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2 OVERVIEW OF SYSTEM ENGINEERING 

This section traces several key developments and lessons learned that led to today’s 
championing of System Engineering (SE) as a powerful approach to organizing and conducting 
complex programs, such as those in the National Airspace System (NAS).  SE continues to 
evolve, emphasizing stronger commercial- and team-based engineering organizations as well 
as organizations without technical products.  Before World War II, architects and civil engineers 
were, in effect, system engineers who worked on large, primarily civil, engineering projects—
including the Egyptian pyramids, Roman aqueducts, Hoover Dam, the Golden Gate Bridge, and 
the Empire State Building—while other architects worked on trains and large ships.  However, 
“early” system engineers operated without any theory or science to support SE.  Thus, they 
lacked defined and consistently applied processes or practices.  During World War II, a program 
manager and chief engineer might oversee development of an aircraft program, while others 
managed key subsystems, such as propulsion, controls, structure, and support systems.  This 
led to a lack of uniformity throughout the process. 

Some additional SE elements, such as operations research and decision analysis, gained 
prominence during and after World War II.  Today, with more complex requirements and 
systems, chief engineers use SE to develop requirements and to integrate the activities of the 
program teams.   

SE began to evolve as a branch of engineering during the late 1950s.  At this time—when both 
the race to space and the race to develop missiles equipped with nuclear warheads were 
considered absolutely essential for national survival—the military services and their civilian 
contractors were under extreme pressure to develop, test, and place in operation nuclear-tipped 
missiles and orbiting satellites.  In this climate, the services and their contractors sought tools 
and techniques to improve system performance (mission success) and program management 
(technical performance, delivery schedule, and cost control).  Engineering management 
evolved, standardizing the use of specifications, interface documents, design reviews, and 
formal configuration management.  The advent of hybrid and digital computers permitted 
extensive simulation and evaluation of systems, subsystems, and components that facilitated 
accurate synthesis and tradeoff of system elements. 

The lessons learned with development programs led to innovative practices in all phases of 
high-technology product development.  A driving force for these innovations was attainment of 
high system reliability.  Some examples of changes introduced during the period are: 

• Requirements traceability  

• Parts traceability 

• Materials and process control 

• Change control 

• Product accountability 

• Formal interface control  

2.1 What Is System Engineering? 

Beyond the definition used in the Introduction (Chapter 1), SE is an overarching process that 
trades off and integrates elements within a system’s design to achieve the best overall product 
and/or capability known as a system.  Although there are some important aspects of program 
management in SE, it is still much more of an engineering discipline than a management 
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discipline.  SE requires quantitative and qualitative decision making involving tradeoffs, 
optimization, selection, and integration of the results from many engineering disciplines. 

SE is iterative—it derives and defines requirements at each level of the system, beginning at the 
top (the NAS level) and propagating those requirements through a series of steps that 
eventually leads to a physical design at all levels (i.e., from the system to its parts).  Iteration 
and design refinement lead successively to preliminary design, detail design, and final approved 
design.  At each successive level, there are supporting lower level design iterations that are 
necessary to gain confidence for decisions.  During these iterations, many concept alternatives 
are postulated, analyzed, and evaluated in trade studies, resulting in a multi-tier set of 
requirements.  These requirements form the basis for structured verification of performance.  SE 
closely monitors all development activities and integrates the results to provide the best solution 
at all system levels. 

2.2 What Is a System? 

A system is an integrated set of constituent parts that are combined in an operational or support 
environment to accomplish a defined objective.  These integrated parts include people, 
hardware, software, firmware, information, procedures, facilities, services, and other support 
facets.  People from different disciplines and product areas have different perspectives on what 
makes up a system.  For example, software engineers often refer to an integrated set of 
computer modules as a system.  Electrical engineers might refer to a system as complex 
integrated circuits or an integrated set of electrical units.  The FAA has an overarching system 
of systems called the NAS that includes, but is not limited to, all the airports; aircraft; people; 
procedures; airspace; communications, navigation, and surveillance/air traffic management 
systems; and facilities. 

It is difficult to agree on what comprises a system since it depends entirely on the focus of those 
who define the objective of the system.  If the objective is to print input data, a printer may be 
defined as the system.  Expanding the objective to processing input data and displaying the 
results yields a computer as the system.  If we expand the objective further to include a 
capability for computing nationwide or worldwide data and merging data/results into a database, 
then a computing network becomes the system, with the computer and printer(s) as subsystems 
of the system. 

A concept that has received considerable attention in recent years has been that of a system of 
systems, which can be described as the composite interaction of independent complex systems.  
There are several definitions of System of Systems (SOS) as opposed to the component 
systems that comprise an SOS, depending on the domain or application of interest.  For 
example, ISO 15288 discusses a system in the context of its operational environment and 
makes the point that within a system hierarchy, any component can be a system in its own right, 
with all the characteristics ascribed to a system.1  The Defense Acquisition University (DAU) 
asserts that: 

“System of systems engineering deals with planning, analyzing, organizing, and 
integrating the capabilities of a mix of existing and new systems into a system of 
systems capability greater than the sum of the capabilities of the constituent parts.  
It is a top-down, comprehensive, collaborative, multidisciplinary, iterative, and 
concurrent technical management process for identifying system of systems 
capabilities; allocating such capabilities to a set of interdependent systems; and 
coordinating and integrating all the necessary development, production, 

                                                 
1 ISO/IEC 15288:2002(E), page 52. 
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sustainment, and other activities throughout the life cycle of a system of systems.  
The overall objective for developing a system of systems is to satisfy capabilities 
that can only be met with a mix of multiple, autonomous, and interacting systems.  
The mix of constituent systems may include existing, partially developed, and yet-
to-be-designed independent systems.”2 

While there is not consensus on a single definition, there appears to be convergence on some 
common characteristics or issues that SE must pay particular attention to in this context: 

• The issue of scale, often discussed as ”large-scale systems integration” 

• The added degree of complexity over that of the component systems 

• Interoperability and boundaries across the System of Systems, which drives an 
increased focus on the control of interfaces between the component systems 

An SOS should be treated and managed as a system in its own right and should therefore be 
subject to the same SE processes and best practices applied to individual systems.  The NAS 
can be characterized as a “system of systems” by any of these measures.  The FAA defines the 
NAS as the overall environment in which aircraft operate, including aircraft, pilots, tower 
controllers, terminal area controllers, en route controllers, oceanic controllers, maintenance 
personnel, and airline dispatchers, as well as the associated infrastructure (facilities, computers, 
communications equipment, satellites, navigation aids, and radars).  For the purposes of this 
SEM, the NAS will be treated as a system, recognizing that the SOS characteristics above 
require specific treatment, especially at the NAS level. 

SE first defines the system at the top level, ensuring focus and optimization at that level.  It then 
proceeds to increasingly lower levels of detail until the system is completely decomposed to its 
basic elements.  The following subsection describes the hierarchy. 

2.2.1  Hierarchy 

A system may include hardware, software, firmware, people, information, techniques, facilities, 
services, and other support items.  Figure 2.2-1 establishes a common reference for discussing 
the hierarchy of a system/subsystem within the NAS.  Each system item may have its own 
associated hierarchy.  For example, the various software programs/components that may reside 
in a system have a commonly accepted hierarchy as depicted in Figure 2.2-2.  Thus, Figure 2.2-
2 is a subset of Figure 2.2-1 in that a system/subsystem may have multiple Computer Software 
Configuration Items (see definitions next page).  The depths of this common hierarchy may be 
adjusted to fit the complexity of the system.  Simple systems may have fewer levels in the 
hierarchy than complex systems and vice versa.  Because there may be varying hierarchal 
models referenced in the realm of SE, it is important for those who define the objective or 
function of a given system/subsystem to also lay out the hierarchal levels of the system in order 
to define the system’s scope. 

Following are definitions for succeeding levels within the system/subsystem hierarchy used in 
this SEM: 

• System.  An integrated set of constituent parts that are combined in an operational or 
support environment to accomplish a defined objective.  These parts include people, 
hardware, software, firmware, information, procedures, facilities, services, and other 
support facets. 

                                                 
2 Defense Aquisition Guidebook Web site: akss.dau.mil/DAG/GuideBook/IG_c4.2.6.asp  
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Figure 2.2-1.  System Hierarchy  

 

 
Figure 2.2-2.  Common Software Hierarchy 

• Subsystem.  A system in and of itself (reference the system definition) contained within 
a higher level system.  The functionality of a subsystem contributes to the overall 
functionality of the higher level system.  The scope of a subsystem’s functionality is less 
than the scope of functionality contained in the higher level system. 

• Element.  An integrated set of components that comprise a defined part of a subsystem 
(e.g., the fuel injection element of the propulsion subsystem). 

• Component.  Composed of multiple parts; a clearly identified part of the product being 
designed or produced. 



NAS System Engineering Manual                                                                       Chapter 2 
Version 3.1  06/06/06 

2-5 

• Part.  One, two, or more pieces joined together to make a component; these pieces?  
the lowest level of separately identifiable items within a system—are not normally 
subject to disassembly without destruction or impairment of designed use. 

• Software.  A combination of associated computer instructions and computer data 
definitions required to enable the computer hardware to perform computational or control 
functions. 

• Computer Software Configuration Item (CSCI).  An aggregation of software that is 
designed for configuration management and treated as a single entity in the 
Configuration Management process (Section 4.11). 

• Computer Software Component (CSC).  A functionally or logically distinct part of a 
CSCI, typically an aggregate of two or more software units. 

• Computer Software Unit.  An element specified in the design of a CSC that is 
separately testable or able to be compiled. 

• Module.  A program unit that is discrete and identifiable with respect to compiling, 
combining with other units, and loading. 

2.3 Why Use System Engineering? 

The most important reason to apply SE is that it provides the context, discipline, and tools to 
adequately identify, define, and manage all system requirements in a balanced manner.  It 
provides the disciplines required to produce a complete solution concept and system 
architecture.  It also provides the discipline and tools to ensure that the resulting system meets 
all requirements that are feasible within specified constraints.  No other engineering or 
management discipline explicitly provides this comprehensive context or results.  The need for 
effective SE is most apparent with large, complex system developments, such as weapons and 
transportation systems.  However, SE is also important in developing, producing, deploying, and 
supporting much smaller systems, such as cameras and printers.  The growing complexity in 
development areas has increased the need for effective SE.  For example, about 35 years ago 
in the semiconductor industry, a single chip was no more complex than a series of a few gates 
or, at most, a four-stage register.  Today, Intel's Pentium® processor is far more complex, which 
immensely expands the application horizon but demands far more sophisticated analysis and 
discipline in design. 

The movement to concurrent engineering as the technique for performing engineering 
development is actually performing good SE.  SE provides the technical planning and control 
mechanisms to ensure that the activities/results of concurrent engineering meet overall system 
requirements. 

A driving principle for SE is the teaming that often occurs during development programs.  In this 
case, teaming is among several entities that may have different tools, analysis capabilities, and 
so on.  SE principles defined in this manual may provide an improved ability to plan and control 
activities that require interaction and interfacing across boundaries.  The strongest argument for 
using the SE processes is that they increase the likelihood that needs may be fully and 
consistently met in the final product.  

 

 


