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1 Introduction 
Flight prediction algorithms are sensitive to the accuracy of their input weather information amongst 
other errors. Errors and inaccuracies in the weather model adversely impact predictions by 
introducing errors in predicted groundspeeds, which in turn raise the time and fuel costs for a flight. 
Successful implementation of NextGen and Single European Sky ATM Research (SESAR) Air Traffic 
Control initiatives require increased flight plan prediction accuracy to enable Trajectory Based 
Optimization (TBO) airspace solutions. 
 
The Flight Management System (FMS) Weather Input Optimizer (FWIO) selects weather locations and 
values to use in flight predictions that minimize performance-based cost functions for each phase of 
flight. The purpose of this document is to present results of this optimization process versus simply 
minimizing weather residual or no optimization process for perfect weather forecasts, as well as 
simulated forecast errors.  

2 Summary 
The benefits analysis was performed using thirty-two (32) flight plans over 68 weather forecasts from 
2011. The first analysis isolated FMS weather modeling errors from other error sources; in particular, 
weather forecasting errors. Utilization of the FMS Wind Input Optimization (FWIO) tool to determine 
wind and temperature inputs to the FMS produced average savings of 24 pounds of fuel per flight in 
descent for guidance maneuvers (73% reduction in guidance maneuver fuel usage), and increased 
predictions accuracy in other phases by over 70%. 
 
In addition to the “perfect forecast“ analysis, the wind and temperature forecast error models have 
been statistically characterized by comparing available weather data recorded using the Data 
Acquisition Replay Tool (DART) to National Oceanic and Atmospheric Administration (NOAA) and 
AirDat forecasts. In determining a characteristic error, only a small set of flight recordings (22 flights 
corresponding to collected AirDat data and 40 flights corresponding to collected NOAA data) were 
obtained. In this limited set of data, the AirDat wind forecast has a 7.3 knot bias error with a standard 
deviation of 11.3 compared to 15 knot bias error with standard deviation of 13.3 for the NOAA 
forecast. In this sample set, AirDat’s wind forecast is approximately 35% better than NOAA (bias + 
one sigma noise). The AirDat temperature forecast has a 0.95 °C bias error with a standard deviation 
of 1.01 °C compared to a 0.47 °C bias error with a standard deviation of 0.27 °C for the NOAA 
forecast. In this sample set, NOAA’s temperature forecast is approximately 48% better than AirDat 
(bias + one sigma noise). Both wind forecast sources had considerable wind error (possibly skewed by 
small sample size), but had relatively low temperature error. For the purposes of this study, simulated 
errors were produced from the statistical characteristics of the forecast error and were applied to 
each of the 68 weather forecasts used. 
 
When the simulated forecast error was included, benefits of using the FWIO tool were reduced from 
values for perfect forecast scenarios. However, the combined effect of reducing forecast error (using 
AirDat forecast) with reducing modeling error (using the FWIO tool) is significant for all phases of 
flight in each cost metric. See Table 1 for a summary of the benefits. 
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Table 1. Summary of FWIO Benefits on Average per Flight1   

 
 
Due to the small weather collection sample size, the measured weather errors may not accurately 
represent the true error across many geographical regions and dates, and a more general error may 
be significantly lower. As an attempt to remove this potential inaccuracy, the study was repeated on 
a case with 1/3 of the error; FWIO benefits results with the modified forecast error are presented in 
Appendix A. 
 
Overall, when combining the effect of using AirDat’s forecast (instead of NOAA) with the FWIO 
optimization (instead of a non-optimized weather representation), descent guidance fuel usage is 
reduced from 70 lbs. down to 43 lbs.; a net savings of 27 lbs. per flight. It is important to note that 
these benefits are presented on average per flight, but on an individual flight basis using the FWIO 
tool with AirDat weather forecast, the benefits could yield higher costs. The largest single flight saving 
observed was 609 lbs. of fuel, and the smallest was 260 lbs. of additional cost (-260 saved).  

3 Background Information 
The weather optimization tool minimizes different cost functions for each phase of flight. In each 
phase, the cost function is designed to increase flight predictions accuracy and/or directly reduce 
cost to the airline. It is thought that increasing the accuracy of flight predictions will allow for 
improved performance of the NextGen or SESAR systems allowing denser air traffic patterns. 
Specifically, these systems plan to use 4D trajectory information (latitude, longitude, altitude, and 
time) to schedule arrivals and optimize traffic through the airspace. 
 
Each of the cost functions is minimized for a single flight plan. The tool does not attempt to choose 
an optimal cruise altitude or cost index, but simply provides the optimal weather data given the flight 
plan (optimality is defined by the cost function).  

4 Benefits Analysis 
The following analysis was performed using 68 weather forecasts provided by AirDat. The 1800 
Greenwich Mean Time (GMT) forecast was selected each day in an attempt to limit correlation 
between forecast databases. In cases where the 1800 GMT forecast was unavailable, the available 
forecast closest to 1800 (1200, 0600, 0000) was used. The choice to use one weather forecast per 
day was an attempt to remove bias in overall statistical results from analyzing similar forecasts. Even 
with the one-per-day selection, there is likely some forecast bias from selecting consecutive days 
within the same season. The weather was not categorized by severity; it is assumed that the sample 
size of 68 days is large enough to cover a wide range of weather types within the individual season 
(Spring 2011). To mitigate this potential source of bias, flight routes were selected spanning the 
western United States in all directions and lengths. Future studies to characterize weather forecast 
error would benefit from a wider timeframe of data collection spanning multiple seasons of the year. 

                                                           
1 Numbers reported are the delta between FWIO and non-optimized results, percentages shown are the 

percentage savings of using the FWIO versus no optimization for various forecast sources. 

Perfect Forecast NOAA Forecast AirDat Forecast
Descent Cost Savings (lbs - sec) 20 (71%) 13 (21%) 13 (28%) 21 (35%)
Descent Fuel Savings (lbs) 24 (73%) 16 (23%) 17 (28%) 27 (39%)
Cruise Temporal Prediction Accuracy Increase (s / NM) 0.014 (71%) 0.004 (1%) 0.005 (1%) 0.079 (28%)
Climb Distance Prediction Accuracy Increase (ft / s) 7.6 (80%) 0 (0%) 1.2 (6%) 8.4 (33%)

FWIO vs. non-optimized
(both using same forecast)

FWIO with AirDat vs. non-
optimized w/ NOAA
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For each weather set, eight routes were predicted, each with four cruise altitudes, for a total of 32 
routes per day. Table 2 shows the Alaska Airlines company routes and cruise altitudes used in this 
study. For all routes, the cost index is fixed at 25. The altitudes listed below were selected to span a 
range of standard cruise altitudes. Altitudes for the Seattle/Spokane routes are lower due to the short 
flight range. 
 
Table 2. List of Flight Plans Used in Analysis 

Route Cruise 
Altitude 1 

Cruise 
Altitude 2 

Cruise 
Altitude 3 

Cruise 
Altitude 4 

SEAMSP1 FL280 FL310 FL340 FL370 
MSPSEA1 FL280 FL310 FL340 FL370 
GEGSEA2 FL240 FL260 FL280 FL300 
SEAGEG1 FL240 FL260 FL280 FL300 
SEASFO1 FL280 FL310 FL340 FL370 
SFOSEA1 FL280 FL310 FL340 FL370 
ORDSEA1 FL280 FL310 FL340 FL370 
SEAORD1 FL280 FL310 FL340 FL370 

4.1 Perfect Forecast 
The hypothetical perfect forecast is defined as a forecast with zero error; the forecasted data exactly 
matches the true weather. For each flight plan, three different optimizations were tested assuming 
this perfect forecast. Further analysis to include the effects of forecast error was performed on two of 
the optimization options (paragraph 4.2). 
 
Optimization 0 (op0) is the “no optimization” baseline; inputting wind from the weather forecast at 
each waypoint in cruise and at three fixed altitudes in descent (5000, 10000, 15000 ft.). The descent 
winds are retrieved from the weather database using the arrival airport latitude/longitude. 
 
Optimization 1 (op1) is a version of the optimization algorithm that minimizes wind and temperature 
residual. This optimization is intended for comparison only, and is omitted from the forecast error 
analysis (paragraph 4.2). 
 
Optimization 2 (op2) is the FWIO tool that minimizes the performance based cost functions outlined 
above. This algorithm uses detailed knowledge of the prediction functions to directly increase 
prediction performance. This algorithm selects weather locations and weather values at the selected 
locations that minimize the optimization cost function. 
 
It should be noted again that analysis presented in this section (the hypothetical perfect forecast) 
only looks at savings due to weather model error, and does not address other factors that may 
impact the accuracy of flight predictions such as meteorological forecast errors, trajectory 
integration error, or unexpected air traffic control input. The benefits presented in this section in 
regards to percentage improvement-only factor in weather modeling error, which may only be a 
small piece of the overall error tree. The combined effect of model error and forecast error is shown 
in paragraph 4.2. 
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4.1.1 Descent 
The descent phase optimization performance is measured by the following metrics: 

• Cost function value --  80% fuel cost, 20% time cost 
• Error in predicted descent time (“continuous” reference weather model versus B737 U11-

based weather model)  
 

In the scenarios examined, the average cost associated with performing (non-idle thrust) guidance 
maneuvers to maintain the predicted trajectory was reduced when using the weather optimization 
tool (op2) versus no optimization (8 lbs. - 37 lbs. fuel savings depending on route; maximum savings 
for SFOSEA1 – FL370). The FWIO tool (op2) shows slight improvement over less sophisticated 
optimization methods (op1) (1 lb. – 11 lbs. fuel savings depending on route; maximum SEAORD1- 
FL370). Averaging all of the flight plans and weather forecasts, the total assessed cost using the 
FWIO tool is 8 lbs., compared to 28 lbs. without doing any optimization, and 13 lbs. with less 
sophisticated optimization. This represents a 71% assessed cost savings when using the weather 
optimization tool versus a 53% savings from less sophisticated optimization methods. The 
distribution for this averaged data is shown in Figure 1. 

 
Figure 1. Descent Cost Value Histogram for All Optimization Options. Note the lower 
concentration of high cost cases for the FWIO tool (Optimizer 2)2 

 
In Figure 1, all three optimizers have the same number of tested cases: 2176. It appears that 
optimizer 2 has more overall cases because it is plotted in front of the optimizer 1 and with no 
optimization bars. Figure 1 shows that there are more cases with high cost for no optimization and 
optimizer 1. 
                                                           
2  All distributions shown have values in the 0-20 bin. Due to the higher concentration of “Optimizer 2” cases in 

this bin, the “No Optimization” and “Optimizer 1” values of the histogram are hidden behind the “Optimizer 2” 
bar. 
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While 28 lbs. of fuel does not seem like a significant amount, multiplied by the number of flights 
occurring each year amounts to a significant airline cost savings.  
 
These fuel usage values are much lower than airlines’ reported fuel cost. This could be attributed to 
other error sources not analyzed here (such as temperature effects and performance model errors).  
It is interesting to note that both optimization options provide approximately the same reduction in 
time cost compared to no optimization (5 seconds of time error). This is likely due to the heavy 
weighting of fuel cost (80%) in the overall descent cost function. When the weather optimization tool 
(optimization 2) is applied to the overall cost function, the weighting shifts the focus to the fuel 
component. Due to the termination tolerance used in the FWIO, it is possible (and likely) that no 
further iterations are performed to reduce time cost once fuel cost has been driven to zero. On the 
other hand, optimization 1 operates on a wind residual based cost function, which is directly related 
to time of flight error. As shown by the fuel cost results, this is sub-optimal in terms of fuel usage, but 
provides a relatively low time cost solution. Based on these results, it may be possible to further tune 
the FWIO descent cost function for iterations where fuel cost is zero and apply higher weighting to 
time cost. Additionally, FWIO users have the ability to change the fuel to time cost weighting 
depending on their specific needs. 
 
In addition to the direct cost savings in fuel usage shown by using the weather optimization tool, 
there are indirect benefits to the overall air traffic management system through increased flight 
predictions accuracy. The predicted time of flight and predicted fuel usage accuracy was assessed 
using error, defined as the difference in the predicted quantity using the FMS weather model with 
weather from each optimizer, compared to a common reference of a flight prediction model that 
uses “pseudo-continuous” weather. Early arrival is counted as a negative time of flight error, and late 
arrivals are counted as a positive time of flight error. Time of flight accuracy is best represented by 
the standard deviation of this error quantity. These parameters are of particular importance to 
required time of arrival and arrival scheduling applications. 
 
Figure 2 shows the overall distribution of all cases using each optimization algorithm. This plot shows 
significant benefit to using either of the weather optimization algorithms in terms of reducing the 
standard deviation of the time of flight error, with the FWIO showing a slight improvement over other 
optimization methods.  
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Figure 2. Distribution of Error in Predicted Descent Phase Time of Flight [sec] for All Cases 
Combined 

This analysis shows that by using the weather optimization tool, the predicted time of flight error is 
reduced to less than 16 seconds in 95% of the cases, compared to 21 seconds using optimization 1, 
and 36 seconds for no optimization. This amounts to an improvement in temporal descent 
predictions accuracy of 55% when using the weather optimization tool. It is possible to improve all 
three methods by increasing the number of data points allowed in the descent weather model. 
 
The results for predicted fuel usage error (Figure 3) show similar results to the predicted time error. 
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Figure 3. Distribution of Error in Predicted Descent Fuel Usage [lbs.] for All Cases Combined 

4.1.2 Cruise 
The cruise phase optimization performance is measured by a temporal cost function (prediction 
temporal accuracy per nautical mile in cruise). Unlike the descent cost function, this metric applies to 
the predicted path. Because the aircraft flies at constant altitude at constant thrust setting, the fuel 
usage is directly proportional to this metric. In this analysis, the optimization tools were not allowed 
to select weather locations, and were constrained to only top of climb, top of descent, and cruise 
waypoints. This choice was made because the routes used for analysis have many cruise waypoints, 
and in the majority of cases, additional weather locations were unnecessary. Further analysis should 
be performed allowing additional weather location selections for routes with long cruise legs (such as 
a DIRECT-TO) situation, as there is a potential for even greater accuracy improvement than shown in 
this study. 
 
The FWIO weather values allowed higher temporal accuracy in flight prediction. On average, the 
FWIO values yielded 0.005 seconds of error/nautical mile, compared to 0.0196 seconds of 
error/nautical mile without any optimization. Not only did the results show an average of 4x 
reduction in mean and standard deviation of the cost function averaging all routes; each individual 
route showed some improvement. 

4.1.3 Climb 
The climb phase optimization performance is measured by a distance based cost function (feet of 
error/second in climb phase). 
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Similar to cruise phase, this cost function metric applies to the predicted path. In this analysis, the 
optimization tools were not allowed to select additional weather locations beyond what can be 
entered into the current B737 U11-based FMS, and were constrained to only ground level (current 
wind) and top of climb. Unlike cruise, there is no method to apply additional weather locations in the 
FMS, so no additional benefit is expected beyond the results presented here. 
 
The FWIO tool yields approximately 5x reduction in mean and standard deviation of the climb cost 
function compared to no optimization for all routes. Averaging all cases, the FWIO tool predicted top 
of climb location within 2.022 feet per second of flight time, versus 9.594 feet per second of flight 
time without any optimization. 

4.2 Forecast with Error 
The analysis above shows that using weather from the FWIO can provide significant reduction in 
flight cost compared to non-optimized weather inputs for perfect forecast scenarios. True weather 
measurements in flight have been acquired from DART data recorders, which allow statistical 
characterization of the forecast error for use in the FWIO tool.  
 
To examine the effect of forecast errors, the statistical forecast error models (shown in Appendix B) 
were applied to the predicted forecast to create hypothetical “truth” scenarios. The FWIO cost 
function value was then recomputed using the estimated weather (obtained through optimization of 
the original forecast) and the hypothetical “truth”. See Figure 4 for a graphical depiction of this 
process. Similar to previous analyses, eight routes with four altitudes each were analyzed for 
weather forecasts on 68 different days. For each of these route/altitude/day combinations, the error 
model was applied independently three times to generate three different “truth” weather cases for a 
small Monte Carlo run, in which the average of the three resulting costs was reported out. Due to 
processing time constraints, a larger Monte Carlo study was infeasible at this time.  
 



CLEEN Benefits Analysis for the FMS Weather Input Optimizer (FWIO) Revision v1 • 6/15/2013 

© 2013 GE Aviation Systems LLC, USA 11/19 

 
Figure 4. Flowchart for Simulation of "Truth” Weather Scenarios 

4.2.1 Descent 
When forecast error is taken into consideration, the fuel usage for guidance maneuvers is increased 
compared to scenarios with a hypothetical perfect forecast. The average descent cost with NOAA 
error levels increased from 28 to 61 lbs. for no optimization, and from 8 to 48 lbs. with optimization. 
Similarly, with AirDat errors, the cost is increased from 28 to 52 lbs. for no optimization and from 8 to 
39 lbs. with optimization.  
 
Overall, the cost savings of using the FWIO went from 20 lbs. with no error down to 13 lbs. with either 
error model. The original reported cost savings of (71% reduction in descent cost when using the 
FWIO versus a non-optimized forecast) has been reduced (now 21% for the NOAA error and 28% for 
the AirDat error – a much smaller fraction of the overall guidance maneuver cost). This reduction is to 
be expected because the optimization attempts to match the predicted forecast, not the true 
weather. When there are errors present, the true value may lie closer to the inaccurate forecast 
weather estimation, resulting in lower cost than even the optimized value. In addition, the forecast 
error from either NOAA or AirDat can be large in comparison to the model error. The FWIO tool can 
only be as good as the input forecast, and can only remove the model error component. 
 
When comparing the combined effect of using the better forecast (AirDat) with the effect of using a 
better model (FWIO tool), the overall cost decreases from 61 lbs to 39 lbs; an overall savings of 21lbs; 
13 can be attributed to the FWIO, and 8 attributed to the better forecast. 
 
Comparing the average fuel usage for guidance maneuvers with forecast error to the perfect 
forecast analysis, the average cost with NOAA error levels increased from 32 to 70 for no 
optimization, and from 8 to 54 with optimization. Similarly, with AirDat errors, the cost is increased 
from 28 to 60 for no optimization and from 8 to 43 with optimization. In other words, using the FWIO 
tool will save 16 to 17 lbs. of fuel per flight in the presence of forecast error, down from 24 lbs. with a 
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perfect forecast. Overall, when forecast error is included, fuel cost is higher, but can still be reduced 
by using the FWIO tool to generate weather input data. 
 
When combining the effect of the better forecast (AirDat) with the better model (FWIO) descent 
guidance fuel usage goes from 70 lbs. down to 43 lbs., a net savings of 27 lbs. per flight. It is 
important to note that these benefits are presented on average per flight; but on an individual flight 
basis using the FWIO tool with AirDat weather forecast could yield higher costs. The largest single 
flight saving observed was 609 lbs. of fuel, and the smallest was 260 lbs. of additional cost (-260 
saved).  

4.2.2 Cruise 
In the presence of forecast error, the optimization tool produced a weather estimate that resulted in 
a time accuracy improvement of 0.004 - 0.005 seconds/nautical mile on average. The perfect 
forecast analysis presented above showed an improvement of 0.014 seconds/nautical mile with no 
forecast error. It should be noted that both analyses used routes with many enroute cruise 
waypoints; resulting in very small model errors for both the optimized and non-optimized cases. In 
turn, the large forecast error component in this analysis tends to dominate the overall error, and thus 
the cruise time accuracy.  
 
Reducing this forecast error component is therefore crucial to increasing temporal accuracy in 
cruise. Comparing the NOAA versus AirDat resulting errors, an average accuracy increase of 0.079 
seconds/nautical mile travelled (28%) can be seen. Although this accuracy increase dwarfs the 
potential savings from using the FWIO tool for the routes in this study, routes with few cruise 
waypoints (such as a DIRECT-TO) have significantly higher model error which can be removed by the 
FWIO tool. 

4.2.3 Climb 
The average climb accuracy is not significantly improved (nor reduced) from use of the FWIO 
optimization tool in the presence of forecast error. Similar to cruise, the forecast error component 
tends to dominate over the modeling error component and wash away any potential savings. By 
using a better forecast model (AirDat) the average distance error can be reduced from 25.5 
ft./second of flight in climb to 17.1 ft./second of flight; an accuracy improvement of 33%. 
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Appendix A FWIO Benefits with One Third Forecast Error 
A factor of one third was selected to scale down all standard deviations and biases in the wind and 
temperature models to represent the case where the measured errors in the DART sample set 
represented a three sigma case. This is likely a lower bound (best case) estimate of benefits, with the 
true benefits lying between the results presented here (see Table 3), and the results presented in prior 
sections. 
 

 
Table 3. Summary of FWIO Benefits using One Third Forecast Error on Average per Flight3  

 
Note that with these smaller errors, the descent costs for either forecast are approximately 
equivalent, but cruise and climb prediction accuracy is improved with the AirDat forecast. This 
implies that for these reduced error levels; model error dominates in descent phase and forecast 
error dominates in climb and cruise phase. 
  

                                                           
3 Numbers reported are the delta between FWIO and non-optimized results, percentages shown are the 

percentage savings of using the FWIO versus no optimization for various forecast sources. 
 

Perfect Forecast NOAA Forecast AirDat Forecast
Descent Cost Savings (lbs - sec) 20 (71%) 17 (45%) 17 (45%) 17 (45%)
Descent Fuel Savings (lbs) 24 (73%) 20 (47%) 20 (46%) 21 (47%)
Cruise Temporal Prediction Accuracy Increase (s / NM) 0.014 (71%) 0.007 (7%) 0.006 (9%) 0.031 (31%)
Climb Distance Prediction Accuracy Increase (ft / s) 7.6 (80%) 3.2 (27%) 4.7 (44%) 5.8 (49%)

FWIO vs. non-optimized
(both using same forecast)

FWIO with AirDat vs. non-
optimized w/ NOAA
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Appendix B Forecast Error Characterization and Results 
The weather forecast error is defined as the delta between measured weather and predicted 
weather. This error has been calculated at five second intervals for the entirety of each DART flight 
for temperature (Deviation from the International Standard Atmosphere (DISA)), north component of 
wind, and east component of wind to form a sequence of errors.  
 

𝑒 = 𝑊𝐷𝐴𝑅𝑇 −𝑊𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 
 
The error for a given flight can be characterized in two components: bias and a “noise” component. 
 

𝑒 = 𝑏𝑖𝑎𝑠 + 𝑛𝑜𝑖𝑠𝑒 
 
For each flight, the bias can be estimated by taking the mean of the sequence of errors. Using this 
estimated quantity, a zero mean noise component can be isolated.  
 
The wind and temperature errors have very different “noise” characteristics. In fact, the “noise” is 
more truthfully described as simply the remaining error. In the case of temperature, this more closely 
resembles low standard deviation white noise. In the case of wind, the noise exhibits low frequency 
oscillatory behavior. This makes physical sense because atmospheric temperature is fairly well 
known, and can be described with a simple altitude model (loose dependence on latitude/longitude). 
Atmospheric wind is dependent on complex pressure systems moving around the surface of the 
earth. As the aircraft flies through various pressure systems, it may encounter winds earlier or later 
than expected. The wind error is generally high amplitude peaks and valleys. For this reason, the 
wind and temperature “noise” components are addressed with separate models. 
 
In order to process the limited data set with the most possible data, each of the flight phases 
(climb/cruise/descent) are analyzed together as one set of forecast errors. In truth, each phase of 
flight possesses its own unique characteristics. For instance, measured temperature is typically 
higher than truth in climb and lower in descent due to thermal properties of the sensor 
(measurement lags truth). In descent, there is typically higher wind measurement error than other 
flight phases due to higher aircraft yaw. In addition, descents are typically flown into a headwind, 
which may produce a wind measurement bias. Some of these effects can be seen in the example 
plots shown above. With a larger data set, it may be possible to separate these effects out to obtain 
a more accurate representation of the true weather. For the purposes of characterizing the forecast 
errors in this study, these factors are assumed to be small, and DART measurements are used as 
truth data. 

B.1 Temperature Error Model 
As described in the previous section, a “noise” component can be extracted from the overall 
temperature error by subtracting out the bias term.  
 
The resulting signal resembles a random walk or fractional Brownian motion, but upon further 
examination, there is no physical reason the error should grow uniformly with time4 (assuming fresh 
forecast for all data points). Ruling out these types of errors, the best match is correlated Gaussian 
noise.  

                                                           
4 As stated in paragraph 4.2.1, different flight phases possess different error characteristics, and higher error 

may be expected in climb or descent. 
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New simulated noise signals can be reproduced using the statistical measurements from DART 
flights. These resulting simulated signals are again smoothed using the one minute moving average 
filter. A few examples of simulated signals are shown in Figure 5. 
 

 
Figure 5. Example of Simulated DISA Error Signals 
B.2 Wind Error Model 
The remaining “noise” component of the wind error is initially filtered using a five minute moving 
average filter with zero phase lag to remove quantization and measurement errors. An example of 
filtering results is shown in Figure 6. It should be noted here that the five minute filter time window 
was selected to smooth the large spikes in the “noise” signal. It is thought that these spikes represent 
either measurement error (wind is not directly observed onboard the aircraft) or short-term wind 
gusts. For purposes of this analysis, short wind gusts and any unique characteristics by flight phase 
are neglected. 
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Figure 6. Example of Wind Moving Average Filter 

The resulting wind “noise” signal is somewhat similar to the temperature “noise” signal, but exhibits 
much higher amplitude oscillations with lower frequency. The signal is short term highly correlated 
and long term uncorrelated. Because of the nature of this data, if the correlated Gaussian noise 
model is applied to these results, a very high correlation coefficient (0.9999) is obtained. This 
correlation tends to produce simulated signals that do not exhibit any oscillations. The model does 
not provide a means for long term versus short term correlation. Again, a random walk model can 
account for long and short term correlations through the Hurst parameter, but this model is ruled out 
due to its increasing error over time. 
 
The wind “noise” signal can be modeled using an extrema model. In this model, each of the local 
extrema is identified in the “noise” signal. The rate of occurrence of these extrema can be modeled 
using a gamma distribution, which 4is a one-sided (0∞) statistical distribution commonly used for 
waiting times. The Probability Density Function (PDF) of the gamma distribution is defined as: 
 

𝑦 = 𝑓(𝑥|𝑎, 𝑏) =
1

𝑏𝑎Γ(𝑎)
𝑥𝑎−1𝑒

−𝑥
𝑏  

 
Where Γ (x) is the gamma function 
 
The defining parameters of the gamma distribution (a, b) can be estimated using numerical 
techniques. 
 
In addition to the location of the extrema, the distribution of the values at these extrema is needed. 
These values tend to follow a correlated Gaussian noise distribution. The correlation coefficient and 
standard deviation of the extrema can be extracted from the signal data.  
 
Simulated noise signals are produced for this study based on the DART weather statistics. A linear 
interpolation is used between extrema locations, and then a five minute moving average filter is 
applied to the data. This filter tends to apply a smooth transition between the extrema without 

0 200 400 600 800 1000 1200 1400 1600 1800
-10

-5

0

5

10

15

Data Point (0.2Hz)

W
in

d 
E

rro
r [

kt
s]

 

 
Unfiltered "noise"
Moving average



CLEEN Benefits Analysis for the FMS Weather Input Optimizer (FWIO) Revision v1 • 6/15/2013 

© 2013 GE Aviation Systems LLC, USA 17/19 

introducing higher amplitude errors that would come from a spline or cubic interpolation fit. The 
moving average of an oscillatory signal tends to have reduced amplitude from the original signal. To 
remedy this effect, the resulting moving average is scaled upwards to have the same standard 
deviation as the original noise signal. Figure 7 shows a few examples of simulated wind errors. 
 

 
Figure 7. Example of Simulated Wind Component Error Signals 

 

B.3 Forecast Error Model Statistical Results 
The error models above were applied to the set of 99 DART 737-800 flights from mid-August through 
the end of September. The majority of these flights travelled in the US Pacific Northwest, and up and 
down the west coast. Of the 99 potential flights from Summer 2011, corresponding NOAA weather 
data was obtained for 40 flights, and AirDat data was obtained for 22 flights (with a very small 
overlap between the AirDat and NOAA data corresponding to the flight samples). The difference in 
sample size is due to different geographic collection regions between the collected NOAA and AirDat 
forecasts and data acquisition gaps. This extremely small number of samples in a focused region is 
undesirable for a large scale statistical analysis. The aggregate results presented below should be 
used with caution, as they may not accurately represent the entire population of weather error. 
Future forecast error characterization studies should use a much larger sample set across multiple 
seasons, or even years. 

B.3.1 Wind Error Model 

The statistical summary of the error model parameters for North wind component and East wind 
component are presented in Table 4 and Table 5 respectively. One interesting thing to note here is 
that the NOAA model is fairly accurate in the North/South direction, with only 2 knot bias and 4.6 knot 
standard deviation of the remaining error. Extrema occur at moderate intervals with low amplitude. 
On the other hand, for the East/West direction, the bias is much higher at 15 knots and standard 
deviation of the remaining error jumped to 11 knots. The extrema in the east west direction occur 
less frequently with high amplitude. The overall wind error in the NOAA model tends to stretch along 
the East/West direction. The AirDat error tends to be more omnidirectional in nature, with -4 knots of 
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bias North/South and 6 knots East/West. The standard deviation of the remaining error is eight knots 
in either direction. 
 
In normal weather patterns, the jet stream passes through the Pacific Northwest primarily from the 
West to East, so it is possible that the error seen is simply error in predicting jet-stream intensity. In 
other areas of the globe, the error may stretch in different directions, or could be circular in nature.  
 
Regardless of the shape of the errors, they can be directly compared by taking the magnitude of the 
combined error vector. On average, the NOAA wind forecast has 15 knots of total bias error, 
compared to 7.3 from AirDat. The NOAA wind forecast has 13.3 knots of noise error, compared to 
11.26 from AirDat. Most of the AirDat error model quantities have higher standard deviation, which 
could be attributed to the smaller sample size (22 flights versus 40).  
 
Table 4. Wind North Component Error Model Parameters 

Parameter Mean Value 
(NOAA)  

Standard 
Deviation (NOAA) 

Mean Value 
(AirDat) 

Standard 
Deviation 
(AirDat) 

Bias –kts 1.92 3.49 -4.21 10.52 
Extrema Correlation 0.02 0.34 0.30 0.33 
Extrema Gamma (a) 2.03 1.37 2.52 1.62 
Extrema Gamma (b) 56.78 23.83 46.31 26.26 
Noise Standard 
Deviation – kts 

4.61 1.39 7.38 5.26 

Extrema Standard 
Deviation – kts 

4.99 1.48 7.86 6.27 

 
Table 5. Wind East Component Error Model Parameters 

Parameter Mean Value 
(NOAA) 

Standard 
Deviation (NOAA) 

Mean Value 
(AirDat) 

Standard 
Deviation 
(AirDat) 

Bias – kts 14.89 11.24 5.98 9.84 
Extrema Correlation 0.30 0.37 0.08 0.46 
Extrema Gamma (a) 2.11 1.72 2.30 1.52 
Extrema Gamma (b) 72.42 42.95 51.67 31.34 
Noise Standard 
Deviation –kts 

11.03 4.87 7.28 7.46 

Extrema Standard 
Deviation - kts 

12.34 5.79 8.06 8.49 

B.3.2 Temperature Error Model 

The statistical summary of the DISA error model parameters is shown in Table 6. Both forecast 
sources are fairly accurate in their temperature predictions. NOAA has a slightly more accurate 
prediction, with an average bias of -0.5 °C compared to -1.0 °C for AirDat. The remaining noise has a 
standard deviation of 0.7 °C for NOAA and 1.3 °C for AirDat. Although this shows that NOAA DISA 
error is ~50% smaller, both forecasts have extremely small error on average.  
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Table 6. DISA Error Model Parameters 

Parameter Mean Value 
(NOAA) 

Standard 
Deviation (NOAA) 

Mean Value 
(AirDat) 

Standard 
Deviation 
(AirDat) 

Bias - °C -0.47 0.27 -0.95 1.01 
Noise Standard 
Deviation - °C  

0.70 0.16 1.30 0.60 

Noise Correlation 
Coefficient 

0.998 0.001 0.999 0.001 
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