What is a Landscape?

A Landscape is a collection of research drivers that provides information about their potential impacts to the industry.

- **Research Drivers**
 - A force or motivation that stimulates R&D investment

- **Impacts**
 - Industry Objectives
 - Emerging Technologies
 - Envisioned Operations

Landscape Purpose:
Highlight operational drivers and challenges over the next 10 years, which can be used to identify research questions or priorities.
Research Landscapes and Planning

Research Drivers

Impact Analysis
What is the driver impact on industry objectives, emerging technologies or envisioned operations?

FAA Research Portfolio
By research domain: prioritized research projects w/FAA's role (Lead, Watch, Participate)

National Aviation Research Plan (NARP)
Documented approach for achieving FAA’s research goals/objectives

FAA’s research serving to meet FAA NARP objectives

Results of FAA’s research and Technology Transfer

FAA's research serving to meet FAA NARP objectives

Execution

FAA Research Outputs

Planning

Results

FAA
Help FAA understand the aviation industry’s strategic focus

- Requested subcommittee input on 25 research drivers through a subcommittee workbook.
 - Review the driver list and identify any missing items.
 - Identify the characteristics or individual components of each driver and the timeframe to maturity.
 - Identify if the driver presents challenges that the FAA should pay attention to.
 - Identify entities (academia, government, or industry) that are currently conducting work related to this driver.
REDAC Landscape Coordination

• Recap of effort since last meeting:
 - February March 2019: Landscape discussed at each REDAC subcommittee meeting
 - April 2019: Report-out from each subcommittee at full REDAC meeting
 - May 2019: Subcommittees provided final workbooks/input
 - May June 2019: REDAC inputs synthesized into Landscape

• Summary of Subcommittee Inputs:
 - **Airports**: A workbook for highest impact drivers; Overview table including high-level concerns/issues
 - **Aircraft Safety**: Multiple workbooks collectively addressing all drivers; Recommended additional drivers
 - **Human Factors**: Recommended Human Factors Emerging Issues List (March 2018) as reference
 - **Environment and Energy**: Workbooks for four select drivers
 - **NAS Operations**: Feedback captured from subcommittee discussion
REDAC Landscape Input

• Feedback from the REDAC informed the Landscape by:
 – Validating the list of drivers
 – Identifying challenges each driver may pose
 – Informing the expected time to maturity

• In some cases feedback was addressed more implicitly or noted for future reference:
 – Some recommendations for additional drivers were included under similar existing drivers or in Conclusion section
 – Challenges spanning multiple drivers addressed in Conclusion section (e.g., Human Factors considerations)
 – Entities currently working on challenges noted for future reference
The Landscape

Each of the 25 industry-focused drivers grouped into three categories

1. Advances in New Vehicles and New Missions
2. Advances in Technology and Materials
3. Advances in Data and Processing Power

• Challenges for each driver listed in three areas*
 - Airport and Ground Operation
 - Operational and Safety
 - Environmental

• Drivers marked by expected time to maturity
 - Near-Term (0-3 years)
 - Mid-Term (3-5 years)
 - Far-Term (5-10 years)

Added Fourth Category - System Wide Advancements and Improvements
 – Industry-focused drivers not comprehensive of all future FAA research areas
 – Focus on FAA priorities/objectives and continued improvements to the NAS

*Not all drivers will have challenges in each area
Landscape: Research & Development Drivers

Advances in New Vehicles/New Missions
- Non-Traditional NAS Access Points
- Routine Small Unmanned Aircraft Systems (UAS) Operations Beyond Visual Line of Sight (BVLOS)
- Space Operations
- Autonomous Ground Service Equipment at Airports
- Growth of Mixed Operations (Piloted, Autonomous, Unmanned)
- New Mission Types
- Supersonic Flight
- Urban Air Mobility

Advances in Technology and Materials
- Aircraft Command and Control Using Automation and Remote Sensing Technologies
- Certification using New Technologies, Standards, or Processes
- Future Fuel Technologies
- Infrastructure Resiliency and Continuity of Operations
- New Medical Technologies and New Medications
- New Vehicles or Components Which Make Use of New Technologies, Software, or Materials
- Position, Navigation, & Timing (PNT) Technologies
- Remote and Virtual Technologies
- New Technologies for Airport Pavement Infrastructure and Design
- Advances in Electric or Hybrid Electric Propulsion

Advances in Data and Processing Power
- Big Data Analytics and Techniques
- Crowd Sourcing Weather Data
- Increased Connectivity by Cyber-Physical Systems (Internet of Things [IoT])
- Information Assurance and Cybersecurity for All Operations
- Risk-Based Decision-Making Techniques and Analytics
- Artificial Intelligence (AI)
- Human-Machine Teaming and New Technology Interfaces

System Wide Advancements/Improvements
- New Methods and Technologies (Air Traffic Safety, Efficiency, Noise, Emissions, Fuel Use, and Airport Surface Movements)
- Methods for Increased Flexibility of Operators
- Performance-Based Capabilities
- Advancement of Global Standards or Requirements
- Human Response to Traffic and Congestion Management
- Development of the Workforce of the Future
- Advances in Aeromedical Certification
- Changing Public Demographics and Requirements
Next Steps

- Landscape will be used to:
 - Identify the aviation industry’s evolving research areas
 - Inform FAA research priorities, discussions and decisions
 - Provide alignment with strategic research plans

- Landscape will be regularly updated through continued REDAC input and FAA expert review to ensure consistency with latest industry efforts