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Abstract 
 

The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to 
provide technical support to the Federal Aviation Administration, Office of Commercial Space 
Transportation (FAA/AST), in performing a study of the existing literature on reconfigurable control 
allocations for the next generation of robust reusable launch vehicles (RLVs) and determining the 
feasibility of deriving hierarchical control allocations and reconfiguration architectures that extend the 
safe ascent and descent operational envelopes of RLVs, in general. 
 
Recent interest to develop technology that will enable RLVs to land autonomously and recover from 
failures or damage has fueled research in integrated adaptive guidance and control.  The new 
technologies usually involve reconfigurable control and trajectory reshaping.  Trajectory reshaping is 
performed in real time as follows:  A database of pre-computed reference trajectories is used to select 
a feasible trajectory for a given failure, while an adaptive guidance system makes corrections for 
errors and disturbances.  The advantage of this approach is that there is no need to consider every 
possible control failure to generate the trajectory database.  It is enough to capture the effect of 
control failures with a few parameters such as the total variation in lift and drag.  
 
The purpose of this study was to provide technical support on advanced guidance and control 
methods that may have significant potential to increase the safety and reliability of future RLVs and 
to reduce the cost of performing trajectory guidance, navigation and control analysis.  Management of 
emergency situations arising from control surface degradation or actuator failure, using other 
available operating mechanisms and a reconfigured adaptive control strategy, may improve safe 
mission return or abort scenarios.  The problem is generic, widely affects the general class of RLVs, 
and is of great importance from a safety perspective. 
 
In addition to a thorough survey of current guidance, navigation and control (GN&C) reconfiguration 
strategies for RLVs, the results of this investigation can be construed as a comprehensive tutorial on 
the subject.  Furthermore, Aerospace’s evaluation by simulation of control allocation and adaptive 
control via (1) linear programming and (2) neural networks, two of the most promising 
methodologies, has demonstrated that those techniques are quite accessible to the GN&C practitioner. 

 

  

v 
 



 

vi 
 



 
Acknowledgments 

 
Mr. Miguel A. de Virgilio and Mr. Robert W. Seibold served as Principal Investigator and Program 
Manager, respectively.  Mr. Damian M. Toohey was a main contributor to the control allocation and 
adaptive autopilot section.  Dr. Ahmed Omar-Amrani contributed to the guidance section.  Dr. Jeffrey 
Caplin acted as a consultant in the control allocation task and provided models for the simulations. 

Gratitude is extended to Mr. Pradipta Shome at the Office of the Associate Administrator for 
Commercial Space Transportation, Federal Aviation Administration, for valuable guidance on 
FAA/AST regulatory and licensing needs.  Special acknowledgement is deserved for his valuable 
input in steering our investigation toward the use of neural networks.  The authors also wish to thank 
Mr. John J. Sigona, who served as the Contracting Officer’s Technical Representative (COTR) at the 
Volpe National Transportation Systems Center and provided valuable insight on government needs 
and regulations. 

vii 
 



 

viii 
 



 
Contents 

1. Introduction and Background......................................................................................................... 1 
1.1 Introduction......................................................................................................................... 1

1.2 Background......................................................................................................................... 1 

2. Approach ........................................................................................................................................ 3 

2.1 Principal Philosophy ........................................................................................................... 3 

2.2 Subtasks .............................................................................................................................. 4 

3.  Control Allocation ............................................................................................................................. 7 
3.1 Evaluation of Control Allocation Algorithms ..................................................................... 7 

3.2 Evaluation of Linear Programming .................................................................................... 8 

3.3 Control Allocation Conclusions.......................................................................................... 9 

4. Adaptive Control Using Neural Networks (NN).......................................................................... 11 
4.1  Neural Network Fundamentals.............................................................................................. 11 

4.2  The Neuron as an Adaptive Filter.......................................................................................... 13 

4.3  Example of Neuron Training................................................................................................. 13 

4.4  Noise Cancellation Example ................................................................................................. 14 

4.5  Adaptive Control ................................................................................................................... 16 

4.6 Adaptive Control Conclusions.......................................................................................... 19 

5. RLV Adaptive Guidance and Control........................................................................................... 21 
5.1  Review of RLV Guidance Systems ....................................................................................... 21 

5.2  Certification Tests and Guidelines......................................................................................... 22 

5.3  Guidance Conclusions........................................................................................................... 23 

6. Conclusions and Recommendations............................................................................................. 25 
6.1  General Guidelines for Application of Reconfiguration Technologies ................................. 25 

6.2  Recommendations for Further Work ..................................................................................... 25 

7. Abbreviations, Acronyms, and Symbols ...................................................................................... 27 
8. References and Bibliography ....................................................................................................... 29 
References ............................................................................................................................................ 29 
Bibliography......................................................................................................................................... 29 

 

 

ix 
 



 
Figures 

Figure 2-1.  System Architecture with Trajectory Shaping .................................................................... 3 

Figure 2-2.  Inner Loop Architecture...................................................................................................... 4 

Figure 3-1.  RLV Longitudinal Architecture .......................................................................................... 8 

Figure 3-2.  Simulated RLV Response to AoA Step Input Using Linearized Plant.............................. 10 

Figure 4-1.  Noise Cancellation System ............................................................................................... 14 

Figure 4-2.  Adaptive Linear Filter Network........................................................................................ 15 

Figure 4-3.  Original Signal vs. Restored Signal.................................................................................. 16 

Figure 4-4.  Noise Cancellation Performance ...................................................................................... 16 

Figure 4-5.  Adaptive Control System.................................................................................................. 17 

Figure 4-6.  Neural Network Architecture............................................................................................ 18 

Figure 4-7.  Adaptive Control Performance ......................................................................................... 18 

 

 

Tables 

Table 4-1.  Widrow-Hoff Learning Algorithm for Noise Cancellation Example ................................. 15 

Table 5-1.  Entry Guidance Test Matrix ............................................................................................... 23 

 

x 
 



 

1. Introduction and Background 

 

1.1 Introduction 
The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to 
provide technical support to the Federal Aviation Administration, Office of Commercial Space 
Transportation (FAA/AST), in performing a study of the existing literature on reconfigurable control 
allocations for the next generation of robust reusable launch vehicles (RLVs), and in determining the 
feasibility of deriving a hierarchical control allocation and reconfiguration architecture that extends 
the safe ascent and descent operational envelopes of RLVs, in general.  The Aerospace Corporation is 
pleased to submit this final report, in accordance with the requirements delineated in Section F, 
Deliveries or Performance, of Volpe Center Contract No. DTRS57-99-D-00062. 
 
The purpose of this study was to provide the Volpe Center and FAA/AST with technical support 
needed to understand advanced guidance and control methods that may have significant potential to 
increase the safety and reliability of future RLVs, as well as to reduce the cost of performing 
trajectory guidance, navigation and control analysis.  Management of emergency situations arising 
from control surface degradation or actuator failure, using other available operating mechanisms and 
a reconfigured adaptive control strategy, may improve safe mission return or abort scenarios.  The 
problem is generic, widely affects the general class of RLVs, and is of great importance from a safety 
perspective.  
  
The delivered product is this final report summarizing (1) the current technology of reconfigurable 
control methods applicable to RLVs, in general, and (2) the development of general guidelines for 
application of reconfigurability for control allocations to enhance the safety attributes of RLVs. 
This task was organized into six subtasks: 
 

1. Perform literature survey. 
2. Evaluate most promising control allocation algorithms. 
3. Evaluate adaptive guidance laws. 
4. Evaluate optimum trajectory reshaping methods:  (a) off-line trajectory database generation, 

and (b) on-line trajectory reshaping. 
5. Perform limited simulation verification of the above using Aerospace’s RLV six-degrees-of-

freedom (6-DOF) simulation tool. 
6. Develop general guidelines for application of reconfigurability for control allocations to 

enhance RLV safety attributes. 

1.2 Background  
In recent years, significant efforts to develop new technologies for the next generation of RLVs have 
been undertaken by the National Aeronautics & Space Administration (NASA), Department of 
Defense (DOD), and by the civilian sector as well.  The aging shuttle fleet will be replaced in the 
future by new manned and autonomous space vehicles.  These new vehicles will benefit from 
advances in computer technology and also from the new more capable and adaptable flight algorithms 
currently being developed.  Adaptive guidance and control re-allocation can be used effectively to 
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land autonomous space vehicles safely.  Autonomous vehicles, unlike manned ones, do not have the 
advantage of a pilot in the loop to compensate for failures. 
 
The use of intelligent systems to compensate for failures is attractive but is no substitute for 
intelligent design of the space vehicle itself.  The aim is rather to augment the reliability of existing 
control systems.  Redundancy is commonly used for aircraft but not always for space vehicles 
because of penalties in weight, cost, and complexity.  Some redundancy of the control effectors is 
desirable to retain full control authority, but if it is not possible, the RLV will be restricted in its 
operation and the flight path will have to be altered by the combined effect of adaptive guidance and 
control to save the mission. 
 
A failure can occur at anytime during reentry; in addition, the nature of the failure varies and they are 
not easily recognizable without an active fault detection and isolation (FDI) system.  However, all 
failures alter the aerodynamic characteristics of a given RLV, which can be expressed as total 
variation in lift, drag, and aerodynamic moments.  Consequently, it is sufficient to know the effect of 
a failure to devise a course of action to compensate for it.  This course of action may include on-board 
trajectory optimization when needed.
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2.  Approach 

 
2.1 Principal Philosophy 
The current Space Shuttle guidance, navigation, and control (GN&C) reconfiguration strategies 
following effector (e.g., flaps, actuators) failures were reviewed to identify areas of study for 
improvement.  Currently, intensive preflight trajectory and GN&C analyses must be performed.  This 
results in intensive computational requirements and development costs. 
 
A preliminary literature survey (over 30 reports) was conducted to assess the state-of-the-art in this 
area.  Key documents that were reviewed are listed in the References and Bibliography section.  In 
the most general case, the reconfiguration capabilities for RLVs may employ the following elements: 
 

• Failure identification 
• Inner loop control reconfiguration 
• Outer loop guidance adaptation 
• Onboard trajectory command reshaping 

 
An overview of system architecture with trajectory shaping is depicted in Figure 2-1. 
 

 
Figure 2-1.  System Architecture with Trajectory Shaping 

 
Following is an outline showing the key sub-elements of the first two of the four above-listed 
elements. 
 

• Failure Identification: 
o Failures may be of three types: 

1. Actuator failures 
• Reduced range, hard-over 

2. Internal failures 
• Only part of the plant fails 

– Example:  A coil failure will result in a sluggish response but provide 
the same steady state effectiveness 

3. Sensor failures 
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• Some measurements become unavailable, incorrect, or noisy 
 

• Inner Loop Control Reconfiguration (Figure 2-2): 
o Involves four blocks: 

1. Reference model 
2. Proportional-plus-integral (P+I) controller (or equivalent compensator) 

• Possible learning neural network adaptation 
3. Dynamic inversion to generate desired command rates 
4. Control allocation algorithms 

• Pseudo-control hedging to modify reference model if actuator is 
saturating 

 

Control
Allocation
Pseudo-
Control
Hedging

Reference
Models

Pilot
Inputs

Aircraft
DynamicsAircraft

Response

Dynamic
Inversion

P + I Error
Controller

-
+

++

Aero
GenerationLearning

Neural Network

Sensors

Figure 2-2.  Inner Loop Architecture 
 
 
2.2 Subtasks 

The most promising control allocation algorithms were reviewed, and among them, linear 
programming was evaluated in detail via simulation (Section 3).  A subtask not initially included in 
Aerospace’s proposal was added to this study.  This new subtask, a study of the use of neural 
networks for adaptive control, suggested by P. Shome, FAA/AST, was extensively researched.  
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Aerospace’s simulation results for this approach are reported in Section 4.  A review of adaptive 
guidance and control and resulting recommendations are reported in Section 5.  General guidelines 
for application of reconfigurability technologies, along with recommendations for future work, are 
reported in Section 6. 
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3.  Control Allocation 

Control allocation algorithms were evaluated, along with linear programming, and conclusions were 
drawn. 
 
3.1  Evaluation of Control Allocation Algorithms 
Control allocation algorithms were evaluated using the approach reported by C. Reagan in Ref. 1.  An 
outline of this evaluation follows.  Vector entries are shown in bold font. 

• Problem Statement: 
o Given a control command, v, and control effectiveness matrix, C, find the “best” 

admissible combination of control deflections, u. 
o Solve for u(k+1):  ( ) ( ) vuC =+1, kux   

Bound to:   ubulb <<
• Various Methodologies: 

o Weighted Pseudo-inverse 

 ( ) ( ) pp
T

u
T

u uCuvCCWCWu +−=
−−− 111  

o Daisy-Chain 
 Implemented as a multiple pass pseudo-inverse w

prioritized.  Primary surfaces used for normal fli
surfaces handle commands unattainable by prim

o Linear Programming (LP) 

  such that  xT

x
fJ min=

ubxlb
beqxAeq

bxA

≤≤
=⋅

≤⋅
   

Where:  J = cost function 
 A = Inequality constraint matrix
 b = Inequality constraint 
 Aeq = Equality constraint matrix
 beq = Equality constraint 

o Quadratic Programming (QP) 

 ⎟
⎠
⎞

⎜
⎝
⎛ += xHxx TT

x
fJ

2
1min  such that  

lb
Aeq

xA

≤
⋅

⋅

o Sequential Optimization 
 Using either LP or QP, sequential optimization a

error between commanded control and achievabl
zero, it then attempts to minimize the control eff

o Mixed Optimization 
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C:  Effectiveness Matrix
v:  Commanded control 
u:  Control deflections 
Wu:  Weighting matrix 
up:  Trim value of u 
x:  State vector 
k:  Current sampling time 
lb:  Lower effector limit 
ub:  upper effector limit
here effectors are 
ght maneuvers.  Secondary 
ary surfaces. 

 

 

ubx
beqx

b

≤
=

≤
 

ttempts to first minimize the 
e control.  If the error is 
ort. 



 
 Similar to sequential optimization, except that the cost function is a 

combination of minimizing control effort and control error. 
• Pros and Cons of Above Methodologies: 

o Weighted Pseudo-inverse  
 Does not allow for control effector limits 
 Does not take advantage of entire admissible moment set (AMS) 

o Daisy Chain  
 Allows for control limits by implementing multiple passes of pseudo-inverse 
 Does not cover entire AMS 

o Linear/Quadratic Programming 
 LP and QP cover the entire AMS 
 Both LP- and QP-based methods distribute more control to the most effective 

surfaces 
 QP based methods distribute input commands among all available control 

surfaces, whereas linear programming methods are more restrictive. 
 Computational time may be an issue for quadratic programming. 

 
3.2  Evaluation of Linear Programming 
A stand-alone MATLAB/Simulink simulation using a linear model for the plant was developed in 
order to investigate the various control allocation methodologies.  The RLV control architecture used 

in this evaluation is presented in Figure 3-1.  In this figure, AoA is angle of attack,  is attitude rate 
command, and KEQ is attitude rate gain. 
 

 
Figure 3-1.  RLV Longitudinal Architecture 

 
Current studies focus on a linearized RLV model perturbed by an angle-of-attack step input.  In order 
to force the aerodynamic flaps into saturation, the vehicle plant model was linearized around a low 
dynamic pressure flight condition (12 psf) representing an altitude of 250,000 ft.  The inner-loop 
controller uses pitch rate and angle-of-attack feedback, while µ-synthesis is employed for the outer 
loop compensator.  Given a reference angle-of-attack and the feedback states, the commanded pitch 
acceleration is generated to meet the desired performance.  The control selector then uses dynamic 
inversion to compute the necessary effector usage. 
 
Previously, when the Aerospace RLV six-degrees-of-freedom (6-DOF) simulation was first 
developed, its control selector employed the daisy chain methodology.  That technique put total 
priority on the aerodynamic surfaces in an attempt to avoid using the reaction control system (RCS) 
and expending thruster propellant.  Only after elevon deflection commands became saturated were the 
RCS thrusters utilized.  
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While the daisy chain approach has proved successful in the past, greater flexibility may be achieved 
by introducing the linear programming method.  This latter technique attempts to find an optimal 
combination of control effector contributions by minimizing a cost function.  For instance, if the goal 
is to minimize fuel consumption, RCS thrusters are given a higher cost to discourage their use.   
 
A control selector that utilizes the linear programming method was therefore introduced to the RLV 
simulation.  The new algorithm was validated through simulation by examining a simple test case that 
uses the following cost function: 
 

RCSelevon qcqcz 21 +=  
 
The elevon deflection rate, , and the equivalent RCS deflection rate, , are chosen such that 
they satisfy the desired input command while at the same time attempting to minimize z.  In this 
simple case, the cost coefficients, c

elevonq RCSq

1 and c2, are set as constants.  If c1 < c2, an incremental change in 
elevon deflection will always be “cheaper” than firing the RCS thrusters.  Therefore, it should not be 
surprising that this particular cost function will mimic the daisy chain method.  Figure 3-2 displays 
the control effort of the system after being perturbed by an angle of attack step input.  Due to the low 
dynamic pressure, the initial commanded acceleration was larger than what the elevon flaps could 
provide, so RCS contribution was required.  The simulation currently uses an idealized RCS thruster 
model that allows for variable thrust.  A more realistic model that incorporates thruster pulse width 
modulation is currently under development and could be used in subsequent analyses. 
 
The next step in the control allocation study would have been to develop more refined cost function 
weighting factors for the elevon deflections.  For instance, to avoid slamming against stops, the cost 
may increase significantly as deflections approach their maximum values.  Similarly, varying costs 
can be used as actuator rate limiters.  Another task would have been to implement the optimal control 
allocation algorithm into the non-linear RLV simulation.  Doing so would have allowed us to 
examine the effects on performance as the vehicle negotiates through varying flight regimes, but this 
could not be completed within the scope of this task. 
 
3.3 Control Allocation Conclusions 
Our limited study involved only two control effectors (elevon deflections and RCS).  For this case, 
there was no real difference between daisy chain and linear programming performance. 
 
The advantages of linear programming over daisy chain will become more apparent as more refined 
cost functions are employed. 
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Figure 3-2.  Simulated RLV Response to AoA Step Input Using Linearized Plant 
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4. Adaptive Control Using Neural Networks (NN) 

 
 

Conventional adaptive control requires modeling of the plant by differential/difference equations, 
with certain parameters required to be estimated in flight.  In real life, the plant and its environment 
may be difficult to model.  Conventional adaptive control must rely on preliminary parameter 
identification, which may take longer than direct adaptation. 
 
Unique properties of NN make them suitable for use in adaptive control applications.  Examples of 
these properties are: 

• Learning by experience: “human like” 
• Ability to map similar input to similar outputs 
• Ability to map nonlinear functions 

 

4.1  Neural Network Fundamentals 
 
The material in this section was extracted from Ref. 2. 

A simple neuron with single input is characterized by: 

• Input (p) 
• Bias (b) 
• Weighting factor (w) 
• Transfer function (f) 
• Output (a) 

 

 
 

Examples of Transfer Functions: 
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Neuron with Input Vector: 

 
 
 
 

 
 
 

 
 
 
 

 
A Layer of Neurons: 

A one-layer network with R input elements and S neurons is depicted. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Multiple Layers: 
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4.2  The Neuron as an Adaptive Filter 
Neural networks are adjusted, or trained, so that a particular input leads to a specific output or target, 
as illustrated in the figure below: 
 

 
 
 

4.3  Example of Neuron Training 
Incremental training with a static network to represent a function of two variables is discussed.  We 
use a single neuron model with two-component input vector (p1 and p2), and a single output target, a, 
where a = 2p1 + p2 and W = weighting matrix. 

 
This problem can be solved in the MATLAB neural toolbox by providing: 
 

 4 sets of input pairs:  p1 =     ⎥
⎦

⎤
⎢
⎣

⎡
2
1

⎥
⎦

⎤
⎢
⎣

⎡
1
2

⎥
⎦

⎤
⎢
⎣

⎡
3
2

⎥
⎦

⎤
⎢
⎣

⎡
1
3

          
and a set of 4 single targets: 
 
a1  = [4], a2 = [5], a3 = [7] , a4 = [7] 
 
by calling the ADAPT algorithm (a MATLAB adaptive algorithm), which uses the Withrow-Hoff 
learning algorithm. 
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The ADAPT algorithm sequentially computes the optimal weights and bias to match the targets.  The 
weights and bias are updated each time a new pair (input, target) is presented.  Eventually the error 
should be driven to zero. 
 
The same set of 4 inputs and targets were presented 30 times to the ADAPT algorithm. 
 
Every row below represents the error in matching each one of the 4 targets at each iteration step. 
 
[4.0000]     [3.0000]    [1.0000]    [1.2000] 
[-1.5200]    [0.2000]    [-0.3920]   [1.0240] 
[-0.9696]    [0.0592]    [-0.0419]   [0.4739] 
[-0.6641]    [0.0101]    [0.1324]    [0.2105] 
[-0.5162]    [-0.0122]   [0.2108]    [0.0876] 
[-0.4427]    [-0.0223]   [0.2443]    [0.0304] 
[-0.4040]    [-0.0267]   [0.2569]    [0.0039] 
[-0.3818]    [-0.0284]   [0.2597]    [-0.0083] 
[-0.3672]    [-0.0288]   [0.2580]    [-0.0138] 
[-0.3564]    [-0.0287]   [0.2543]    [-0.0161] 
[-0.3474]    [0.0283]    [0.2497]    [-0.0170] 
………………………………………………. 
………………………………………………. 
 [-0.0992]   [-0.0082]   [0.0718]    [-0.0052] 
 

4.4  Noise Cancellation Example 
As a demonstration of the Widrow-Hoff learning method, a simple noise cancellation filter was 
examined.  In this example, a random input signal is corrupted by a constant-frequency noise.  An 
adaptive linear filter is used to restore the original signal.  The filter attempts to find the optimal 
weighted combination of the neural network inputs that best reproduces the noise path filter.   
 

 
Figure 4-1.  Noise Cancellation System 

 
Figure 4-1 describes the system.  In this figure, v = input to adaptive filter, a = output from adaptive 
filter, and e = error.  The adaptive output, a(k) (where k = sampling interval), is subtracted from the 
contaminated signal to create the restored signal, which is then fed back into the neural network as the 
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error.  The Widrow-Hoff learning algorithm uses that error to update the network weights.  A single 
layer network consisting of the noise input and a tapped delay is all that is required to sufficiently 
restore the signal.  Figure 4-2 depicts the adaptive linear filter network, and Table 4-1 shows the 
Widrow-Hoff learning algorithm for the noise cancellation example.  
 

 
Figure 4-2.  Adaptive Linear Filter Network 

 
Table 4-1.  Widrow-Hoff Learning Algorithm for Noise Cancellation Example 

)1()()( 2,11,1 −+= kvwkvwka  

( ) ( ) ( ) ( ) ( )kkekk Tpww λ21 +=+  

( ) [ ])1()( −= kvkvkp  

=)(ke Error Signal 

=λ Learning Rate 
 
Note:  It may seem counterintuitive that the restored signal is used as the error that drives the 
network.  After all, since the function of the learning algorithm is to minimize the error, the neural 
network will attempt to drive the restored signal to zero.  However, because an adaptive linear filter 
can only solve linearly separable problems, it will only reproduce the portion of the error signal that is 
correlated to the reference noise.  Therefore, without knowing it, the neural network removes only the 
contamination and restores the original signal (Figure 4-3). 
 
Figure 4-3 presents simulation results comparing the restored signal against the input signal.  At time 
= 0, the network is not yet trained, and the weights are initialized to zero.  As expected, much noise is 
initially present. The LMS learning algorithm adjusts the weighting function, and after time, the 
neural network weights settle near the ideal values, and the noise error is minimized (Figure 4-4). 
 
In this example, a conservative learning rate was used to better illustrate the update process.  
Increasing its value will improve the network’s response, but too large an increase will lead to 
instability.  The learning rate acts as a gain to the neural network compensator.  For any given system, 
design decisions will need to consider the tradeoffs between responsiveness and stability. 
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Figure 4-3.  Original Signal vs. Restored Signal 

 
 

 
w1 and w2 = weighting factors 

Figure 4-4.  Noise Cancellation Performance 
 

4.5  Adaptive Control 
In many control applications, a controller is designed around a linearly approximated model of the 
actual system.  Any nonlinearities or effects in the plant not predicted by the model will affect the 
performance of the control system and potentially lead to instability.  Recent studies have 
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demonstrated that neural networks may be used to augment linear controllers to compensate for these 
modeling errors.   
 
An example of such an adaptive control scheme is shown in Figure 4-5.  A neural network augments 
the existing closed loop system to account for any plant characteristics not predicted by the model.  
The system’s response is compared to a reference model, and the difference between the two is the 
error that drives the adaptation process.  A weighted error is generated, which is then used to update 
the weighing function.  According to the universal approximation theorem, there exist constant, ideal 
weights that allow the neural network to approximate the model error to an arbitrary accuracy, 
provided that the network contains a sufficient number of nodes or hidden layers.   

 

 
ζ and φ are the states of the compensators 

Figure 4-5.  Adaptive Control System 
 
A simple verification of this methodology was tested using the control system discussed in Ref. 3.  
For this demonstration, adaptive control was achieved using a single layer network consisting of 18 
neurons (Figure 4-6).  Figure 4-7 shows a comparison between the system response with and without 
neural network compensation.  The error driving the network was based on the comparison between 
the reference model and actual system response.  In order to ensure that the weights remain bounded, 
an error deadband was introduced to limit the weighting function update process once the error 
dropped below a specified value.  Initial simulations did not include the deadband, which led to 
instability. 
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Π = multiplier 

Figure 4-6.  Neural Network Architecture 
 

 
Figure 4-7.  Adaptive Control Performance 

 
There is great potential for adaptive control for reentry vehicles.  However, any practical 
implementation must account for the fact that an RLV has limited controllability.  In the adaptation 
example discussed above, full controllability was assumed.  If a control effector is ever limited – for 
instance, when a flap reaches a hard limit – care must be taken to prevent the neural network from 
learning incorrectly.  The concern is that in such a situation, the neural network could interpret the 
response error as a function of plant modeling differences instead of control limitations.  To prevent 
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such a situation from occurring, the controller could turn off the adaptation process whenever a 
control effector is limited.   
 
Another solution that has shown promise is known as “pseudo control hedging,” whereby the neural 
network is prevented from seeing the effects of a saturated effector.  This is accomplished by moving 
the reference model backward by the amount that the actual plant failed to move due to a saturated 
control surface.  Essentially, pseudo control hedging adjusts the reference model such that it also 
accounts for the limited controllability.  Thus, when the neural network compares the reference model 
output to the actual output, the resulting error encompasses only modeling errors.   
 

4.6  Adaptive Control Conclusions 
1. The Widrow-Hoff training rule, applicable to single layer neural linear networks, is fairly 

straightforward and was applied to a simple example. 

2. The same algorithm was exercised to perform as a noise filter. 

3. Direct adaptation control methodology using neural networks was revisited, and sufficient insight 
was gained to allow its implementation in a MATLAB simulation. 

4. When the NN optimal weight computation algorithm recommended in Refs. 3, 4, 5, and 6 was 
used without a dead zone or a stabilizing term, it led to an instability. 

5. The introduction of a dead zone was sufficient to prevent the divergence observed before. 

6. Conventional adaptive control must rely on preliminary on-line parameter identification, which 
may be a lengthier process than direct adaptation. 

7. The adaptation performance is largely dependent on the neural network design parameters such as 
numbers of neurons and layers and activation functions. 

8. The adaptive loop introduces a nonlinear feedback element, with the associated complication of 
requiring analysis of a nonlinear system. Validation of a nonlinear adaptive autopilot may be an 
extremely time-consuming task, requiring extensive simulation. 

9. A promising integrated adaptive guidance and control approach was reviewed and found suitable 
for reconfiguration following effector’s failure. 

 

19 
 



 

20 
 



 
5. RLV Adaptive Guidance and Control  

 
Recent interest to develop technology that will enable RLVs to land autonomously and recover from 
failures or damage has fueled research in integrated adaptive guidance and control (Ref. 7).  The new 
technology usually involves reconfigurable control and trajectory reshaping.  Trajectory reshaping is 
performed in real time as follows: A database of pre-computed reference trajectories is used to select a 
feasible trajectory for a given failure (locked control surface or vehicle damage), while an adaptive 
guidance system makes corrections for errors and disturbances.  The advantage of this approach is that 
there is no need to consider every possible control failure to generate the trajectory database.  It is 
enough to capture the effect of control failures with a few parameters such as the total variation in lift 
and drag.  The control system estimates these parameters online and uses them to query the trajectory 
database. 
 
Traditionally, guidance and control are designed independently with an inner loop representing 
control and an outer loop representing guidance.  The inner loop uses the control effectors to achieve 
a desired attitude and angular velocity.  The outer loop generates inner-loop commands to steer the 
vehicle in order to follow a desired trajectory. The integrated adaptive guidance and control combines 
the inner and outer loop, which are no longer independent but rather coupled.  The new approach 
consists of a guidance system (outer loop) that can respond effectively to force perturbations, while 
the inner loop responds to moment perturbations.  Adaptive guidance means both online trajectory 
reshaping (if needed) and trajectory tracking despite potential for large force perturbations.  In 
practice, adaptive guidance is expressed by the ability of the feedback gains to adapt to changes in the 
inner-loop bandwidth. 

Usually, RLV guidance consists of three sequential phases.  Namely, the entry phase slows down the 
RLV from hypersonic to supersonic speeds.  The second phase, also called Terminal Area Energy 
Management (TAEM), transitions the RLV from supersonic to subsonic speeds.  And finally, the 
approach and landing phase takes the RLV from 10,000 ft to the final stop on the runway.  
 
The initial entry into the Earth atmosphere and the final landing phase are the most critical. 
Consequently, they are more often covered in the technical literature. 
 
In what follows, a brief description of some of the RLV guidance schemes found in the literature is 
given first. Then a general block diagram common to most of the new schemes is discussed.  Finally, 
recommendations are given about the criteria that all these schemes must meet to possibly qualify as 
candidates for actual use. 

5.1  Review of RLV Guidance Systems 
Many of the new RLV guidance schemes are variants of the proven “Shuttle Guidance,” which has 
guided unpowered return flight to Earth quite successfully.  The shuttle guidance is of the reference 
profile tracking type.  A reference drag acceleration profile is tracked by the vehicle primarily through 
bank angle modulation and secondarily through angle of attack modulation.  Crossrange is achieved 
through roll reversals to keep the heading within a narrow band. 
 
These shuttle types of guidance are robust with respect to winds and navigation errors; however, they 
were not designed to adjust to altered vehicle dynamics caused for example by locked control 
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surfaces or vehicle damage.  At the time of the shuttle guidance development, reconfiguration 
technologies were not yet available because of limitations of on-board real time computation. 
 
A number of new RLV guidance schemes capable of adapting to failures are currently being 
developed.  They can be classified into three broad categories.  The first one is the so-called predictor-
corrector approach.  The predictor algorithm propagates the equations of motion forward in time up to 
a target position.  The control profile is initially assumed and the in-flight measurements are used to 
increase the accuracy of the predicted trajectory.  The error signal is the predicted miss at final time 
relative to the target.  The target miss vector is defined as the down-range and cross-range component 
errors.  If the target errors are larger than the acceptable tolerance, then additional predictions are 
conducted to estimate the sensitivity of the final target miss vector to control perturbations.  The 
sensitivities are consequently used to calculate the controls that yield the desired target.  The process 
just described is iterative and may require several iterations for convergence. 
 
The second category refers to the linear quadratic regulator (LQR) based guidance schemes.  This is a 
relatively simple approach to the RLV guidance problem.  Reference profiles for the range-to-go, 
altitude, flight path angle, bank angle, and angle of attack versus energy are prescribed.  A linear 
control law using state feedback is then used with energy-scheduled gains.  The gains are computed 
using the LQR method. Lateral control is performed by the familiar roll reversals used by the Space 
Shuttle.  This simple approach produced good results and was shown to be robust with respect to 
initial re-entry conditions.  In addition, this scheme can be easily coupled with on-board trajectory 
optimization algorithms to enhance its operational capabilities. 
 
The third category refers to Shuttle-like guidance with the added capability to optimize on-board the 
trajectory, should a failure occur.  To effectively respond to a failure, guidance and control must work 
together to compensate for control degradation or vehicle altered characteristics.  As a result, research 
in integrated adaptive guidance and control has been started for the next generation of RLVs.  A block 
diagram depicting the system architecture of the new guidance and control unit was shown in Figure 
2-1.  This unit consists of four functional boxes; namely, the on-board trajectory generation which 
reshapes the trajectory to be flown in real-time, the integrated guidance and control which provides 
vehicle tracking and stability, the control allocation which distributes control effort to the available 
actuators, and finally a system identification box which feeds information back to the other boxes. 
 
The integrated guidance/control box shown in the diagram consists of a coupled inner loop 
representing control and an outer-loop representing guidance.  In a traditional design, the inner and 
outer loops are designed independently.  The inner loop uses the control effectors to achieve  
a desired attitude and angular velocity.  The outer loop generates inner-loop commands to steer the 
vehicle in order to follow a desired trajectory.  The new approach consists of a guidance system (outer 
loop) that can respond effectively to force perturbations while the inner loop responds to moment 
perturbations.  Adaptive guidance means both online trajectory reshaping (if needed) and trajectory 
tracking despite potential for large force perturbations.  In practice, adaptive guidance is expressed by 
the ability of the feedback gains to adapt to changes in the inner-loop bandwidth. 
 

5.2  Certification Tests and Guidelines 

The interest here is not so much the technical merit of the various guidance schemes but rather the 
formulation of general guidelines that the different approaches must meet to qualify as potential 
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candidates for actual use.  The first requirement is naturally the demonstrated ability of the proposed 
guidance scheme to operate free of failures in nominal and perturbed conditions.  Perturbed 
conditions consist of the usual 3-sigma vehicle and environmental dispersions including winds.  This 
first requirement is a prerequisite to the second one, which is the ability of the vehicle to fly safely 
with certain failures.  It is not possible to predict all possible failures; nonetheless, the RLV is 
expected with the help of the new reconfiguration technologies to adapt to certain type of failures 
especially to partial failures of the control system effectors.  Consequently, a number of standard 
failures of the control effectors should be used as a measure of performance recovery. Also a failure 
can occur at any time during the three major guidance phases.  Again, it seems natural to test the 
system for a failure occurring during each of the phases.  An early failure is likely to impact the 
remaining part of the trajectory. 
 
In conclusion, extensive simulations are in order to validate the new adaptive guidance and control 
schemes.  Actual flight tests are to be followed for final certification. 
 
The test matrix in Table 5-1 lists possible test scenarios for the classical 3-sigma tests as well as 
failures of the control system.  These failure tests are designed to demonstrate whether or not the new 
integrated adaptive guidance and control schemes can cope effectively with a standardized test of a 
locked body flap for example.  The overall performance is to be assessed for each proposed scheme.  
Early failures will obviously have a more dramatic effect on the trajectory as compared to failures 
occurring during the approach and landing phase.  One may choose to consider first the failures of the 
third phase and then the second and first phases. 
 

Table 5-1.  Entry Guidance Test Matrix 

 
Entry Guidance Test Matrix 
 3-sigma 

Dispersions 
Monte 
Carlos Runs 

Loss of 
RCS 
Thruster 

Locked 
Flap 

Locked 
Rudder 

      
Entry Phase Vehicle 

wind/atmosphere 
initial conditions 

Vehicle 
wind/atmosphere 
initial conditions 

1 
2 
3 

0 deg 
10 deg 
20 deg 

0 deg 
5 deg 
10 deg 

      
TAEM Phase Vehicle 

wind/atmosphere 
initial conditions 

Vehicle 
wind/atmosphere 
initial conditions 

 0 deg 
10 deg 
20 deg 

0 deg 
5 deg 
10 deg 

      
Approach/Landing 
Phase 

Vehicle 
wind/atmosphere 
final conditions 

Vehicle 
wind/atmosphere 
final conditions 

 0 deg 
10 deg 
20 deg 

0 deg 
5 deg 
10 deg 

5.3  Guidance Conclusions 

A review of RLV adaptive guidance schemes for re-entry has been conducted.  This review is not 
exhaustive; it however gives an account of many of the research efforts in the area.  General 
guidelines have been formulated for the validation of the emerging reconfiguration technologies, 
which have the potential to greatly increase the safety of future RLVs. 
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6. Conclusions and Recommendations 

  

6.1  General Guidelines for Application of Reconfiguration Technologies 
The literature survey and independent evaluation conducted by Aerospace of reconfiguration 
technologies has resulted in a series of conclusions in the areas of control allocations, adaptive 
control, and guidance (Sections 3.3, 4.6, and 5.3, respectively) that can be used as guidelines for the 
GN&C practitioner. 
 

6.2  Recommendations for Further Work 
Aerospace has developed standalone tools to evaluate control allocation algorithms.  In addition to 
the linear programming method, Aerospace would evaluate the other competing algorithms discussed 
in this report.   
 
An adaptive control methodology using an approach developed at Georgia Institute of Technology 
was evaluated.  Our initial study assumed a fixed control allocation configuration.  Additional 
evaluations would consider simultaneously implementing adaptive control and control hedging.   
 
Finally, our standalone simulations could be incorporated into an existing RLV 6-DOF simulation tool 
to evaluate these technologies throughout an entire mission profile. 
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7. Abbreviations, Acronyms, and Symbols 

 
Note:  Vector symbols in bold font. 

 
a  output 
A   inequality constraint matrix 
ADAPT   a MATLAB adaptive algorithm 
Aeq  equality constraint matrix 
AMS  admissible moment set 
AoA  angle of attack 
AST  Office of Commercial Space Transportation 
b  bias 
b  inequality constraint 
Beq  equality constraint 
c1, c2  cost coefficients 
C  effectiveness matrix 
COTR  Contracting Officer’s Technical Representative= 
DOF  degrees of freedom 
e  error 
e(k)  error signal 
f  transfer function 
FAA  Federal Aviation Administration 
FDI  fault detection and isolation 
GN&C  guidance, navigation & control 
Hz  hertz 
J  cost function 
k  current sampling time 
k  sampling interval 
KEQ  attitude rate gain 
λ  learning rate 
lb  lower effector limit 
LMS  least mean squares 
LP  linear programming 
LQR  linear quadratic regulator 
NASA  National Aeronautics & Space Administration 
NN  neural network 
p  input 
p1 and p2  input vectors 
P+I  proportional plus integral 
Π  multiplier 
psf  pounds per square foot 

  attitude rate command 
elevonq   elevon deflection rate 

RCSq   equivalent RCS deflection rate 
QP  quadratic programming 
R  number of elements in input vector 
RCS  reaction control system 
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RLV  reusable launch vehicle 
S  number of neurons in layer 
TAEM  terminal area energy management 
u  control deflections 
ub  upper effector limit 
up  trim value of u 
v  input to adaptive filter 
v  commanded control 
w, w1, w2  weighting factors 
Wu  weighting matrix 
x  state vector 
ξ, φ  states of compensator 
z  cost function
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