NASA Advanced Air Mobility (AAM) Mission
Advanced Air Mobility (AAM) Mission

UAM Maturity Levels (UML)
- UML-4 Medium Density/Complexity, collaborative and responsible automated systems
- UML-3 Low Density, Medium Complexity, comprehensive safety assurance automation
- UML-2 Low Density/Complexity, assistive automation
- UML-1 Conforming prototypes

On Demand Air-Taxi
- Urban Operations
- Rural Operations
- Regional Network

eVTOL Cargo Delivery
- Inter-City
- Cross-metro Transfer

Medical Transfer
- Aircraft
- Transfer

Distribution Center/Warehouse
- Fleet Operations

Safe, sustainable, affordable, and accessible aviation for transformational local and intraregional missions
• Foundational research partnerships in existence and developing
• NASA/FAA AAM WGs are beginning formal execution

• Continue to Leverage NC as a centerpiece of the partnership strategy

• AAM Ecosystem Working Groups (AEWG) are providing a valuable opportunity space for localities, international, and standards organizations

FAA, AAM Ecosystem Working Groups (AEWG) and research partnerships are providing valuable input spanning vehicle, airspace, and community partners across the globe
AAM Mission Critical Commitment

Vehicle Development and Operations
Develop concepts and technologies to define requirements and standards addressing key challenges such as safety, affordability, passenger acceptability, noise, automation, etc.

Airspace Design and Operations
Develop UTM-inspired concepts and technologies to define requirements and standards addressing key challenges such as safety, access, scalability, efficiency, predictability, etc.

Community Integration
Create robust implementation strategies that provide significant public benefits and catalyze public acceptance, local regulation, infrastructure development, insurance and legal frameworks, etc.

Critical Commitment:
Based on validated operational concepts, simulations, analyses, and results from National Campaign demonstrations, the AAM Mission will deliver **aircraft, airspace, and infrastructure system and architecture requirements** to enable sustainable and scalable medium density advanced air mobility operations.

Achieving “systems and architecture requirements” will require **enabling activities** such as 1) the AAM National Campaign Series 2) a robust Ecosystem Partnership model and 3) NASA ARMD Portfolio Execution.
National Campaign Series support of the Industry Timeline

<table>
<thead>
<tr>
<th>CY2020</th>
<th>CY2021</th>
<th>CY2022</th>
<th>CY2023</th>
<th>CY2024</th>
<th>CY2025</th>
<th>CY2026</th>
<th>CY2027</th>
<th>CY2028</th>
<th>CY2029</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry proposed UML-1 unlock</td>
<td>Industry proposed UML-2 unlock</td>
<td>Industry proposed UML-3 unlock</td>
<td>Industry proposed UML-4 unlock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NC-1 Operational Safety
- Help catalyze UML 1, 2...

NC-2 Complex Operations
- Key enablers to accelerate the UML 3&4 timeline...

NC-3 High Volume Vertiports
- Remain Agile... Assess and align the AAM strategy with industry needs

Legend
- NC Series Progression
- X-Series Simulations
- R&D Flight Tests
- NC Series Ops Demonstrations

UML "unlocks" based on a range of publicly available industry projections and conversations with partners; not a consensus view
NC DT Joby Flight Test Interface Diagram

NC-DT Flights with Joby mirrors Dry Run, but with acoustic testing and flights at Partner Test Sites

Significant accomplishment
HDV is developing technologies and requirements to support industry infrastructure and automation needs and FAA vertiport design guidance development.

Heliports
- Low throughput operations
- No infrastructure
- FAA Guidance and State/Local Government Oversight
- Operations managed by aircraft Operators (one certified heliport)

Vertiports
- Moderate-High throughput operations
- Infrastructure and Automation Needed
- FAA Guidance and State/Local Government Oversight
- Operations intended to be managed by vertiport Operators, PSUs, aircraft/fleet operators aided by automation
- Interoperability with UAM, UTM, and ATM

Airports
- High throughput operations
- Infrastructure and automation
- FAA Regulations and Oversight
- Operations managed by airport operator, ATC, procedures, and aided by automation
- Interoperability with ATM
Community Integration Status

- Successful “Community Integration” efforts will implement approaches that are ecosystem wide, but have a critical focus around education, “vertiports” and public acceptance.

- FAA and DOT, state and local governments, academia, community organizations and Standards Development Organizations are activity coordinating with NASA on research activities to break down community integration barriers.

- Challenges such as regulatory, noise acceptance, weather, and societal and economic factors make community integration a significantly challenging barrier to Advanced Air Mobility.
HDV serves as an integrator for key ARMD automation technologies to develop and test vertiplex environments.
Vertiport Automation Architecture

Airspace Services
- Vertiport Status
- Weather Conditions
- Constraint Management
- Hazard Management

Vertiport Services
- Take off/Landing Clearance
- Slot Allocation Management
- Vertiport Management Display
- Surface Movement Management

UAS Automation

Additional Ground Support
- Automated Weather Station
- Obstacle/Terrain Databases
- Approach/Departure Airspace Configuration
- Battery Charging Station

Instrumented Vertipad
- Pressure Sensing Vertipad
- Video Surveillance
- Microphone Array
- Obstruction Lighting, Beacons, Foam Dispensing, and Infrared Sensors

Communication, Navigation, Surveillance, and Information
- Radar
- ADS B Receiver
- Augmented Position, Navigation, and Timing
- RF Monitoring and Analysis
- Connectivity Fiber / 4G LTE
- V2x Radios

Legend
- Safety
- Not in Scope
- AOA
- SAO
- VO

Hazard Management
Constraint Management
Approach / Departure Airspace Configuration
Automated Weather Station