FAA Continuous Lower Energy, Emissions and Noise (CLEEN) Technologies

Boeing Program Overview

CLEEN Consortium Public Session
November 19, 2014
Atlanta, GA
Boeing CLEEN Program

Boeing CLEEN Technologies

Program Overview & Status

CMC Nozzle Flight Test
Boeing CLEEN Technologies

Benefits

Alternative Fuels
- Analysis of impacts on non-metallic fuel system components for Aromatics and Cycloparafins
- Test results and documentation used in support of the ASTM International standard approved in 2012 for synthetic fuel blends up to 50%

Adaptive Trailing Edges
- Fuel Savings: potential of -2% in some single and twin aisle configurations
- Noise reduction: potential of -1.5 dB cum in some single and twin aisle configurations

Ceramic Matrix Composite Nozzle
- Fuel Savings: Potential of -1.0%
- Noise reduction: parity or better compared with treated metallic hot structure
- Nozzle Weight Reduction > 20% below Ti
- Enabler for lighter, hotter, more efficient engine and nacelle architectures

<table>
<thead>
<tr>
<th>Technology</th>
<th>Goal</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel system material swell & fuel absorption</td>
<td>Alt Fuels</td>
<td></td>
</tr>
<tr>
<td>Adaptable Trailing Edges</td>
<td></td>
<td>Fuel-burn</td>
</tr>
<tr>
<td>Ceramic Matrix Composite Acoustic Nozzle</td>
<td></td>
<td>Fuel-burn</td>
</tr>
</tbody>
</table>

Copyright © 2013 Boeing. All rights reserved.
Alternative Fuels Testing

Objectives:

- Evaluate the impact of SPK Fuels and Fuel Blends on Non-metallic Materials used in Commercial Aircraft Fuel Systems
- Generate data to help industry determine effects of the type and concentration of Aromatic and Cycloparaffins on material properties (e.g. seal swell)
- Help enable alternative fuel blends greater than 50% content

Work Statement:

- Select sample fuel blends for analysis
- Measure composition of fuel absorbed by materials for variety of fuels/blends. Establish statistical bounds for behaviour of typical fuel system material
- Conduct volume swell test for common components such as O-rings, sealants and coatings
- Produce Public Report

Benefits:
Support to ASTM Specifications and “Drop-In” renewable fuel replacement strategies
Objective:
- Develop and demonstrate a prototype adaptive trailing edge system capable of tailoring wing performance to reduce noise and fuel burn at different flight regimes

Work Statement:
- Conduct technology survey, CFD analysis and wind tunnel testing to predict performance and define demo system architecture
- Evaluate airplane-level performance impacts of ATE system through CFD models and ground testing
- Develop and integrate prototype ATE system into airplane and demonstrate actuation and control system in flight (TRL 7)

Benefits: Reduced Fuel Consumption, community noise
Enable more efficient wing architectures
ATE Flight Test achieved TRL 7

- Demonstrated Mini-Flap driven by SMA Actuators
- Demonstrated closed loop feedback control of mini-flap during flight
- Tested single slotted flap and simulated mini-split-flap at low speed
- Generated aerodynamics and loads data on high and low speed flight conditions
- Verified predictions of community noise take off and approach data using certification microphones and phased array
- Failure modes validated

Flight Test Summary

- 10 Flight Test days
- 28 Aug – 6 Sept 2012
- 51.5 Hours of flight test time
- 6 airplane configurations

ATE Flight Test completed Sept ’12 Glasgow, MT
Boeing Program Status

Alt Fuels
- Phase 1 - Aromatics
 - ID Blends
 - Lab Tests / Analysis
 - Public Report
 - Reporting
- Phase 2 - Cycloparaffins
 - Samples
 - Lab Tests / Analysis
 - Appendix to Public Report
 - Reporting

Adaptive Trailing Edge
- Airplane Test Configs
 - Conceptual Design
 - Preliminary Design
 - Actuator Dev / WTT
 - Prototype System Development
 - A/P Integration
 - CFD / SLM / Reporting
 - Flight Test
 - Final Report

Oxide CMC Nozzle
- Material Properties
 - Coupon & Element Tests
 - Design Loads
 - Subcomponent Tests
 - Prototype GTD System Development
 - GTD Fabrication & Assembly
 - Ground Test
 - Refurb / Integration
 - Design Cycle 2 / Fab Trials
 - SLM / Reporting
 - Flight Test
 - Improved Design
 - Final Report

- Program on track to complete successfully in 2015

Alt Fuels Status
- Aromatics Testing completed
- Public report released (2011)
- Cycloparaffins Testing completed

Adaptive Trailing Edges
- Project SOW Completed (2013)
- Final Report delivered to FAA (2013)
- Transitioned to BCA Innovation Center team (2013)

CMC Nozzle
- Initial Design & Fab completed (2012)
- Ground Test Completed (2013)
- Flight Test Completed (2014)
 - 2nd Design Cycle In Work – ECD 2Q15
 - Final Report due 2Q15
CMC Acoustic Nozzle

Objective:
- Demonstrate material system that can enable lighter, quieter, more efficient engines
- Design, fabricate and demonstrate an acoustic ceramic matrix composite (CMC) primary exhaust system

Work Statement:
- Conduct Coupon, element & subcomponent testing, establish design loads, validate design tools / methods
- Conduct Proof of Concept Build at full scale
- Test Prototype system in ground demonstration (TRL 6)
- Demonstrate prototype system in flight (TRL 7)

Benefit: Reduce weight by up to 20% relative to Titanium
Acoustic treatment that operates above 1500°F

<table>
<thead>
<tr>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Properties</td>
<td>Design Loads</td>
<td>GTD Proof Build Article</td>
<td>Ground Test</td>
<td>Flight Test</td>
<td>Final Report</td>
</tr>
<tr>
<td>Coupon & Element Tests</td>
<td>Subcomponent Tests</td>
<td>Prototype GTD System Development</td>
<td>GTD Fabrication & Assembly</td>
<td>Refurb / Integration</td>
<td>DDR PDR</td>
</tr>
</tbody>
</table>

Baseline Material: 2D N610/AS Oxide CMC
Baseline Demonstration Engine: Rolls Royce Trent 1000
Building Block Approach

TRL

7

6

5

4

Full Scale Productibility
- Repair demo
- Instrumentation
- Assembly & installation

Ground Test
- Actual environment
- Demo performance

Flight Test
- Flight loads
- Installed acoustic performance
- In-field repair demo

Technology Improvements

Subcomponent Test
- Productivity at scale
- Attachment integration
- Durability in simulated environment

Element Testing
- Validation of designs
- Productivity at increasing scale/features

Coupon Testing
- Concept feasibility
- Material properties

PDR Oct ‘10 CDR June ‘11 Fab Dec ‘11 GTD Feb ‘13 FTD July ‘14
CMC Nozzle Ground Test completed Feb ‘13

RR Test Facility Stennis, MS

• 4.5 weeks of powered testing
• 38 runs, 75 hrs on condition
• All objectives met or exceeded

Data Acquired (125+ channels)
• Thermal (on and off body)
• Loads, Stress
• Dynamics (on and off body)
• Repair techniques
Flight Test Objectives

- Conduct in-depth thermal assessment
- Verify structural performance in flight
- Verify installed acoustic performance
- Verify Repair and Patch techniques
- Accumulate as much flight-time on CMC exhaust as possible
CMC Exhaust Flight Test Instrumentation

Fairing (4 instruments)
- 3 thermal couples
- 1 strain gages
- 0 accelerometers

Nozzle (31 instruments)
- 25 thermal couples
- 2 strain gages
- 4 accelerometers

Centerbody (6 instruments)
- 4 thermal couples
- 2 strain gages
- 0 accelerometers

CMC Nozzle Assembly w/ Fairing
CMC Centerbody (plug)
Installation at Boeing Field
Ground Test Systems

Three external measurement systems used for “off body” measurements during pre & post-flight ground runs:

• **ARAMIS Digital Image Correlation**
 • 2 video cameras track the displacement of a dot pattern on the test article
 • Dot displacement is then used to calculate surface strain

• **Forward Looking Infrared (FLIR)**
 • FLIR imaging was used to map temperatures

• **Laser Vibrometer**
 • Used to measure dynamic displacements & natural frequency of the exhaust

Ground test 3 start FLIR fringe plot
Flight Test Aircraft: 787 ecoDemonstrator (ZA004) w/ RR Trent 1000 Engines
Flight Test Overview

10 Days of Testing

- 28.5 test hours
- 15 ground starts
- 2 flight starts
- 7 ground engine runs
- 8 test flights

Summary of Test Run Durations

Installing Complete 6/24/14
Ground Runs 7/18/14 Structural Flight Tests 7/23/14
Noise Flight Test (CMC) 7/18/14 Structural Flight Tests Noise B/L Flight Test (Ti)
Steady State Test Points:
• Typical flight profiles, speed and altitude
• Cruise conditions
• Max continuous power

Maneuver Test Points:
• Start transients
• Throttle transients
• Snap throttles
• Wind-up turns up to 2.3g, left and right
• Pitchovers to 0.3g
• In-flight shutdowns and relights
• Landing thrust reverser deployment
No Structural Degradation Observed

- Post flight non-destructive evaluation included visual, tap test, & thermography
- Dynamic data supports validation of structural integrity of CMC articles
 - Structural fundamental frequencies unchanged over flight testing

Flash thermography inspection shown (from Stennis ground test)
Measurements matched well with predictions informed by Stennis ground tests (from 2013)

Flight test series expanded tested thermal-structural envelope
Repair Demonstrations

- **Structural pre-flight depot level centerbody repair**
- **Simulated in-field repairs**
 - No induced/simulated damage under in-field repair patches
 - Portable equipment used for all repairs

Internally funded repair technology leveraged flight test opportunity
Performance of Repairs

• No change between pre and post-test conditions for all repair demonstrations
• Determined via visual, coin tap, and NDE thermographic inspection

CMC Structural Repair

Pre-Test

Post-Test

CMC In-Field Patch Repair

Pre-Test

Post-Test

Repair technologies demonstrated to TRL 7 supporting technology transition
• Racetrack flight pattern typical of community noise certification testing
• Compare CMC exhaust to production exhaust
• Free field and phased array ground microphones (no sideline microphones)

Takeoff:

Approach:
Farfield Array and Phased Array at Moses Lake, WA

- Farfield Pedal Microphone Array
- Farfield Pedal Microphone
- Ground Array on Runway
- Center of Ground Array
Side of body array data

Side of Body Array provides improved insight on Nozzle
Performance of CMC exhaust was equivalent or better than Titanium baseline
Acoustic Analysis Summary

• First successful validation of CMC acoustic performance at airplane level
• Test data and predictions show good agreement
• A CMC acoustic nozzle has been demonstrated to be effective
• Tools and SLM can now be updated
CMC Flight Test - July 2014
Moses Lake, WA

Test Summary
• 7 July – 23 July 2014
• 3 Ground Test days
• 12 Flight Test days
• 2 airplane configurations
• 28.5 Hours of engine run time
• 17 Engine Cycles

CMC Flight test achieved TRL 7
• Acquired flight loads data for maneuvers up to 2.3g
• Evaluated structural depot level and in-field repair technologies
• Generated community noise takeoff and approach data using microphones and phased array
• Generated thermal performance data during engine start transients
 • In flight shut down, cold soak, restart
 • Ground runs successfully push exhaust beyond design envelope with no damage

Data Acquired
• Thermal (on and off body)
• Loads, Stress/Strain (off body)
• Dynamics (on and off body)
• Ground microphone Array
• Ground community noise mics
• Side of body acoustic array
• Laser Vibrometry, FLIR, ARAMIS

Photo Credit: Leon Brusniak
CMC Nozzle Accomplishments

✓ Coupon, Joint & Acoustic Element Tests
✓ Subcomponent Test (TRL 5)
✓ Successful Proof of Concept Build
✓ Repair Demonstration
✓ Ground Test (TRL 6)
✓ Flight Test Planning
✓ Hardware Refurbishment
✓ Flight Test 3Q14 (TRL 7)
 • Design Cycle 2 Improved Design
 • Final Report
Summary

Boeing Program is Nearing Completion

• Alt Fuels and ATE Technology Projects complete
• Major CMC Ground and Flight Demonstrations Complete
• CMC Design Cycle 2 and Reporting in 2015
• SLM and benefits being updated

The Oxide CMC Exhaust Tests demonstrated:

• Thermal performance in excess of Inconel at a weight 20% below Titanium
• Noise performance equivalent or better than metallic designs
• Capability of operation at 1500°F continuously

Seeing positive impacts

• Support to ASTM spec (2012)
• Making contributions to FAA CLEEN program goals
• Improved understanding of integration issues of technologies
• Incorporating learning into future designs
• Maturation & risk reduction from CLEEN helping to accelerate transition
Thank you