MESTANG - More Electric Systems and Technologies for Aircraft in the Next Generation

TAPS III Combustor & Alternative Fuels

FMS Technologies
More Electric Systems and Technologies for Aircraft in the Next Generation (MESTANG)
MESTANG Overview

Problem:
Next-gen Commercial Aircraft will need a light-weight power system to realize practical fuel savings and/or mission capability

Project objectives:
• Retire risk for ±270 VDC solid state power system
• Technologies for 600 kW power system
• Demonstrate all-SiC power system
• TRL 6 power system by 2019-20 at EPISCENTER

Customer Outcomes:
• Up to 3% Fuel savings in Single-aisle aircraft family
• GE power system with improved performance at equivalent cost
• Leverages Low-spool extraction concepts

Aircraft level trade studies defined technical approach
GE Aviation Component Technology

Generation

High Spool Starter Generator
150 kW
+/- 270VDC

Distribution

Circuit Breakers with Arc-free Galvanic Isolation
GE: < 3 ms interrupt time
COTS: 20 ms

Conversion

150 kW Silicon Carbide based DC-AC inverters

Silicon Carbide based ±270 VDC to 28 VDC converters
GE: >95% efficiency
COTS: 90%
Aircraft Level Simulation

Goal

- Calculate Baseline Aircraft fuel burn for 500-NM mission
- Calculate More Electric Aircraft fuel burn for 500-NM mission
- Compare above two and show up to 3% fuel savings

Weight Analysis

Mission Setup

Mission Solution & Report

Non-propulsive Energy Demand Generation

<table>
<thead>
<tr>
<th>Baseline Aircraft</th>
<th>MEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS</td>
<td>Pneumatic</td>
</tr>
<tr>
<td>Wing Anti-Ice</td>
<td>Pneumatic</td>
</tr>
<tr>
<td>Engine</td>
<td>One-spool</td>
</tr>
</tbody>
</table>
Summary

MESTANG Program Schedule

Objectives:
Mature an integrated aircraft power system consisting of a bleedless, dual-spool engine, and a second-generation more-electric primary power system

Customer Outcome:
• Up to 3% Fuel Savings in Single-Aisle A/C Family
• GE Power System with improved performance at equivalent cost
• Leverages Low-Spool extraction concepts

Benefits:
• Light-weight +/- 270VDC power system to realize practical fuel savings and/or mission capability
• 600kW – 1MW power system
• Demonstration all-SiC power system
• TRL6 Level System by 2019-2020 at EPISCENTER
• Subsystems certifiable for retrofits before 2026

Key CLEEN II Accomplishments:
• Finalized 600 kW Aircraft Level Simulation Architecture
• Finalized 300 kW Lab Demonstration Architecture
• Finalized System Power Quality requirements
• Completed Preliminary Designs:
 • High Pressure Spool Starter/Generator (HPSG)
 • Starter/Generator/Motor Controller (SGMC)
 • Hybrid DC Circuit Breaker (DCCB)
• Performed Concept demos of +/-270Vdc Generator and GE's Hybrid DC Circuit Breaker at GRC-NY
• Completed PDR on May 01, 2017 – Starting Detail Designs
TAPS III Combustor & Alternative Fuels
TAPS III Combustor

- Higher pressure
- Reduced cooling flow
- Advanced materials

CLEEN II:
- Improved premixer for <CAEP/12 NOx target
- Advanced modeling/design tools
- TRL6 Core Demo of emissions/performance

Objectives:
Advance the development of next-generation low-NOx TAPS III combustor to TRL6

Work Statement:
- Establish baseline NOx / performance
- Develop technologies: Fuel injection, aerodynamic mixing, modeling tools
- Staged advancement to TRL6 via rigs & core engine demonstration

Benefits:
- GE9X projected SFC ~10% below GE90-115B
- LTO NOx >35% margin to CAEP/8 @ 55 OPR
- Mission cruise NOx reduction below SOA
- Low-NOx technology for application in highest OPR/largest engines; design tools/methods for scaling to future applications and engine cycles

CLEEN II Progress since November 2016:
- 2 advanced premixer architectures, with multiple variants, released for manufacturing
- 1 concept screened in late Q4
- Manufacturing of 7 single-cup fuel nozzles and 5 mixer designs begun; all except 2 mixers are finished build
- Baseline: FAR2A mapping & emissions
- Combustion dynamics models validated against TCA3 data; analytical screening of new concepts has started
TAPS III Combustion System Development

Goals and Schedule

- LTO NOx emissions (FAA Goal) 35% margin to CAEP/8 @ 55 OPR
- Cruise NOx emissions (GE Goal) < SOA
- Solid Particulate Matter (GE Goal) 60% margin to CAEP/6 (based on Smoke no.)
- Combustor Durability (GE Goal) Increased TOW
Concept A2 tested; expected to meet CLEEN II objectives

Concepts C, D configs analytically predicted to further improve NOx & performance beyond Concept A2

7 nozzles, 5 mixers being produced

Single-cup (TRL3) tests up to max cycle conditions planned mid-2017
TAPS III Combustor Development – Test rigs

Rig tests establish reference NOx & performance

Criteria evaluated in FAR1C & FAR2A:
- Sub-idle efficiency
- Cruise efficiency
- Low- to intermediate-power NOx emissions
- Exit temperature patterns

FAR1C: semi-scale scale annular combustor rig

Concept A2

- 3 embodiments of TAPS III combustor rigs tested with Concept A2 fuel nozzle/mixer config
- Concept A2 expected to meet CLEEN II objectives for NOx
- Concepts C, D expected to enable higher engine performance, decreased LTO NOx
TAPS III Combustor Development – Modeling Tools

Combustion Dynamics model advancements validated against engine & rig data; applying to CLEEN II new concepts

Modeling Goals

1. Advance modeling approach for fuel spray dynamic coupling with acoustics
2. Develop fast-turnaround calculations
3. Improve mixer screening & acoustics amplitude prediction tools
4. Validate and refine best practice for liquid injection Self-Excited Dynamics methods

Recent success: Modeling rig tests
- Test 2 data with higher measured P4’ values accurately modeled
- Test 3 results accurately predicted

Calculated Growth Rate

<table>
<thead>
<tr>
<th>Rig Test</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rig Test 1</td>
<td>Predicted</td>
</tr>
<tr>
<td>Rig Test 2</td>
<td>Predicted</td>
</tr>
<tr>
<td>Rig Test 3</td>
<td>Predicted</td>
</tr>
</tbody>
</table>

- Balanced CLEEN II design will enable improved NOx & performance while managing lean combustion dynamics
- Modeling tools become part of design process; support timely decisions
Alternative Fuels

Benefits:

- Advance to fully synthetic fuels
- Extend further to lean combustion systems evals – synergize with TAPS III
- Determine: do sensitivities of combustion parameters observed at component level, have a significant impact at system level?

Objectives:

Advance approval and intro of “drop in” fuels
- Support ASTM D4054 – testing/demo phase
- Conduct work complimentary to other FAA programs

Work Statement:

- Test one fully synthetic fuel in ASTM roadmap – (FAR and Core Test)
- Test one “reference” fuel defined by FAA’s National Jet Fuel Combustion Program (NJFCP) – (FAR test)

CLEEN II Progress since May 2016:

- 100% synthetic fuel (HEFA SPK + SKA blend)
 - Agreement w/ the Producer established
- NJFCP fuel (100% ATJ-SPK)
 - Official quote received; procurement initiated
 - FAR scheduled for Q3
 - Test plan (TPS) generated
* Core synthetic fuel could be different than the FAR synthetic fuel

- Key figures of merit to be evaluated: Operability - L/O (ignition); blow-out

- Due to production campaign limitations the FAR fully synthetic fuel will follow the NJFCP testing at a later date.
 - Baseline data will not be repeated, but spot-checked for validity.
FMS Technologies
CLEEN II: GE FMS Public Program Update

Approved for Public Use
FMS Optimal Control – UCCD + GEN B

The solver determines the set of controls that minimize the cost function based on weather.
Unified Climb, Cruise, and Descent ... optimizing considering the tradeoffs

Near-Term Plan
- Discuss technology with OEMs, airlines, and ATC ... address potential barriers
- Demonstrate UCCD/GEN A technology in the TRL 6 lab
- Seek additional opportunities for FMS optimization with additional considerations (traffic, noise, etc.)

Optimal transition from climb to cruise generates even greater savings

Variable profile results in most optimal control

Consideration the tradeoff between climb, cruise, and descent allows for optimal altitude selection

Longer flights will have larger benefit from wind optimization
Weather Retrieval for GEN B

Expanding the optimization domain

Project 4-d weather data onto nominal predicted flight path ... extend altitude range optimization

Accomplishments
Utilizes high UCCD technology, high fidelity model
Modified solver ... accounts for potential non-convexity in the cost
Modified solver ... includes waypoint constraints, avoid infeasible solutions

Near-term plan
Assess product plan ... EIS 2020
Build TRL 6 laboratory prototype
Continue concept development ... incorporate step climb/descent
Advanced Technology Testbed (ATT) brings value to the process

Accomplishments
- PIANO model for six vehicle types have been validated in desktop computer simulation (TRL 5)
- Inter-changeable PIANO, FMS, and NPSS cycle-deck engine models have been validated
- All models available for use in TRL 6 real time simulator

Near-Term Plan
- Implement Georgia Tech narrow body future vehicle model in desktop simulation.
- Run Monte Carlo 3DoF physics simulation trials and extract a model of the block savings for various vehicle types.
- Collaborate with Georgia Tech to study overall impact of FMS updates in the future NAS.
Imagination at work