Experimental Spaceplane (XS-1)

First Step Toward Reducing the Cost of Space Access by Orders of Magnitude

Mr. Jess Sponible
Program Manager

Program Overview for COMSTAC
16 September 2014

DARPA

U.S. Launch – A Growing Problem

- DoD payloads launched on Evolved ELV at ~$3B/year & growing
- Small payloads launched at ~$50M on few remaining Minotaurs
- Foreign competitors lead commercial launch, once dominated by U.S.
- No surge capability, long call-up times, typically > 2 years
- Budgets continue to decline, threats to space and air assets growing
Experimental Spaceplane (XS-1)

Step One to Routine, Low Cost Access to Space

XS-1 Vision

- Break cycle of escalating space system costs
- Aircraft-like operability enabling low cost, responsive access to space
- Accelerate introduction of hypersonic technologies and next generation aircraft
- Responsive platform for global reach national security and commercial applications
- Enable residual capability for responsive launch of 3,000 – 5,000 lb payloads

Technical objectives

- Reusable first stage
- Fly XS-1 10 times in 10 days
- Fly XS-1 to Mach 10+ at least once
- Launch demo payload to orbit
- Design for recurring cost ≤ 1/10

Minotaur IV

(< $5M/flight for 3,000 – 5,000 lbs to LEO at 10+ flt/s/yr)

Open Design Space

- Configuration
- Propulsion
- Propellants
- CONOPS

Notional Government Reference X-Plane

One of Many Possible Industry Solutions

Mach 10 staging with small upper stage (shown)
Alternative would be Mach 5 staging with larger upper stage

F-15

XS-1

Booster

- Engine: 2 Merlins
- GLOW (K lbs): 223.9
- MECO (K lbs): 47.4
- Usable LOX/RP (K lbs): 176.5
- Isp (vac): 310
- Stage PMF: 0.84

Upper Stage

- GLOW (lbs): 15.0
- Isp (vac): 336
- Stage PMF: 0.9
- Payload (K lbs): 3.0

Payload: 3,025 lbm
100x100 nmi
28.5 deg Inclination

2-Stage Vehicle (GLOW-223.9K lbs)

- Booster (2-Merlins)
- Propellant = 176.5K lbs
- Isp (vac) = 310 sec
- PMF = 0.84

- Upper Stage (GLOW-15K lbs)
- Isp (vac) = 336 sec
- PMF = 0.90

Payload: 3,025 lbm
100x100 nmi
28.5 deg Inclination

Staging:

- Time = 169.9 sec
- DR = 71.9 nmi
- Altitude = 237,155 ft
- Mach = 10.8

Expendable stage ~5% of stack weight
XS-1 Phase I Awards

- **Phase 1 system awards**
 - The Boeing Company working with Blue Origin
 - Northrop Grumman working with Virgin Galactic
 - Masten Space Systems working with XCOR

- **Technology awards/cooperative efforts**
 - Honeywell – Real-time abort trajectory generation
 - Gloyer-Taylor Labs – Composite cryogen tank fabrication and test
 - NASA Armstrong Flight Test Center – Fiber Optic Sensor System (FOSS)
 - SAS and LLNL – Ox Rich Staged Combustion / Next-Gen Rocket seedlings
 - ATK/COI – CMC Thermal Protection Systems
 - CCAT – Carbon Carbon Thermal Protection Systems

- **Upcoming awards**
 - 2 Propulsion
 - 1 Comm / Space-Based Range Award

XS-1 Planned Schedule

<table>
<thead>
<tr>
<th>FY 14</th>
<th>FY 15</th>
<th>FY 16</th>
<th>FY 17</th>
<th>FY 18</th>
<th>FY 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 - Initial Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Risk Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- System Design Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 - Final Design Fabrication and I&E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Reusable aircraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Upper stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3 - Flight Test Campaign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Transition Opportunities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology

Transition Off-Ramps

USAF, NASA, Industry

IDIQ
Long Spaceplane History

<table>
<thead>
<tr>
<th>Year</th>
<th>Program Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>WWII-era German Sanger Concept</td>
</tr>
<tr>
<td>82</td>
<td>X-15 Rocket Plane Program (Plus other rocket planes)</td>
</tr>
<tr>
<td>84</td>
<td>USAF Aerospace Plane Program, early 1960's</td>
</tr>
<tr>
<td>86</td>
<td>X-20 Dynasonor Program, 1960s</td>
</tr>
<tr>
<td>88</td>
<td>Science Dawn, Science Realm, TAV, MAV, Copper Canyon</td>
</tr>
<tr>
<td>90</td>
<td>National Aero-Space Plane</td>
</tr>
<tr>
<td>92</td>
<td>Have Region</td>
</tr>
<tr>
<td>94</td>
<td>SSTO Studies</td>
</tr>
<tr>
<td>96</td>
<td>Science Dawn, Science Realm, TAV, MAV, Copper Canyon</td>
</tr>
<tr>
<td>00</td>
<td>National Aero-Space Plane</td>
</tr>
<tr>
<td>02</td>
<td>DOD DC-X Program</td>
</tr>
<tr>
<td>03</td>
<td>$70M</td>
</tr>
<tr>
<td>04</td>
<td>$3,000M</td>
</tr>
<tr>
<td>05</td>
<td>$70M</td>
</tr>
</tbody>
</table>

Long USAF Push for Aircraft-Like Access to Space

Artwork Concept

Technology
- **Space Shuttle**: TRL ~3 and immature design
- **NASP**: New LOX/LH₂, SSME, Unproven materials/TPS, Toxic OMS/RCS, etc. 1960s/1970s technology
- **VentureStar**: TRL ~3 and immature design

Approach
- **Space Shuttle**: Expendable launch (SRB, ET) Operational after 4 flights Evolved to "space station"
- **NASP**: X-Plane first Incremental flight test
- **VentureStar**: X-Plane first Incremental flight test

Outcome
- **Space Shuttle**: Successful flights Very expensive with ground "standing army"
- **NASP**: Never flew Design never closed Technology not available
- **VentureStar**: Never flew Design never closed Technology not available

Past programs over-specified the problem (SSTO, scramjet, heavy lift, crewed, etc.) AND relied on immature designs and technology (TRL 2/3)
What Has Changed?
20 years of investment → Technology mature & affordable

XS-1 Goals

1. Break cycle of escalating space system costs
 - Seeking path to affordable space
 - Would enable disaggregation & resiliency strategies
 - 10X lower launch cost changes how spacecraft are built

2. Enable new types of aircraft & test capabilities
 - Space access aircraft → Global ISR and protection
 - Affordable hypersonic aircraft → Low parts count & CTE structures/TPS
 - Hypersonic testbed → boost-glide systems & hypersonics

3. Enable residual capability
 - ORS Launch → single smallsat or constellations for rapid employment
 - Support growth options including near-term modular options
DARPA Leadership Perspective:

Attack the cost equation

Collectively the space portfolio is supporting responsiveness and cost reduction of launch through ground-based systems.

Airborne Launch Assist Space Access (ALASA) aims to enable responsive launch of 100 lb payloads from existing globally distributed airfields to enable next-generation tactical missions.

The Experimental Spaceplane (XS-1) reusable vehicle capability would extend this capability to 3,000 lb payloads with “aircraft-like” access to space at 10X lower costs.

Challenges to Achieving Lower Cost

XS-1 would complement heavy Falcon & EELV payloads

ELV Launch Cost Breakdown

- **Mission Assurance**, $0.20
- **Facility, support, launch complex**, $1.32
- **Launch Vehicles**, $1.44
- **Conventional Launch Vehicle Trendline**
- **Small Solid Launchers**
- **Delta II Variants**
- **EELV Variants**
- **ALASA**
- **XS-1 Trade Space**
- **Falcon 9**

Technical Challenges

- Design and system integration enabling “aircraft-like” operations
- Light weight/high energy airframe, high propellant mass fraction
- Durable thermal structures/protection, -300°F to +3,000°F
- Reusable, long life & affordable propulsion

Note: Data extracted from FY12 PE/BPAC data. Excludes AFSPC payroll at launch sites and base O&M.

Distribution Statement A – Approved for Public Release, Distribution Unlimited
Goal: Design and System Integration
Enable "aircraft-like" operations

- Few Facilities, Small Crew Size
- Autonomous Ops
- Incorporate "ilities"
- Complex to Simplex

Launch Site/Base Manpower Comparisons
- Delta II Baseline Data
- Design for Rapid Turn Reduces Manpower
- Turnaround (hours)
- Delta II Baseline Data

Mission Assurance, $0.20
Facility, support, launch complex, $1.32

Launch Site
- Clean pad
- Complex to Simplex
- Autonomous Ops

Today’s Launch Complex
- Few Facilities, Small Crew Size
- Autonomous Ops

Goal: Design Integration
“Clean Pad” Aircraft-Like Operations

- Aircraft-like CONOPS
 - Clean pad - rapid throughput
 - Ops Control Center – like aircraft
 - Containerized payloads

- Aircraft GSE/Facilities where practical
 - Hangars, not specialized buildings
 - Standard interfaces/processes
 - Automated ops, propellant & fluid loading

- Integrated Systems Health Management
 - Determine real-time system health
 - Integrate with Adaptive G&C
 - Enable reliable, rapid turnaround aircraft

- Leverage high ops tempo investments
 - ALASA – Autonomous Flight Termination System
 - ALASA – Rangeless range, space based command, control & data acquisition
 - Adaptive GN&C – safe, reliable recovery/abort

Distribution Statement A – Approved for Public Release, Distribution Unlimited
Goal: Light Weight / High Energy Airframe

High Propellant Mass Fraction (PMF)

- **Mission Assurance, $0.20**
- **Launch Vehicles, $1.44**

Tank/Structure Integration
- Integral load bearing structure
- High PMF key to performance
 \[\Delta V = I_{SP} \cdot g \cdot \ln \left(\frac{1}{1 - PMF} \right) \]
- 10X fewer parts & lower cost
- *aka X-55*
- Reusable vehicle cost would be amortized rapidly...

Design tank / airframe structure to enable high PMF/\(\Delta V\)

Goal: Durable Thermal Structures / Protection

~300 °F to +3,000 °F

How you design & fly is key!

- POST Results Ref Heating on 1 ft Radii Leading
- Mach 10 suborbital

Many Thermal Protection Options

- AFRSI and CRI
- Quick-Release Fastener
- Leading Edges ACC, C/SiC, TUFROC
- Mechanical Atch
- Space Shuttle Post-Flight CMC/TUF1 Tiles

Emerging Thermal Structures

- Composite Hot Structures
- Fibrous Opacified Insulation
- Honeycomb Composites
- Aircraft Hot Wash Structures

Distribution Statement A – Approved for Public Release, Distribution Unlimited
Goal: Reusable, Long Life and Affordable Propulsion

Multiple Options – Design Integration Challenge

- Use existing propulsion with mods for:
 - Long life ... rapid call up/turaround ... deep throttle
 - High reliability ... historically, most launch failures caused by propulsion
- Design as Line Replaceable Unit
 - Rapid remove and replace
 - Support high ops tempo flight rate

Multiple Affordable Propulsion Options

- Merlin Commercial Rocket
- NK-33 Stockpiled Russian Rocket
- SSME Space Shuttle Engines

OV-1 Derived Capabilities

Step One: S-1
- 3.5K Payload
- 10X lower cost

Enabled Futures
- Global Reach Capability
- 100X lower cost

Delivers affordable, routine space access - On path to global reach capability
XS-1 Capabilities Would Evolve Over Time

- **Core capability > 3,000 lbs to LEO**
 - Option: Grow capability with modular launch
- **Payload disaggregation could shrink sizes**
 - Downsize & modernize payloads
 - Single payload simplified spacecraft
- **Stage disaggregation would grow effective payload**
 - Launch satellite payloads separately
 - Dock stage on-orbit with satellite
- **Grow launch markets**
 - Capture / recapture commercial launch
 - Enable new military / ORS capabilities
 - Hypersonic testing / release of free-flyers

Potential XS-1 DOD and Commercial Satellite Markets

Responsive launch of 3 to 5K lb payloads

- ’97-’99 spike due to Iridium and Globalstar
- Lost commercial opportunities
 - Commercial launch migrated overseas
 - $Billions in lost revenue
 - Grew cost of DOD launch
 - New constellations hard to finance
 - Teledesic

- Potential to leverage commercial sector

- Missions potentially enabled by XS-1
 - USAF ORS & “disaggregated” satellites
 - Recapture commercial launch
 - Historical avg of 3-5 launches/yr at 5,000 lbs
 - Projected market much higher

Worldwide Projected Payloads: 2013 to 2022

<table>
<thead>
<tr>
<th>Year</th>
<th>No. Payloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>250</td>
</tr>
<tr>
<td>2014</td>
<td>300</td>
</tr>
<tr>
<td>2015</td>
<td>350</td>
</tr>
<tr>
<td>2016</td>
<td>400</td>
</tr>
<tr>
<td>2017</td>
<td>450</td>
</tr>
<tr>
<td>2018</td>
<td>500</td>
</tr>
<tr>
<td>2019</td>
<td>550</td>
</tr>
<tr>
<td>2020</td>
<td>600</td>
</tr>
<tr>
<td>2021</td>
<td>650</td>
</tr>
<tr>
<td>2022</td>
<td>700</td>
</tr>
</tbody>
</table>

Note: Data from ILS, SpaceX, Blue Origin, Arianespace, Virgin Galactic, and United Launch Alliance.
XS-1 Could Facilitate Next Gen Hypersonics

Multiple Test Options
- Captive carry experiments
 - May Limit Q and thermal testing
 - Propulsion (RAM/SCRAM/Turbine)
 - Airframe/Structures
 - Thermal Protection
- Release free-flyer experiments
 - Unpowered constant Q reentry
 - Long test time vs. ground test
 - Aerodynamic & thermal test
 - Laminar flow/boundary layer transition
 - Controls/avionics
- Powered test vehicle
 - Longer flight tests
 - Useful test data limited only by scale and cost

Constant Q Unpowered Glide from Engine Burn Out
- 15 Mach No.
- Downrange (nm)
- Burn Out Mach No.
- Free Flyers
- Captive Carry
- Constant Q Test Time
 - ~90 sec
 - ~120 sec
 - ~300 sec

Projected Cost of Flight Test < Many (Not All) Ground Tests
Test of component/systems ♦ RAM/SCRAM/turbine ♦ Boost-glide vehicles

XS-1 Transition Path Would Require Proactive Industry

- Robust DOD and commercial launch industry with ideas
- Growing small satellite industry building low cost satellites
 - Commercial
 - Military
 - Civil
- Emerging DOD requirements for disaggregation & resiliency
 - Disaggregation: downsize spacecraft for routine, responsive & affordable launch
 - Resiliency: ability to operate in the harsh space environment

Industry Would Lead Commercial and Military Transition Options
Stepping Stone to Future Capabilities
Technology scalable to future capability

Proposed XS-1 Program

Scalable/Traceable to Future Capability

National Concepts

Near Term Transition Options

Many Transition Options

Aircraft-Like operability
National security global reach architectures

Commercial Launch for ORS, AF & Intel
Enable AFSPC Full Spectrum Launch Capability

Flight Test Build

F-15 (Size Ref) XS-1

DARPA

Flight Test
Mach 10 Would Validate Critical Access to Space Technology

- Micro Meteoroid Environment
- Max Heat Load Integrated Temperature Effects
- Emissivity Effects
- Oxidation Effects
- High-Temperature Seal Integrity
- Catalytic Heating Effects
- Real Gas Aero Effects
- Boundary Layer Transition
- Hypersonic Aero, Vacuum Environment
- Peak Power Loads, TPS Waterproofing, Thermal Cycles (>10 fits)
- TPS Bondline Integrity, NDE Inspection Techniques, VHLM Approaches
- Thermal Conductivity, Temperature Profiles, Fatigue Properties (>10 fits)
- Cryopumping/low Accumulation, Insulation Properties, Dynamic Pressure Loads
- Facilities/GSE, MMTR/MTBF/MLHTR (>10 fits), Ground Crew Size, Supersonic Aero
- Propellant Density Properties, Max Acoustic Loads, Cryo Insulation Properties, Weather Effects
- Max Mechanical Loads, Stress/Strain Profiles, Strength/Density Properties, Subsonic Aero
- Flight Weights/Gages, Production/DOT&E Costs, Manufacturability/Tooling/Tolerances/Non-Optimiz

XS-1 will mature technology for 1st Stage AND fully reusable flight to space

Distribution Statement A – Approved for Public Release, Distribution Unlimited
XS-1 Seeks to ...

- Push Mach capability well beyond suborbital tourism
- Engage FAA-DOD-Industry teams to establish safe standards of practice for new launch systems
- Leverage commercial sector technology (Blue Origin, Virgin Galactic, XCOR, etc.)
- Transition vendor/subcontractor technology to commercial sector
- Transition some system prime technology to commercial sector
- Transition launch capability to commercial sector
- Explore new missions like hypersonic testing and point-to-point transport
- Enable more affordable launch expanding satellite opportunities
- Serve as a step to fully reusable access to space technologies

Trailblaze next generation commercial space ... technology, flight envelope, regulatory, new markets, etc.

Summary

Highlights
- New era — Launch costs growing, budgets declining and threats proliferating
- Disruptive — Order of magnitude lower cost → new game changing capabilities
- Leverage — Emerging suborbital and launch technology & entrepreneurs
- Transition — Industry leads, many paths forward → Commercial, DoD, civil

XS-1 program could be an agent for change ...
... DARPA open to innovative industry proposals

Several Notional Concepts