Chemical and dynamical processes: revised final

Aviation-Climate Change Research Initiative
(ACCRI)

Subject specific white paper (SSWP) on
UT/LS chemistry and transport

SSWP # II

John McConnell, PI
York University

Wayne Evans, co-I
York University

Jacek Kaminski, co-I
WxPrime Corporation\York University

Alexandru Lupu, co-I
York University

Lori Neary, co-I
York University

Kirill Semeniuk, co-I
York University

Kenjiro Toyota, co-I
York University

January 24, 2008
Executive Summary

The global commercial aircraft fleet currently numbers about 10,000 and flies several billion kilometres per year while burning more than 100 MT of fuel per year at high temperatures producing mostly water and CO₂. However, NOₓ (= NO+NO₂), other minor gaseous species, organic aerosols from unburnt fuel and soot and ions are also injected at cruise altitudes located in upper troposphere and lower stratosphere (UT/LS), a region particularly sensitive to atmospheric climate change.

The demand for air transportation in the US is projected to grow three fold by 2025 while similar growth is projected for the aviation industry world wide. Future climate impacts are expected to increase based on this projected aviation growth and resulting changing atmospheric conditions. These impacts relate to the impact of tripling aviation system capacity and the resulting global impact of these additional engine emissions which are estimated to be approximately twice as large as at the turn of the last century. However, if current economic projections obtain for this period, boundary layer (BL) NOₓ emissions may also double and hence their contribution to the UT region. In addition to global climate impacts there is also potential for even greater regional or local effects. The growth of emissions of both BL and aircraft NOₓ will likely lead to an increased production of ozone in the UTLS. This increase in UT/LS ozone will cause a significant increase in the radiative forcing, which in turn will contribute to global warming.

Jet traffic spends 60% of the time in the upper troposphere (UT) where current information is insufficient to make an accurate prediction of the climate impacts of increased jet traffic due to tropospheric ozone generated from aircraft NOₓ emissions. A review of the HOₓ/NOₓ chemistry concludes that the chemistry is fairly well known in the lower stratosphere. However, the upper troposphere HOₓ/NOₓ chemistry is uncertain as revealed by measurements of NO and OH concentrations which conflict with current model simulations from various aircraft campaigns. The aerosols from aviation emissions can also interact with the background constituents and alter the NOₓ and ClOₓ chemistry with resulting changes in regional ozone in the UT/LS.

In order to evaluate the impact of NOₓ from aircraft on UT ozone, the other sources of NOₓ in this region, such as lightning and transport from the boundary layer must be better quantified than at present. Aircraft measurements reveal “high” levels of NOₓ in the summer UT over North America, generated by lightning. Satellite measurements have recently been analyzed to give a more precise estimate of the global lightning source to be about 5±3 MT per year which makes it an important NOₓ in-situ source for the UT. Upward transport of NOₓ from the boundary layer is also significant. The fraction of the deep convection source of NOₓ from the surface sources which reaches the 10 to 13 km level is
Chemical and dynamical processes: revised final

estimated to be around 10-50 %. While the uncertainty in this estimate may
simply reflect the difference in the meteorology in the measurement regions, this
needs to be better characterized. The parameterization for convective transport
in 3D models needs to be improved. The effects of the vertical transport by the
Asian monsoon and the Madden-Julian oscillation should be modelled or
parameterized by models as they impact transport into the upper troposphere
and stratosphere via the tropical transition layer.

In the aviation corridors, NOx is elevated above the background by aircraft
emissions; the aircraft contribution may be dominant under certain meteorological
conditions. The elevated NOx and ozone may persist for some time and be
transported to other regions. The radiative forcing due to ozone may be much
higher in some areas than on a global basis. Hence characterization of the
aviation perturbations within the flight corridors needs to be improved and should
be the focus of aircraft and satellite studies. This calls for additional extensive
aircraft campaigns focused on the flight corridors in order to quantify the regional
climate effects of aviation.

There are several recent satellites which provide new information on the NOx
and nitric acid at flight levels. The data from MIPAS, ACE and
AURA/MLS/HIRDLS is being applied to the NOx/NOx chemistry of the upper
troposphere. Despite the excellent scientific progress now being made, future
satellite instruments with enhanced capabilities are required. These enhanced
capabilities should include improved vertical resolution to study the UT/LS region.
Denser sampling and higher horizontal resolution are required to address the
corridors issue.

There is a real concern that there will be a gap in satellite instruments suitable for
UT/LS investigations in the next 5 years. Deploying ozonesondes as satellite
observation gap fillers would seem to be the minimum requirement. The
SHADOZ/IONS ozonesondes have proven to be highly useful for investigating
ozone in the upper troposphere since they have excellent vertical resolution.

The real verification of the climate impact of increased upper troposphere ozone
is the detection of changes in the ozone radiative forcing (RF) at the surface and
at the top of the atmosphere. There are difficulties in measuring changes in the
IPCC radiative forcing metric because of the way in which it is defined at the top
of the tropopause. There are large uncertainties in the calculations of the
radiative forcing metric due to a lack of knowledge of cloud effects. There need to
be verifications of the radiative forcing metric by comparison against real
measurements of observed surface radiative forcing and with satellite radiative
trapping at the top of the atmosphere. This will need to be accomplished by
concurrent simulations of surface forcing and top of the atmosphere radiative
trapping with the same models used to calculate the RF metric.

There have been important advances in models since 1999. Data assimilation
has proven very valuable in providing a “value-added” component to satellite
data. There are new satellite instruments taking global measurements which
could be used to compare with the model outputs. Multiscale models are needed
to investigate the corridors aspect of the aircraft emissions and the transition to
regional scale climate impacts. Parameterizations used for deep convection need
to be both used consistently (with the basic dynamical model) and verified
according to the scale of model.
Table of contents

Executive Summary

1. Introduction ..6
2. Current state of chemical and dynamical issues in the UT/LS8
 2.1 Current state of atmospheric chemistry in the UT/LS8
 2.2 Emissions ..13
 2.2.1 N ..13
 2.2.2 CO and VOC emissions15
 2.3 Measurements ..16
 2.3.1 Aircraft measurements16
 2.3.2 Satellite experiments16
 2.3.3 Aircraft measurements investigating flight corridors17
 2.4 Modelling studies ..18
 2.4.1 Plume to global scale modelling18
 2.4.2 Global, regional, multiscale models20
 2.4.3 Weather forecast and Climate models21
 2.5 Future climate impacts23
 2.5.1 Climate change ...23
 2.5.2 Future aircraft emissions23
3. Focus on uncertainties ..25
 3.1 Chemistry and emissions25
 3.1.1 Comprehensive Tropospheric/stratospheric Chemistry models 27
 3.2 Measurements - species and winds – and analysis27
 3.3 Modeling capability ...29
 3.3.1 Resolved Transport Issues30
 3.4 Radiative Forcing comments31
 3.5 Future Climate and related feedbacks32
 3.6 Interconnectivity with other SSWP theme areas32
4. Priorities ..33
5. Recommendations ..37
6. Summary ..39
7.References ..41

Annex I: Models with comprehensive Tropospheric and Stratospheric chemistry ..58

Annex II. Suggested structure for each SSWP ..59

Annex III: Questions to be considered in report60

Figures
1. Introduction

Currently, world wide, the commercial aircraft fleet numbers about 10,000 and flies several billion kilometres per year while burning more than 100 MT of fuel per year at high temperatures producing mostly water and CO₂. However, NOₓ (= NO+NO₂), other minor gaseous species, organic aerosols from unburnt fuel and soot and ions are also injected at cruise altitudes located in upper troposphere and lower stratosphere (UT/LS) region. This region is particularly sensitive to atmospheric climate change: in the tropical tropopause layer (TTL) net heating is particularly weak and the dynamics is impacted by non-local effects such as wave breaking in the stratosphere (Holton et al., 1995; Leblanc et al, 2003). Ozone in this region is particularly important as a greenhouse gas (GHG). At mid- and high-latitudes stratospheric/tropospheric exchange (STE) occurs and delivery of ozone and other species to the troposphere is important. The state of the tropical cold point tropopause is affected by the composition and the associated thermal balance. This regulates the entry of water vapour into the middle atmosphere and hence the temperature and polar ozone chemistry in the stratosphere, which has an impact on the dynamics and thereby the UT/LS region.

Most aircraft NOₓ emissions are released directly into the chemically complex and radiatively sensitive UT/LS between 8-13 km. At the time of the IPCC (Penner et al., 1999) assessment, there was concern that heterogeneous chemistry following immediate conversion of sulfur to aerosols from the aircraft engines could affect the impact on ozone from the NOₓ emissions. Recent measurements suggest that this immediate conversion is sensitive to background conditions.

The effect of aircraft emissions on atmospheric ozone concentration depends on the altitude at which the emissions are injected. The importance of the NO catalytic production of ozone from the NOₓ emissions through the oxidation of methane and hydrocarbons become less effective with altitude while the catalytic ozone loss cycles become more efficient. Any uncertainties in how well we understand the atmospheric chemical and physical processes in the UT/LS affect our ability to understand the magnitude of the aviation effects on ozone and methane.

As noted above, the impact of aviation in the UT/LS was subject of an IPPC report (Penner et al., 1999) and most recently was the subject of workshop in Boston (Wuebbles, 2006). When aircraft fly in this region the NOₓ emitted reacts with HOₓ (=OH + HO₂), CO and sunlight and leads to the generation of ozone. The water emitted and the ozone generated also impact the HOₓ which can impact methane, another GHG. Thus, from these simple examples, we see that there is an intimate and complex link between aircraft emissions and the potential
The demand for air travel in the US is projected to grow by about three fold by 2025 (see below). World wide aviation growth is also expected. Estimates of annual fuel use by 2020 annual for commercial air traffic are ~ 350 MT or 2.6 times the estimated fuel use by the global 1999 commercial fleet. This translates into global NOx emissions of ~ 1.5 MT-N from commercial air traffic or about 2.8 times the estimated 1999 NOx emissions levels. At the same time total revenue passenger kilometers are projected to increase from 3,170 billion in 1999 to 8,390 billion in 2020, or by a factor of 2.65 (Sutkus et al., 2003) These estimated increased emissions are expected to lead to global increase in ozone production with the potential for larger regional effects. The increase in UT/LS ozone will cause a significant increase in the radiative forcing, which in turn will contribute to global warming.

In this report, in addition to dealing with the topic of ozone generation and the associated direct radiative forcing and indirect forcing via its impact on methane, we were also asked to attempt an assessment of the uncertainty of dynamical influences on the impacts of aircraft emissions. We have approached this aspect of our directive by integrating it with the discussion on chemistry as it is difficult to separate the chemical impacts from transport influences.

One of the problems that arise with respect to the impact of the commercial fleet of aircraft is that we would like to be able to characterize the natural or unperturbed atmosphere so that we have a baseline for comparison. Unfortunately, we do not have that luxury since the current fleet has been flying in the UT/LS before the region has been well characterized. Thus the assessment of current impact of aircraft must be addressed via modelling studies combined with the aircraft measurement programs and models require careful evaluation.

The outline of the remainder of the report is as follows. In section two we summarize the background science focusing on the chemical and transport issues, which includes gas phase and aerosol chemistry, outlining the current state of the science including modelling, and we attempt to locate the impact of aviation within the climate change context. In section three we extract the problem areas, the areas that we see developing and areas that need substantial improvement. And we look to the other areas of the study, particularly the relationship with condensation trails and condensation cirrus. Section four sets priorities on what can be done on the short term, while section five sets recommendations and section six provides a summary.
2. Current state of chemical and dynamical issues in the UT/LS

2.1 Current state of atmospheric chemistry in the UT/LS

In the UT/LS the chemistry is driven by the presence of ozone and water vapour: the ozone is photolysed to produce O(1D) which, with water vapour, produces HOx radicals viz.,

\[O_3 + h\nu \rightarrow O(1D) + O_2 \]
\[O(1D) + H_2O \rightarrow 2OH \]

In the lower stratosphere the HOx radicals interact with NOy, Cly and Bry and impact the ozone budget in this region. Any NO generated rapidly gets converted to a suite of NOy species in the stratosphere, including NO, NO2, NO3, N2O5, HNO3, HNO4, ClNO3, BrNO3 (and in the mesosphere N can be included).

The major source of ozone in the stratosphere is via the photolysis of O2

\[O_2 + h\nu \rightarrow 2O \]

As can be seen in Figure 1 the net ozone source is below about 10 mb and is principally in the tropics while at high latitudes net chemical loss occurs (e.g. Cunnold et al., 1980). From this source structure the stratosphere supplies about 500 MTs of ozone annually to the troposphere, principally at high latitudes, and this represents an important component of the net photochemical budget of tropospheric ozone. For the most part our understanding of atmospheric chemistry outside of polar regions in the lower stratosphere appears to be reasonably well understood from satellite, balloon and aircraft measurements (e.g. Zellner, 1999).

One of the problem areas in the stratosphere is the level of Bry. Analysis of BrO stratospheric measurements suggest that the levels of Bry in the stratosphere are about 24 pptv which is somewhat larger than that supplied by halons and CH3Br (e.g., Salawitch et al., 2005; WMO, 2007) The discrepancy between the observations and the sources is probably due to the supply of halogenated very short lived species (WMO, 2006) which are not well mixed in the troposphere. Since Bry is important particularly for ozone loss in polar regions, knowledge of future emissions of these short lived species is important.

1 NOy = NO + NO2 + NO3 + 2N2O5 + HNO2 + HNO3 + ClONO2 + BrONO2
2 Cly = Cl + ClO + HOCl + ClONO2 + HCl + 2Cl2O2 + BrCl + 2Cl2
3 Bry = Br + BrO + HOBr + BrONO2 + HBr + BrCl + 2Br2
Another uncertainty at this point in polar regions is that about 2/3 of the loss of ozone is thought to be via the formation of the Cl$_2$O$_2$ dimer via the reaction sequence

\[
\begin{align*}
\text{ClO} + \text{ClO} & \xrightarrow{M} \text{Cl}_2\text{O}_2 \\
\text{Cl}_2\text{O}_2 + h_v & \rightarrow \text{Cl} + \text{ClO}_2 \\
\text{ClO}_2 + M & \rightarrow \text{Cl} + \text{O}_2 \\
2(\text{Cl} + \text{O}_3 & \rightarrow \text{ClO} + \text{O}_2) \\
\text{Net} : 2\text{O}_3 & \rightarrow 3\text{O}_2
\end{align*}
\]

However, recent laboratory measurements of Cl$_2$O$_2$ cross sections applied to the observations of the important species in the above reaction sequence, Cl$_2$O$_2$, ClO, and O$_3$ suggest that the reaction sequence is not rapid enough to account for the observed ozone loss (von Hobe et al., 2007; Pope et al., 2007).

In the troposphere O$_3$, O(1D) and water play a similar role as in the stratosphere, acting as a source of HO$_x$ radicals. In particular, the OH generated can attack many species, both organic and inorganic in the troposphere, acting as a "detergent". The main chemical source of ozone in the troposphere is via the reactions

\[
\begin{align*}
\text{NO} + \text{HO}_2 & \rightarrow \text{NO}_2 + \text{OH} \\
\text{NO}_2 + h_v & \rightarrow \text{O}_2 + \text{NO} + \text{O}_3 \\
\text{CO} + \text{OH} & \rightarrow \text{CO}_2 + \text{HO}_2 \\
\text{net} : \text{CO} + 2\text{O}_2 & \rightarrow \text{CO}_2 + \text{O}_3
\end{align*}
\]

where the first reaction breaks the O$_2$ bond. Organic peroxy radicals can also generate O$_3$ via a similar suite of reactions

\[
\begin{align*}
\text{RH} + \text{OH} & \rightarrow \text{RO}_2 + \text{H}_2\text{O} \\
\text{NO} + \text{RO}_2 & \rightarrow \text{NO}_2 + \text{RO} \\
\text{NO}_2 + h_v & \rightarrow \text{O}_2 + \text{NO} + \text{O}_3
\end{align*}
\]

where RH is a gaseous organic species and further reaction of the RO can generate HO$_x$ and catalyze the formation of ozone. Thus it is clear that, under suitable conditions, NO can catalyze the generation of O$_3$. In addition, NO also converts HO$_2$ to OH.

Photochemical production of ozone in the troposphere is estimated to be about 5,000 MT/year while photochemical loss is about 4,500 MT/year leading to a net photochemical source of about 500 MT/year, i.e. of the same order to the source from the stratosphere (e.g. Stevenson et al., 2006). An important loss process for
ozone is deposition to the surface over land, sea and to a less extent over ice, which amounts to a global loss of about 1,000 MT/year. In general an increase of ozone in the troposphere will lead to an increase of OH.

One of the species generated by the VOC-NOx chemistry is PAN (CH$_3$CO$_2$NO$_2$) which can be produced by the breakdown of isoprene and acetone for example. Measurements indicate that PAN is an important carrier of NOx in the UT region as it is stable at low temperatures and is relatively insoluble and slow to photolyse (e.g. Singh et al., 2006; 2007).

One aspect of UT chemistry that needs to be more carefully studied is the sometimes-used assumption of photochemical steady state (PCSS) for analysis of measurements. For example, a recent study by Bertram et al. (2007) suggests that the measurement of the ratio of NO$_x$ and HNO$_3$ in the UT region can reveal lightning sources of NO$_x$ that occur with large scale convection. But an important corollary to their work is that quite often NO$_x$ and HNO$_3$ are not in PCSS due to the interaction of convection and chemistry, each with similar time scales. (See also Prather and Jacob, 1997; Lawrence and Jacob, 1998). But since convection is, in some sense, stochastic then simple photochemical calculations will often be misleading and different process metrics need to be developed such as PDFs which carry the statistical information.

As noted above OH can attack organic species and one of the most important organics is methane, which is a greenhouse gas. Thus if tropospheric ozone were to increase, as a result of increased NO$_x$, (to which aviation would contribute several percent) it is expected that OH would increase leading to a decrease in CH$_4$. Thus, as noted in Penner et al. (1999), there will be compensating effects in terms of radiative forcing, positive from ozone increases and negative from methane decreases. However, due to their differing lifetimes, the ozone effect will be more regional (cf. Figure 2) whereas the methane impact will be global in extent (see also work by Stevenson et al., 2004).

Thus sources of NO$_x$ and hydrocarbons (HCs) are important to the ozone budget in the troposphere and it is important to have reliable estimates of their emissions.

In the cold, especially winter, free troposphere, NO$_x$ is converted and sequestered as PAN, HNO$_3$, HNO$_4$, and N$_2$O$_5$:

\[
\begin{align*}
\text{CH}_3\text{C(O)O}_2 + \text{NO}_2 + \text{M} & \leftrightarrow \text{PAN} + \text{M} \\
\text{NO}_2 + \text{OH} + \text{M} & \rightarrow \text{HNO}_3 + \text{M} \\
\text{NO}_2 + \text{HO}_2 + \text{M} & \leftrightarrow \text{HNO}_4 + \text{M} \\
\text{NO}_2 + \text{O}_3 & \rightarrow \text{NO}_3 + \text{O}_2 \\
\text{NO}_2 + \text{NO}_3 + \text{M} & \leftrightarrow \text{N}_2\text{O}_5 + \text{M}
\end{align*}
\]
Here the CH$_3$C(O)O$_2$ radical is most likely produced by photochemical degradation of acetaldehyde and acetone. There are substantial contributions to the HO$_x$ radical source in the upper troposphere from acetone and other oxygenated organic compounds but with some uncertainty as regards quantitative understanding (see Section 2.2.2). N$_2$O$_5$ is also transformed to HNO$_3$ heterogeneously on “hygroscopic” aerosols ubiquitous in the troposphere:

\[
N_2O_5 + H_2O \text{ (on aerosols)} \rightarrow 2 \text{HNO}_3
\]

According to 3-D model simulations by Dentener and Crutzen [1993], this heterogeneous reaction provides a dominant pathway for the conversion of NO$_x$ to HNO$_3$ in the winter troposphere and leads to significant decrease in the concentrations of ozone and OH radical (20% and 25%, respectively, on average in the northern hemisphere) particularly from winter to spring because HNO$_3$ is much more stable than N$_2$O$_5$ under sunlight.

Comparisons between observed and modeled NO$_x$ concentrations in the mid- to upper-troposphere from tropics to high latitudes confirmed the role of heterogeneous N$_2$O$_5$ hydrolysis, but also indicated that its reaction probability (γ) should be generally smaller (by a factor of 2 or more) than assumed in Dentener and Crutzen’s pioneering work ($\gamma = 0.1$) [Schultz et al., 2000; Tie et al., 2003]. More stringent evidence has been obtained in the summertime lower troposphere over the United States by airborne in-situ measurements of N$_2$O$_5$ and NO$_3$ along with detailed aerosol measurements [Brown et al., 2006], in which the analysis of photochemical steady-state N$_2$O$_5$ concentrations inferred significant decrease in γ(N$_2$O$_5$) on aerosols by more than an order of magnitude in air masses likely enriched in organic coating, nitrate content, or efflorescence of aerosols in agreement with available experimental data [Kane et al., 2001; Folkers et al., 2003; Hallquist et al., 2003; Thornton et al., 2003]. The same methodology, however, may not work well to estimate the role of the heterogeneous N$_2$O$_5$ hydrolysis in the UTLS because (as noted above) of long timescales needed to establish the photochemical steady state at cold temperatures [Brown et al., 2003]. Evans et al. [2005] compiled a new parameterization for γ(N$_2$O$_5$) as a function of aerosol composition, relative humidity and temperature for the GEOS-CHEM global chemical transport model and obtained the global mean γ(N$_2$O$_5$) = 0.02. This resulted in increases in NO$_x$, O$_3$ and OH concentrations by 7%, 4%, and 8%, respectively, relative to those simulated by assuming constant γ(N$_2$O$_5$) = 0.1. The largest changes were found in descending branches of the Hadley circulation where relative humidity is very low. Also, the new parameterization was shown to better simulate climatological values of O$_3$ and OH in the global troposphere for their model.

The understanding of the source and role of organic aerosols, which are very often found to be mixed internally with sulfate aerosols even in the UTLS, is still quite uncertain and requires further theoretical and experimental work for their source identification and chemical characterization and for their impacts on N$_2$O$_5$
Chemical and dynamical processes: revised final

hydrolysis [Iraci and Tolbert, 1997; Zhao et al., 2005; Heald et al., 2005; Murphy et al., 2007].

A few ppt of inorganic bromine background are likely to exist in the free troposphere (mainly via photodecomposition of bromo-carbons) as well as in the marine boundary layer (mainly via volatilization from sea-salt aerosols) and thus BrNO$_3$ hydrolysis may add to the conversion of NO$_x$ to HNO$_3$ contributing to the budgets of NO$_x$ and ozone:

\[
\text{BrO} + \text{NO}_y + \text{M} \rightarrow \text{BrNO}_3 + \text{M}
\]

\[
\text{BrNO}_3 + \text{H}_2\text{O} \text{ (on aerosols/clouds)} \rightarrow \text{HOBr} + \text{HNO}_3
\]

and also leads to the conversion of water vapour to HO$_x$ since both HOBr and HNO$_3$ photolyze producing OH (Lary et al., 1996).

Two model studies have been performed regarding this issue in the free troposphere; von Glasow et al. [2004] found no more than a marginal impact from the heterogeneous BrNO$_3$ hydrolysis on aerosols, whereas Yang et al. [2005] showed that the surface of cloud droplets may activate this process. Since significant uncertainties exist with regard to the tropospheric source of inorganic bromine and the role of clouds for the heterogeneous reactions as well as for the scavenging of reactive gases, more work is needed for better estimates.

Aerosol emission from aircraft can be impacted by the role of organic material in the plume. However the impact appears greatest for low sulphur fuels (Yu et al., 1999).

One of the possibilities suggested for the difference between model and measured NO$_x$/HNO$_3$ ratio was the uptake of HNO$_3$ by cirrus which also lead to denitrification if the cirrus particles are large and rapidly sedimented (e.g. Lawrence and Crutzen, 1998).

Measurements in the SOLVE (SAGE III Ozone Loss and Validation Experiment) and BIBLE (Biomass Burning and Lightning Experiment) campaigns and reported by Kondo et al. (2003) indicated that the HNO$_3$ uptake on cirrus clouds is very strongly temperature dependent and uptake would only be important in the UT with temperature less than ~ 215K. Ziereis et al. (2004) during the INCA campaign also found a strong temperature dependence of uptake but that, on average, only ~1% of NO$_y$ was found as particulate NO$_y$. Some of the early laboratory studies suggested that ice could sequester enough HNO$_3$ to affect the NO$_x$/HNO$_3$ photochemical ratio and this was also addressed by laboratory and model studies (cf. Hudson et al., 2002; Tabazedeh et al., 1999).

Gamblin et al. (2006a,b) have also addressed the issue of HNO$_3$ and NO$_y$ on cirrus using measurements from the SOLVE-I field campaign in the UT and LS over Scandinavia. They find that often NO$_y$ uptake on cirrus is important but, in
the troposphere, that HNO₃ is not necessarily the main species deposited to
cirrus ice and suggest that perhaps N₂O₅, HNO₄ or PAN may preferentially
deposit to ice; the amount of uptake also appears sensitive to the length of time
the air parcel may have been exposed to sunlight. They also consider that the
apparent variability of the results in the UT may indicate that the region may not
be in photochemical or physiochemical equilibrium in the mixed media situation.
They also suggest (Gamblin et al., 2007) a possible time marker or clock for
cloud parcel lifetime in the UT.

2.2 Emissions

2.2.1 NOₓ emissions: Emissions of NOₓ into the troposphere come from a
variety of sources: anthropogenic emissions, biomass burning, boreal forest fires,
biogenic emissions, lightning emissions, cosmic rays and transport from the
stratosphere. In the stratosphere the main source of NOₓ is via the oxidation of
N₂O with O(¹D) with contributions from cosmic rays, auroral precipitation and
sporadic solar proton events (e.g. Jackman et al., 1985; 2005).

The stratospheric source of NO to the troposphere can be estimated from the
loss of N₂O in the stratosphere which is ~ 12 MT-N/year (IPCC,2001, Table 4.4).
About 10% of the N₂O loss occurs with reaction with O(¹D) and 6% of the total
yields NO (e.g. Olsen et al., 2001). There are also “small” contributions from
cosmic ray precipitation ~ 0.08 MT-N/year and also auroral precipitation
(Jackman et al., 1980). Most of the NOᵧ exits to the troposphere in the form of
HNO₃ with a global flux of about 0.7 MT-N/year.

Burning of fossil fuel represents an important source of NOₓ in the atmosphere
with a total of about 33 MT/year and of which aviation currently contributes about
2% (see Table 1). However, most of the anthropogenic emissions are into the
boundary layer where the lifetime is of order of a few days whereas aviation
emissions are mostly injected into the UT/LS region where the lifetime is longer,
~ months.

<table>
<thead>
<tr>
<th>Global NOₓ sources</th>
<th>2000</th>
<th>Above 7 km</th>
<th>*2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Fuel</td>
<td>33.0</td>
<td>40-50</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>0.7</td>
<td>0.6</td>
<td>1.5†</td>
</tr>
<tr>
<td>Biomass Burning</td>
<td>7.1</td>
<td>??</td>
<td>7.1</td>
</tr>
<tr>
<td>Soils</td>
<td>3.0**</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Lightning</td>
<td>6*</td>
<td>3.6</td>
<td>6</td>
</tr>
<tr>
<td>Stratosphere</td>
<td>0.7***</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>50.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Global NOₓ sources (MT-N/year) for 2000 (IPCC, 2001) and 2030
Dentener et al. (2005)*
Biomass burning arises mostly in the tropics due to human activities (e.g. Crutzen and Andreae, 1990) such as land clearance etc and amounts to ~ 7.1T MT-N/year of which Boreal forest fires contribute about 3-8%: There is a substantial year to year variation. Boreal sources in particular may be expected to increase with changing climate (Stocks et al., 1998; Gillett et al., 2004; Flannigan et al., 2005). Emission estimates for the 1997-2006 period are available online (Randerson et al., 2007). The approach used to calculate these emissions is described in van der Werf et al. (2006), Giglio et al. (2006) and Randerson et al. (2005). The NOx emissions follow the dry seasons in the Northern and Southern hemispheres and have a year to year variability reflecting the movement of the ITCZ and the influence of El Niño (van der Werf et al., 2004, 2006). One of the uncertainties is the effective injection height of biomass burning emissions.

The amount of NOx generated by lighting is relatively uncertain and values between 2 and 12 MT-N/year are common in the literature (e.g. IPCC, 2001). Recent estimates appear to have reduced the uncertainty to about 6±2 MT-NOx/year (Martin et al, 2007) much of which is generated in the upper atmosphere. This is similar to estimate in the comprehensive review of Schumann and Huntrieser (2007) of 5±3 MT-N/year.

However, we note that the analysis was a multistep process depending on chemical and dynamical modelling and observations from several different satellites and the associated error bars may be optimistic. Also reasonable estimates indicate that more than 60% of the NOx is created above 7 km at continental mid-latitudes (e.g. Pickering et al., 1998). This source of about 3.6 MT-N represents the largest in-situ source of the NOx in the upper troposphere. However, the vertical distribution of the emission source needs evaluation and towards that end the observations from the OSIRIS instrument on the Odin satellite should be useful (Sioris et al., 2007).

Cosmic ray production of NO is modulated by the Sun’s magnetic field and so maximizes during solar minimum. Production maximizes ~ 12 km in polar regions due to deflection of the ions by the Earth’s magnetic field. The source is ~ 0.08 MT-N/year (e.g. Jackman et al., 1980) mostly concentrated at higher latitudes.

Another “source” of NOx in the upper troposphere is that due to convection (see below). As noted above a large fraction of the NOx emissions occur at or near the surface. Thus if there is large scale convection the NOx can be lofted to the upper troposphere. Current estimates are very model sensitive and not always
available from model output. Of the ~ 45 MT-N/year emitted in or near surface if
10% was lofted to the UT this would significantly impact the NOx budget in this
region and this is within the range of estimates, certainly for North America as
noted by Singh et al. (2007). However, during the lofting process the soluble
HNO3 would be preferentially removed in the convective tower by rainout leaving
behind the NOx.

2.2.2 CO and VOC emissions: As was seen above CO plays a major role in
the generation of ozone and thus knowledge of its distribution and how it might
change in the future is important. Future emissions we shall address below.
Current emissions, shown in Table 2 are taken from the IPCC (2001) report. The
sources are similar as for NOx, viz. anthropogenic, biomass burning, ocean,
oxidation of methane and VOCs etc. One point to note, however, is that CO
emissions from aircraft play a much more muted role than those of NOx.

The situation regarding current CO emissions seems rather uncertain, but it may
also relate to model uncertainties. For example, modeling studies undertaken for
the IPCC (2007) (e.g. Shindell et al., 2006) ostensibly with the similar CO
emissions give very different CO fields. This is a question that needs to be
addressed.

Table 2. Sources of CO (MT/year) (IPCC, 2001)

<table>
<thead>
<tr>
<th>Source</th>
<th>MT/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation of methane</td>
<td>800</td>
</tr>
<tr>
<td>Oxidation of isoprene</td>
<td>270</td>
</tr>
<tr>
<td>Oxidation of industrial NMHC</td>
<td>110</td>
</tr>
<tr>
<td>Oxidation of biomass NMHC</td>
<td>30</td>
</tr>
<tr>
<td>Oxidation of acetone</td>
<td>20</td>
</tr>
<tr>
<td>Sub-total in-situ oxidation</td>
<td>1230</td>
</tr>
<tr>
<td>Vegetation</td>
<td>150</td>
</tr>
<tr>
<td>Oceans</td>
<td>50</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>700</td>
</tr>
<tr>
<td>Aircraft (Sutkis et al., 2003)</td>
<td>0.7</td>
</tr>
<tr>
<td>Fossil fuel</td>
<td>650</td>
</tr>
<tr>
<td>Sub-total direct emissions</td>
<td>1550</td>
</tr>
<tr>
<td>Total Sources</td>
<td>2780</td>
</tr>
</tbody>
</table>

Volatile organic compounds (VOC) include a wide variety of non-methane
hydrocarbons (NMHC) and oxygenated NMHC. There are three main sources:
(a) anthropogenic emissions (b) biomass burning, and (c) vegetation [IPCC,
2001] with vegetation supplying two-thirds of the global source, emitted primarily
in the tropics. VOC emissions from fossil fuel usage (approximately 25% of total
emissions) and biomass burning (about 5% of total emissions) have distributions
similar to NOx.
<table>
<thead>
<tr>
<th></th>
<th>VOCs</th>
<th>Isoprene</th>
<th>terpene</th>
<th>acetone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Fuel</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass Burning</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td>377</td>
<td>220</td>
<td>127</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>571</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We note that the major source of emissions are natural and often are temperature sensitive and thus represent a potential changing source in a climate change scenario.

2.3 Measurements

2.3.1 Aircraft measurements: The chemical composition of the UT/LS region has been explored by many missions using aircraft (compare Fehsenfeld et al., 2006 for a review of past work). One of the more recent experiment suites has been by the INTEX (Intercontinental Chemical Transport Experiment) mission. Singh et al. (2007), for example, found that there were occasions when the measurements of NOx and HOx and complementary species were not consistently modelled in the upper troposphere while in the lower stratosphere there was consistency between measurements and modelling. The disagreement suggests either errors in the measurements or perhaps more likely important species have not been definitively identified (such as Brx, Cly, aerosols) or error in rate constants which seems less likely.

There also has been important European research studying emissions from aircraft and their impact on atmospheric composition and climate in the UT/LS region. These studies included measurements of O3, NOx, OH, CH4 and water vapour (e.g. Sausen et al, 2005; Gauss et al., 2004).

2.3.2 Satellite experiments: While aircraft campaigns reveal details of atmospheric processes satellite measurement programs with their associated validation campaigns provide global perspective. Since IPCC (1999) many satellites have been launched that have revealed the global nature of air quality in the troposphere and the status of the stratospheric ozone (e.g. Odin, Terra, Aura, SCISAT-I, ENVISAT). Most recently Calipso and CloudSat have added to the A-Train capability. MetOp, launched in 2006, has as its primary objective the gathering of meteorological data (~1 km vertical resolution of T and water vapour to about 10 km and a horizontal resolution of about 10x10 km²) for improving weather forecasting. However, it also has an important air quality (AQ) capability via instruments such as GOME2, IASI and AVHRR (http://www.esa.int/esaEO/SEM9NO2VQUO_index_0_m.html) which can provide
column or partial column information on many chemical species such as NO$_2$, CO, ozone, HNO$_3$ and aerosols of tropospheric and stratospheric interest. Global CO partial columns with ~ 20x20 km horizontal resolution have been measured by MOPITT (References for a suite of tropospheric instrument details and retrievals are given in IGAC, 2007). TES has reported partial vertical columns for CO and ozone (both tropospheric and stratospheric) while MLS/AURA operating in limb mode measures CO, as does AIRS. In spite of problems with tape on the front aperture the HIRDLS team have managed to obtain very interesting data on O$_3$, H$_2$O, CH$_4$, N$_2$O, HNO$_3$, CFC-11, CFC-12, temperature, cloud top pressure, and four aerosol extinctions on a standard pressure grid with ~ 1 km vertical resolution for temperature (see http://daac.gsfc.nasa.gov/Aura/HIRDLS/index.shtml, and Massie et al., 2007).

Many nadir viewing surface remote sensing instruments provide estimates of aerosol optical depth (AOD), e.g. MODIS (IGAC, 2007) and aerosol properties (Hu et al., 2007). Limb viewing instruments such as OSIRIS (Murtagh et al., 2002), ACE-FTS (Bernath et al., 2005), MAESTRO (McElroy et al., 2007), the SAGE suite (e.g. Wang et al., 2006; http://www-sage3.larc.nasa.gov/) measurements provide measurements of aerosols and cirrus clouds and sub-visible cirrus in the UT/LS region.

Furthermore this information can be ingested into models via data assimilation and the information transported to other locations.

Although the prime mission of many of the satellite programs mentioned above was not to address UT/LS issues important to aviation, careful improvements in retrieval method and validation programs have lead to the generation of quantitative measurements for the UT/LS region. For example, we note that the ACE-FTS instrument on SCISAT-I simultaneously measures 20-30 species down to 5 km including many species related to AQ and biomass burning and forest fires (Bernath et al., 2005). Likewise the MLS and TES instruments, both on EOS-Aura, are being used to address AQ issues, long range transport and impacts of large scale convection (Jiang et al., 2007). However the vertical resolution for the above instruments is at least 3-4 km (e.g. ACE). Nevertheless, instruments such as SAGE, OSIRIS, MAESTRO and HIRDLS have resolution ~ 1 km suitable for UT/LS studies.

2.3.3 Aircraft measurements investigating flight corridors: The POLINAT (Pollution From Aircraft Emissions in the North Atlantic Flight Corridor (POLINAT) field campaign, using 3 aircraft and lasting from 1994 to 1998 was designed to assess the impact of commercial aircraft on the atmosphere in the vicinity of the eastern North Atlantic flight corridor by means of measurements (and modelling support) of the distribution of NO, NO$_x$, NO$_y$ and other species (e.g. Schumann et al., 2000; Schlager et al., 1999; Singh et al., 1999; Ziereis et al., 2000). The measurements indicated strong latitudinal gradients in NO, NO$_x$, and NO$_y$. The research aircraft sampled plumes of various ages and saw clear signatures of air having been lofted from the lower atmosphere and also
signatures of lightning NOx. Complementary modelling studies indicated that
about 50% of the NOx in the UT/LS was from the boundary layer. This should be
compared with the later work on INTEX-A over north America where the results
suggested that most of the NOx was from lightning (10% from the boundary layer)
(Singh et al., 2006; 2007). This difference may reflect the different meteorological
situations over the summer hot convectively unstable central USA as compared
to wave cyclone systems impacting Western Europe and eastern Atlantic or
simply the uncertainty in the analysis. Cooper et al. (2006) found, after allowing
for recent stratospheric intrusions using FLEXPART (Stohl et al., 1998; 2005),
that ~ 75% of the upper tropospheric “ozone excess” over North America is
generated by lightning NOx emissions.

The MOZAIC project, with instruments flown on commercial flights, (e.g., Cooper
et al., 2006) flies in the flight corridors and represents a unique dataset for
corridor studies. The MOZAIC package carries sensors to measure ozone, NOy
compounds, water vapour, temperature and relative humidity; it has been flown
on over 26,600 flights from 1994 to 2006 (e.g., Marenco et al., 1998; Nedelec et
al., 2003; Volz-Thomas, 2005).

2.4 Modelling studies

Modelling studies are important for studying impacts of changing conditions
either natural or anthropogenic. Current (and past) data are used for diagnosis
and evaluation of models (e.g. IPCC2001, 2007) so that they may be used with
confidence but with the limitations transparent.

Our understanding of the UT/LS region of the atmosphere has been advanced by
chemical and dynamical modelling using different but related models spanning
many scales from microphysics of cloud formation to global scale transports.
Global scale models include chemical transport models (CTMs), on-line weather
forecast models and climate models. Mesoscale and cloud resolving models are
also being applied in an attempt to improve our understanding of processes and
in particular the exchange of water between the troposphere and stratosphere.

2.4.1 Plume to global scale modelling: The injection of aircraft emissions
into the atmosphere occurs at the engine scale but we seek the impacts on a
global scale. Current global models are not able to resolve at this scale and the
process of accounting for the injection of aircraft emissions has to be
parameterized and this is usually done by using models that can resolve the
scales from the engine to the plume scale (loosely defined). Mesoscale modelling
is then required to assess the processes of dilution from the plume scale to the
grid scale that might be typical of mesoscale processes. The impact of the
various assumptions of the larger scale chemistry needs to be carefully
assessed.
The emitted jet engine exhaust plume is initially hot; it rapidly becomes trapped in the turbulent twin vortexes which meld in the wake and then dissipates into the background atmosphere on a longer time scale. The effect of wake dynamics on the dispersal of NO_x and HO_x was investigated by Lewellen and Lewellen (2001). It is important to consider the chemistry occurring in the aircraft plume and wake before it has been expanded to the model grid scale. Initial attempts to combine near field, far field, and global models in series (Danilin et al., 1997) were the first global impact studies to be based directly on detailed microphysics and chemical kinetics occurring in the aircraft plume and wake. From the perspective of ozone production in the UT/LS, removal of active species can occur by irreversible deposition of HO_x and NO_x source species or by conversion of more reactive nitrogen- and hydrogen-containing species into less reactive ones. Conversion of N_2O_5 into HNO_3 on sulfate or ice particles is the best established example of the latter mechanism. Soot, sulfuric acid ("sulfate"), and water-ice particles are the main condensed-phase species found in the exhaust of jet aircraft. The extent to which aircraft aerosols offset the effects of aircraft NOx emissions on atmospheric ozone depends on a variety of chemical and dynamical factors. The reactions are likely to be enhanced in the presence of increased atmospheric particulates in the plume, in contrails and in aircraft-induced cirrus clouds, which correspond to PSC type II ice from a chemical point of view. The most important heterogeneous reaction is the heterogeneous hydrolysis of N_2O_5. An important model simulation of effect of wake dynamics chemistry on NO_x and HO_x concentrations showed that the effective NO_x emissions were reduced by about 40% and the ozone perturbation by 30% (Valks and Velders, 1999).

The interaction of plume and global modelling was also investigated by Kraabøl et al. (2002) who studied the impact of aircraft emissions in an early version of the Oslo CTM including a plume model (Kraabøl et al., 2000a; b). The plume model used was a multi-cylinder model to allow for mixing and with comprehensive tropospheric chemistry. They found that the oxidation of NO_x in the plume reduces the efficiency of aircraft NO_x emissions for ozone generation by converting NO_x to HNO_3 (Kraabo et al., JGR 2002) and must be taken into account.

Meilinger et al. (2005) have developed a two-box plume model with complex gas phase and heterogeneous chemistry with a microphysical scheme. The two boxes, representing the plume and the background atmosphere, are allowed to mix using a turbulence time constant. They find that the development is quite sensitive to the conditions of the background atmosphere. They also find, similar to global scale models that above 210K hydrolysis of BrNO_3 and N_2O_5, enhanced by virtue of the increased aircraft induced aerosol sulphate area, is important in the ozone budget. Below 210 K growth of background particles and suppressed chlorine activation is important.

Kärcher et al. (2000) have presented an analytic parameterization for the development of nano-sized particles in the near field plume based on the amount
of chemi-ions emitted, the sulphuric acid (and also the S-conversion factor) and condensable organic species which can be couple with far-plume models such as that of Danilin et al. (1997) and 3-D models to estimate the growth of aerosols in the plume and impacts in the atmosphere.

2.4.2 Global, regional, multiscale models: Three-dimensional models used for studying atmospheric chemistry come in different flavours. Perhaps the least complex is the chemical transport model (CTM). In this type of model the main transport is by resolved winds supplied by another source such as weather forecast or climate model. The transport scheme adopted is critical as it must be mass conserving, stable, and not too computer intensive. Methods such as the Prather scheme (Prather, 1986) and the van Leer scheme (van Leer, 1977) seem to be among the most robust.

Many models for the IPCC (1999) report (Penner et al., 1999) were tropospheric in domain but the nature of the aircraft problem suggests that the dynamical and chemical interaction between the troposphere and stratosphere should be accurately captured. For example, in the Northern hemisphere winter more than half of aircraft emissions are directly into the lowermost stratosphere (e.g. Köhler et al., 1997). For models which do encompass the troposphere and stratosphere the resolved circulation utilized is likewise critical as it must simulate the Brewer-Dobson circulation with fidelity and stratospheric/tropospheric exchange accurately (as for example in ozone transport to the troposphere) which is important with the transport of species such as water vapour to the stratosphere. It must also represent tropical and polar quasi-horizontal transport barriers. Other features that appear to be important will be the representation of the Asian summer monsoon in transporting material to the UT/LS region (e.g. Park et al., 2007). In addition, the Madden-Julian oscillation (MJO) which is a region of intense convection in the tropics (e.g. Miura et al., 2007) is linked to the delivery of chemical species, including water to the lower stratosphere via the TTL (e.g. Wong and Dessler, 2007). Baldwin et al. (2007) also point to the influences of the stratosphere on tropospheric dynamics and also the need for more comprehensive (in terms of including the stratosphere) models.

We note that part of the ability to well represent these and other dynamical features will rest with the resolution adopted for the global CTM model as well as the metrological fields adopted. Currently the resolution for a state-of-the-art global CTM with comprehensive chemistry with both "stratospheric" and "tropospheric" chemistry is in the region of about 1°x1° (and that is continuously improving with increasing computer power. Currently global weather forecast models are running with resolution ~ 25 km (e.g. ECWMF) and ~ 33 km (e.g. Canadian Meteorological Centre, Belair et al., 2007)

Other transport processes are included such as the impact of the planetary boundary layer which is an important two-way filter between the surface and the
free troposphere. Large scale convection is parameterized by one of a number of
schemes which can also be linked to lightning generation (e.g., Tost et al., 2007).
Emissions are included but there is no standard emission suite, although several
comprehensive data bases are available (e.g. GEIA, EMEFS). Comprehensive
chemical schemes are now standard although what is often missing are
interactive aerosol schemes and washout and rainout schemes can be quite
primitive. Many species, such as ozone, are deposited on the surface with rates
that depend on wind speed and surface roughness and surface type.

Regional models (or limited area models, LAMs) have a role to play in studying
the dissipation of plumes of emissions perhaps injected from convection towers
or aircraft. Such models enable processes to be studied at higher resolution with,
one expects, higher fidelity. However, a problem of how to validate (or evaluate)
these models is an issue as there is not enough data available. Nevertheless,
many air quality CTM regional models have operated in the past with very limited
vertical domains and physical processes are not suitable for aircraft studies.

Figures 3a and 3b show NO and O₃ fields at mesoscale (15x15 km²) resolution
using a global multiscale model, GEM-AQ (Kaminski et al., 2007) and give some
idea of the heterogeneity of the region.

One of the modelling tools that should be important in studying the different
scales inherent in aircraft studies are multiscale models. These operate in (at
least) two ways. One method is to run the model over the same time domain with
higher and higher spatial (and temporal) resolutions and shrinking the interior grid
such as has been done for air quality studies, for example, by MC2-AQ (Kaminski
et al., 2002; Plummer et al., 2001; Yang et al., 2003) and also MM5 (e.g. Grell et
al., 2000). A different approach is to have the interior high spatial resolution
domain fixed within a lower resolution exterior domain which can be global or
regional (e.g. Kaminski et al., 2007; O’Neill et al., 2007; Grell et al., 2005).

McKenna et al. (2002) have developed a new Lagrangian model for the
stratosphere, CLaMS (Chemical Lagrangian Model of the Stratosphere) where
the quasi-horizontal flow is driven by meteorological analysis winds with cross-
isentropic flow (vertical) driven by heating rates from a radiation calculation. The
model has recently been extended to the surface using a hybrid coordinate
allowing a transition from potential temperature to pressure coordinates
(Konopka et al., 2004) and mixing is driven by wind shear.

Another very useful analysis tool is the Lagrangian trajectory models such as
FLEXPART (Stohl et al., 1998; 2005).

2.4.3 Weather forecast and Climate models

CTMs are powerful tools for
analysis and limited forecasting. However, for certain types of problems, such as
the long terms effects of aviation, they are limited because they lack the
capability to incorporate feedbacks. For tropospheric chemistry problems the
main feed backs are via changing GHG fields such as methane and ozone.
Additionally, aerosols can interact with liquid and frozen water to alter cloud fields and thus impact solar and IR heating. In the stratosphere, changing water, CO$_2$ and ozone fields impact the heating. Modification of the heating function then alters the dynamical fields and transport characteristics.

Of course, weather forecast and climate models (with and without interactive oceans) allow for some (and in some cases all) of the above feedbacks. And gaseous and aerosol fields have been added in many cases (Eyring et al., 2007b). Many models only treat the troposphere in detail (e.g., Stevenson et al., 2006; Kaminski et al., 2007) while others only have detailed chemistry with feedbacks for stratospheric species (e.g. see Eyring et al., 2006 for a suite of 13 models). But even more comprehensive on-line models with both detailed tropospheric and stratospheric chemistry with feedbacks on the meteorology are being developed (see the list in Annex I) and will be necessary for future forecasts (cf. Baldwin et al., 2007).

We note that for problems that deal with the UT/LS region that tropospheric models are not adequate. Furthermore, in order to develop an adequate Brewer-Dobson circulation the lid of the climate model must be above ~ 80 km (0.01hPa); the development of a quasi-biennial oscillation (QBO) signal requires higher vertical resolution in the stratosphere than most models have at this juncture. But that will soon change.

These models are complex and, as noted above, it is important to have confidence in the similarities while understanding the differences, the latter of which permits an estimation of our confidence in model structures. In the recent past, there have been comparison experiments of models for IPCC reports but these have not focused on the UT/LS regions (e.g, Shindell et al, 2006; Stevenson et al., 2006). In addition, the application of important metrics to evaluate the models (such as STE of ~ 500 MT-O$_3$/year) has only been applied in a limited fashion. This is partly because models have been in the throes of development; comparisons have been used more to deal with the issue of uncertainty in modelling rather than adopting a more systematic approach (e.g Wild, 2007). Along these lines we note that recently Eyring et al. (2006; 2007a) have published papers comparing the forecasts of chemistry climate models applied to the problem of stratospheric ozone depletion and recovery. Their study has underscored that there still are serious issues with models at the fundamental level of transport and emissions.

There are other metrics or diagnostics that can be used as a measure of how well a model is accurately representing the atmospheric situation modelled. Some of these are discussed by Pan et al. (2007) for example. CO varies rapidly across the tropopause with larger values in the troposphere. Similarly, ozone varies rapidly across the troposphere but with more in the stratosphere. Thus CO/O$_3$ correlations represent a very useful diagnostic to test the representativeness of model transport. Similarly, in the UT/LS regions, NOy/N$_2$O...
correlations can be revealing of model transport. And as noted above NO$_x$/HNO$_3$ ratios in the UT should be very variable, ranging from >1 to <1 depending on how recent convection and lightning have occurred. Forming a suitable PDF for measurement and model ratio might be a useful diagnostic.

2.5 Future climate impacts

2.5.1 Climate change

In the context of climate change it is to be expected that a future fleet will operate in a different atmosphere both in terms of meteorology (transport) and chemistry. In addition, these changes will also impact the chemistry of the UT/LS region. So that it is important to have a better understanding of changes in relative humidity in the UT/LS region (of course this also impacts contrail formation and the development of cirrus clouds.). This problem is dealt with in a different white paper. However, there are also obvious impacts on the chemistry via HO$_x$ abundances and the production and loss of ozone and also its impact on the radiation budget in the TTL region. However, there are also chemistry-related impacts on humidity and that relates to the supply of freezing nuclei to the UT/LS region either from the lower troposphere via delivery of aerosols or from the stratosphere and mesosphere via sulphate or metallic ions generated in the mesosphere. These are issues that must be resolved in an integrated fashion rather than thought of simply as chemical or transport issues.

Future climate is likely to be different: this means that it can be anticipated that winds (transport times), cloud processes, water amounts, NO$_x$ generation by lightning will be different. And we have noted that the relative contributions of aircraft NO$_x$ and lightning NO$_x$ (with a small contribution from stratospheric NO$_y$) are important. Nevertheless, aircraft impacts cannot be divorced from possible impacts of future surface emissions. Most climate studies using standard CO$_2$ increase scenarios suggest that the main impact in the future will be due to increased anthropogenic emissions (e.g. Stevenson et al., 2006) with climate impacts on biogenic emissions being of secondary import. However, with a more rapid rise in CO$_2$ and increased temperatures biogenic emissions grow in a non-linear fashion to become more important. In the future, anthropogenic, biogenic and biomass burning emissions, are expected to grow as population expands and the economies of India and China grow. And we note that current CO$_2$ emissions are growing faster than envisaged by any of the IPCC scenarios.

In future climate change scenarios, cloudiness is projected to decrease at latitudes below about 50 degrees and to increase at latitudes above 50 degrees (IPCC; 2007.p767). These changes will affect the radiative forcing from aviation ozone on a regional basis.

2.5.2 Future aircraft emissions

The emissions from aircraft will depend on the composition of the fuel. For example the sulphur fraction can impact the
chemistry in the plume and also the generation of aerosols which are deposited in the UT/LS and may impact chemistry and cirrus formation. In the future this will depend on the development of new engines and constraints imposed by noise control for take off and landing and possibly of aircraft flying a few kilometres higher (not SSTs). For example, over the next 20 years the replacement of old aircraft with new aircraft such as the Airbus 380 and the Boeing 787 may impact future emission scenarios. Estimates of annual fuel use by 2020 annual for commercial air traffic are ~ 350 MT or 2.6 times the estimated fuel use by the global 1999 commercial fleet. This translates into global NOx emissions of ~ 1.5 MT-N from commercial air traffic or about 2.8 times the estimated 1999 NOx emissions levels. At the same time total revenue passenger kilometers are projected to increase from 3,170 billion in 1999 to 8,390 billion in 2020, or by a factor of 2.65 (Sutkus et al., 2003) These estimated increased emissions are expected to lead to global increase in ozone production with the potential for larger regional effects.

Perhaps of more importance is the advent of new air traffic control mechanisms to cut “wasted” air time and reduce fuel consumption and perhaps also the development of new routes both intra- and inter-continental. Of particular importance of the development of new routes may be the impact of increased flights over the Arctic regions, a possible impact which needs to be explored (e.g. Gauss et al., 2006).

There is also the possibility of the emission character of a future fleet to be considered. The European Commission within the fifth Framework Programme on competitive and sustainable growth supported the CRYOPLANE project to investigate aircraft fueled with liquid-hydrogen (LH$_2$). Since there would be no hydrocarbons (HCs) or sulphur in the fuel these type of aircraft would not emit CO$_2$, CO, soot or SO$_2$. They would emit NO$_x$ and water. While the NO$_x$ emissions are likely to decrease the water emissions would increase ~ 2.6. Gauss et al. (2003) investigated the impact of cryoplanes for the year 2015 using the Oslo CTM. They find that the replacement aircraft would increase water vapour near the tropopause by about 250 ppbv. Although we should note that with the current lifetime of a fleet of aircraft being ~ 30 years LH$_2$ planes will not be a major component of the commercial fleet for quite a few years to come.

Recent work by Søvde et al. (2007) has looked at the impact of a “mixed” fleet using an emission scenario for 2050. The “mixed” refers to a combination of subsonic and supersonic aircraft. They found impacts on the ozone due to aerosol emissions. Their analysis is limited from a climate perspective as they used meteorology for the year 2000 for both current and future scenarios.

Connectivity: Transport issues identified here are also important for water vapour and related meteors, such as cirrus, while cirrus may play a role controlling NOx distribution in the UT/LS. The aerosol, whether sulphate, organic, soot may play an important role in the chemistry of the engine vortex and plume and generation of ozone. However, perhaps more important is their putative role as FN/IN for
3. Focus on uncertainties

In this section we address the issues of uncertainties in the basic science issues concerning impacts of aircraft but with a focus more on chemistry and transport issues but include some brief comments on radiative forcing.

3.1 Chemistry and emissions

For chemistry the issues of major uncertainty include an accurate knowledge of the tropospheric ozone budget, HOx, NOx chemistry in the UTLS which may be impacted by issues of convection lofting precursor species, possibly aerosols and affecting loss by washout. A related cloud issue is the role of HNO₃ take-up on cirrus clouds. In addition, the role of halogen chemistry is lurking on the sidelines. Certainly lower stratospheric Bry distribution (and sources) need to be resolved as does the Cl₂O₂ dimer problem in springtime polar regions.

The issue of the uncertainty of the background NOx emissions from lightning in the UT region and convection from the boundary layer to the UT appear to be the major issues and related corridor issues.

3.1.1 Chemistry: From section 2 it is clear that over the past decade measurements in the UT have revealed problems with our understanding of the NOₓ, HOx budget. Recent work as part of the INTEX-A campaign has been presented by Singh et al. (2006) (see also Ren et al., 2006) who, for example, note that OH measurements are substantially lower than model values for the INTEX and other campaigns (see Figure 4). This uncertainties may be related to issues of steady state (used for analysis) versus a more dynamic non-steady state chemical regime driven by removal of HNO₃ within clouds and NOₓ replacement by lightning and STE. Or it may be due to the lofting of precursors which may have not be measured or have escaped detection.

Issues regarding the importance of halogen chemistry are much less well defined, but could be playing a role in the HOx/NOx UT chemistry issue. For example hydrolysis of BrNO₃ does lead to the creation of more HOx. But at this point is more speculation on the authors’ part.

Freezing nuclei (FN) or ice nuclei (IN) act as sources for the sublimation of water in the UT. The main sources are likely to be the lower troposphere although there is an influx of stratospheric sulphate aerosols via STE and also the possibility of a cosmic ray ionization contribution to aerosol and thus ice formation. Thus it becomes important to understand and quantify the fraction of aerosols generated that become IN and this requires more study. The issue of lower tropospheric sources of aerosols and their size distribution is likewise important although processing in clouds tends to produce aerosols in the 0.1-1.0 micron range. Thus
quantification of direct sources of aerosols is quite uncertain although the situation is improving. The issue of the generation is of secondary aerosols is somewhat more uncertain, e.g. SO\textsubscript{2} to sulphate oxidation and, as noted above the issue of the generation of secondary organic aerosols in the UT is still an issue for research but the empirical evidence suggests that their abundance is related to tropical and Boreal fires.

The status of our knowledge of the ozone budget in the UT/LS still is more uncertain that one would like especially for the estimates of potentially small impacts of aircraft. From the above discussion we consider that the percentage contribution of air traffic emissions versus natural and other anthropogenic sources is quite uncertain in the UT.

Although we have not dealt with it, the uncertainty in the physics and microphysics of water vapour in the UT/LS is important for chemistry and ozone generation, radiative forcing and generation and sustenance of cirrus clouds.

And related to this is the issue of the impact of HNO\textsubscript{3} on freezing of water vapour into cirrus crystals is still uncertain.

3.1.2 Emissions: In terms of the global NO\textsubscript{x} source the contribution from aircraft is only a few percent. However, as noted above, as viewed from the situation of the UT/LS the contribution of aircraft, \(\sim 0.7\) MT-N/year is rather larger (\(\sim 7\%\)) measured against the context of \(\sim 4\) MT-N/year from lightning in the UT, \(\geq 4\) MT-N/year from large scale convection (using a 10% delivery fraction) and resolved transport and 0.8 MT-N/year from STE (N\textsubscript{2}O and cosmic rays). However, the delivery of the aircraft NO\textsubscript{x} is to a relatively narrow corridor which tends to enhance its impact so that locally the impact could be much larger (e.g. Schumann et al., 2000). The uncertainty in the STE of NO\textsubscript{x} in terms of absolute amount seems rather small as it is largely constrained by the stratospheric source. However, the lightning source is still rather uncertain, although there appears to some convergence on the absolute amounts. Interestingly, the lower bounds that have appeared (\(\sim 2\) MT-N/year) are such that it increases the potential impact of aircraft. This is certainly an area that requires further study, both in terms in absolute amounts and also the vertical distribution of the source. If, as seems likely, delivery of NO\textsubscript{x} by lightning often occurs in association with convective activity then the contributions from transport from the surface, concomitant with washout of soluble components such as HNO\textsubscript{3}, and in-situ lightning source tends to make the unambiguous evaluation of separate lightning and convection sources difficult. It also means that the knowledge (or lack) of lower tropospheric NO\textsubscript{x}/HNO\textsubscript{3} ratio takes on a greater importance. This ratio is impacted by heterogeneous chemistry and knowledge of the aerosol distribution. Furthermore the status of the amount and distribution of anthropogenic, biomass burning and biogenic tropospheric sources becomes important.
As noted in section 2, estimates of delivery of NOx from the boundary layer are uncertain and range from 10% to 50%, although this may simply reflect the different dynamical conditions over summertime north America and Europe: this may also change in a future climate state. As noted above the fraction of aircraft NOx to other sources for the year 2000 was about 0.7/(4+5+0.8) ~ 7%. As noted in the introduction, for the time frame 2020/2030 aircraft NOx emissions are expected to increase to ~ 1.5 MT-N (Sutkis et al, 2003). Anthropogenic emissions are expected to rise by a factor of 1.5 to 2 depending on the scenario followed (e.g. Dentener et al., 2005) which using 10% for the contribution to the UT give a source of ~ 7.5 to 10 MT-N/year. Even though one might anticipate more convective activity and thus more lightning in a future climate state based on energy considerations we will take the lightning contribution as fixed. In which case the ratio of aircraft to other sources in the UT is about 1.5/(4+0.8+7.5) or about 12% or less. So that the relative impact of aircraft in 2025 could be higher than at present. Moreover, if economic conditions are not conducive to such growth it is likely to impact both the air transportation sector as well as other sources of anthropogenic NOx.

3.1.3 Comprehensive Tropospheric/stratospheric Chemistry models:
In the IPCC1999 report most of the 3D CTMs used in the study had either comprehensive tropospheric or stratospheric chemistry with background tropospheric chemistry but not both. There were few climate models with comprehensive tropospheric or stratospheric chemistry. Now both CTMs and climate models are incorporating comprehensive tropospheric and stratospheric chemistry (see annex I). Future studies of aircraft models will need to include comprehensive UT/LS chemistry.

3.2 Measurements - species and winds – and analysis
It is still important to have aircraft campaigns since they can provide detailed and comprehensive in situ measurements. However, any analysis and parameterizations derived from these need to be verified for a variety of conditions. Thus the use of satellite measurements to evaluate the information on a global scale seems important. However, what is required are instruments to measure species and temperature with high vertical resolution, and in the context of contemporary experiments (see above) this means vertical resolution ~ 1 km for UT/LS measurements. These types of instruments are under study using millimetre and mid-IR in Europe and one of the experiments on ESA’s list of Explorer possibilities is PREMIER (PRocess Exploration through Measurements of Infrared and millimetre-wave Emitted Radiation) (http://www.esa.int/esaCP/SEMHQH9ATME_Protecting_0.html) which could produce 3D imaging of water vapour, ozone, and other species as well as temperature, in the UT/LS and with the required vertical resolution. Interestingly, one of the goals of PREMIER is to operate synergistically with METOP (see above) together with use of models and data assimilation systems to transfer the information to the lower troposphere.
In addition, to attack the relative humidity problem in the UT, there needs to be improved instrumentation to measure air ambient temperature accurately (and precisely) to $\sim 0.2^\circ$K.

Of course from a dynamical point of view, which is critical, improved wind measurements are important and ADM-aeolus (http://www.esa.int/esaLP/SEM3Y0LKKSE_LPadmaeolus_0.html) will provide improved wind measurements in the near future using Doppler wind lidar measurements with a late 2008 launch. In addition, the Canadian Space Agency is still planning to launch SWIFT (Stratospheric Wind Interferometer For Transport) (http://www.space.gc.ca/asc/eng/sciences/swift.asp) which uses ozone lines in the mid-IR and a Michelson interferometer to measure winds in the lower stratosphere.

For the past number of years it has been a goal to use chemical measurements to improve wind estimates. Recent work between ESA, Environment Canada and BIRA (Belgisch Instituut voor Ruimte-Aëronomie, Institut d'Aéronomie de Belgique: BIRA-IASB, Belgium) (e.g. de Grandpré et al., 2007) has used 4DVar and assimilation of MIPAS ozone data to improve wind estimates in the lower stratosphere using the Canadian weather forecast model, GEM (Global Environmental Multiscale) (Belair et al., 2007), and the BIRA chemical module. This is encouraging for future meteorological data. However, it is not clear in the coming years that there will be enough satellites available to provide the necessary chemical data. This is a serious problem (that also will impact the monitoring of the stratosphere and ozone recovery over the next decades).

From the above discussion it is clear that the lower atmosphere has a major impact on the UT/LS and the UT in particular on relatively short time scales. One major impacts is the transport of species important in the ozone budget such as CO and NO$_x$. However, bottom up budgeting of emissions, while useful, is still quite uncertain (uncertainty depends on species). Top down assessment of tropospheric emissions (e.g. Martin et al., 2007; Jaegle et al., 2005) using satellite data, while it has limitations, is proving very useful and continued work should improve knowledge of surface emissions. Thus satellites dedicated to air quality studies such as TRAC (TRopospheric composition and Air Quality) (http://www.esa.int/esaCP/SEMHQH9ATME_Protecting_0.html) or that can be combined with other information is being done using GOME, SCHIACHY etc (Martin et al, 2007) data should be continued (see comment on PREMIER and METOP mission above).

With the rapidly changing climate over polar regions and the Arctic in particular, and with the potential for increased air traffic over the Arctic, it would seem prudent to have been observing capability for meteorology (climate) and chemical species over this region. Thus there has been recent activity to study the use of Molniya orbits (e.g. Riishojgaard, 2005). It is clear that imaging nadir viewing FTS
mid-IR instruments, multi-channel near UV, Visible, NIR imagers and SCIAMACHY-type instruments can provide detailed capability to monitor this region with quasi-geostationary viewing. Several satellites with 12 hour orbits can provide continuous coverage of polar regions and extensive coverage down to mid-latitudes.

3.3 Modeling capability

Since the IPCC 1999 report models have improved. However, actual model performance on NOx in the UT has not improved over the last decade (e.g., Singh et al, 2007). The availability of multiscale models which can be used to study plume dispersion problems has improved. Increasing computer power and storage has enabled much improved resolution for the combination of chemistry and meteorology. Gas phase and aerosol chemistry running together is now almost standard.

It is important to recall that the aviation problem is not run in isolation so that any improvement in the basic atmospheric model will lead to a better assessment of aircraft impacts. Thus we expect improved spatial resolution to continue.

Currently weather forecast models are being used globally ~ 25-35 km horizontal spatial resolution (e.g. Belair at al., 2007; Jung and Leutbecher, 2007). It is likely that in the next year or two it will be possible to run global chemical weather models with similar horizontal resolution. Of course one of the problems will be the evaluation of models at this resolution which is why such as satellite with the features of PREMIER (see above) would be invaluable. In addition to improved horizontal resolution it will be important to have concomitant improved vertical resolution in order to better represent transport from the troposphere to the stratosphere and also vertical wave propagation.

There will be associated problems to be solved with the vast amounts of data generated. Some will be associated with storage, access and transfer, problems of analysis – simple comparison is limited and limiting, and, as discussed above, there will need to be much improved protocols (including correlations) for comparing chemical weather and chemistry climate models with each other and with data. Statistical analysis such as use of PDFs may become more common.

The distinction between weather forecast and climate models is fast eroding as weather forecast models are run out for longer times, have improved heating codes, include ozone chemistry, have better surface schemes. However, in the short term chemistry climate models will be useful for longer simulations and thus have lower spatial resolution. Some of the issues surrounding the magnitude of a climate signal can be temporarily addressed by the using chemical weather models in a time-slice mode run with appropriate (future) SSTs from ocean-atmosphere models.
Climate chemistry models are in a state of flux at the moment. As noted above
SPARC comparison studies CCMval (Chemistry-Climate Model Validation
Activity for SPARC) (http://www.pa.op.dlr.de/CCMVal/) (Eyring et al., 2006;
2007a) have revealed a number of problems. One such problem is the status of
the total chlorine, Cl\textsubscript{y}, distribution of the models in the stratosphere. The model
distributions are significantly different and the problems certainly involve
transport, dynamical, age-of-air issues that need to be resolved. In addition, the
input of the CFCs and related species may also be contributing to the
discrepancies. The problem may be that most models use a few CFCs to
represent the total input of chlorine, all with different lifetimes. Thus each model
may have a distinctly different input function with an associated different time
constant for flushing from the stratosphere aside from any issues regarding age
of air. In addition Waugh et al. (2007) emphasize the importance of resolved
transport in the lower stratosphere and the interaction between that and
resolution and the representation of transport barriers.

There is a related issue with the total amount of bromine in the stratosphere.
There is an important role for halogenated very short lived species and their
contribution needs to be (a) resolved by measurements and (b) included in all
models.

3.3.1 Resolved Transport Issues: One of the issues mentioned above is that
of an apparent discrepancy in Cl\textsubscript{y} distributions between models. Some of this
may be attributed to the internal dynamical properties of the model (winds etc)
which translate to different age-of-air between the models (e.g. Waugh et al.,
2007). However, some of the discrepancy is likely due to differences in transport
schemes (e.g. Wild et al., 2007). Some schemes such as semi-Lagrangian are
efficient but sometimes do not have adequate conservation properties, while
spectral methods, which generally have good conservation properties when
strong gradients are not an issue, have problems when strong horizontal
gradients create Gibbs fringes and then various types of hole-filling techniques
are applied (and rarely discussed) in an attempt to maintain mass conservation
which can have various disturbing pathologies. And of course, there is the
associated issue of the positive part of the Gibbs fringe – how to constrain it?
This is not simply a stratospheric issue. Strong species gradients arise in the
troposphere (e.g. rainout of soluble species is very “spotty”, in the stratosphere
uptake of various species on PSCs can be very irregular, and in the mesosphere
and stratosphere the formation of a strong vortex and associated descent of low
mixing ratio air can create very strong horizontal gradients. Some of these issues
can be ameliorated by going to higher resolution but it seems more reasonable
that the community should start using more robust (if more computationally
expensive) and reliable transport schemes such as the Prather scheme (Prather,
1986) or the van Leer scheme (van Leer, 1977). While some variety of transport
schemes is useful, even necessary as it allows for uncertainties and variation
between models some more rigorous comparisons seem necessary.
A related issue is transport by sub-grid scale motions such as large scale convection. In CTMs these schemes are often/sometimes applied in an inconsistent manner as the parametrizations as the resolved winds utilized to drive the model will often have used a different parameterization and most likely at a different resolution as that used in the CTM. It would be useful to quantify the impact of such uncertainties.

3.4 Radiative Forcing comments

The increased emissions from future air traffic will alter radiative forcing due to generation of increased ozone, increased carbon dioxide and associated decreases in methane concentrations. The major change will be due to the increased ozone in the upper troposphere, particularly in aviation corridor regions which, to some extent, is counteracted by a globally reduced methane abundance due to increased OH. And of course the relevant time constants for ozone and methane are quite different. This issue was identified at the time of the IPCC (1999) report. A recent study by Stevenson et al (2004) applied a chemistry-climate model to study the radiative forcings generated by aircraft NOx emissions through changes in ozone and methane. They injected pulses of aircraft NOx the model for a various months and investigated the impacts on ozone and methane radiative forcings. Given that the spatial distributions of the RF from aviation ozone and the RF from methane will be considerably spatially different the question remains how much compensation will occur.

The mechanism is the increase in radiative forcing at the earth's surface which causes surface and atmospheric heating. The real verification of the climate impact of increased upper troposphere ozone is the detection of changes in the ozone radiative forcing at the surface and at the top of the atmosphere. Radiative Forcing (RF) calculated at the top of the troposphere at the tropopause is used as a metric for measuring the potential for climate change. And it is often given as a simple global number (NRC, 2005). However, RF is far from uniform as is clear from the regional changes in ozone which translate into regional changes in RF (cf. Figure 2), as opposed to the situation for methane where, because of its ~ 10 year lifetime, the changes in methane, and so the RF, is much more spatially uniform. Clouds can cause large changes in RF and represent a major uncertainty on the model calculation of RF.

There are difficulties in detecting changes in the IPCC radiative forcing metric because of the way in which it is defined at the top of the troposphere at the tropopause. There are large uncertainties in the calculations of the radiative forcing metric due to a lack of knowledge of cloud effects. There need to be verifications of the radiative forcing metric by comparison against real measurements of observed surface radiative forcing and with satellite radiative trapping at the top of the atmosphere. This will need to be accomplished by concurrent simulations of surface forcing and top of the atmosphere radiative...
trapping with the same climate models used to calculate the RF metric (Puckrin et al, 2004).

In addition, we note that RF can be readily measured at the surface where it is used as more of a climate observable than a metric. For example, the current network of pygeometers measures the long wave component of surface radiative forcing. Philipona et al. (2005) have detected the increase in total surface radiative forcing from the increase in all of the greenhouse gases. The surface forcing from tropospheric ozone itself has been measured by Evans et al. (1999) using spectral measurements of long wave radiation. The effects of clouds on surface radiative forcing need to be investigated by extensive ground measurements of surface radiative forcing by the individual greenhouse gases and particularly by tropospheric ozone. Satellite measurements of nadir outgoing long wave radiation can also be used to investigate the effects of clouds on the top of the atmosphere radiative forcing (Harries et al, 2001).

Measurements can supply RF on a regional basis. The regional nature was aptly demonstrated by the change in surface temperature range (and RF) from Sept 11-14 with no aircraft flying. For three days after September 11, the Federal Aviation Administration grounded commercial aircraft in the U.S.; there was an anomalous increase in the average diurnal temperature range of 1.2°C for the period Sept. 11-14, 2001, a change not matched in the last 30 years (Travis et al. 2002). This temporary “climate change” was due to decreased surface radiative forcing from both contrails and tropospheric ozone.

3.5 Future Climate and related feedbacks

For assessments of future impacts of aviation, i.e. which might occur in a future climate, chemistry-climate models need to be used in order to permit feedbacks; CTMs will not permit feedbacks and hence the need for metrics such as radiative forcing as a proxy for change. This will apply for our subject area(s) of interest, both chemistry and transport. However, if the changes are small, several long runs will be required, with slightly different boundary conditions (such as SSTs) in order to extract statistically significant findings. This is necessary since emissions will be changing, the ozone layer will be changing, STE may alter the influx of stratospheric ozone to the troposphere, lightning production of NOx may change in a future climate and the strength of the Brewer Dobson circulation may alter, affecting water vapour amounts in the UT/LS region and this will modify the formation and impacts of contrails, contrail-cirrus and the background cirrus clouds.

3.6 Interconnectivity with other SSWP theme areas
The same type of measurements and regional modelling for water vapour and NOX are required for the contrail cirrus radiative forcing theme area. Modelling of plume dispersion into the ambient atmosphere is also a common problem with the contrail cirrus theme. Another common link is the upward convection transport of smoke from biomass fires to provide CCN (Cloud Condensation Nuclei) for the formation of cirrus in the UT.

4. Priorities

The following list summarizes the major uncertainties from section 3. In the list below, HP, MP and LP stand for highest priority, medium priority, and lower priority, respectively.

Chemistry

1. Our understanding of NOx/HOx chemistry in the UT is uncertain; measurements are not well reproduced by model simulations and may also be influenced by items (4) and (5) below and possibly (2) and (3). (HP)

2. There is a need to improve our understanding of the impact of background aerosols and those from aviation emissions on the background constituents. They can alter the NOx and ClOx chemistry with resulting changes in regional ozone in the UT/LS. (HP)

3. Improved estimates of the potential role of halogen chemistry are required. (MP)

4. Conversion or uptake of HNO3 on cirrus clouds needs to be better understood. (HP)

Emissions

5. The relative contribution of aviation NOx to NOx from lightning and NOx lofted by convection from boundary layer pollution sources in the flight corridors is uncertain and needs to be better defined. (HP)

6. Chemistry processes in the UT are strongly influenced by convective processes for which species ratios can be used as measures of model performance. (HP)

Models, multiscale, global and climate

7. More plume to regional scale models for plume processing of NOx capability are required as there are very few groups at present capable of making detailed calculations. (MP)

8. Model representations of vertical transport processes from surface to tropopause need improvement (see above). (HP)

9. Ideally, models to address the climate problem should be climate models with comprehensive tropospheric and stratospheric chemistry in order to better incorporate chemical and dynamical feedbacks. If CTMs are used then they also should have comprehensive tropospheric and stratospheric chemistry. (HP)
10. Ideally, models should be able to address/simulate dynamical issues such as the Asian monsoon and the Madden-Julian oscillation in order to properly characterize upward tropical transport (MP).

11. Predictions of future climate conditions, composition and emissions are needed but should be addressed with (8) above. (HP)

Measurements
12. Measurements of vertical profiles in UT with high vertical and horizontal resolution are required and there is a role for O$_3$, NO$_2$ and CO sondes. (HP)

13. There needs to be support for continued use of current satellites and analysis of concomitant data for now and new satellite instruments in the future. (HP)

Radiative Forcing Issues
14. Verification of the radiative forcing metric for ozone and methane is needed and cloud effects need to be quantified. (MP)

The understanding of aviation impacts on the climate system clearly requires a deep understanding of the natural atmosphere. Thus much of the above list itemizes a lack of understanding of the natural atmosphere. The following outlines ongoing work and future plans that will assist in improving our understanding of the atmosphere in the UT/LS. Of course the UT/LS does not exist in isolation. Thus improved understanding of the troposphere and stratosphere in general are important.

Ongoing measurement programs

Clearly it is important to continue monitoring in concert with modelling and analysis. This provides continuity with current measurements and allows the time series to be extended into the future (e.g. AERONET (Aerosol Robotic Network) (http://aeronet.gsfc.nasa.gov/). Maintenance of ozonesonde capability and in particular programs such as SHADOZ (Southern Hemisphere Additional Ozonesondes) (Thompson et al., 2003a, b; http://croc.gsfc.nasa.gov/shadoz/) in concert with modelling have allowed important new understanding of tropical ozone behaviour and IONS (INTEX ozone networks study) (Thompson et al., 2007a, b; http://croc.gsfc.nasa.gov/intexb/ions06.html) for ozone transport and the frequency of STE over North America.

In addition, there should be continuing support for analysis of current satellite experiments/instruments that have the capacity to probe the UT/LS, viz., ACE, MAESTRO, MIPAS, OSIRIS, SMR, MLS, OMI, SCHIAMACHY, TES, AIRS, IASI, HIRDLS and also instruments such as MODIS, MISR, AVHRR etc that can provide aerosol column optical depth will be important to maintain continuity into the future of basic tropospheric science. But we note that in 3-5 years there will be limited satellite availability that will be useful for UT/LS studies which is
particular to aviation impacts.

Future work

We discuss campaigns below. A critical part of the infrastructure for campaigns are aircraft, particularly aircraft that can probe the UT/LS region, such as the ER2 and Geophysica which can probe the lowermost stratosphere while other instrumented aircraft can probe the upper troposphere. It is important that these aircraft be supported. Currently the Geophysica is in need of upgrades which are ~ $1M. In addition, instrumented commercial aircraft such as the MOZAIC (Measurement of OZone by Airbus In-service aircraft) fleet also have an important role to play (http://www.cnrm.meteo.fr/dbfastex/datasets/moz.html). It would be important if other governments/aviation companies could be persuaded to participate.

The major chemistry and related issues summarized above can only be addressed with new research. For example to better characterize lightning NOx sources, and convection etc will require dedicated aircraft campaigns with possibly new instrumentation to attack problems of heterogeneous chemistry on ice and aerosols and possibly measurements of “missing” species. In addition, it will be necessary to support laboratory chemistry, particularly heterogeneous chemistry.

With respect to the development of new instrumentation an interesting possibility is the development of a NO$_2$ sonde (e.g., Pisano et al., 1996; Sitnikov et al., 2005). This would complement the ozonesonde and would be a major asset in researching the production of ozone by aircraft since it would provide high vertical resolution profiles for NO$_2$. Some infusion of support could lead to instruments suitable for release in concert with ozonesondes. This could be done on relatively a short time scale.

Campaigns

We consider it important continue to continue to conduct aircraft experiments and these should be coordinated where possible with satellite UT/LS measurements of gases (e.g. ACE, MIPAS, AURA (MLS, TES, HIRDLS), METOP) and aerosols. Clearly aircraft will continue to play a leading role in investigations over the next three years. The aircraft include but are not limited to the ER2, DC-8, Geophysica, WB57 and HIAPER. UAVs are a developing technology which should be exploited since they can remain aloft for several days. These will be important in addressing both summer and winter conditions and ideally there should a major campaign conducted in most continents. These would investigate the issues of (a) lofting PBL NOx sources and (b) lightning NOx (c) better characterization of corridor issues.

The impact of improving knowledge in these areas will be high as it is basic
knowledge of the background atmosphere. And models simulations of same will be necessary for the simulation of aircraft impacts.

Modelling

Climate impact forecasts are dependent on models. Thus it is important to maintain and improve modelling capabilities. This would include improved horizontal and vertical resolution, improved physical processes, better emission data bases, more accurate resolved and sub-gridscale transport processes. The development of multi-scale models is needed to investigate the corridors aspect of the aircraft emissions and the transition to regional scale climate impacts. Parameterizations used for deep convection need to be both used consistently (with the basic dynamical model) and verified according to the scale of model.

It would be useful for plume-to-corridor scale models to run comparison simulations of the conversion of NOx into nitric acid in the near field plumes to better characterize the in-plume conversion of NO into HNO₃ by heterogeneous chemistry in the plume and better resolve the issue of EEIs (effective emission indices) for use in global models.

Also it will be important to develop more challenging protocols for comparing models and devise improved diagnostic schemes or metrics for comparing with measurements. This latter is particularly important as it provides useful diagnostic tools for assessing model capability. An essential component of this is improved computer resources.

Better characterization and parameterization of convection will remain an issue. One means to attack the problem is by the use of cloud resolving models (CRMs; see for example, Xie et al., 2006; Xu et al., 2006; Lopez et al., 2006) to provide a first order basis for improved parameterizations. Nevertheless, any parameterization will need to be verified against measurements.

Better models will lead to improved forecasts in terms of reliability and given current constraints the goals are eminently achievable.

Elements required to address the various problems outlined above

1) Support for 3 modelling groups (a single model is useful but using different models is a more basic way of addressing uncertainty issues, as long as certain basic metrics (to be identified) are complied with.

2) Each group may require 3 PY over three years to address some of the issues.
 a. Campaign modelling
 b. Climate effects forecasting
 c. Access to substantial computer power.
Radiative Forcing Issues

An important goal is to reduce the errors associated with radiative forcing (RF) issues. There have only been very few and limited validation comparisons of RF with real measurements. In particular, research is necessary for the evaluation of cloud attenuation effects which represent a substantial uncertainty on model calculation of the RFM. Validation of the actual RF observable is needed to reduce GCM climate simulation errors of surface RF and surface temperatures.

In terms of impact, improving knowledge and accuracy of RF estimates would improve the uncertainties of estimates of relative contribution of aviation to global warming which are estimated using the RFM. The data could, perhaps, also lead to improvements in GCM simulations of climate changes for regions and also reduce the current error associated with the impacts of a tripled future aircraft fleet contribution to the total RFM.

The achievability is high since satellite measured databases of radiative trapping and ground surface measures of surface RF already exist. The work would consist mainly of data analysis of existing Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) databases (http://www.arm.gov/). It would be prudent to expand the current AERI (Atmosphere Emitted Radiance Interferometer) stations into a future network for surface radiative forcing.

The costs are estimated to be:

a) analysis of satellite databases 5 FTEs,
b) analysis of existing ARM AERI database 3 FTE,
c) and network expansion $300K per station.

Timelines: analysis of AERI database 2 years, analysis of existing satellite databases: 3 years and network development 10 years.

5. Recommendations

In this section we address the "recommendations for the optimum use of current tools for modeling and data analysis" and interpret this to mean what can be done with a limited expenditure of funds (and assuming with insufficient funds for major new measurement programs initiatives). Also for the scientific domain of this SSWP we address chemistry-climate impacts of aviation. Priority one would be the impact on ozone and associated RF effects and second priority would be the effects of aerosols in the plume/contrail. In terms of uncertainty, we have noted above that the UT is a region of considerable uncertainty both in terms of background emission sources and chemistry, both gas phase and heterogeneous.
The issues raised in Sections 2 and 3 have led us to a number of recommendations for 'practical' application of the currently available information involving available measurements and current modeling capabilities. This can, perhaps, be separated into three aspects. The analysis of observations, currently collected, continuing analysis of observations taken as part of an on-going program such as a satellite experiment and the analysis using currently available models.

As noted in sections 2 and 3, recent plume and CTM modeling studies have emphasized the impacts of background aerosols (natural and non-aviation anthropogenic) and those generated by aviation combustion on the UT/LS ozone budget: plume aerosols can modify UT/LS chemistry by activating Cly to destroy ozone, while ozone oxidation reactions followed by heterogeneous reactions can result in a reduction of ozone within the plume. But these conditions are quite sensitive to background conditions. In addition, once the plume aerosols become part of the background the enhanced aerosol field can have similar impacts. These aspects could be addressed by a modelling study where the goals would be to come up with a "best" estimate of UT/LS background aerosols for current and future (~2050) conditions and also appropriate future meteorological conditions. Several models could repeat the earlier work of Meilenger et al. (2005) and Søvde et al. (2007) for these future conditions to better characterize impacts.

One issue that could also be addressed without new data would be to confirm the results of recent modelling studies on the impacts of a putative fleet of supersonic aircraft (SSA). Current estimates suggest that a fleet of SSAs would result in an increase in column ozone. But as this is impacted by aircraft-generated aerosols it would be useful to reexamine this with different fuel type.

Another recommendation is to continue extensive analysis of the current suite of satellite UT/LS measurements of gases (ACE, MIPAS, AURA/MLS, AURA/HIRDLS) in order to better characterize the UT/LS region so that we can be more confident of the putative impacts of aviation. But we also note that nadir viewing instruments (e.g. MOPITT, AURA/TES, MODIS etc) also yield important information on emissions and convection and also aerosol distributions.

We also recommend the analysis of current data sets be accompanied by modelling analysis using 3D models and that at least a few of these should include evaluated "comprehensive" tropospheric and stratospheric chemistry in order to provide a more solid baseline. This could include both CTMs and GCMs. But there should also be an assessment of the robustness of the using appropriate diagnostics such discussed above such as STE ozone fluxes, tropospheric <OH> densities and correlations. These models could be used to assess the impact of aviation in climate mode or time-slice mode using SSTs and related surface properties from climate models. The rationale for using time-slice mode is that the aircraft climate/dynamical impacts are likely to be small and
looking for climate signatures could require running many ensembles, although if sufficient models were run this might be taken as equivalent to ensembles. This would certainly supplement the assessment of climate impacts using a RF type metric.

An important recommendation concerns the radiative forcing changes due to the increased UT ozone from aircraft traffic. The uncertainty that clouds introduce to model simulations of this parameter was noted in Section 2. A request could be made to DOE ARM to process the large existing AERI database for surface radiative forcing from ozone and methane. With such a database, investigations of cloud effects on radiative forcing in corridor regions and in several climate regimes would be facilitated.

Of the issues that could be addressed is the re-evaluation of data from previous campaigns in the light of more recent understanding. And this brings up the issue of data accessibility. Is the older aircraft data accessible and could it be made available with such tools as GIOVANNI, developed by NASA for several satellite instruments? GIOVANNI is fast to use and easy to use; it permits scientists to access and work with the data easily online without importing large volumes of data.

6. Summary

The current state of knowledge on the formation of ozone and related chemistry and transport in the upper troposphere at air traffic flight levels has been surveyed. About 40% of the time aircraft fly in the lower stratosphere where the chemistry is well known and there is confidence in the projections of models. In the upper troposphere where jet traffic spends 60% of the time, the chemistry is insufficiently defined to make an accurate prediction of the climate impacts of increased jet traffic. In the upper troposphere HOx/NOx chemistry is uncertain as revealed by various aircraft campaigns. Measurements indicate that PAN is an important component of NOx in the mid to upper troposphere and is likely involved in long range transport of NOx. Also aircraft measurements reveal “high” levels of NOy in the summer UT over NA, similar to those in the LT, but generated by lightning rather than anthropogenic emissions. The sources of NOx in the UT are not all well quantified, despite recent progress on quantifying the lightning source. The fraction of the deep convection source of NOx from the surface sources which reaches the 10 to 13 km level is estimated to be around 10% for North American summer meteorological conditions but possibly 50% for European summer meteorological conditions. There is a need for new aircraft campaigns focused on the quantification of the NOx sources in the flight corridors.

Heterogeneous chemistry on aerosols/contrails from aircraft emissions may alter ozone loss chemistry in the regional background atmosphere and modify ozone production from NOx emissions. Plume to corridor studies would be useful to
better characterize the conversion of NOx into HNO₃ in the near field plumes. These effects need to be characterized/confirmed for different fuel types.

The evidence of the climate impact of increased upper tropospheric ozone due to air traffic is the detection of changes in the ozone radiative forcing at the surface and at the top of the atmosphere. The radiative forcing due to ozone may be higher in some regional areas than on a global basis. There are uncertainties in the calculations of the radiative forcing metric mainly due to a lack of knowledge of cloud effects. There have been few verifications of the RF metric with real measurements of observed surface radiative forcing or with satellite radiative trapping at the top of the atmosphere.

The characterization of aviation impacts in details within the corridor is limiting progress and should be the focus of aircraft and satellite studies. However, it is rendered difficult by the relatively small effect on synoptic scales. There are several recent satellites which provide new information on the NOₓ and nitric acid at flight levels and this information could perhaps be applied to the problem.

In concert with aircraft campaigns, satellites experiments with improved vertical resolution are needed to study the UT/LS region.

There is a concern that there will be a gap in satellite instruments suitable for UT/LS investigations. The SHADOZ/IONS ozonesondes have proven to be highly useful for investigating ozone in the upper troposphere and could be used to partially fill such a gap. There have been too few aircraft campaigns focused on the flight corridors and which are coordinated with satellite overpass measurements.

There have been large advances in models since 1999. Data assimilation has proven very valuable in providing "value added" information from satellite data. Multiscale models are needed to investigate the corridors aspect of the aircraft emissions and the transition to regional scale climate impacts. Parameterizations used for deep convection need to be both used consistently (with the basic dynamical model) and verified according to the scale of model. Finally it is recommended that climate assessments of the impacts of a future fleet should use chemistry-climate models with comprehensive tropospheric and stratospheric chemistry at as high a resolution as feasible.

We caution that although current measurements can yield improved results by the application of more sophisticated models, it is unlikely that accurate simulations of aircraft emissions impacts on UT/LS ozone and resulting radiative forcing of climate will be possible without information from new satellite and aircraft missions and expanded sounding systems such as ozonesondes and lidars.
7. References

Belair, S. and 34 authors, Operational implementation of a 33-km version of GEM for global medium-range prediction at CMC, CMOS bulletin SCMO, 35, 77-84, 2007.

Chemical and dynamical processes: revised final

Kraabøl, A. G. and F. Stordial, Modelling chemistry in aircraft plumes 2: the chemical conversion of NOx to reservoir species under different conditions, Atmos. Envir., 34, 3951-3962, 2000.

Mickley, L. J., D. J. Jacob, B. D. Field, and D. Rind, Climate response to the increase in tropospheric ozone since preindustrial times: A comparison between ozone and equivalent CO₂ forcings, 109, D05106, doi:10.1029/2003JD003653, 2004

NRC, Radiative forcing of climate change: expanding the concept and addressing uncertainties, National academies Press, 2005

O’Neill, N. T., M. Campanelli, A. Lupu, S. Thulasiraman, J. S. Reid, M. Aube, L. Neary, J.W. Kaminski. J.C. McConnell, Optical evaluation of the GEM-AQ air...

Figures

Figure 1. Net ozone production for equinox from CMAM model (10^9 ozone molecules cm$^{-3}$ day$^{-1}$) (courtesy of Stephen Beagley, 2007). [Will be cut off at 10 mb]
Figure 2 The instantaneous radiative forcing from tropospheric ozone since pre-industrial times of 0.49 W/m2 (Mickley et al., 2004)
Figure 3(a) NO distribution at ~ 220 mb over eastern Atlantic and Western Europe calculated using GEM-AQ (Kaminski et al., 2007) at 15x15 km resolution.
Figure 3(b) O3 distribution at ~ 220 mb over eastern Atlantic and Western Europe calculated using GEM-AQ (Kaminski et al., 2007) at 15x15 km resolution.
Figure 4: Comparison of the vertical profiles of (left) measured (circles) and modeled (stars) OH and (right) measured-to-modeled OH ratios during INTEX-NA (circles), TRACE-P (stars) and PEM-TB (triangles). Individual INTEX-NA 1-minute measurements are shown (gray dots). (Ren et al., 2006)
Annex I: Models with comprehensive Tropospheric and Stratospheric chemistry

CTMs

Climate models

Annex II. Suggested structure for each SSWP

1. Introduction and Background specific to your theme area

2. Review of specific theme
 a. Current state of science
 b. Critical role of the specific theme
 c. Advancements since the IPCC 1999 report
 d. Present state of measurements and data analysis
 e. Present state of modeling capability/best approaches
 f. Current estimates of climate impacts and uncertainties
 g. Interconnectivity with other SSWP theme areas

3. Outstanding limitations, gaps and issues that need improvement
 a. Science
 b. Measurements and analysis
 c. Modeling capability
 d. Interconnectivity with other SSWP theme areas

4. Prioritization for tackling outstanding issues based on their
 a. Impact
 b. Ability to improve the climate impacts estimates with reduced
 uncertainties
 c. Practical use (e.g. model improvement, sensitivity analysis, metric
 development etc.)
 d. Achievability
 e. Estimated cost
 f. Timeline

5. Recommendations for best use of current tools for modeling and data analysis
 a. Options
 b. Supporting rationale
 c. How to best integrate best available options?

6. Summary
Annex III: Questions to be considered in report

Please note that each of the SSWP is meant to provide recommendations on:
* Improvement needed to advance the state of science and modeling capability; and
* best use of the present state of science and modeling capability to
 + better quantify magnitude of climate impacts of aviation and
 associated uncertainties for present and future condition
 + develop metrics to measure these impacts on all relevant scales

It is expected that each SSWP will also address the following common questions to the best extent possible:
* What are the key science questions/issues specific to aviation induced climate change impacts for the present and future conditions?
* What are the state of science, present modeling capability, and observation databases available to answer these key questions?
* What are the controlling factors: scientific knowledge vs. modeling capability vs. computational resources given that aviation-induced atmospheric perturbations range from plume to global scales?
* What are the presently available best options among existing models and their individual modules to isolate and estimate atmospheric and radiative perturbations due to aviation emissions? How well these models perform to simulate the state of the background atmosphere due to all non-aviation sources?

* How to best integrate available modeling options to simulate atmospheric perturbations due to aviation and how to evaluate the model performance to characterize the aviation-induced perturbations?
* What are the gaps and uncertainties in science? What are the limitations in observations and modeling tools to answer the key questions?
* With no further scientific knowledge, how and with what level of uncertainties, can the key questions be answered today using the best available modeling tools?
* If the gaps were to be addressed, would the ability to answer the key questions get any better? If so, to what possible extent and within what possible timeframe?

The review panel has made some suggestions that are general and applicable to all selected proposals:

* Within the sphere of your own SSWP, reach beyond the issues that were listed in the solicitation. Our stated questions/issues were merely the sample to provide some guidance as well as relevance and they were not
intended to limit your scope of work.

* Be comprehensive in preparing the SSWP by including the review on the
state of science, gaps and uncertainties, modeling capabilities and current state
of relevant measurements and analysis of the existing data with a focus on
present and future climate impacts due to aviation.

* Do not limit the scope of SSWP to your own activities. Outreach the latest
efforts of the entire scientific community as a whole.

* Wherever possible, maintain the interconnectivity among themes of all
other SSWPs. Study of climate impacts needs to be carried out within the
one-atmosphere framework through interrelated processes irrespective of
how they are distinctly classified as dynamical, transport, chemical,
microphysical, optical and/or radiation.

* Identify the best modeling and analysis options presently available and
provide the supporting rationale.

* Address the gaps and uncertainties (in the state of science, modeling
capabilities and their practical applications), identify the key areas of
improvements and prioritize them based on their practical achievability as
well as associated timelines.