UAS Traffic Management Deep Dive

- Future vision vs. present reality
- Implementation Roadmap
- Industry Priorities
- FAA Priorities
- Present Research Efforts
- Forthcoming Needs
What are we enabling?

• UTM provides distributed services that enable UAS operations below 400 feet AGL
• Controlled or uncontrolled airspace
• Concepts and service models *may also apply* to UAS operations at higher altitudes (e.g. drone cargo)
• This will also be the basis for cooperative management of AAM/UAM passenger-carrying flights.
Diverging Priorities

- Industry wants to be able to deploy and scale quickly
- Industry has short timelines

- FAA needs the regulatory framework first – be able to approve services independent of airframe and operator
- FAA inaction is already influencing negative outcomes
Who provides the services?

• Mostly industry!

• The FAA has some important roles:
 • Single source of truth for aeronautical information
 • System-wide safety assurance
 • Ensuring fair and equitable access
 • Defining and enabling integration with ATO functions
 • Approving new services
 • Ensuring ongoing compliance with regulations

Easier said than done?

Requires rulemaking
Two Rules of Air Traffic Control

• Don’t keep secrets.

• Work smarter, not harder.
ATCO Continuous decision loop

- Line Up and Wait 3-9-4
- Cross runway Threshold 3-10-5
- Runway exit 3-10-3
- Cleared for takeoff 3-9-9
- 6000 ft and airborne 3-10-3
- Radar identification 5-3-2
- Approach separation 5-9-5
- Speed adjustment 5-7-2
- Radar separation 5-5-2
- Missed approach 4-8-9
- Successive departure separation 5-8-3

Research, Engineering and Development Advisory Committee
This is the end state of fully deployed services with high levels of autonomy

Enables high-tempo, complex operations coordinated and managed by UTM services
What Exists Today?

Registration (DroneZone) LAANC
Notional Implementation Timeline

Initial SDSPs via Operator Waiver

Standalone SDSP Approvals

Streamlined Operator Approvals using SDSPs

Data collection informs subsequent phases

Initial USSs via Operator Waiver

Standalone USS Approvals

Streamlined Operator Approvals using USSs

Development of interoperability requirements (including continuous test framework)

Performance Authorization requirements, implementation

Rulemaking for UTM Service Approvals

UTM deployment and iteration at scale

- Limited number of UTM-enabled operations
- Growing number of approved UTM services
- Increasing numbers of UTM-enabled ops, with faster approvals

Research, Engineering and Development Advisory Committee

SDSP ODA

USS ODA

USS-Operator Handshake (decreasing oversight)
Why Interoperability Matters

• Common data requirements ensure quality of information exchange

• Successful strategic deconfliction requires that multiple actors have shared understanding
 • Other operations
 • Capabilities of other operators
 • Impact of constraints

• With time: Increasing need for fast and efficient solutions
Future Research Needs

• Driven by gaps in service approvals
• How does the FAA know that a service interoperates correctly?
• How can service providers push updates without re-certifying?
• How does a service handle *unknown* edge and corner cases?
• What are the impacts on *other services* when one stops working?
Speaking of Deconfliction...

- Optimizing for operators vs optimizing for airspace
- DSS (Discovery and Synchronization Service) model
- How is quality of strategic deconfliction evaluated?
- How do all participants (including FAA) evaluate equity and fairness of solutions?
 - Are some operators being unwittingly locked out, or charged excessively?
Strategic Deconfliction Flow

- Compute requirements and multi-combinatory solutions as number of operators and USSs increases

Source: ASTM UTM Draft Standard v0.3
DSS and USS-USS Interactions

- What is required to test interoperability of each connection?
- Are industry-defined message formats and contents sufficient?
- Should there be rules for direct negotiations? Side deals?
- How does the FAA monitor and enforce these interactions?

Source: ASTM UTM Draft Standard v0.3
The Battleship Model

• Your operations are on the blue side of the board
• You (or your USS) must use the green side to “ping” the rest of the airspace and determine where you can fly.
• This is not the most efficient way to find a route!
 • But we also don’t know its limitations
The Battleship Model

• Remember, this is a five-dimensional problem!
 • Adjust left/right ($X-Y$)
 • Adjust cruise height or climb/descent profile (Z)
 • Adjust departure time (t)
 • Adjust speed (v)

• Compute resources to find a solution for one operator at a time
• How well do different algorithms perform at solving these problems?
• Which variables should be probed to find a solution?
• What about high-priority operations that come after?
• What about multiple operators probing at the same time?
• Is it possible to find a solution that optimizes for multiple operators?
Volume Size and Strategic Deconfliction

When should Operator A be required to change their allocation?

How does Operator B know that Operator A is negotiating in good faith?

Source: Terry Martin, Revolution Aerospace
The demand for these segments may be low…

But securing this at low price…

…is useless without this

Fairness Implications
System-Wide Safety

- What metrics?
- What dependencies?
- Safety event chain traceability
- Service-level contribution to system-level safety outcomes
- What data? Where does it live and how is it processed?
- What tools do FAA, industry and partners need?