G. Firesmith

12 November 2012

Acquisition Support Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu/

This document was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2012 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu

Page 3 of 53
© 2012 by Carnegie Mellon University

Table of Contents
1 Introduction .. 6

1.1 Checklists .. 6

1.2 Checklist Interpretation ... 7

2 Checklists .. 7

2.1 General Testing Problems .. 7

2.1.1 GEN-1 Wrong Testing Mindset ... 8

2.1.2 GEN-2 Unrealistic Testing Expectations / False Sense of Security 9

2.1.3 GEN-3 Inadequate Whitebox Testing ... 10

2.1.4 GEN-4 Too Immature for Testing .. 11

2.1.5 GEN-5 Testing is Postponed .. 11

2.1.6 GEN-6 Inadequate Testing Expertise .. 12

2.1.7 GEN-7 Inadequate Test Schedule ... 13

2.1.8 GEN-8 Testing Process Not Integrate Into Engineering Process 14

2.1.9 GEN-9 Inadequate Test Documentation ... 15

2.1.10 GEN-10 Inadequate Test Evaluations ... 16

2.1.11 GEN-11 Inadequate Test Metrics .. 17

2.1.12 GEN-12 Inadequate Test-related Risk Management .. 18

2.1.13 GEN-13 Tests not Delivered .. 18

2.1.14 GEN-14 Inadequate Test Maintenance ... 19

2.1.15 GEN-15 Inadequate Test Prioritization ... 19

2.1.16 GEN-16 Inadequate Test Configuration Management (CM) 20

2.1.17 GEN-17 Lack of Requirements Trace .. 20

2.1.18 GEN-18 Over-reliance on COTS Testing Tools .. 21

2.1.19 GEN-19 Inappropriate External Influences ... 22

2.1.20 GEN-20 Inadequate Communication Concerning Testing 23

2.1.21 GEN-21 Test Lessons Learned are Ignored ... 24

2.2 Test Planning Problems .. 24

2.2.1 PLN-1 No Separate Test Plan .. 24

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 4 of 53

2.2.2 PLN-2 Incomplete Test Planning ... 25

2.2.3 PLN-3 Unclear Testing Responsibilities ... 26

2.2.4 PLN-4 One-Size-Fits-All Test Planning .. 27

2.2.5 PLN-5 Inadequate Test Resources Planned ... 27

2.3 Requirements-Related Problems ... 28

2.3.1 REQ-1 Ambiguous Requirements ... 28

2.3.2 REQ-2 Missing Requirements ... 29

2.3.3 REQ-3 Incomplete Requirements ... 30

2.3.4 REQ-4 Incorrect Requirements ... 30

2.3.5 REQ-5 Unstable Requirements ... 31

2.3.6 REQ-6 Poorly Derived Requirements .. 31

2.3.7 REQ-7 Verification Methods Not Specified ... 31

2.4 Unit Testing Problems .. 32

2.4.1 UNT-1 Unstable Design ... 32

2.4.2 UNT-2 Inadequate Design Detail .. 33

2.4.3 UNT-3 Poor Fidelity of Test Environment ... 33

2.5 Integration Testing Problems ... 33

2.5.1 INT-1 Defect Localization .. 34

2.5.2 INT-2 Insufficient Test Environments ... 34

2.5.3 INT-3 Unavailable Components .. 35

2.5.4 INT-4 Inadequate Test Bed Quality ... 35

2.5.5 INT-5 Inadequate Self-Test ... 36

2.6 Specialty Engineering Testing Problems .. 36

2.6.1 SPC-1 Inadequate Capacity Testing .. 37

2.6.2 SPC-2 Inadequate Concurrency Testing .. 37

2.6.3 SPC-3 Inadequate Performance Testing ... 38

2.6.4 SPC-4 Inadequate Reliability Testing .. 39

2.6.5 SPC-5 Inadequate Robustness Testing .. 39

2.6.6 SPC-6 Inadequate Safety Testing .. 40

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 5 of 53

2.6.7 SPC-7 Inadequate Security Testing ... 41

2.6.8 SPC-8 Inadequate Usability Testing .. 41

2.7 System Testing Problems ... 42

2.7.1 SYS-1 Testing Robustness Requirements is Difficult ... 42

2.7.2 SYS-2 Lack of Test Hooks ... 43

2.7.3 SYS-3 Testing Code Coverage is Difficult... 43

2.8 System of Systems (SoS) Testing Problems .. 44

2.8.1 SoS-1 Inadequate SoS Planning .. 44

2.8.2 SoS-2 Poor or Missing SoS Requirements ... 45

2.8.3 SoS-3 Unclear SoS Testing Responsibilities ... 45

2.8.4 SoS-4 Inadequate Funding for SoS Testing ... 45

2.8.5 SoS-5 SoS Testing not Properly Scheduled ... 46

2.8.6 SoS-6 Inadequate Test Support from Individual Systems....................................... 46

2.8.7 SoS-7 Inadequate Defect Tracking Across Projects .. 46

2.8.8 SoS-8 Finger-Pointing .. 47

2.9 Regression Testing Problems ... 47

2.9.1 REG-1 Insufficient Regression Test Automation ... 47

2.9.2 REG-2 Regression Tests Not Rerun ... 48

2.9.3 REG-3 Inadequate Scope of Regression Testing ... 48

2.9.4 REG-4 Only Low-Level Regression Tests ... 49

2.9.5 REG-5 Disagreement over Maintenance Test Resources 49

3 Conclusion ... 50

3.1 Testing Problems .. 50

3.2 Common Consequences ... 50

3.3 Common Solutions ... 51

3.4 Potential Future Work .. 52

4 Acknowledgements ... 52

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 6 of 53

1 Introduction
There are many testing problems that can occur during the development or maintenance of
software-reliant systems and software applications. While no project is likely to be so poorly
managed and executed as to experience the majority of these problems, most projects will
suffer several of them. Similarly, while exhibiting these testing problems does not guarantee
failure, these problems definitely pose risks that need to be managed.

In this document, the problems involving how testing is performed in practice have been
grouped into the following categories:
1. General Testing Problems – 23 problems of a general nature not restricted to a specific

type or scope of testing.
2. Test Planning Problems – 5 problems that occur due to inadequate test planning
3. Requirements-related Problems – 7 testing problems due to poor requirements
4. Unit Testing Problems – 3 problems specific to unit testing
5. Integration Testing Problems – 5 problems specific to integration testing
6. Specialty Engineering Testing Problems – 8 problems specific to the specialty-engineering

testing of quality requirements
7. System Testing Problems – 3 problems specific to the testing of complete systems
8. System of System Testing Problems – 8 problems specific to the testing of systems of

systems
9. Regression Testing Problems – 5 problems specific to the performance of regression testing

including testing during maintenance

1.1 Checklists
Each of the above nine sets of commonly occurring testing problems has been turned into a
checklist, which can be used during the development and review of test plans and test process
documents as well the testing sections of system engineering management plans (SEMPs) and
software development plans (SDPs). These checklists can also be used during the oversight and
evaluation of the actual testing. While the checklist results are intended to be used to help
identify possible testing risks and thus the probable need to fix the specific problems found,
these results are not intended for use as input to some quantitative scoring scheme.

Although each of these testing problems has been observed on multiple projects, there is no
guarantee that the set is exhaustive. It is entirely possible that you may have testing problems
not addressed by this document.

In the following checklists, each testing problem is documented with the following information:
• Title – a short descriptive name that identifies the problem

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 7 of 53

• Description – a brief descriptive definition of the problem
• Symptoms (how you will know) – a list of symptoms that the problem may exist
• Potential Consequences (why you should care) – a list of the potential negative

consequences to expect if the problem exists
• Recommendations (what you should do) – a list of recommended actions to take to help

solve the problem

1.2 Checklist Interpretation
The goal of testing is not to prove that something works, but rather to demonstrate that it does
not.1 A good tester assumes that there are always defects (an extremely safe assumption), and
it is the tester’s responsibility to uncover them. Thus, a good test is one that causes the thing
being tested to fail so that the underlying defect(s) can be found and fixed.

Note that defects are not restricted to violations of specified (or unspecified) requirements.
Some of the other important types of defects are:
• inconsistencies between the implementation and either the architecture or the design
• violations of coding standards
• the unnecessary inclusion of safety or security vulnerabilities (e.g., the use of inherently

unsafe language features or lack of verification of input data)

Given that testers are looking for problems, it thus seems fitting that these testing checklists
are designed to help identify testing problems rather than to show that no such testing
problems exist. A “yes” result for symptoms or consequences signifies that a potential problem
has been found, not that the absence of a problem has been shown. Just as a failed test should
not be viewed negatively but rather as a positive indication of a defect that can now be fixed, a
“yes” result on the checklists should also be viewed as a “positive” result in the following sense:
a previously unknown problem is now known to exist and can therefore be fixed, which is surely
a positive step forward.

2 Checklists

2.1 General Testing Problems
The following testing problems are quite general and commonly observed regardless of the
type of testing being performed:

1 Although positive testing results are often used as evidence that the system (or subsystem) under test meets its

(derived and allocated) requirements, testing can almost never be exhaustive and cannot “prove” that the
requirements are being met. Similarly, testing (especially system and operational testing) can also provide
evidence that the system under test is “fit for purpose” and therefore ready to be placed into operation. For
example, certain testing provides evidence that can be used for safety and security accreditation and
certification. Nevertheless, a tester must exhibit a “show it fails” rather than a “show it works” mindset to be
effective.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 8 of 53

GEN-1 Wrong Testing Mindset
GEN-2 Unrealistic Testing Expectations / False Sense of Security
GEN-3 Inadequate Whitebox Testing
GEN-4 Too Immature for Testing
GEN-5 Testing is Postponed
GEN-6 Inadequate Testing Expertise
GEN-7 Inadequate Test Schedule
GEN-8 Testing Process Not Integrated Into Engineering Process
GEN-9 Inadequate Test Documentation
GEN-10 Inadequate Test Evaluations
GEN-11 Inadequate Test Metrics
GEN-12 Inadequate Test-related Risk Management
GEN-13 Tests not Delivered
GEN-14 Inadequate Test Maintenance
GEN-15 Inadequate Test Prioritization
GEN-16 Inadequate Test Configuration Management (CM)
GEN-17 Lack of Requirements Trace
GEN-18 Software Under Test Behaves Differently
GEN-19 Over-reliance on Manual Testing
GEN-20 Over-reliance on COTS Testing Tools
GEN-21 Inappropriate External Pressures
GEN-22 Inadequate Communication Concerning Testing
GEN-23 Test Lessons Learned are Ignored

2.1.1 GEN-1 Wrong Testing Mindset

Description: Some of the testers and other testing stakeholders have the wrong testing
mindset.

Symptoms: Some testers and other testing stakeholders assume that the
system/software works. Testers assume or are told that their job is to verify
or “prove” that the system/software works.2 Testing is being used to
demonstrate that the system/software works properly rather than to
determine where and how it fails. Only normal (“sunny day” or “happy path”)
behavior is being tested. There is little or no testing of exceptional or
fault/failure tolerant (“rainy day”) behavior. There is no testing of input data
(e.g., range testing of the handling of invalid input values). Test input includes

Observed

2 Using testing to “prove” that their software works is most likely to become a problem when developers test

their own software (e.g., with unit testing and with small cross-functional or agile teams).

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 9 of 53

only middle of the road values rather than boundary values and corner cases.

Potential Consequences: There is a high probability that the delivered system
or software will contain a significant number of residual defects related to
abnormal behavior (e.g., exceptional use case paths) and these defects will
unnecessarily reduce its reliability and robustness (e.g., error, fault, and
failure tolerance). Customer representatives, managers, and developers will
have a false sense of security that the system functions properly.

Observed

Recommendations: Explicitly state in the project test plan that the primary
goal of testing is to find defects by causing the system to fail (i.e., to break the
system) rather than to demonstrate that there are no defects (i.e., to show
that it works). Provide test training that emphasizes the proper testing
mindset. In addition to test cases that verify all nominal behavior, emphasize
looking for defects where they are most likely to hide (e.g., boundary values
and corner cases).3

Implemented

2.1.2 GEN-2 Unrealistic Testing Expectations / False Sense of Security

Description: Testers and other testing stakeholders have unrealistic testing expectations that
generate a false sense of security.

Symptoms: Testers and other testing stakeholders (e.g., managers and
customer representatives) falsely believe that:

• Testing detects all (or even the majority of) defects.4
• Testing proves that there are no remaining defects and that the system

therefore works as intended.
• Testing can be, for all practical purposes, exhaustive.
• Testing can be relied on for all verification. (Note that some requirements

are better verified via analysis, demonstration, certification, and
inspection)

• Testing (if it is automated) will guarantee the quality of the tests and
reduce the testing effort5

Managers and other testing stakeholders do not understand that:

Observed

3 Whereas tests that verify nominal behavior are essential, testers must keep in mind that there are typically

many more ways for the system/software under test to fail than to work properly. Also, nominal tests must
remain part of the regression test suite even after all known defects are fixed because changes could introduce
new defects that cause nominal behavior to fail.

4 Testing typically finds less than half of all latent defects and is not the most efficient way of detecting many
defects.

5 This depends on the development cycle and the volatility of the system’s requirements, architecture, design,
and implementation.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 10 of 53

• Test automation requires specialized expertise and needs to be budgeted
for the effort required to develop, verify, and maintain the automated
tests.

• A passed test could result from a weak/incorrect test rather than a lack of
defects.

• A truly successful/useful test is one that finds one or more defects,
whereas a passed test only shows that the system worked in that single
specific instance.

Potential Consequences: Testers and other testing stakeholders will have a
false sense of security that the system or software will function properly on
delivery and deployment. Non-testing forms of verification (e.g., analysis,
demonstration, inspection, and simulation) will not be given adequate
emphasis.

Observed

Recommendations: Ensure via training and consulting that managers,
customer representatives, testers, and other test stakeholders understand
that:

• Testing will not detect all (or even a majority of) defects
• No testing is truly exhaustive
• Testing cannot prove (or demonstrate) that the system works under all

combinations of preconditions and trigger events.
• A passed test could result from a weak test rather than a lack of defects.
• A truly successful test is one that finds one or more defects.

Do not rely on testing for the verification of all requirements, especially
architecturally-significant quality requirements.

Implemented

2.1.3 GEN-3 Inadequate Whitebox Testing

Description: The amount of unit- and integration-level whitebox testing is inadequate to
prevent large numbers of residual defects from slipping past to blackbox system testing.

Symptoms: System testing is identifying significant numbers of defects that
should have been found during unit and integration-testing. Similar residual
defects are also causing faults and failures after the system has been
delivered and placed into operation.

Observed

Potential Consequences: System testing is unlikely to be completed on
schedule. Testers and developers will have a harder time localizing the
defects that the system tests reveal. Testers will need to work excessively
long hours. The system or software may be delivered late with an
unnecessarily large number of residual defects. The costs of finding and fixing

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 11 of 53

defects will rise when defects are discovered later than necessary during the
testing process.

Recommendations: Increase the amount and effectiveness of unit testing and
integration testing. Review the test plans and process documents to ensure
that they adequately address lower-level testing. When appropriate, improve
the test plans and process documents with regard to unit and integration
testing. Measure the number of defects slipping past unit and integration
testing.

Implemented

2.1.4 GEN-4 Too Immature for Testing

Description: Some of the products being tested are immature, containing too many defects.

Symptoms: Large numbers of requirements, architecture, and design defects
are being found that should have been discovered (during reviews) and fixed
prior to current testing. The product is delivered for testing when it is not
ready for testing because:

• Schedule pressures causes corners to be cut during earlier testing.
• Test readiness criteria do not exist or are not enforced.
• Management, customer/user representatives, and developers do not

understand the impact on testing of immature products.

Observed

Potential Consequences: Testing will find many defects that should have
been detected during previous levels of testing. Encapsulation due to
integration will make it unnecessarily difficult to localize the defect that
caused the test failure. Testing may not be completed on schedule.

Observed

Recommendations: Set and enforce reasonable criteria for test readiness.
Increase the amount of earlier verification of the requirements, architecture,
and design (e.g., with peer-level reviews and inspections). Improve the
effectiveness of earlier disciplines and types of testing (e.g., by improving
methods and providing training). Measure the number of defects slipping
through multiple disciplines and types of testing (e.g., where the defect was
introduced and where it was found).

Implemented

2.1.5 GEN-5 Testing is Postponed

Description: Testing is postponed until late in the development schedule.

Symptoms: Testing is scheduled to be performed late in the development
cycle on the project master schedule. Little or no unit or integration testing is
planned or is being performed during the early and middle stages of the

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 12 of 53

development cycle.

Potential Consequences: It is very difficult to find and localize defects that
remain hidden within the internals of the system. It is difficult to show the
required degree of test coverage. There is no time left in the schedule to
correct any major defects found.6

Observed

Recommendations: Plan and schedule testing to be performed in an iterative,
incremental, and parallel manner during the vast majority of the
development cycle. Verify the proper performance of this testing during
major project milestones. Evaluate test metrics during the entire
development process.

Implemented

2.1.6 GEN-6 Inadequate Testing Expertise

Description: Too many people have inadequate testing expertise, experience, and training.

Symptoms: Testers and/or those who oversee them (e.g., managers and
customer representatives) have inadequate testing expertise, experience, or
training. Developers who are not professional testers are tasked to perform
testing. Little or no classroom or on-the-job training in testing has taken
place. Testing is ad hoc without any proper process. Best practices are not
being followed.

Observed

Potential Consequences: Testing will not be effective in detecting defects,
especially the less obvious ones. The productivity of the testers will be
needlessly low. There is a high probability that the system or software will be
delivered late with an unnecessarily large number of residual defects. During
development, managers, developers, and customer representatives will have
a false sense of security that the system functions properly7.

Observed

Recommendations: Hire full time (i.e., professional) testers who have
sufficient expertise and experience in testing. Obtain independent support for
those overseeing testing. Provide appropriate amounts of test training (both
classroom and on-the-job) for both testers and those overseeing testing.
Provide proper test processes including procedures, standards, guidelines,

Implemented

6 An interesting example of this is the Hubble telescope. Testing of the mirror’s focusing was postponed until

after launch, resulting in an incredibly expensive repair mission.
7 This false sense of security is likely to be replaced by a sense of panic when the system begins to frequently fail

operational testing or real-world usage after deployment.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 13 of 53

and templates for On-The-Job training. Ensure that testers automating testing
have the necessary specialized expertise and training.8 Use an independent
test organization staffed with experienced trained testers for
system/acceptance testing, whereby the head of this organization is at the
same (or higher) level as the project manager.

2.1.7 GEN-7 Inadequate Test Schedule

Description: The testing schedule is inadequate to permit proper testing.

Symptoms: Testing is incomplete because there is insufficient time allocated
in the project master schedule to perform all test activities (e.g., automating
testing, configuring test environments, and developing test data and test
scripts/drivers and test stubs) and to perform all appropriate tests (e.g.,
abnormal behavior, quality requirements, regression testing).9 Testers are
working excessively and unsustainably long hours and days per week in an
attempt to meet schedule deadlines.

Observed

Potential Consequences: Testers will become exhausted and will make an
unnecessarily large number of mistakes. Tester productivity (e.g., importance
of defects found and number of defects found per unit time) will decrease.
Customer representatives, managers, and developers will have a false sense
of security that the system functions properly. There is a significant
probability that the system or software will be delivered late with an
unnecessarily large number of residual defects.

Observed

Recommendations: Ensure that adequate time for testing is included in the
program master schedule and test team schedules including the testing of
abnormal behavior and the specialty engineering testing of quality
requirements.10 Deliver inputs to the testing process (e.g., requirements,
architecture, design, and implementation) earlier and more often (e.g., as
part of an incremental, iterative, parallel – agile – development cycle).
Provide adequate time for testing in change request estimates. Provide
evidence-based estimates of the amount of testing and associated test effort

Implemented

8 Note that these recommendations apply, regardless of whether the project uses separate testing teams or

cross functional teams including testers.
9 Note that an agile (i.e., iterative, incremental, and concurrent) development/life cycle greatly increases the

amount of regression testing needed (although this increase in testing can be largely offset by highly
automating regression tests). Although testing can never be exhaustive, more time is typically needed for
adequate testing unless testing can be made more efficient. For example, fewer defects could be produced and
these defects can be found and fixed earlier and thereby be prevented from reaching the current testing.

10 Also integrate the testing process into the software development process.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 14 of 53

that will be needed. Provide sufficient test resources (e.g., number of testers,
test environments, and test tools). Automate as much of the regression
testing as is practical.11 Do not reduce the testing effort in order to meet a
delivery deadline.

2.1.8 GEN-8 Testing Process Not Integrated Into Engineering Process

Description: The testing process is not integrated into the overall system/software
engineering process.

Symptoms: There is little or no discussion of testing in the system/software
engineering process documentation. All or most of testing is done as a
completely independent activity performed by staff members who are not
part of the project engineering team. Testing is treated as a separate
specialty-engineering activity with only limited interfaces with the primary
engineering activities. Testers are not included in the requirements teams,
architecture teams, and any cross functional engineering teams.

Observed

Potential Consequences: There is inadequate communication between
testers and other system/software engineers (e.g., requirements engineers,
architects, designers, and implementers). Few testing outsiders will
understand the scope, complexity, and importance of testing. Testers will not
understand the work being performed by other engineers. There will be
incompatibilities between outputs and associated inputs at the interfaces
between testers and other engineers. Testing will be less effective and take
longer than necessary.

Observed

Recommendations: In addition to being in test plans such as the Test and
Evaluation Master Plan (TEMP) or Software Test Plan (STP) as well as in other
process documents, provide high-level overviews of testing in System
Engineering Master Plans (SEMPs) and Software Development Plans (SDPs).
Incorporate testing into the Master Project Schedule. Incorporate testing into
the project work breakdown structure (WBS). Have test subject matter
experts and project testers collaborate closely with the project chief engineer
/ technical lead and process engineer when they develop the engineering
process descriptions and associated process documents. Document how

Implemented

11 When there is insufficient time to perform manual testing, it may be difficult to justify the automation of these

tests. However, automating regression testing is not just a maintenance issue. Even during initial development,
there should typically be a large amount of regression testing, especially if an iterative and incremental
development cycle is used. Thus, ignoring the automation of regression testing is often a case of being penny
wise and pound foolish.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 15 of 53

testing is integrated into the system/software development/life cycle
(regardless of whether it is traditional waterfall or agile (iterative,
incremental, and parallel), or anything in between).

2.1.9 GEN-9 Inadequate Test Documentation

Description: Test documentation is inadequate for defect identification and analysis,
regression testing, test automation, reuse, and quality assurance of the testing process.12

Symptoms: Test (a.k.a., defect/bug/trouble) reports do not contain sufficient
detail to enable developers to reproduce to faults/failures and thereby
identify the underlying defects. Different testers and test teams use different
test report templates.
Testing assets (e.g., test documents, environments, and test cases) are not
sufficiently documented to be used by:

• testers to drive test automation
• testers to perform regression testing, either during initial development or

during maintenance
• quality assurance personnel and customer representatives during

evaluation and oversight of the testing process
• testers other than the original test developer (e.g., by those performing

integration, system, system of system, and maintenance testing)
• test teams from other projects developing/maintaining related systems

within a product family or product line

Test cases do not completely describe test preconditions, test trigger events,
test input data, mandatory/expected test outputs (data and commands), and
mandatory/expected system post-conditions.

Observed

Potential Consequences: Developers will be unable to reproduce some
faults/failures. It will take longer to identify and fix some of the underlying
defects. Test deadlines will be missed.
Maintenance costs will be needlessly high. Insufficient regression testing may
be performed. The reuse of testing assets will be needlessly low, thereby
unnecessarily increasing the costs, schedule, and effort that will be spent
recreating testing assets.

Observed

Recommendations: Use the contract, test plans, test training, test process
documents, and test standards to specify the required test documents and
ensure that test work products are adequately documented. Ensure that test

Implemented

12 This is often cause by managers attempting to decrease the testing effort and thereby meet schedule deadlines

or by processes developed by people who do not have adequate testing training and experience.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 16 of 53

cases completely describe test preconditions, test trigger events, test input
data, mandatory/expected test outputs (data and commands), and
mandatory/expected system post-conditions. When using an iterative,
incremental, and parallel – agile – development cycle in which components
under test will frequently change, concentrate on making their associated
executable testing work products self-documenting (rather than using
separate testing documentation) so that the components and their testing
work products are more likely to be changed together and thereby remain
consistent. Use common standard templates for test documents (e.g., test
plans, test cases, test procedures, and test reports). Use a test
documentation tool or database to record test reports. When using a
database to store test results, make sure that its schema supports easy
searches. Clearly identify the versions of the software, test environment, test
cases, etc. to use to ensure consistency.

2.1.10 GEN-10 Inadequate Test Evaluations

Description: The quality of the test assets is not being adequately evaluated prior to their use.

Symptoms: Little or no [peer-level] inspections, walk-throughs, or reviews of
the test assets (e.g., test inputs, preconditions, trigger events, expected test
outputs and postconditions) are being performed prior to actual testing.

Observed

Potential Consequences: Test plans, procedures, test cases, and other testing
work products will contain defects that could have been found during these
evaluations. There will be an increase in false positive and false negative test
results. Unnecessary effort will be wasted identifying and fixing problems.
Some defects will not be found, and an unnecessary number of these defects
may make it through testing and into the deployed system.

Observed

Recommendations: Incorporate test evaluations into (1) the system/software
development process documents, (2) the project schedules (master and
team), and the project work breakdown structure (WBS). Ensure that the
following test assets are reviewed prior to actual testing: test inputs,
preconditions (pre-test state), and test oracle including expected test outputs
and postconditions. To the extent practical, ensure that the test evaluation
team includes other testers, requirements engineers, user representatives,
subject matter experts, architects, and implementers.

Implemented

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 17 of 53

2.1.11 GEN-11 Inadequate Test Metrics

Description: Insufficient test metrics are being produced, analyzed, and reported.

Symptoms: Insufficient or no test metrics are being produced, analyzed, and
reported. The primary test metrics (e.g., number of tests13, number of tests
needed to meet adequate or required test coverage levels, number of tests
passed/failed, number of defects found) show neither the productivity of the
testers nor their effectiveness at finding defects (e.g., defects found per test
or per day). The number of latent undiscovered defects remaining is not
estimated (e.g., using COQUALMO14). Management measures tester
productivity strictly in terms of defects found per unit time, ignoring the
importance / severity of the defects found.

Observed

Potential Consequences: Managers, testers, and other stakeholders in testing
will not accurately know the quality of testing, the importance of the defects
being found, or the number of residual defects in the delivered system or
software. Managers will not know the productivity of the testers and their
effectiveness at finding of important defects, thereby making it difficult to
improve the testing process. Testers may concentrate on finding lots of
(unimportant) defects rather than finding critical defects (e.g., those with
mission-critical and safety-critical ramifications). Customer representatives,
managers, and developers may have a false sense of security that the system
functions properly.

Observed

Recommendations: Incorporate a robust metrics program in the test plan
that covers leading indicators. Emphasize the finding of important defects.
Some representative examples of useful testing metrics include the:

• number of defects found per test (test effectiveness metric)
• number of defects found per tester day (tester productivity metric)
• number of defects that slip through each verification milestone / inch

pebble (e.g., reviews, inspections, tests)15
• estimated number of latent undiscovered defects remaining in the

delivered system (e.g., estimated using COQUALMO)

Important: Evaluate and maintain visibility into the as-performed testing

Implemented

13 Note that the number of tests metric does not indicate the effort or complexity of identifying, analyzing, and

fixing defects.
14 COQUALMO (COnstructive QUALity Model is an estimation model that can be used for predicting the number

of residual defects/KSLOC (thousands of source lines of code) or defects/FP (Function Point) in a software
product.

15 For example, what are the percentages of defects that manage to slip by architecture reviews, design reviews,
implementation inspections, unit testing, integration testing, and system testing without being detected?

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 18 of 53

process to ensure that it does not become metrics-driven. In other words,
watch out for signs that testers worry more about looking good (e.g., by
concentrating on only the defects that are easy to find) than on finding the
most important defects.

2.1.12 GEN-12 Inadequate Test-related Risk Management

Description: There are too few test-related risks identified in the project’s official risk
repository. 16

Symptoms: Managers treat risk as a “four letter word”.17 There are little or
no test-related risks identified in the project’s official risk repository. The
number of test-related risks is unrealistically low. The identified test-related
risks have inappropriately low probabilities, harm severities, and priorities.
The identified test risks have no associated risk mitigation approaches and no
one assigned as being responsible for the risk. The test risks are never
updated (e.g., additions or modification) over the course of the project.
Testing risks are not addressed in either the test plan(s) or the risk
management plan.

Observed

Potential Consequences: Testing risks are not visible so that management
and acquirer representatives are unaware of their existence. Test-related
risks are not being managed or their management is not given sufficiently
high priority.

Observed

Recommendations: Ensure that test-related risks are identified, incorporated
into the official project risk repository. Ensure that test-related risks are
provided realistic probabilities, harm severities, and priorities.

Implemented

2.1.13 GEN-13 Tests not Delivered

Description: Test assets are not being delivered along with the system / software.

Symptoms: The delivery of tests (e.g., test cases, test oracles, test
drivers/scripts, test stubs, and test environments) is neither required nor
planned. Tests are not delivered along with the system / software.

Observed

Potential Consequences: It will be unnecessarily difficult to perform testing
during maintenance. There will be inadequate regression testing as the

Observed

16 These potential testing problems can be viewed as generic testing risks.
17 Adding risks to the risk repository is looked on as a symptom of management failure. Therefore, risks (including

testing risks) tend to be labeled as issues or concerns so that they need not be treated as an official risk.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 19 of 53

delivered system/software is updated. Some post-delivery testing will not be
performed so that some post-delivery defects may not being found and fixed.

Recommendations: Ensure that the migration to maintenance section of the
system development contract or associated list of deliverables includes the
delivery of all test work products needed to perform testing after delivery.

Implemented

2.1.14 GEN-14 Inadequate Test Maintenance

Description: Testing assets are not being properly maintained.

Symptoms: Testing assets (e.g., test software and documents such as test
cases, test procedures, test drivers, and test stubs) are not being adequately
updated and iterated as defects are found and the system software is
changed (e.g., due to refactoring or the use of an agile – incremental and
iterative development cycle).

Observed

Potential Consequences: Testing assets are no longer consistent with the
current requirements, architecture, design, and implementation. Test
productivity will decrease as the number of false negative test results
increases (i.e., as tests fail due to test defects). The amount of productive
regression testing will decrease as effort is redirect to identifying and fixing
test defects.

Observed

Recommendations: Ensure that testing assets (e.g., test software and
documents such as test cases, test procedures, test drivers, and test stubs)
are adequately maintained as defects are found and system changes are
introduced. Ensure that testing assets remain consistent with the current
requirements, architecture, design, and implementation. Ensure that
regression test assets are updated as needed.18 Provide sufficient test
resources (e.g., schedule and staffing) to maintain the automated test cases.
Ensure that the maintenance testers are adequately trained and
experienced.19

Implemented

2.1.15 GEN-15 Inadequate Test Prioritization

Description: Testing is not being adequately prioritized.

18 While this is useful with regard to any product that undergoes multiple internal or external releases, it is

especially a good idea when an agile (iterative and incremental) development cycle produces numerous short
duration increments.

19 This will help combat the loss of project expertise due to the fact that many/most of the testers who are
members of the development staff tend to move after delivery.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 20 of 53

Symptoms: All types of testing are given the same priority. All test cases for
the system or a subsystem are given the same priority. The most important
tests of a given type are not being performed first. Difficult but important
testing is postponed until late in the schedule.

Observed

Potential Consequences: Limited testing resources will be wasted or
ineffectively used. Some of the most critical defects (in terms of failure
consequences) will not be discovered until after the system/software is
delivered and placed into operation. Specifically, defects with mission-,
safety-, and security-ramifications may not be found.

Observed

Recommendations: Prioritize testing according to the criticality (e.g., mission,
safety, and security) of the subsystem or software being tested and the
degree to which the test is likely to elicit important failures. Perform the
highest priority tests of a given type first.

Implemented

2.1.16 GEN-16 Inadequate Test Configuration Management (CM)

Description: Testing assets are not being properly placed under configuration control.

Symptoms: Test plans, procedures, test cases, and other testing work
products are not being placed under configuration control.

Observed

Potential Consequences: Test plans, test procedures, test cases, and other
testing work products will cease to be consistent with the system/software
being testing and with each other. It will be much more difficult to know that
the correct versions of the system, test environment, and tests are being used
when performing regression testing. There will be an increase in false positive
and false negative test results. False positive test results due to incorrect
version control may lead to incorrect fixes and the resulting insertion of
defects into the system/software. Unnecessary effort will be wasted
identifying and fixing CM problems. Some defects will not be found, and an
unnecessary number of these defects may make it through testing and into
the deployed system.

Observed

Recommendations: Ensure that all test plans, procedures, test cases, and
other testing work products are placed under configuration control before
they are used.

Implemented

2.1.17 GEN-17 Lack of Requirements Trace

Description: The requirements are not traced to the individual test cases.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 21 of 53

Symptoms: There is no requirements traceability matrix from the
requirements to the test cases. The mapping from the requirements to the
test cases is not stored in the project requirements repository (e.g., database
or requirements management tool). There may only be a backwards trace
from the individual test cases to the requirement(s) they test. Any tracing
that was originally created is not maintained as the requirements change.

Observed

Potential Consequences: There will not be any easy way to determine if all
requirements are being tested. If requirements change, there will be no way
of knowing which test cases need to be created, modified, or deleted.

Observed

Recommendations: Include tracing to requirements in the requirements
management tool/repository. If no such tool is being used, create a
requirements traceability matrix documenting the trace from requirements to
test cases. Include generating and maintaining the tracing from requirements
to test cases in the test plan(s). Evaluate the testing process and work
products to ensure that this tracing is being properly performed. Allocate
time in the project master schedule to perform this training.

Implemented

2.1.18 GEN-18 Software Under Test Behaves Differently

Description: The software under test and the operational software behave differently.

Symptoms: A fault or failure that occurs during testing is not repeatable
during normal operation. Software that behaved correctly during test causes
a fault or failure during operation. The software under test contains test
software that is either removed (physically or via complier switch) before
being placed in operation.

Observed

Potential Consequences: Correct behavior due to the existence of integrated
test software leads to a false sense of security.

Observed

Recommendations:20 Perform blackbox regression testing after removing the
test software. Consider incorporating the test software as deliverable built-
in-test (BIT) software.

Implemented

2.1.19 GEN-19 Over-reliance on Manual Testing

Description: Testers are placing too much reliance on manual testing.

20 Note that it may not be practical (e.g., for performance reasons or code size) or permitted (e.g., for safety or

security reasons) to deliver the system with embedded test software. For example, embedded test software
could provide an attacker with a back door capability.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 22 of 53

Symptoms: All or the majority of testing is being performed manually without
the support of test tools or test scripts.

Observed

Potential Consequences: Testing will be very labor intensive. Any non-trivial
amount of regression testing will likely be impractical.

Observed

Recommendations: Limit manual testing to only the testing for which is most
appropriate. Automate regression testing. Use test tools and scripts to
automate appropriate parts of the testing process (e.g., to ensure that testing
provides adequate code coverage).

Implemented

2.1.20 GEN-20 Over-reliance on COTS Testing Tools

Description: Testers and other testing stakeholders are placing too much reliance on testing
tools.

Symptoms: Testers and other testing stakeholders are relying on testing tools
to do far more than to merely generate sufficient whitebox test cases to
ensure code coverage. Testers are relying on the tools to automate test case
creation including test case selection and completion (“coverage”) criteria.
Testers are relying on the test tools as their test oracle (to determine the
expected – correct – test result). Testers let the tool drive the test
methodology rather than the other way around.

Observed

Potential Consequences: Testing will emphasize white-box (design-driven)
testing and will include inadequate black-box (requirements-driven) testing.
Many design defects will not be found during testing and will remain in the
delivered system.

Observed

Recommendations: Ensure that testers (e.g., via training and test planning)
understand the limits of testing tools and the automation of test case
creation. Ensure that testers need to use the requirements, architecture, and
design as the test oracle (to determine the correct test result). Let the test
methodology drive tool drive tool selection. Ensure that testers are not
relying on test tools to automate test case selection and set the test
completion (“coverage”) criteria.

Implemented

2.1.21 GEN-21 Inappropriate External Pressures

Description: Testers are subject to inappropriate external pressures, primarily from managers.

Symptoms: Managers (or developers) are dictating to the testers what
constitutes a bug or a defect worth reporting. Managerial pressure exists to:

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 23 of 53

• Inappropriately cut corners (e.g., only perform “sunny day” testing in
order to meet schedule deadlines.

• Inappropriately lower the severity and priority of reported defects.
• Not find defects (e.g., until after delivery because the project is so far

behind schedule that there is no time to fix any defects found).

Potential Consequences: If the testers yield to this pressure, then the test
metrics will accurately reflect neither the true state of the system or software
nor the status of the testing process. The delivered system or software may
contain an unnecessarily large number of residual defects.

Observed

Recommendations: Ensure that trained testers determine what constitutes a
bug or a defect worth reporting. Establish criteria for determining the priority
and severity of reported defects. Support testers when they oppose any
inappropriate managerial pressure that would have them violate their
professional ethics. Customer representatives much insist on proper testing.
Place the manager of the testing organization at the same or higher level as
the project manager in the organizational hierarchy (i.e., have the test
manager report independently of the project manager).

Implemented

2.1.22 GEN-22 Inadequate Communication Concerning Testing

Description: There is inadequate communication concerning testing among testers and other
testing stakeholders.

Symptoms: There is inadequate testing-related communication between:

• Teams within large or geographically-distributed programs
• Contractually separated teams (prime vs. subcontractor, system of

systems)
• Between testers and:

— Other developers (requirements engineers, architects, designers, and
implementers)

— Other testers
— Customer representatives, user representatives, and subject matter

experts (SMEs)

Observed

Potential Consequences: Some of the requirements may not be testable.
Some architectural decisions may make certain types of testing more difficult
or impossible. Safety and security concerns may not influence the level of
testing of safety- and security-critical functionality. Different test teams may
have difficulty coordinating their testing and scheduling their use of common
test environments.

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 24 of 53

Recommendations: Ensure that there is sufficient testing-related
communication between and among the testers and the stakeholders in
testing.

Implemented

2.1.23 GEN-23 Test Lessons Learned are Ignored

Description: Lessons learned regarding testing are not placed into practice.

Symptoms: Lessons learned during previous projects or during the testing of
previous increments of the system under test are ignored by management,
the test teams, or customer representatives.

Observed

Potential Consequences: The test processes will not be improved and the
same problems will continue to occur. Customer representatives, managers,
and developers will have a false sense of security that the system functions
properly. The system or software will be delivered with an unnecessarily large
number of associated defects.

Observed

Recommendations: Customer representatives should explicitly request and
look for evidence that previous lessons learned are incorporated into the
official test plans and process. Capture (and implement) lessons learned as
they are learned; do not wait until a project postmortem when project staff
member’s memories are fading and they are moving (have moved) on to their
next project.

Implemented

2.2 Test Planning Problems
The following testing problems are related to test planning:

PLN-1 No Separate Test Plan
PLN-2 Incomplete Test Planning
PLN-3 Unclear Test Responsibilities
PLN-4 One-Size-Fits-All Test Planning
PLN-5 Inadequate Test Resources Planned

2.2.1 PLN-1 No Separate Test Plan

Description: There is no separate testing-specific plan.

Symptoms: There is no separate Test and Evaluation Master Plan (TEMP) or
Software Test Plan (STP). There are only incomplete high-level overviews of
testing in System Engineering Master Plans (SEMPs) and Software
Development Plans (SDPs). The test planning parts of these other documents

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 25 of 53

are not written by testers. Management and developers do not understand
the complexity of testing.

Potential Consequences: Testing will not been adequately planned, and the
test plans will not be adequately documented. It will be difficult or impossible
to evaluate the planned testing process. Testing may be inefficiently and
ineffectively performed. An unnecessary number of defects may make it
through testing and into the deployed system.

Observed

Recommendations: Ensure that there is a separate Test and Evaluation
Master Plan (TEMP) or Software Test Plan (STP). Do not be satisfied with
incomplete high-level overviews of testing in System Engineering Master
Plans (SEMPs) and Software Development Plans (SDPs). Customer
representatives must ensure that test planning documents are included in the
contract as deliverable work products. Ensure that the delivery of test
planning documents is noted on the project master schedule (e.g., as part of
major milestones).

Implemented

2.2.2 PLN-2 Incomplete Test Planning

Description: The test planning documents are incomplete.

Symptoms: The test planning documents are incomplete, missing some or all
of the:

• test objectives
• testing responsibilities (who does what types of testing on what [types of]

components)
• test levels (e.g., unit, subsystem integration, system integration, system,

and system of systems)
• test types (e.g., the testing of quality requirements21, abnormal behavior,

error/fault/failure tolerance, time- and date-specific functionality, and
non-operational modes of operation such as system start-up22, degraded
mode, training, and system shutdown)

• testing methods and techniques (e.g., testing is ad hoc, and planning
documents merely list the different types of testing rather than state how
the testing will be performed)

• test prioritization (e.g., addition completeness and formality of tests of
mission-, safety-, and security-critical subsystems/software)

• test case selection criteria (e.g., single normal test case vs. boundary value

Observed

21 This includes but is not limited to the testing of availability, capacity, interoperability, performance, reliability,

safety, security, and usability requirements.
22 This includes combinations such as the testing of system start-up when hardware/software components fail.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 26 of 53

testing)
• test completion (e.g., “coverage”) criteria

The test planning documents are written by people (e.g., managers or
developers) who do not understand the scope, complexity, and importance of
testing.

Potential Consequences: Testers and stakeholders in testing may not
understand the true objective of testing (i.e., to find defects so that they can
be fixed). Some levels and types of tests may fail to be performed, allowing
certain types of residual defects to remain in the system. Some testing may
be ad hoc and therefore inefficient and ineffectual. Mission-, safety-, and
security-critical software may not be sufficiently tested to the appropriate
level of rigor.
Certain types of test cases may be ignored, resulting in related residual
defects in the tested system. Test completion criteria may be based more on
schedule deadlines than on the required degree of freedom from defects.

Observed

Recommendations: Verify during inspections/reviews that all test planning
documents are complete and that they include test objectives, testing
responsibilities, test levels, test types, testing methods and techniques, test
prioritization, and test completion criteria.

Implemented

2.2.3 PLN-3 Unclear Testing Responsibilities

Description: It is unclear who performs what testing.

Symptoms: The test planning documents do not adequately address testing
responsibilities in terms of which organizations and people will perform which
types of testing on what [types of] components.

Observed

Potential Consequences: Certain tests may not be performed, while other
tests may be performed redundantly by multiple organizations or people.
Incomplete testing may enable some defects to make it through testing and
into the deployed system. Redundant testing will waste test resources and
may cause testing deadlines to slip.

Observed

Recommendations: Obtain organizational agreement as to the testing
responsibilities. Clearly and completely document the responsibilities for
testing in the test plans as well as the charters of the teams who will be
performing the tests. Managers should clearly communicate these
responsibilities to the relevant organizations and people.

Implemented

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 27 of 53

2.2.4 PLN-4 One-Size-Fits-All Test Planning

Description: All testing is to be performed to the same level of rigor, regardless of its
criticality.

Symptoms: The test planning documents contain only generic boilerplate
rather than appropriate system-specific information. Mission-, safety-, and
security-critical software are not required to be tested more completely and
rigorously than other less-critical software.

Observed

Potential Consequences: Mission-, safety-, and security-critical software may
not be adequately tested. Some defects will not be found, and an
unnecessary number of these defects may make it through testing and into
the deployed system. The system or software may not provide some mission-
critical functionality. The system may not be adequately safe or secure.

Observed

Recommendations: Ensure that the test planning documents contain
appropriate system-specific information and are not limited to generic
boilerplate documents. Ensure that mission-, safety-, and security-critical
software are required to be tested more completely and rigorously than
other less-critical software.

Implemented

2.2.5 PLN-5 Inadequate Test Resources Planned

Description: Test plans (and management) allocate an inadequate amount of resources to
testing.

Symptoms: The test planning documents and schedules fail to provide for
adequate test resources such as:
• test time in schedule with inadequate schedule reserves
• trained and experienced testers and reviewers
• funding
• test tools and environments (e.g., integration test beds)

Observed

Potential Consequences: Adequate test resources will likely not be provided
to perform sufficient testing within schedule and budget limitations. An
unnecessary number of defects may make it through testing and into the
deployed system.

Observed

Recommendations: Begin test planning at project inception (e.g., at contract
award). Ensure that the test planning documents, schedules, and project
work breakdown structure (WBS) provide for adequate levels of these test
resources.

Implemented

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 28 of 53

2.3 Requirements-Related Problems
Many requirements lack the characteristics of good requirements such as being complete,
consistent, correct, feasible, mandatory, testable and unambiguous. Such poor quality
requirements decrease the testability of systems and software. Given poor requirements,
testers are forced to rely on structural testing such as path testing.23

The following testing problems are related to poor requirements:
REQ-1 Ambiguous Requirements
REQ-2 Missing Requirements
REQ-3 Incomplete Requirements
REQ-4 Incorrect Requirements
REQ-5 Unstable Requirements
REQ-6 Poorly Derived Requirements
REQ-7 Verification Methods Not Specified

2.3.1 REQ-1 Ambiguous Requirements

Description: Testing is problematic due to ambiguous requirements.

Symptoms: Some of the requirements are ambiguous due to the use of:

• inherently ambiguous words
• undefined technical jargon (e.g., application domain terminology as well

as the difference between such contractual words as “shall”, “should”,
“may”, “recommended”, and “optional”) and acronyms

• required quantities without associated units of measure
• unclear synonyms

Inconsistencies are detected where requirements engineers and testers
interpret the same requirement differently. Numerous false positive test
results are observed because the tests were developed in accordance with
the tester’s, rather than the requirements engineer’s, interpretation of the
associated requirements.

Observed

Potential Consequences: Testers may misinterpret the requirements, leading
to incorrect blackbox testing. Specifically, ambiguous requirements will often
give rise to incorrect test inputs and incorrect expected outputs (i.e., the test
oracle is incorrect). Testers may have to spend a sizable amount of time
meeting with requirements engineers, customer/user representatives, and

Observed

23 At least, this will help to get the system to where it will run without crashing and thereby provide a stable

system that can be modified when the customer finally determines what the true requirements are.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 29 of 53

subject matter experts in order to sufficiently clarify the ambiguities so that
testing can proceed.

Recommendations: Promote testability by ensuring that requirements are
clear and unambiguous. Ensure that one or more testers review the
requirements documents and each requirement for verifiability (testability)
before it is approved for use. Encourage testers to request clarification for all
ambiguous requirements, and encourage that the requirements be updated
based on the clarification given. Verify that the requirements do not include
words that are inherently ambiguous, undefined technical terms and
acronyms, and quantities without associated units of measure. Ensure that
the requirements only use technical or subject matter terminology that is
defined in the project glossary and do not use synonyms.

Implemented

2.3.2 REQ-2 Missing Requirements

Description: Testing is problematic due to missing requirements.

Symptoms: Some of the requirements are missing:

• Use case analysis primarily addressed normal (sunny day) paths as
opposed to fault tolerant and failure (rainy day) paths.

• Requirements for abnormal behavior (e.g., error, fault, and failure
detection and reaction) are missing.

• Quality requirements (e.g., availability, interoperability, maintainability,
performance, portability, reliability, robustness, safety, security, and
usability) are missing.

• Data requirements are missing.

Observed

Potential Consequences: The missing requirements are not tested, thereby
causing the testing to be incomplete (e.g., missing test cases). Testing will not
determine that the system or software is missing some of the necessary
behavior and characteristics. Customer representatives and developers will
have a false sense of security that the system will function properly on
delivery and deployment. Testers may have to spend a sizable amount of time
meeting with requirements engineers, customer/user representatives in
order to clarify missing requirements the existence of which was implied
during testing.

Observed

Recommendations: Promote testability by ensuring that use case analysis
adequately addresses error, fault, and failure (i.e., rainy day) tolerant paths as
well as normal (sunny day) paths. Ensure that the requirements repository

Implemented

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 30 of 53

includes a sufficient amount of the quality and data requirements. Ensure
that one or more requirements stakeholders (e.g., customer representatives,
user representatives, subject matter experts) review the requirements
documents and requirements repository contents for missing requirements
before they are accepted and approved for use.

2.3.3 REQ-3 Incomplete Requirements

Description: Testing is problematic due to incomplete requirements.

Symptoms: Requirements are incomplete. The requirements lack:

• Preconditions and trigger events
• Quantitative thresholds
• Postconditions

Observed

Consequences: Testing will be incomplete or may be incorrect. There may be
false negative test results. Some defects associated with incomplete
requirements will not be found, and an unnecessary number of these defects
may make it through testing and into the deployed system.

Observed

Recommendations: Ensure that the requirements are complete in order to
promote complete testing. Ensure that one or more requirements
stakeholders review the requirements documents and requirements
repository contents for incomplete requirements before they are accepted
and approved for use.

Implemented

2.3.4 REQ-4 Incorrect Requirements

Description: Some of the requirements are incorrect.

Symptoms: Requirements are determined to be incorrect (invalid) after the
associated tests have been developed and run. Testing results include many
false positive and false negative results.

Observed

Potential Consequences: The tests associated with incorrect requirements
must be modified or replaced and then rerun, potentially from scratch.

Observed

Recommendations: Ensure that the requirements are sufficiently validated by
requirements stakeholders (e.g., customer representatives, user
representatives, subject matter experts) before they are accepted, approved
for use, and large numbers of associated test cases are development based
on them.

Implemented

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 31 of 53

2.3.5 REQ-5 Unstable Requirements

Description: Testing is problematic due to requirements volatility.24

Symptoms: The requirements are continually changing: new requirements
are being added and existing requirements are being modified and deleted.
The requirements selected for implementation are not frozen, especially
during a short duration increment (e.g., Scrum sprint) when using an
incremental, iterative, and parallel – agile – development cycle.

Observed

Potential Consequences: Test cases (test inputs, preconditions, and expected
test outputs) and automated regression tests are being obsoleted because of
requirements changes. The system/software is delivered late.

Observed

Recommendations: Promote testability by ensuring that requirements are
reasonably stable so that test cases (test inputs, preconditions, and expected
test outputs) and automated regression tests are not constantly being
obsoleted because of requirements changes.

Implemented

2.3.6 REQ-6 Poorly Derived Requirements

Description: Testing is problematic due to poorly derived requirements.

Symptoms: Derived requirements merely restate their parent requirement.
Newly allocated requirements are not at the proper level of abstraction.

Observed

Potential Consequences: It will be difficult to produce tests at the correct
level of abstraction. Testing at the unit- and subsystem-level for these derived
requirements may be incomplete. Some of the associated lower-level defects
may not be detected until system testing.

Observed

Recommendations: Promote testability by reviewing the derived and
allocated requirements to ensure that they are at the proper level of
abstraction and exhibit all of the standard characteristics of good
requirements (e.g., completeness, consistency, correctness, feasible, a lack of
ambiguity, a lack of unnecessary architecture or design constraints, and
verifiable).

Implemented

2.3.7 REQ-7 Verification Methods Not Specified

Description: The methods intended to verify individual requirements are not specified in the

24 This testing problem is similar to but more general than the preceding problem: Incorrect Requirements

because fixing incorrect requirements is one potential reason that the requirements may be volatile. Other
reasons may be engineering missing requirements and changing stakeholder needs.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 32 of 53

requirements specification or repository.

Symptoms: The requirements specifications do not specify how individual
requirements should be verified (e.g., analysis, demonstration, inspection,
simulation, testing). The requirements repository does not include
verification method(s) as requirements metadata.

Observed

Potential Consequences: Testers and testing stakeholders may incorrectly
assume that all requirements must be verified via testing, even though other
verification methods may be adequate, be more appropriate, require less
effort, and be faster.

Observed

Recommendations: Ensure that each requirement (or set of similar
requirements) has one or more appropriate verification methods assigned to
it/them. Check the appropriateness of these verification methods during
requirements inspections, walk-throughs, and reviews. Ensure that actual
verification methods used are consistent with the specified requirements
verification methods, updating the requirements specifications and
repositories when necessary.

Implemented

2.4 Unit Testing Problems
The following testing problems are related to unit testing:25

UNT-1 Unstable Design
UNT-2 Inadequate Design Detail
UNT-3 Poor Fidelity of Test Environment

2.4.1 UNT-1 Unstable Design

Description: Unit testing is problematic due to design volatility.

Symptoms: Design changes (e.g., refactoring and new capabilities) cause the
test cases to be constantly updated and test hooks to be lost.26

Observed

Potential Consequences: Unit tests will be unstable, requiring numerous
changes and unit-level regression testing. Unit testing will take an
unnecessarily long time to perform.

Observed

Recommendations: Promote testability by ensuring that the design is
reasonably stable so that test cases do not need to be constantly updated and

Implemented

25 Note that because unit testing is typically the responsibility of the developers instead of professional testers, the

general problem of inadequate testing expertise, experience, and training often applies.
26 This is especially true with agile development cycles with many short-duration increments and with projects

where abnormal behavior is postponed until late increments.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 33 of 53

test hooks are not lost due to refactoring and new capabilities.27

2.4.2 UNT-2 Inadequate Design Detail

Description: Unit testing is problematic due to an inadequate level of design detail.

Symptoms: There is insufficient design detail to drive the testing. Observed

Potential Consequences: Unit testing (especially regression testing during
maintenance by someone other than the original developer) will be difficult
to perform and repeat. Unit testing will take an unnecessarily long time to
perform. Unit-level defects may not be found.

Observed

Recommendations: Ensure that the designers/programmers provide
sufficient, well-documented design details to drive the unit testing.

Implemented

2.4.3 UNT-3 Poor Fidelity of Test Environment

Description: Unit testing is problematic due to the test environment having poor fidelity
related to the operational system/software.

Symptoms: Unit testing is being performed using a:
• different environment (e.g., a different [or different version of the]

compiler, class library, operating system, middleware, or database) than
that used on the delivered software

• software test environment with poor hardware simulation

Observed

Potential Consequences: Unit testing will experience many false positives.
Unit testing will be difficult to perform and repeat. Unit testing will take an
unnecessarily long time to perform. Unit-level defects may not be found.

Observed

Recommendations: Ensure adequate fidelity of the test environment so that
unit testing does not experience many false positives due to using a:

• different compiler [version] than the delivered code
• software test environment with poor hardware simulation

Implemented

2.5 Integration Testing Problems
The following testing problems are related to poor requirements:

INT-1 Defect Localization
INT-2 Insufficient Test Environments
INT-3 Unavailable Components

27 This is especially important with agile development cycles with many short-duration increments and with

projects where abnormal behavior is postponed until late increments.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 34 of 53

INT-4 Inadequate Test Bed Quality
INT-5 Inadequate Self-Test

2.5.1 INT-1 Defect Localization

Description: Localizing defects is problematic due to encapsulation caused by integration.

Symptoms: It is difficult to determine the location of the defect: in the new or
updated operational software under test, in the operational hardware under
test, in the COTS OS and middleware, in the software test bed (e.g., in
software simulations of hardware), in the hardware test beds (e.g., in pre-
production hardware), in the tests themselves (e.g., in the test inputs,
preconditions, expected outputs, and expected postconditions), or in a
configuration/version mismatch among them.

Observed

Potential Consequences: Defect localization will take an unnecessarily large
amount of time and effort to perform. Errors in defect localization may cause
the wrong fix (e.g., the wrong changes or changes to the wrong software) to
be made.

Observed

Recommendations: Ensure that the architecture and design adequately
support testability (i.e., provide the testers with sufficient visibility and
control to develop and execute adequate tests). Ensure that the design and
implementation (with exception handling, BIT, and test hooks), the tests, and
the test tools make it relatively easy to determine the location of defects.
Where appropriate, incorporate a test mode that logs information about
errors, faults, and failures to support defect identification and localization.

Implemented

2.5.2 INT-2 Insufficient Test Environments

Description: There is an insufficient number of test environments.

Symptoms: There are an insufficient number of test environments. There is
an excessive amount of competition between and among the integration
testers and other testers for time on the test environments.

Observed

Potential Consequences: It will be difficult to optimally schedule the
allocation of test teams to test environments, resulting in scheduling
conflicts. Too much time will be wasted reconfiguring the test environments
for the next team’s use. Testing may not be completed on schedule.

Observed

Recommendations: Ensure that there are a sufficient number of test
environments of each type so that it is practical to optimally schedule the

Implemented

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 35 of 53

allocation of test teams to test environments. For example, this could include
in order of increasing fidelity:

• Software only on basic general-purpose platform such as a PC
• Software only on appropriate computational environment (e.g., correct

processors, busses, operating system, middleware, databases)
• Software with prototype hardware (e.g., sensors and actuators).
• Software with early/previous version of the hardware.
• Software with actual hardware.

If necessary, port the software to another available environment (with lower
fidelity) for initial testing.

2.5.3 INT-3 Unavailable Components

Description: Integration testing is problematic due to unavailability of needed system,
software, or test environment components.

Symptoms: The operational software, simulation software, test hardware,
and actual hardware components (e.g., sensors, actuators, and network
devices) are not available for integration into the test environments prior to
scheduled integration testing.

Observed

Potential Consequences: Testing will not be able to begin until the missing
components are available and have been integrated into the test
environments. Testing may not be completed on schedule.

Observed

Recommendations: Ensure that the operational software, simulation
software, test hardware, and actual hardware components are available for
integration into the test environments prior to scheduled integration testing.
The project budget and schedule need to include the effort and time required
to develop and install the simulation software and test hardware. If
necessary:

• Obtain components with lower fidelity for initial testing.
• Develop simulators for the missing components.

Implemented

2.5.4 INT-4 Inadequate Test Bed Quality

Description: The quality of the test environments is inadequate.

Symptoms: The test environments contain excessive numbers of defects. Observed

Potential Consequences: There may be numerous false positive test results. It
will be more difficult to determine whether test failures are due to the

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 36 of 53

system/software under test or the test environments. Testing will take a
needlessly long time to perform. The system may be delivered late and with
an unnecessarily large number of residual defects.

Recommendations: Ensure that the quality of the test environment is as good
as the system/software under test, especially when testing mission-, safety-,
or security-critical software. Ensure that the test environments are of
sufficient quality (e.g., via good development practices, adequate testing, and
careful tool selection).

Implemented

2.5.5 INT-5 Inadequate Self-Test

Description: Testing is problematic due to a lack of system- or software-internal self-tests.

Symptoms: The operational subsystem or software does not contain
sufficient test hooks, built-in-test (BIT), or prognostics and health
management (PHM) software.

Observed

Potential Consequences: Failures will be difficult to cause, reproduce, and
localize. Testing will take an unnecessarily long time to perform, potentially
exceeding the test schedule.

Observed

Recommendations: Ensure that the operational software or subsystem
contains sufficient test hooks, built-in-test (BIT), or prognostics and health
management (PHM) software so that failures are reasonably easy to cause,
reproduce, and localize.

Implemented

2.6 Specialty Engineering Testing Problems
The following testing problems are related to the specialty engineering testing of quality
characteristics and attributes:28

SPC-1 Inadequate Capacity Testing
SPC-2 Inadequate Concurrency Testing
SPC-3 Inadequate Performance Testing
SPC-4 Inadequate Reliability Testing
SPC-5 Inadequate Robustness Testing
SPC-6 Inadequate Safety Testing
SPC-7 Inadequate Security Testing
SPC-8 Inadequate Usability Testing

28 Note that analogous testing problems could also exist for other quality characteristics.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 37 of 53

2.6.1 SPC-1 Inadequate Capacity Testing

Description: An inadequate level of capacity testing is being performed.

Symptoms: All capacity requirements are not identified and specified. There
is little or no testing to determine if performance degrades gracefully as
capacity limits are approached, reached, and exceeded. There is little or no
verification of adequate capacity-related computational resources (e.g.,
memory utilization or processor utilization).

Observed

Potential Consequences: Testing is less likely to detect some defects causing
violations of capacity requirements. The system may not meet its capacity
requirements.

Observed

Recommendations: Ensure that all capacity requirements are properly
specified. Specify how capacity requirements will be verified (and tested) in a
project test planning document. Ensure that all capacity requirements are
adequately tested to determine performance as capacity limits are
approached, reached, and exceeded. Use tools that simulate large numbers
of simultaneous users.

Implemented

2.6.2 SPC-2 Inadequate Concurrency Testing

Description: An inadequate level of concurrency testing is being performed.

Symptoms: The testing of concurrent behavior is not addressed in any test
planning or process description documents. There is little or no testing being
performed explicitly to identify the defects that cause the common types of
concurrency faults and failures: deadlock, livelock, starvation, priority
inversion, race conditions, inconsistent views of shared memory, and
unintentional infinite loops. Any concurrency testing that is being performed
is based on a random rather than systematic approach to test case
identification (e.g., based on the interleaving of threads). Any concurrency
testing is being performed manually. Such concurrency faults and failures are
only being identified when they happen to occur while unrelated testing is
being performed. Concurrency faults and failures occur infrequently,
intermittently, and are difficult to reproduce. Testing is performed using a
low fidelity environment with regard to concurrency: threads rather than
processes, single rather than multiple processors, the use of deterministic
rather than probabilistic drivers and stubs, and the use of hardware
simulation rather than actual hardware.

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 38 of 53

Potential Consequences: Any concurrency testing is both ineffectual and
labor intensive. Many defects that can cause concurrency faults and failures
are not being found and fixed until final system testing, operational testing,
or system operation when they are much more difficult to reproduce,
localize, and understand.

Observed

Recommendations: Provide testers with training in concurrency defects,
faults, and failures. Use concurrency testing techniques that enable the
systematic selection of a reasonable number of test cases (e.g., ways of
interleaving the threads) from the impractically large number of potential test
cases. For testing of threads sharing a single processor, use a concurrency
testing tool that provides control over thread creation and scheduling. When
such tools are unavailable or inadequate, develop scripts that (1) automate
the testing of deadlock and race conditions, (2) enable the reproducibility of
test inputs, and (3) record test results for analysis. To the extent possible, do
not rely on (1) merely throwing large numbers of simultaneous
inputs/requests29 or (2) performing manual testing.

Implemented

2.6.3 SPC-3 Inadequate Performance Testing

Description: An inadequate level of performance testing is being performed.

Symptoms: Performance requirements are not specified for all of its
component quality attributes: event schedualability, jitter, latency, response
time, and through-put. There is little or no performance testing or testing to
determine if performance degrades gracefully. There is little or no verification
of adequate performance-related computational resources (e.g., I/O
bandwidth, bus bandwidth, or processor utilization). Performance testing is
performed using a low fidelity environment.

Observed

Potential Consequences: Testing is less likely to detect some performance
defects. Specify how performance requirements will be verified (and tested)
in a project test planning document. The system may not meet its
performance requirements.

Observed

Recommendations: Ensure that all performance requirements are properly
identified and specified. Ensure that all performance requirements are
adequately tested.

Implemented

29 Such tests may redundantly test the same interleaving of threads while leaving many interleavings untested.

Unexpected determanism may even result in the exact same interleaving being performed over and over again.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 39 of 53

2.6.4 SPC-4 Inadequate Reliability Testing

Description: An inadequate level of reliability testing is being performed.30

Symptoms: There is little or no long duration reliability testing (a.k.a., stability
testing) under operational profiles.

Observed

Potential Consequences: Testing is less likely to detect some defects causing
violations of reliability requirements (and data to enable the estimation of
system reliability will not be collected). The system may not meet its
reliability requirements.

Observed

Recommendations: Ensure that all reliability requirements are properly
identified and specified. Specify how reliability requirements will be verified
(or tested) in a project test planning document. To the degree that testing as
opposed to analysis is practical as a verification method, ensure that all
reliability requirements undergo sufficient long duration reliability testing
under operational profiles to estimate the system’s reliability.

Implemented

2.6.5 SPC-5 Inadequate Robustness Testing

Description: An inadequate level of robustness testing is being performed.

Symptoms: Robustness testing is not based on robustness analysis such as
abnormal (i.e., fault, degraded mode, and failure) use case paths, Event Tree
Analysis (ETA), Fault Tree Analysis (FTA), or Failure Modes Effects Criticality
Analysis (FMECA).
There is little or no robustness testing:
• Error Tolerance Testing, the goal of which is to show that system does not

detect or react properly to input errors (a subtype of which is Fuzz
Testing)

• Fault Tolerance Testing, the goal of which is to show that system does not
detect or react properly to system faults (bad internal states)

• Failure Tolerance Testing, the goal of which is to show that system does
not detect or react properly to system failures (to meet requirements)

• Environmental Tolerance Testing, the goal of which is to show that system
does not detect or react properly to dangerous environmental conditions

Observed

Potential Consequences: Testing is less likely to detect some defects causing
violations of robustness requirements. Some error, fault, failure, and

Observed

30 Note that reliability (load and stability) testing are nominal tests in the sense that they are executed within the

performance envelop of the System Under Test (SUT). Capacity (stress) testing, where you test for graceful
degradation, is outside the scope of performance testing.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 40 of 53

environmental tolerance defects will not be found. The system may exhibit
inadequate robustness.

Recommendations: Ensure that all robustness requirements are properly
identified and specified. Specify how robustness requirements will be verified
(and tested) in a project test planning document. Ensure that there is
sufficient testing of all robustness requirements to verify adequate error,
fault, failure, and environmental tolerance. Ensure that this testing is based
on proper robustness analysis such as abnormal (i.e., fault, degraded mode,
and failure) use case paths, Event Tree Analysis (ETA), Fault Tree Analysis
(FTA), or Failure Modes Effects Criticality Analysis (FMECA).

Implemented

2.6.6 SPC-6 Inadequate Safety Testing

Description: An inadequate level of safety testing is being performed.

Symptoms: There is little or no:
• testing based on safety analysis (e.g., abuse/mishap cases, ETA, or FTA)
• testing of safeguards (e.g., interlocks)
• testing of fail-safe behavior
• safety-specific testing:

— Vulnerability Testing, the goal of which is to expose a system
vulnerability (i.e., defect or weakness)31

— Hazard Testing, the goal of which is to make the system cause a
hazard to come into existence

— Mishap Testing, the goal of which is to make the system cause an
accident or near miss

Observed

Potential Consequences: Testing is less likely to detect some defects causing
violations of safety requirements. Some defects with safety ramifications will
not be found. The system may exhibit inadequate safety.

Observed

Recommendations: Ensure that all safety-related requirements are properly
identified and specified. Specify how safety requirements will be verified
(and tested) in a project test planning document. Ensure that there is
sufficient blackbox testing of all safety requirements and sufficient
graybox/whitebox testing of safeguards (e.g., interlocks) and fail-safe
behavior. Ensure that this testing is based on adequate safety analysis (e.g.,
abuse/mishap cases) as well as the safety architecture and design.

Implemented

31 Note that the term vulnerability (meaning a weakness in the system/software) applies to both safety and

security. Vulnerabilities can be exploited by an abuser [either unintentional (safety) or intentional (security)]
and contribute to the occurrence of an abuse [either mishap (safety) or misuse (security)].

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 41 of 53

2.6.7 SPC-7 Inadequate Security Testing

Description: An inadequate level of security testing is being performed.

Symptoms: There is little or no:
• testing based on security analysis (e.g., attack trees or abuse/misuse

cases)
• testing of security controls (e.g., access control, encryption/decryption, or

intrusion detection)
• testing of fail-secure behavior
• security-specific testing:

— Penetration Testing, the goal of which is to penetrate the system’s
defenses

— Fuzz Testing, the goal of which is to cause the system to fail due to
random input

— Vulnerability Testing, the goal of which is to expose a system
vulnerability (i.e., defect or weakness)

Observed

Potential Consequences: Testing is less likely to detect some defects causing
violations of security requirements.32 Some vulnerabilities and other defects
having security ramifications will not be found. The system may exhibit
inadequate security.

Observed

Recommendations: Ensure that all security-related requirements are
properly identified and specified. Specify how security requirements will be
verified (and tested) in a project test planning document. Ensure that all
system actors are documented (e.g., profiled). Ensure that there is sufficient
security testing (e.g., penetration testing) of all security requirements,
security features, security controls, and fail-secure behavior. Ensure that this
testing is based on adequate security analysis (e.g., attack trees,
abuse/misuse cases). Note: use static vulnerability analysis tools to identify
commonly occurring security vulnerabilities.

Implemented

2.6.8 SPC-8 Inadequate Usability Testing

Description: An inadequate level of usability testing is being performed.

Symptoms: There is little or no explicit usability testing of the system’s or
software’s human interfaces.

Observed

Potential Consequences: Testing is less likely to detect some defects causing Observed

32 Warning; although a bad idea, security requirements are sometimes specified in a security document rather

than in the requirements specification/repository. Similarly, security testing is sometimes documented in
security rather than testing documents.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 42 of 53

violations of usability requirements. Some defects with usability ramifications
will not be found. The system may exhibit inadequate usability.

Recommendations: Ensure that all usability requirements are properly
identified and specified. Specify how usability requirements will be verified
(and tested) in a project test planning document. Ensure that there is
sufficient usability testing of the human interfaces. Include usability testing
for all relevant usability attributes such as accessibility, attractiveness (also
known as engagability, preference, and stickiness), credibility (also known as
trustworthiness), differentiation, ease of entry, ease of location, ease of
remembering, effectiveness, effort minimization, error minimization,
learnability, navigability, retrievability, suitability (also known as
appropriateness), understandability, and user satisfaction.

Implemented

2.7 System Testing Problems
The very nature of system testing often ensures that these problems cannot be eliminated. At
best, the recommended solutions can only mitigate them.

The following testing problems are related to system testing:
SYS-1 Testing Robustness is Difficult
SYS-2 Testing Code Coverage is Difficult
SYS-3 Lack of Test Hooks

2.7.1 SYS-1 Testing Robustness Requirements is Difficult

Description: The testing of robustness requirements (specifying error, fault, and failure
tolerance)33 is difficult.

Symptoms: It is difficult for tests of the integrated system to cause local faults
(i.e., internal to a subsystem) in order to test for fault tolerance.

Observed

Potential Consequences: The system or software is less testable because it is
less controllable (e.g., causing local faults). Less robustness testing will be
done and the delivered system will contain an unnecessarily large number of
defects that lessen error, fault, and failure tolerance.

Observed

Recommendations: Ensure that robustness requirements are specified and Implemented

33 An error is bad input (from a human, another system, or hardware). A fault is an encapsulated (information

hiding) incorrect state or incorrect stored data. A failure is an externally visible incorrect response (e.g., output
data or control) that typically is a violation of some requirement. An error may or may not result in a fault
depending on whether it is stored and there is error tolerance. A fault may or may not cause a failure
depending on whether it is executed and there is fault tolerance.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 43 of 53

associated architecture/design decisions are documented. Ensure adequate
test tool support or that sufficient robustness including error, fault, and
failure logging is incorporated into the system to enable adequate testing for
tolerance (e.g., by causing encapsulated errors and faults, and observing the
resulting robustness). Where appropriate, incorporate test hooks, built-in test
(BIT), fault logging (possibly triggered by exception handling, a prognostics
and health management (PHM) function or subsystem, or some other way to
overcome information hiding in order to verify test case preconditions and
post-conditions.

2.7.2 SYS-2 Lack of Test Hooks

Description: System testing is difficult because temporary test hooks have been removed.

Symptoms: Internal test hooks and testing software has been removed prior
to system testing (e.g., for security or performance reasons).

Observed

Potential Consequences: It will be difficult to test locally implemented
requirements. Such requirements will not be verified at the system level
because of decreased testability due to low controllability and observability.

Observed

Recommendations: Ensure that unit and integration testing have adequately
tested locally implemented and encapsulated requirements that are difficult
to verify during system testing. Use a test/logging system mode (if one exists).

Implemented

2.7.3 SYS-3 Testing Code Coverage is Difficult

Description: Ensuring that tests provide adequate code coverage is difficult.

Symptoms: It is difficult for tests of the integrated system to demonstrate
code coverage.34

Observed

Consequences: Adequate code coverage as mandated for mission-, safety-,
and security-critical software will not be verified. The system will not receive
its safety and security accreditation and certification until code coverage is
verified.

Observed

Recommendations: Ensure that unit and integration testing (including
regression testing) have demonstrated sufficient code coverage so that code

Implemented

34 Code coverage is typically very important for software with safety or security ramifications. When software is

categorized by safety or security significance, the mandatory rigor of testing (including the completeness of
coverage) increases as the safety and security risk increases (e.g., from function coverage through statement
coverage, decision or branch coverage, and condition coverage to path coverage).

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 44 of 53

coverage need not be demonstrated at the system level. Use software test
tools or probes to measure and report code coverage.

2.8 System of Systems (SoS) Testing Problems
Note that system of systems means the integration of separately developed, funded, and
scheduled systems having independent governance. This is not referring to a system developed
by a prime contractor or integrated by a system integrator consisting of subsystems developed
by subcontractors or vendors.

The following testing problems are related to system of systems testing:
SoS-1 Inadequate SoS Planning
SoS-2 Poor or Missing SoS Requirements
SoS-3 Unclear SoS Testing Responsibilities
SoS-4 Inadequate Funding for SoS Testing
SoS-5 SoS Testing not Properly Scheduled
SoS-6 Inadequate Test Support from Individual Systems
SoS-7 Inadequate Defect Tracking Across Projects
SoS-8 Finger-Pointing

2.8.1 SoS-1 Inadequate SoS Planning

Description: An inadequate amount of system of systems planning is being performed.

Symptoms: Little or no planning has occurred for testing above the individual
system level. The SoS activities have not been determined, planned for, and
documented.

Observed

Potential Consequences: There are no clear test responsibilities, objectives,
methods and techniques, and completion/acceptance criteria at the system
of systems level. It is unclear who is to do what. Adequate resources (funding,
staffing, and schedule) are unlikely to be made available for SoS testing. SoS
testing is unlikely to be adequate. There are likely to be numerous system to
system interface defects causing the failure of end-to-end mission threads.

Observed

Recommendations: Create a SoS-level test plan in order to ensure that
adequate SoS test planning has occurred above the individual system level.
Evaluate the SoS test plan. Ensure that there are clear test
completion/acceptance criteria at the SoS level.

Implemented

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 45 of 53

2.8.2 SoS-2 Poor or Missing SoS Requirements

Description: Many system of systems requirements are either missing or of poor quality.

Symptoms: Little or no requirements exist above the system level. Those SoS
requirements that do exist do not exhibit all of the characteristics of good
requirements.

Observed

Potential Consequences: Requirements-based SoS testing will be difficult to
perform because there are no officially-approved SoS requirements to verify.
It will be hard to develop test cases and to determine the corresponding
expected test outputs. It is likely that system to system interface defects will
cause the failure of end-to-end mission threads.

Observed

Recommendations: Ensure that there are sufficient officially approved SoS
requirements to drive requirements-based SoS testing.

Implemented

2.8.3 SoS-3 Unclear SoS Testing Responsibilities

Description: The responsibilities for performing end-to-end system of systems testing are
unclear.

Symptoms: No project is explicitly tasked with testing end-to-end SoS
behavior.

Observed

Potential Consequences: No project will have planned to provide the
resources (e.g., staffing, budget, schedule) needed to perform SoS testing.
Adequate SoS testing is unlikely to be performed, and the SoS will be unlikely
to meet its schedule for deployment of new/updated capabilities.

Observed

Recommendations: Ensure that responsibilities for testing the end-to-end
SoS behavior are clearly assigned to some organization and project.

Implemented

2.8.4 SoS-4 Inadequate Funding for SoS Testing

Description: The funding for system of systems (SoS) testing is not adequate for the
performance of sufficient testing.

Symptoms: Little or no funding has been provided to perform end-to-end SoS
testing. None of the system-level projects have been funded to perform end-
to-end SoS testing.

Observed

Potential Consequences: Little or no end-to-end SoS testing will be
performed. It is likely that residual system to system interface defects will
cause the failure of end-to-end mission threads.

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 46 of 53

Recommendations: Ensure that adequate funding for testing the end-to-end
SoS behavior is clearly supplied to the responsible organization and project.

Implemented

2.8.5 SoS-5 SoS Testing not Properly Scheduled

Description: System of system testing is not properly scheduled.

Symptoms: SoS testing is not in the individual system’s integrated master
schedules, and there is no SoS-level master schedule. SoS testing must be fit
into the uncoordinated schedules of the individual systems comprising the
SoS.

Observed

Potential Consequences: SoS testing that is not scheduled will be unlikely to
be performed. If performed, it is likely that the testing will be rushed,
incomplete, and inadequate with more mistakes than typical. The operational
SoS is likely to contain more SoS integration defects and end-to-end mission
thread defects than is appropriate.

Observed

Recommendations: Ensure that SoS testing is on the SoS master schedule.
Ensure that SoS testing is also on the individual system’s integrated master
schedules so that support for SoS testing can be planned. Ensure that SoS
testing is coordinated with the schedules of the individual systems.

Implemented

2.8.6 SoS-6 Inadequate Test Support from Individual Systems

Description: Test support from individual system development/maintenance projects is
inadequate to perform system of system testing.

Symptoms: All available system-level test resources (e.g., staffing, funding,
and test environments) are already committed to system testing.

Observed

Potential Consequences: It will be difficult or impossible to obtain the
necessary test resources from individual projects to support SoS testing.

Observed

Recommendations: Ensure that the individual projects provide adequate test
resources (e.g., people and test beds) to support SoS testing. Ensure that
these resources are not already committed elsewhere.

Implemented

2.8.7 SoS-7 Inadequate Defect Tracking Across Projects

Description: Defect tracking across individual system development or maintenance projects is
inadequate to support system of systems testing.

Symptoms: There is little or no coordination of defect tracking and associated
regression testing across multiple projects. Different projects collect different

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 47 of 53

types and amounts of information concerning defects identified during
testing.

Potential Consequences: It will be unnecessarily difficult to synchronize
system- and SoS-level activities. Defect localization and allocation of defects
to individual or sets of systems will be difficult to perform.

Observed

Recommendations: Develop a consensus concerning how to address defect
reporting and tracking across the systems making up the SoS. Document this
consensus in all relevant plans (SoS and individual systems). Verify that defect
tracking and associated regression testing across the individual projects of the
systems making up the SoS are adequately coordinated.

Implemented

2.8.8 SoS-8 Finger-Pointing

Description: Different system development/maintenance projects assign the responsibility for
defects and fixing them to other projects.

Symptoms: There is a significant amount of finger pointing across project
boundaries regarding whether something is a defect (or feature) or where
defects lie (i.e., in which systems and in which project’s testing).

Observed

Potential Consequences: Time and effort will be wasted in the allocation of
defects to individual or sets of systems. Defects will take longer to be fixed,
and these fixes will take longer to be verified.

Observed

Recommendations: Ensure representatives of the individual systems are on
the SoS change control board (CCB). Work to develop a SoS mindset among
the members of the SoS CCB.

Implemented

2.9 Regression Testing Problems
The following problems are specific to the performance of regression testing including testing
during maintenance:

REG-1 Insufficient Regression Test Automation
REG-2 Regression Tests Not Rerun
REG-3 Inadequate Scope of Regression Testing
REG-4 Only Low-Level Regression Tests
REG-5 Disagreement over Maintenance Test Resources

2.9.1 REG-1 Insufficient Regression Test Automation

Description: Some or all of the regression tests are not automated.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 48 of 53

Symptoms: All or some of the regression tests are not automated. At least
some of the regression tests are manual.

Observed

Potential Consequences: Regression testing is not sufficient, especially when
an agile (iterative, incremental, and parallel) development cycle, which causes
numerous, short-duration increments that must be retested. Manual
regression testing will take so much time and effort that it is not done. If
performed, the testing will likely be rushed, incomplete, and inadequate with
excessive mistakes. A higher than normal number of defects will not be found
and therefore remain in the system.

Observed

Recommendations: Automate as much of the regression/maintenance
testing as is practical. Ensure that adequate resources (staffing, budget, and
schedule) are planned and available for automating and maintaining the
tests. Ensure that manual test results are integrated into the overall test
results database so that test reporting and monitoring are seamless.

Implemented

2.9.2 REG-2 Regression Tests Not Rerun

Description: Some or all of the regression tests are not rerun after changes are made.

Symptoms: Regression testing is not being done because:

• There is insufficient time and staffing to perform it.
• Managers or developers do not believe that it is necessary because of the

minor scope of most changes.
• There is insufficient automation of regression tests.

Observed

Potential Consequences: Defects introduced while changing existing
previously tested subsystems/software will remain in the operational system
because they will not be found during regression testing.

Observed

Recommendations: Ensure that sufficient regression testing is being
performed by providing sufficient time and staffing to perform it as well as
ensuring adequate automation. Resist efforts to skip regression testing
because of the “minor scope of most changes” because defects often
unexpectedly propagate faults and failures beyond their local scope.

Implemented

2.9.3 REG-3 Inadequate Scope of Regression Testing

Description: The scope of regression testing is not sufficiently broad.

Symptoms: Only the changed subsystem or software is retested because of
the mistaken belief that the change will only have local effects and thus can’t

Observed

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 49 of 53

affect the rest of the system.

Potential Consequences: Defects introduced while changing existing
previously tested subsystems/software will remain in the operational system
because they will not be found during regression testing.

Observed

Recommendations: Resist efforts to limit the scope of regression testing
because of the “change can’t effect the rest of the system”; defects have a
way of causing propagating faults and failures. Automate as many of the
regression tests as is practical so that it will be possible to rerun them.

Implemented

2.9.4 REG-4 Only Low-Level Regression Tests

Description: Only low-level regression tests are rerun.

Symptoms: Only unit tests and some integration tests are rerun. System
and/or the SoS tests are not rerun.

Observed

Potential Consequences: Integration defects introduced while changing
existing previously tested subsystems/software will remain in the operational
system because they will not be found during regression testing.

Observed

Recommendations: Ensure that all relevant levels of regression testing (e.g.,
unit, integration, system, specialty, and SoS) are rerun when changes are
made. Automate as many of these regression tests so that it will be practical
to rerun them.

Implemented

2.9.5 REG-5 Disagreement over Maintenance Test Resources

Description: The development and maintenance projects disagree over who is responsible for
providing the test resources (e.g., staffing, budget, test work products) during maintenance.

Symptoms: There is disagreement as to whether the resources for
maintenance testing should be provided by the development or maintenance
projects.

Observed

Potential Consequences: Insufficient resources will be made available to
adequately support maintenance testing. Testing will be delayed while the
source of these resources is negotiated.

Observed

Recommendations: Ensure that the funding for maintenance testing is clearly
assigned to either the development or sustainment project. Include funding
responsibilities in the transition plan (if there is one).

Implemented

Page 50 of 53
© 2012 by Carnegie Mellon University

3 Conclusion

3.1 Testing Problems
There are many testing problems that can occur during the development or maintenance of
software-reliant systems and software applications. While no project is likely to be so poorly
managed and executed as to experience the majority of these problems, most projects will
suffer several of them. Similarly, while exhibiting these testing problems does not guarantee
failure, these problems are definitely risks that need to be managed.

The 65 common problems involving how testing is performed have been grouped into the
following categories:
1. General Testing Problems – 23 problems of a general nature not restricted to a specific

type or scope of testing.
2. Test Planning Problems – 5 problems that occur due to inadequate test planning
3. Requirements-related Problems – 7 testing problems due to poor requirements
4. Unit Testing Problems – 3 problems specific to unit testing
5. Integration Testing Problems – 5 problems specific to integration testing
6. Specialty Engineering Testing Problems – 8 problems specific to the specialty-engineering

testing of quality requirements
7. System Testing Problems – 3 problems specific to the testing of complete systems
8. System of System Testing Problems – 8 problems specific to the testing of systems of

systems
9. Regression Testing Problems – 5 problems specific to the performance of regression testing

including testing during maintenance

3.2 Common Consequences
While different testing problems have different proximate negative consequences, they all tend
to contribute to the following overall ultimate results:
• The testing effort is less effective and efficient.
• Some defects are discovered later than they should be, when they are more difficult to

localize and fix.
• The testers must work unsustainably long hours causing them to become exhausted and

therefore make excessive numbers of mistakes.
• The software-reliant system or software application is delivered late and over budget

because of extra unplanned time and effort spent finding and fixing defects late during
development.

• In spite of this extra budget and schedule, the software-reliant system or software
application is still delivered and placed into operation with more residual defects than
either expected or necessary.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 51 of 53

3.3 Common Solutions
In addition to the individual problem-specific recommendations provided in the preceding
checklists, the following general solutions are applicable to most of the common testing
problems:

• Prevention Solutions – The following solutions can prevent the problems from occurring in
the first place:

 Formally require the solutions – Customer representatives formally require the
solutions to the testing problems in the appropriate documentation such as the Request
for Proposals and Contract.

 Mandate the solutions – Managers, chief engineers (development team leaders), or
chief testers (test team leaders) explicitly mandate the solutions to the testing problems
in the appropriate documentation such as the System Engineering Management Plan
(SEMP), System/Software Development Plan (SDP), Test Plan(s), and/or Test Strategy.

 Provide training – Chief testers or trainers provide appropriate amounts and levels of
test training to relevant personnel (such as to acquisition staff, management, testers,
and quality assurance) that covers the potential testing problems and how to prevent,
detect, and react to them.

 Management support – Managers explicitly state (and provide) their support for testing
and the need to avoid the commonly occurring test problems.

• Detection Solutions – The following solutions enable existing problems to be identified and
diagnosed:

 Evaluate documentation – Review, inspect, or walk through the test-related
documentation (e.g., Test Plan and test sections of development plans).

 Oversight – Provide acquirer, management, quality assurance, and peer oversight of the
testing process as it is performed.

 Metrics – Collect, analyze, and report relevant test metrics to stakeholders (e.g.,
acquirers, managers, technical leads or chief engineers, and chief testers).

• Reaction Solutions – The following solutions help to solve existing problems once they are
detected:

 Reject test documentation – Customer representatives, managers, and chief engineers
refuse to accept test-related documentation until identified problems are solved.

 Fail the test– Customer representatives, managers, and chief engineers refuse to accept
the system/subsystem/software under test until identified problems (e.g., in test
environments, test procedures, or test cases) are solved. Rerun the tests after
prioritizing and fixing the associated defects.

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 52 of 53

 Provide training – Chief testers or trainers provide appropriate amounts and levels of
remedial test training to relevant personnel (such as to acquisition staff, management,
testers, and quality assurance) that covers the observed testing problems and how to
prevent, detect, and react to them.

 Update process – Chief engineers, chief testers, and/or process engineers update the
test process documentation to minimize the likelihood of reoccurrence of the observed
testing problems.

 Formally raise risk – Raise existing test problems as formal risks and inform both project
management and the customer representative.

3.4 Potential Future Work
The contents of this document were not the results of a formal academic study. Rather, they
were derived largely from the author’s 30+ years of experience assessing and taking part in
numerous projects as well as numerous discussions with testing subject matter experts. This
paper has been provided for review to over 120 academics and professionals and incorporates
comments and recommendations received from the individuals listed in the following
acknowledgements.

As such, the current qualitative document leaves several important quantitative questions
unanswered:
• Frequency. What is the probability distribution of these problems? Which problems occur

most often? Which problems tend to cluster together?
• Impact. Which problems have the largest negative consequences? What are the probability

distributions of harm caused by each problem?
• Risk. Based on the above frequencies and impacts, which of these problems cause the

greatest risks? Given these risks, how should one prioritize the identification and resolution
of these problems?

• Distribution. Do different problems tend to occur with different probabilities in different
application domains such as commercial vs. governmental vs. military, web vs. IT vs.
embedded systems, etc.)?

Provided sufficient funding, it is the author’s intent to turn this document into an industry
survey and to perform a formal study to answer these questions.

4 Acknowledgements
I would like to thank the following reviewers who have provided comments and
recommendations regarding this document:

1. Vince Alcalde, Independent Consultant, Australia
2. Alexandru Cosma, ISDC, Romania

Common Testing Problems: Pitfalls to Prevent and Mitigate
Checklists of Symptoms, Consequences, and Recommendations

© 2012 by Carnegie Mellon University Page 53 of 53

3. Lee Eldridge, Independent Consultant, Australia
4. Eliazar Elisha, University of Liverpool, UK
5. Sam Harbaugh, Integrated Software Inc., USA
6. M. E. Hom, Compass360 Consulting, USA
7. Thanh Cong Huynh, LogiGear, Vietnam
8. Ronald Kohl, SEI, USA
9. Wido Kunde, Baker Hughes, Germany
10. Philippe Lebacq, Toyota Europe, Belgium
11. Ken Niddefer, SEI, USA
12. Anne Nieberding, Private Consultant, USA
13. Mahesh Palan, Calypso Technology, USA
14. Dan Pautler, Elekta, USA
15. Mark Powel, Attwater Consulting, USA
16. Sudip Saha, Navigators Software, India
17. Alejandro Salado, Kayser – Threde GmbH, Germany
18. Matt Sheranko, Knowledge Code, USA
19. Oleg Spozito, Independent Consultant, Canada
20. Barry Stanly, Private Consultant, USA
21. Lou Wheatcraft, Requirements Experts, USA
22. Thomas Zalewski, Texas State Government, USA

	Unlimited distribution subject to the copyright.
	http://www.sei.cmu.edu
	1 Introduction
	1.1 Checklists
	1.2 Checklist Interpretation

	2 Checklists
	2.1 General Testing Problems
	2.1.1 GEN-1 Wrong Testing Mindset
	2.1.2 GEN-2 Unrealistic Testing Expectations / False Sense of Security
	2.1.3 GEN-3 Inadequate Whitebox Testing
	2.1.4 GEN-4 Too Immature for Testing
	2.1.5 GEN-5 Testing is Postponed
	2.1.6 GEN-6 Inadequate Testing Expertise
	2.1.7 GEN-7 Inadequate Test Schedule
	2.1.8 GEN-8 Testing Process Not Integrated Into Engineering Process
	2.1.9 GEN-9 Inadequate Test Documentation
	2.1.10 GEN-10 Inadequate Test Evaluations
	2.1.11 GEN-11 Inadequate Test Metrics
	2.1.12 GEN-12 Inadequate Test-related Risk Management
	2.1.13 GEN-13 Tests not Delivered
	2.1.14 GEN-14 Inadequate Test Maintenance
	2.1.15 GEN-15 Inadequate Test Prioritization
	2.1.16 GEN-16 Inadequate Test Configuration Management (CM)
	2.1.17 GEN-17 Lack of Requirements Trace
	2.1.18 GEN-18 Software Under Test Behaves Differently
	2.1.19 GEN-19 Over-reliance on Manual Testing
	2.1.20 GEN-20 Over-reliance on COTS Testing Tools
	2.1.21 GEN-21 Inappropriate External Pressures
	2.1.22 GEN-22 Inadequate Communication Concerning Testing
	2.1.23 GEN-23 Test Lessons Learned are Ignored

	2.2 Test Planning Problems
	2.2.1 PLN-1 No Separate Test Plan
	2.2.2 PLN-2 Incomplete Test Planning
	2.2.3 PLN-3 Unclear Testing Responsibilities
	2.2.4 PLN-4 One-Size-Fits-All Test Planning
	2.2.5 PLN-5 Inadequate Test Resources Planned

	2.3 Requirements-Related Problems
	2.3.1 REQ-1 Ambiguous Requirements
	2.3.2 REQ-2 Missing Requirements
	2.3.3 REQ-3 Incomplete Requirements
	2.3.4 REQ-4 Incorrect Requirements
	2.3.5 REQ-5 Unstable Requirements
	2.3.6 REQ-6 Poorly Derived Requirements
	2.3.7 REQ-7 Verification Methods Not Specified

	2.4 Unit Testing Problems
	2.4.1 UNT-1 Unstable Design
	2.4.2 UNT-2 Inadequate Design Detail
	2.4.3 UNT-3 Poor Fidelity of Test Environment

	2.5 Integration Testing Problems
	2.5.1 INT-1 Defect Localization
	2.5.2 INT-2 Insufficient Test Environments
	2.5.3 INT-3 Unavailable Components
	2.5.4 INT-4 Inadequate Test Bed Quality
	2.5.5 INT-5 Inadequate Self-Test

	2.6 Specialty Engineering Testing Problems
	2.6.1 SPC-1 Inadequate Capacity Testing
	2.6.2 SPC-2 Inadequate Concurrency Testing
	2.6.3 SPC-3 Inadequate Performance Testing
	2.6.4 SPC-4 Inadequate Reliability Testing
	2.6.5 SPC-5 Inadequate Robustness Testing
	2.6.6 SPC-6 Inadequate Safety Testing
	2.6.7 SPC-7 Inadequate Security Testing
	2.6.8 SPC-8 Inadequate Usability Testing

	2.7 System Testing Problems
	2.7.1 SYS-1 Testing Robustness Requirements is Difficult
	2.7.2 SYS-2 Lack of Test Hooks
	2.7.3 SYS-3 Testing Code Coverage is Difficult

	2.8 System of Systems (SoS) Testing Problems
	2.8.1 SoS-1 Inadequate SoS Planning
	2.8.2 SoS-2 Poor or Missing SoS Requirements
	2.8.3 SoS-3 Unclear SoS Testing Responsibilities
	2.8.4 SoS-4 Inadequate Funding for SoS Testing
	2.8.5 SoS-5 SoS Testing not Properly Scheduled
	2.8.6 SoS-6 Inadequate Test Support from Individual Systems
	2.8.7 SoS-7 Inadequate Defect Tracking Across Projects
	2.8.8 SoS-8 Finger-Pointing

	2.9 Regression Testing Problems
	2.9.1 REG-1 Insufficient Regression Test Automation
	2.9.2 REG-2 Regression Tests Not Rerun
	2.9.3 REG-3 Inadequate Scope of Regression Testing
	2.9.4 REG-4 Only Low-Level Regression Tests
	2.9.5 REG-5 Disagreement over Maintenance Test Resources

	3 Conclusion
	3.1 Testing Problems
	3.2 Common Consequences
	3.3 Common Solutions
	3.4 Potential Future Work

	4 Acknowledgements

