A Gulfstream Perspective on the DARPA QSP Program and Future Civil Supersonic Initiatives

Preston A. Henne
Sr. Vice President - Programs, Engineering, & Test
Gulfstream Aerospace Corporation
Savannah, GA

FAA Civil Supersonic Aircraft Workshop
Arlington, Virginia
13 November 2003
GAC View of DARPA QSP

• The viability of a civil supersonic vehicle hinges on supersonic flight over land.

• The sonic boom mitigation element of the DARPA QSP program represents a positive step toward supersonic transportation.

• QSP program participants demonstrated positive teamwork toward a common goal.

• Technical Exchange Meetings provided excellent forums for program advancement.

• Visionary DARPA leadership and DARPA style program facilitated rapid and meaningful development.
Significant Accomplishments Achieved

• Technology Development
 – Pushing State-of-the-Art Boundaries
 – Aerodynamics, Propulsion, and Structures
 – Sonic Boom Mitigation
 – Design Methods

• Configuration Development (for Low Boom)
 – Incorporating “Nontraditional” Design Criteria
 – Pushing Performance Boundaries
 – Integrating and Evaluating Technologies

• F5 Shaped Sonic Boom Flight Demonstration (SSBD)
 – Excellent Validation of Design Methodology
 – Enhanced Understanding of Acoustic Signature Propagation
 – Experimental Proof of Shaped Ground Signatures
DARPA SSBD Success a First Step

First-Ever Shaped Sonic Boom
Recorded 27 August 2003

Signatures recorded during SSBD back-to-back data flights in the Edwards AFB supersonic flight corridor early morning.

Estimated conditions:
Mach 1.36*,
Altitude 32,000 ft

SSBD Flight 9
August 27, 2003
06:46:32.7502 PDT
NASA Dryden
BADS West
Future Civil Supersonic Initiatives
Supersonic Aircraft Progress

- **Military**
 - X-1
 - D558
 - F104
 - B58
 - XB70
 - B2707 U.S. Never Built

- **Commercial**
 - SR71
 - Tu144 Russia Ops Stopped
 - Concorde Fr/UK “In Service” Ops Stopped 2003

- **Years**
 - 1940-2020

- **Mach Number**
 - 0.0 to 3.5

- **Timeline**
 - 45 Years of Civil Subsonic Jet Transports
 - 30 Years with No New Civil Supersonic Transport

(Slide 6)
Civil Supersonics / Concorde is Dead - What Now?

- Different Market - Quiet Supersonic Jet (QSJ)
 - Business Jet: Speed is Important & Affordable

- Smaller Size
 - TOGW ~ 100K lb

- Lower Mach Number
 - 1.6-2.0

- Boom Suppression Progress
 - DARPA Shaped Sonic Boom Demonstration
 - Boom Suppression Technology Development

Numerous Attributes Combine to Enhance QSJ Feasibility and Acceptability
Doubling Speed Redefines Air Transport

Speed that redefines a 12 hour work day -- there and back with 2 hours minimum on location

Assuming Mach 1.8, 4,500 nm range capability

Worldwide Coverage in 10 hours
Quiet Supersonic Jet (QSJ) Market Assessment

- Productive Use of Time an Imperative in Worldwide Commerce
 - Speed is Important - Target: $M=1.6-2.0$
- Two Gulfstream Market Assessments Identify Conservative Sales of 180-350 Aircraft
- Two Independent Market Assessments (Meridian and Teal) 300-400 Aircraft
- Fractional Ownership Offers Large Potential for QSJ
- Supersonic Overland Flight Is a Requirement
- Range Beyond 4000 nm Is an Advantage

Market Assessment is Favorable If It Can Be Accomplished Technically
Cruise Acoustic Signature Levels

QSJ Advanced+ > 35dB Quieter Than Concorde

<table>
<thead>
<tr>
<th>Configuration</th>
<th>dB(A)</th>
<th>City Traffic</th>
<th>Talking</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSCT</td>
<td>110</td>
<td>110</td>
<td>50</td>
</tr>
<tr>
<td>Concorde</td>
<td>110</td>
<td>110</td>
<td>50</td>
</tr>
<tr>
<td>SBJ</td>
<td>90</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>QSJ shaped</td>
<td>90</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>QSJ advanced</td>
<td>80</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>QSJ advanced+</td>
<td>70</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>
QSJ Conceptual Program Highlights

- Supersonic Over Land Flight a Market Requirement
 - FAA Prohibition Must Be Replaced With Rational Rule If Progress Is To Be Made

- Sonic Boom Suppression a Key Technology

- Supersonic Over Land Flight Requires Two-Part Program
 - Boom Technology Demonstrator / Rule-Making
 - Production Program

- High Risk R&D $ Required

- Entry Into Service a Decade Away
Pushing the Performance Envelope

Today’s Reality

- Max Weight: 91,000 lb
- Typical Payload: 8 pax
- TO Field Length: 6,000 ft
- Cruise Speed: 0.80 M
- Range: 6,750 nm

Tomorrow’s Vision

- Max Weight: 100,000 lb
- Typical Payload: 8 pax
- TO Field Length: 6,000 ft
- Cruise Speed: 1.80 M
- Range: 4,800 nm

QSJ – Potential to be First Successful Civil Supersonic Aircraft

(Slide 12)