Using Quantitative Software Estimation Tools and Techniques to Support Verification and Validation (V&V)

Joseph Madden
Quantitative Software Management, Inc
2000 Corporate Ridge, Suite 700
McLean, VA 22102
(703) 790-0055
Email: joseph.madden@qsm.com
Web: www.qsm.com

© Quantitative Software Management, Inc.
Outline

• Introduction to Quantitative Software Estimation
• Using Quantitative Software Estimation to Support V&V Planning & Execution
• Example Uses of Quantitative Estimation Techniques at the FAA
• Conclusion
About QSM

• QSM founded in 1978 by Larry Putnam, Sr., one of the original pioneers in quantitative software estimation and author of 4 books, including *Measures for Excellence* and *Five Core Metrics*.

• Putnam invented the SLIM quantitative estimation tool and began a benchmark database of historical project data. This database now includes over 10,000 validated projects covering most application domains, industry sectors, and development approaches.
In the year before using SLIM, 10 of 12 projects (83%) exceeded budget and schedule. The cost of this excess was more than $15M. QSM was hired to implement a robust estimation process.

Within the first year of using a SLIM estimation process, the percentage of projects over schedule and budget decreased from 83% to 50%, and excess cost reduced from $15M to $6M. After full implementation of SLIM in the second year, the percentage of projects over schedule and budget dropped to 10% and the cost overruns were less than $500K\(^1\).

\(^1\)The above case study was published in 2003 in the book *Five Core Metrics* by Lawrence H. Putnam and Ware Myers.
The Fundamentals of Quantitative Software Estimation

The Problem
Software Development is Difficult to Estimate

Design Complexity
- "Software entities are more complex for their size than for perhaps any other human construct."¹

Organizational Complexity
- Large software projects require a large organization. This organizational complexity "makes overview hard, thus impeding conceptual integrity. It makes it hard to find and control all loose ends. It creates a tremendous learning and understanding burden."¹

Cost and Schedule Overruns
- The Standish Group reported that 80% of systems are delivered late and over budget and 40% of projects fail or are abandoned.²
- QSM benchmark database shows 70% of projects exceeded budgets and 81% did not meet schedules.³

³ QSM, Inc., Benchmark Database, as of April 2007.
Variable Relationships

Research Revealed a Nonlinear Relationship Between Variables

Early software estimation attempts incorrectly assumed a linear relationship between variables.

Software size was divided by average productivity rate. Effort was divided by manpower to determine time. Manpower was increased until time met delivery date.

Dr. Frederick Brooks demonstrated in *The Mythical Man Month* that this assumption is not true. **Manpower and time are not interchangeable.**¹

Researchers eventually discovered a nonlinear relationship between variables of interest.

Researchers collected and analyzed a large body of software project data and discovered most relationships are nonlinear.

Variables of interest appeared to be a **complex power function** of system attributes.²

Patterns in Historical Data

Curve Fitting of Historical Data Resulted in the Discovery of Estimation Equations

Scatter diagrams used to perform trend line analysis, quantifying relationships.

Linkage established between system size, development time, effort, cost, manpower, productivity, and number of defects.¹

This analysis led to derivation of key computational equation¹

Product = Productivity Parameter * (Effort/B)(1/3) * Time(4/3)

Estimation Equations

Productivity Parameter:
Process productivity parameter for software development organization, obtained by calibration from past projects.

Constant “B“:
Special skills factor which is function of size. Increases slowly with size as need for integration, testing, quality assurance, documentation, and management skill grows with increased complexity of large projects.

Effort:
Person-years of work by all job classifications for the software construction or main-build phase: design, coding, inspection, test, documentation, and supervision.

Time:
Elapsed calendar schedule in years for software construction phase.

Manpower Buildup Parameter:
Computed by calibration from past projects.

“Putnam Equations”

\[(\text{Effort}/B)^{(1/3)} \times \text{Time}^{(4/3)} = \frac{\text{Size}}{\text{(Productivity Parameter)}}\]

\[
\frac{\text{(Total Effort)}}{\text{Time}^3} = \text{Manpower Buildup Parameter}
\]

Key Time and Effort Rules

Small changes in duration result in large changes in effort

The relationship between effort and time is exponential:
\[\text{Effort} = \frac{\text{Constant}}{\text{Time}^4} \]

Extending development time from 18 to 19 months (a 5.5% increase) reduces the effort required by 19.5%.

There is a minimum development time

“More software projects have gone awry for lack of calendar time than for all other causes combined.”

No data to the left of the MBI line has ever been seen.

*MBI and PI are indexes based on the Manpower Buildup and Productivity parameters.

The Shape of Projects

- 1960s: Dr. Peter Norden found that engineering projects could be depicted by a Rayleigh Curve to predict staffing.

- 1970s: Larry Putnam Sr. applied the principles to software projects—this offered a mathematical way of predicting broader project behavior.

- Traditional project management often tries (often unsuccessfully) to "level-load" projects.

Defects in software also tend to follow a Rayleigh curve.

We can use this to predict quality in a software product.

SLIM-Estimate uses Mean Time To Defect (MTTD): the average time between defects appearing as a measurable indicator of quality.
Reliability Model Variable Relationships

Size: Historical data has shown that as the code size increases, the number of defects increases. The rate of defect increase is close to linear.

Peak Staffing: Historical data has shown that adding people increases the defect creation process at a *rapidly accelerating rate*. For example:

- A project of 350,000 SLOC using 40 people at peak staff would create approximately 2,125 total defects.

- If 60 people were used, 3 months of schedule compression would be gained but 3,010 defects would be created.
Quantitative Estimation

Software Size:
- SLOC
- Function Points
- Objects, Etc.

Uncertainty

Process Productivity:
- Methods/Tools
- Tech Complexity
- Personnel Profile

Management Constraints:
- Max People
- Max Budget
- Max Schedule
- Required Reliability

SLIM-Estimate

Optimum Estimate (Max Probability of Meeting Constraints)

Evaluate Practical Alternatives

Generate Plans

Inputs

Staffing

Cost

Probability

Defects

Outputs

(#13)
Quantitative Control

Tracking of Plan Against Approved Baseline

Inputs
- Monthly Metrics
 - Software Development Size Actuals
 - Cost Accounting Effort/Cost Actuals
 - Software Test Defect Actuals
 - Project Management Milestones

Control Charts
- Aggregate Staffing Rate
- Size
- Total Defect Rate
- Defects

Outputs
- SLIM-Control
 - Variance from Plan
 - Forecast to Complete
 - Evaluation of Alternative Management Strategies
Quantitative Benchmarking

Shows where benchmarked project lies in relation to historical database of similar projects.

Data is compared for schedule, effort, productivity, and staffing vs. size along standard deviation lines.
Using Quantitative Software Estimation to Support V&V Planning and Execution
Making software schedules and associated V&V activities more predictable

Estimating V&V Effort and Schedule

Within the control of the V&V team:
• Duration and effort for complete inspection or testing cycle

Outside the control of the V&V team:
• Delivery date for the software
• Volume of defects and rework
• Number of test cycles required to reach target quality

Quantitative estimation techniques can help predict these items.

Takeaway: Quantitative estimation can help make V&V effort and duration more predictable
Accurately predicting when software is likely to reach target reliability

Takeaway: This technique was used successfully for reliability analysis of the Voice Switching and Control System (VSCS) software at FAA prior to delivery to ensure it was stable enough to deliver and deploy.
Understanding whether the number of actual defects discovered compares favorably with other projects.

593 defects at $+1\sigma$

199 defects average

68 defects at -1σ

Takeaway: Statistical benchmark data can be used to help answer the question: are there are too many or too few defects?
Examples of Quantitative Software Estimation Techniques at the FAA
Example Use of Quantitative Software Estimation Techniques at the FAA

- **RRI Program.** Independent Estimate and Risk Assessment for the FAA for a new generation air-ground router and communication system being built by five separate contractors (three US, one French, one Irish) building different pieces of the system.

- **Terrorist Screening Software.** Estimates of schedule cost and risk for each of 9 airlines to build terrorist screening software to use in airport screening departure lounges. Recommended to FAA reasonable costs for each system for negotiation between airline and FAA. Validated estimates using SLIM Metrics and QSM database.

- **OASIC.** Bid Evaluation of competitors to do an upgrade to a flight planning system. Calibrated historic data, did an analysis of each vendor’s bid and provided some alternatives for FAA to consider.

- **URET.** Independent estimate of an FAA system prior to award. Calibration data and defect analysis of a historic project by the same vendor was done for tuning purposes.

- **STARS.** Independent estimate of an airfield radar system for the FAA. Calibration and analysis of a vendor bid prior to award. Emphasis on whether they could do the project in the specified time frame.

- **ITWS.** Competitive Bid Evaluation of 3 vendors competing for a new weather system for the FAA. Calibration of each vendor’s historic data, a baseline government should cost scenario for comparison, and evaluation of each vendor’s bid compared with the baseline, QSM tend lines, and specially tailored data sample. Determine whether bids were consistent with past performance.

- **VSCS.** Reliability analysis of the software prior to delivery to ensure it was stable enough to deliver and deploy.

- **Expert Witness Case.** Served as expert witness in a protest of termination of a contract by FAA against the prime contractor in the building of Radio Control Equipment for air traffic control. FAA asserted that Prime Contractor did not perform. QSM examined the plans and data concerning the software development to compared it with industry norms for real time control software to see if the progress, effort, and defect performance was consistent with others building software of a similar nature. Case was settled out of court about two weeks prior to trial.

- **Airfield Radar System.** Bid evaluation of contractor’s ability to perform work required on airfield based radar system. Once the project was under way, performed monitoring and control and re-planning.
Conclusion

- Quantitative estimation supports more objective management decisions.
- Significant insight can be gained from a few core software metrics: size, duration, staffing and defects.
- Improved predictability makes everyone’s job becomes easier, including V&V staff.
Contact

Joseph Madden
Vice President

Quantitative Software Management, Inc.
2000 Corporate Ridge; Suite 700
McLean, VA 22102
O 703.790.0055
Email: joseph.madden@qsm.com

www.qsm.com