Table of Contents

Background.............................................................................................................................................. 4
Aviation Safety (AVS) Performance Measure Profiles........................................................................... 5
  Commercial Air Carrier Fatality Rate .................................................................................................. 5
  General Aviation Fatal Accident Rate ................................................................................................. 8
UAS Integration Pilot Program (IPP) (OSI) ............................................................................................. 11
UAS Integration Pilot Program (IPP) (CSTI) ......................................................................................... 14
UAS Integration Pilot Program (IPP) Safety Risk Management (SRM) in Support of Operations Now (CSTI)........ 17
UAS Integration Pilot Program (IPP) Unmanned Traffic Management (UTM) Pilot Program (UPP) .............. 20
UAS Authorizations............................................................................................................................... 23
Reduce the Regulatory Burden (Executive Order 13771 Implementation (2 for 1)) ................................ 25
Reduce the Regulatory Burden on the Transportation Industry & Public While Still Achieving Safety Standards – Total Annual Cost of FAA Regulations Zero Dollars or Less........................................................................ 27
MOSAIC Rulemaking Project .................................................................................................................. 29
Cargo Safety Risks.................................................................................................................................. 31
Air Traffic Organization (ATO) Performance Measure Profiles ................................................................ 33
  Average Daily Capacity ..................................................................................................................... 33
Ground Based Safety-Reduce the risk of runway incursions by implementing improvements and mitigations (OSI)... 35
Ground Based Safety-Reduce the risk of runway incursions by implementing improvements and mitigations (CSTI) 37
Hazard Risk Mitigations........................................................................................................................... 39
System Risk Event Rate (SRER) ............................................................................................................ 42
Commercial and Non-Commercial Surface Safety Risk Index .................................................................. 45
Noise and Community Involvement........................................................................................................ 48
National Airspace System (NAS) On-Time Arrivals............................................................................. 51
Policy, International Affairs, & Environment (APL) Performance Measure Profiles .............................. 53
  Exert Global Leadership at International Civil Aviation Organization (ICAO) ........................................ 53
  Advance U.S. Standards and Safety Culture through Development of Strategic Plans to Support the U.S. Government Goals and Priorities for International Engagement ...................................................... 55
Implement Supersonic Plan..................................................................................................................... 58
Simplify and Enhance Environmental Review Processes for Major Transportation Projects on Schedule (Projects on Schedule) Performance Metric: Percent of FAA Owned Projects Posted on Permitting Dashboard that are on Schedule. ......................................................................................................................... 60
Simplify and Enhance Environment Review - Projects (Months to Complete) ....................................... 62
Assistant Administrator for Finance and Management (AFN) Performance Measure Profiles .............................. 65
Cybersecurity/Information Technology (IT) Risk Management and Information Systems Security ...................... 65
Cybersecurity in the Aviation Ecosystem ........................................................................................................... 69
Unmodified Audit Opinion ................................................................................................................................. 70
Cost Control ..................................................................................................................................................... 75
Critical Acquisitions on Schedule .................................................................................................................... 77
Major System Investment ................................................................................................................................. 79
Assistant Administrator for NextGen (ANG) Performance Measure Profiles ..................................................... 82
NextGen Advisory Committee (NAC) Recommendations .................................................................................. 82
Northeast Corridor (NEC) Commitments ........................................................................................................... 84
Remote Towers .................................................................................................................................................. 86
Office of Commercial Space (CST) Performance Measure Profiles ................................................................. 90
Integrating Commercial Space Transportation into the NAS by Implementing Launch and Reentry of Suborbital and Orbital Expendable and Reusable Launch Vehicles .................................................................................. 90
Commercial Space Launch and Reentry Accidents ......................................................................................... 92
Office of Airports (ARP) Performance Measure Profiles .................................................................................. 94
Infrastructure Investment for National Operational Impact .............................................................................. 94
Runway Pavement .......................................................................................................................................... 97
Assistant Administrator for Human Resources (AHR) Performance Measure Profiles ..................................... 100
Shared Services - Business Partner Review ..................................................................................................... 100
Aviation Workforce - Strategic Partnerships .................................................................................................... 102
Workforce Transformation: Program Effectiveness-FAA Leadership and Learning Institute (FLLI) ............... 104
Workforce Transformation: Drive Performance - Performance Management ................................................. 106
Background

An accurate and detailed explanation of how a goal is measured, and what success requires, is an important component for any performance management program. Accordingly, the Federal Aviation Administration (FAA) Portfolio of Goals (POG) provides technical information on the methodology by which progress is measured for the various FAA goals. The information for each goal’s profile is updated annually. As new goals are established, new profiles are developed and designated as “Performance Measure Profiles” at the beginning of each goal. Collectively, these performance profiles are referred to as a “Portfolio,” or a “Portfolio of Goals,” as the title of this document indicates.

The material that comprises each profile also supports the internal verification review, the Performance and Accountability Report, the Data Completeness and Reliability section in Department of Transportation (DOT) budget’s submission, and other performance documents.
Aviation Safety (AVS) Performance Measure Profiles

Commercial Air Carrier Fatality Rate

**Performance Metric:** Reduce the commercial air carrier fatalities per 100 million persons on board by 50% over 18-year period (FY08-FY25). No more than 4.4 in 2025.

**FY 2019 Performance Target:** 5.9 fatalities per 100 million persons on board

**Lead Organization:** Aviation Safety (AVS)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>6.9</td>
<td>6.7</td>
<td>6.4</td>
<td>6.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Actual</td>
<td>0.1</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** Number of fatalities per 100 million persons on board.

**Computation:** \[
\text{Commercial Air Carrier Fatality Rate} = \frac{\text{Number of Fatalities (including ramp accidents and other fatalities as a result of the accident)}}{\text{Per 100,000,000 Persons on Board}}
\]

**Formula:**

**Scope of Metric:** This metric includes both scheduled and nonscheduled flights of U.S. passenger and cargo air carriers (14 CFR Part 121) and scheduled passenger flights of commuter operators (14 CFR Part 135). It excludes on-demand (i.e., air taxi) service and general aviation. Accidents involving passengers, crew, ground personnel, and the uninvolved public are all included.

**Method of Setting Target:** The annual targets were calculated to reflect a linear reduction based on the long-term strategic target to reduce fatalities per 100 million persons on board to 4.4 fatalities per 100 million persons on board by the year 2025. The baseline of 8.9 fatalities per 100 million persons on board was established during the 1997-2006 timeframe.

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** FAA chose this metric because it is easy to understand and measures the individual risk to the flying public. The metric will help the Agency to move toward a low sustainable rate by maintaining its focus on recently identified risks.
Performance Measure Profile
FY 2019 Methodology Report

Public Benefit: As fatal air carrier accidents have declined in terms of average fatalities per accident, this metric will sharpen Federal Aviation Administration (FAA) focus on helping air travel become even safer.

Partners: Partners include Bureau of Transportation Statistics (BTS), National Transportation Safety Board (NTSB), FAA’s Office of Policy, International Affairs and Environment (APL).

External Factors Affecting Performance: NTSB accident investigations indicate that aviation fatal accidents are largely related directly to some form or combination of human factors. These run the gamut of external organizational influences, inadequate supervision, personnel factors (such as self-imposed stress), to individual acts, such as skill-based errors, misperception errors, judgment and decision-making errors, etc. While an accident’s causation can be thoroughly investigated and understood by FAA, as a practical matter, the agency’s ability to influence basic decisions by every pilot, every day, and in every circumstance to prevent accidents becomes much more difficult.

Source of the Data: The data on commercial fatalities come from NTSB’s Aviation Accident Database. All but a small share of the data for persons on board comes from the air carriers, who submit information for all passengers on board to the Office of Airline Information (OAI) within Bureau of Transportation Statistics (BTS). In addition, FAA estimates crew on board based on the distribution of aircraft departures by make and model, plus an average of 3.5 persons on board per Part 121 cargo flight.

Statistical Issues: Both accidents and passengers on board are censuses, having no sampling error. Crew on board is an estimate with a small range of variation for any given make and model of aircraft. Departure data and enplanements for Part 121 are from the BTS. The crew estimate is based on fleet makeup and crew requirements per number of seats. For the current fleet, the number of crew is equal to about seven percent of all Part 121 enplanements. The average number of cargo crew on board is 3.5 per departure, based on data from subscription services such as Air Claims (Ascend), a proprietary database used by insurers to obtain information such as fleet mix, accidents and claims. Cargo crews typically include two flight crew members, and occasionally another pilot or company rep, or two deadheading passengers.

Part 135 data also comes from BTS and Air Claims databases, but is not as complete. The Office of Aviation Policy and Plans (APO) verifies with the operators when it identifies gaps in the data. Based on previous accident and incident reports, the average Part 135 enplanement is five per departure. Crew estimates for Part 135 are based on previous accident and incident data. Any error that might be introduced by estimating crew will be very small and will be overwhelmed by the passenger census. Importantly, the fatality rate is low and could significantly fluctuate from year to year due to a single accident.

Completeness: The FAA does comparison checking of the departure data collected by BTS. This data is needed for crew estimates. However, FAA has no independent data sources against which to validate the numbers submitted to BTS. FAA compares its list of carriers to the Department of Transportation (DOT) list to validate completeness and places the carriers in the appropriate category (i.e., Part 121 or Part 135). The number of actual persons on board for any given period is considered preliminary for up to 18 months after the close of the reporting period. This is due to amended reports subsequently filed by the air carriers. Preliminary estimates are based on projections of the growth in departures.
developed by APL. However, changes to the number of persons on board should rarely affect the annual fatality rate.

To overcome reporting delays of 60 to 90 days, FAA must rely on historical data, partial internal data sources, and Official Airline Guide (OAG) scheduling information to project at least part of the fiscal year activity data. The FAA uses OAG data until official BTS data are available. The final result for the air carrier fatality rate is not considered reliable until BTS provides preliminary numbers. Due to reporting procedures in place, it is unlikely that calculation of future fiscal year departure data will be markedly improved. This lack of complete historical data on a monthly basis and independent sources of verification increases the risk of error in the activity data.

NTSB and the Office of Accident Investigation and Prevention confer periodically to validate information on the number of fatalities. Accident data is considered preliminary. NTSB usually completes investigations and issues reports on accidents that occur during any fiscal year by the end of the next fiscal year. Results are considered final when all those accidents have been reported in the NTSB press release published early in the following year. FY 2019 results will therefore be final after the 2021 press release. In general, however, the number of fatalities are not likely to change significantly between the end of the fiscal year and the date they are finalized.

**Reliability:** Results are considered preliminary based on projected activity data. Most accident investigations are a joint undertaking. NTSB has the statutory responsibility to determine probable cause, while FAA has separate statutory authority to investigate accidents and incidents in order to ensure that FAA meets its broader responsibilities. The FAA’s own accident investigators and other FAA employees participate in all accident investigations led by NTSB investigators. The FAA uses performance data extensively for program management, personnel evaluation, and accountability.

General Aviation Accident Rate
Performance Measure Profile
FY 2019 Methodology Report

General Aviation Fatal Accident Rate

**Performance Metric:** Reduce the general aviation fatal accident rate to no more than 0.89 fatal accidents per 100,000 flight hours by FY28.

**FY 2019 Performance Target:** No more than 0.98 fatal accidents per 100,000 flight hours

**Lead Organization:** Aviation Safety (AVS)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>1.04</td>
<td>1.02</td>
<td>1.01</td>
<td>1.00</td>
<td>.98</td>
</tr>
<tr>
<td>Actual</td>
<td>0.99</td>
<td>0.89</td>
<td>0.83</td>
<td>0.89*</td>
<td>TBD</td>
</tr>
</tbody>
</table>

*FY 2018 is based on estimated flight hours

**Definition of Metric**

**Metric Unit:** Number of fatalities per 100 million persons on board.

**Computation:** \[
\frac{\text{Number of GA Fatal Accidents}}{\text{(GA Flight Hours/100,000)}}
\]

**Formula:** \[
\text{GA Accident Rate} = \frac{\text{Number of GA Fatal Accidents}}{\text{(GA Flight Hours/100,000)}}
\]

**Scope of Metric:** This metric includes U.S. registered on-demand (non-scheduled Title 14 Code of Federal Regulations (14 CFR) Part 135) and general aviation flights to include everything not Part 121 or Scheduled Part 135. General aviation comprises a diverse range of aviation activities, from single-seat homebuilt aircraft, helicopters, and balloons, single and multiple engine land and seaplanes, to highly sophisticated, extended range turbojets.

**Method of Setting Target:** The three safest years in general aviation history (FY 2014 – FY 2016) were used as the baseline. Government and industry consensus was to target a 10 percent reduction in 10 years from this baseline. Each year’s annual target is a one percent reduction to achieve the overall goal.

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** The FAA Administrator required the agency to convert the metric from numbers-based to rate-based for FY 2009. The FAA and the general aviation community have determined that a general aviation fatal accident rate rather than the number of fatal accidents is a better performance metric because the rate reflects fleet activity levels and their relationship to the number of fatal accidents. The Fatal Accident Rate is a true rate-based metric and tracks changes in the fatal accident rate for a fixed volume of flight hours (per 100,000).

**Public Benefit:** By tracking the rate of fatal accidents per flight hours, FAA can more accurately identify trends, indicating a decrease or increase of potential safety risks.
Partners: Partners include the National Transportation Safety Board (NTSB), FAA Office Aviation Policy and Plans (APO) and the FAA and Industry General Aviation Joint Steering Committee (GAJSC); Aircraft Owners and Pilots Association (AOPA), General Aviation Manufactures Association (GAMA), National Business Aircraft Association (NBAA), Experimental Aircraft Association (EAA), academia, etc.

External Factors Affecting Performance: NTSB accident investigations indicate that general aviation fatal accidents are largely related directly to some form or combination of human factors. These run the gamut of external organizational influences, inadequate supervision, personnel factors (such as self-imposed stress), to individual acts, such as, skill-based errors, misperception errors, judgment and decision-making errors, etc. These human factor influences are occurring in a broad spectrum of general aviation activities from more highly regulated on-demand air taxi service in sophisticated aircraft, to more loosely regulated recreational flying in homebuilt aircraft. While accident causation can be thoroughly investigated and understood by FAA, as a practical matter, the FAA’s ability to influence basic decisions by every pilot, every day, and in every circumstance to prevent accidents becomes much more difficult.

Source of the Data: The data for general aviation fatal accidents comes from the National Transportation Safety Board’s (NTSB) Aviation Accident Database. Aviation accident investigators, under the auspices of the NTSB, develop the data. Annual flight hours are derived from the FAA’s annual General Aviation and Part 135 Activity Survey. The FAA’s Forecast and Performance Analysis Division provides current year estimates.

Statistical Issues: The NTSB finalizes the actual number of general aviation fatal accidents. Since this is a simple count of accidents, there are no statistical issues relevant to this data. The general aviation community and the GAJSC, as part of the Safer Skies initiative, recommended development of a data collection program that will yield more accurate and relevant data on general aviation demographics and utilization. Improved GA Survey and data collection methodologies have been developed. As a result of these efforts, FAA, working with the General Aviation Manufacturers Association (GAMA), the NTSB, and other aviation industry associations, has made many improvements to the survey. An improved survey was initiated in FY 2004.

These annual surveys created, for the first time, a statistically valid report of activity on which the general aviation community could agree. First, the sample size has significantly increased. Second, a reporting form has been created to make it much easier for organizations with large fleets to report. Third, the agency worked with the Aircraft Registry to improve the accuracy of contact information. Each year, significant improvements are being made to substantially improve the accuracy of the data.

The General Aviation Joint Steering Committee (GAJSC) and General Aviation Data Improvement Team (GADIT) worked closely with the general aviation community and industry to develop this performance metric and target. There was unanimous support and consensus for the metric and target.

Completeness: The number of general aviation fatal accidents, even when reported as preliminary, is very accurate. NTSB and the Office of Accident Investigation and Prevention confer periodically to validate information on the number of fatalities. Accident data are considered preliminary. NTSB usually completes investigations and issues reports on accidents that occur during any fiscal year by the end of the next fiscal year. Results are considered final when all those accidents have been reported in the
NTSB press release published early in the following year. FY 2015 results will therefore be final after the 2017 press release. In general, however, the numbers of fatalities are not likely to change significantly between the end of the fiscal year and the date they are finalized. General Aviation (GA) Survey calendar hours are finalized by December 31 of the following year. Hence, the fatal accident rate for FY 2019 will not be considered final/complete until December 31, 2020.

Reliability: Results are considered preliminary based on projected activity data. Most accident investigations are a joint undertaking. NTSB has the statutory responsibility to determine probable cause, while FAA has separate statutory authority to investigate accidents and incidents in order to ensure that FAA meets its broader responsibilities. The FAA’s own accident investigators and other FAA employees participate in all accident investigations led by NTSB investigators. The FAA uses performance data extensively for program management, and personnel evaluation and accountability.
Performance Measure Profile
FY 2019 Methodology Report

UAS Integration Pilot Program (IPP) (OSI)

Performance Metric: The FAA will enable the safe and secure integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS).

FY 2019 Performance Target: Issue approval for two Part 135 certificates, and demonstrate capability for advanced UAS operations by enabling five distinct Beyond Visual Line of Sight (BVLOS) operations and three distinct Operations Over People (OOP) operations.

Lead Organization: Aviation Safety (AVS)

<table>
<thead>
<tr>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>2 Part 135 Certificates, 5 BVLOS operations, 3 OOP operations</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Actual</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Number of Part 135 certificates approved for advanced operations.

Computation: This metric is based upon the actual issuance of certificates enabling Beyond Visual Line of Sight and Operations Over People.

Formula: Two Part 135 certificates to be issued, five BVLOS operations will take place and three OOP will take place.

Scope of Metric:
Part 135 certificate: A Part 135 certificate is the operating rules for air carrier operations; air carrier refers to any operations for hire or lease that are operated across state lines or overseas, by a foreign entity, or transporting mail by aircraft.

Beyond Visual Line-of-Sight: When a pilot/operator of an unmanned aircraft can no longer see the aircraft with unaided vision.

Operations Over People: Unmanned aircraft flights taking place over people.

The actual issuance of the Part 135 certificates is dependent on the applicant showing it is able to meet all safety requirements to conduct Part 135 Operations. If the applicant does not demonstrate the required level of safety, the certificate will not be issued.

Method of Setting Target: The Part 135 certificate approval requires both a sufficient level of application materials as well as timely review and analysis from the FAA team handling the application.
Why the FAA and/or DOT chose this Metric: The IPP is a Presidential initiative to help advance operations and engage local communities. This metric aligns with the FAA Strategic Objective on Development of Innovation. These approvals represent a significant milestone for the UAS Integration Pilot Program (IPP). The FAA expects to gain insight to inform future policy, better align resources around other advanced operations, and unlock future benefits of integrating unmanned aircraft in our NAS. The data resulting from these operations will then inform the Department of Transportation and the FAA on developing rules for more complex operations.

Public Benefit: Safety is the FAA’s leading priority. The IPP will evaluate a host of other operational concepts including night operations, package delivery, detect-and-avoid technologies, and the reliability and security of data links between pilot and aircraft. With a safe and secure integration of UAS into the NAS, the FAA is pushing the boundaries on national security, critical infrastructure, agricultural operations, and emergency response management to name a few.

Partners: The UAS Office of Integration works with industry to develop a repeatable process by which these types of operations are conducted. After the process is developed, other Line of Business within the FAA play a role in actually allowing that operation to be carried out in the NAS, mainly the Air Traffic Organization (ATO). The UAS IPP will also enable state, local, and tribunal governments to work with industry to explore ways to safely expand and manage more advanced UAS operations while also providing the DOT and the FAA with data to inform rulemaking for more advanced operations.

External Factors Affecting Performance: Industry in continually evolving and developing innovative ways to utilize UAS technology. As these technologies advance, so do the complexities of integration. The incremental process of integrating new and novel technologies like UAS, provides us with new insights to our approach and helps define future obstacles. At each step, the IPP faces a multitude of challenges. Some of those challenges include Detect and Avoid (DAA) technologies, Command and Control (2) links, navigation, weather and human factors. In order to expand safe UAS operations, the FAA must also address challenges with public policy, such as Safety and Education, Cyber Security, Privacy and Funding.

Source of the Data: There were ten communities selected to participate in the UAS Integration Pilot Program. The selectees were tasked to test and evaluate a host of operational concepts and advanced operations. This program will run for three years and has already made strides in the testing of these operations as well as keeping the community engaged to voice their concerns regarding safety and privacy.

Statistical Issues: The certification process utilizes a phased gated approach and the applicant must meet the requirements of each phase prior to continuing to the next phase. The applicant must be capable of fulfilling the required responsibilities and comply with the 14 CFR. If the applicant is unable to demonstrate that they have met all the safety requirements to conduct Part 135 Operations, no certificate will be issued.

Completeness: The IPP was developed as a phased integrated approach which will allow entities the opportunity to partner with the private sector. The results are data-driven and help to inform future
rulemaking activities, processes and procedures. The issuance of the Part 135 certificates is largely dependent on the applicant’s ability to demonstrate that they have met all the safety requirements to conduct Part 135 Operations.

**Reliability:** As operations are being tested and evaluated, the FAA must ensure that a repeatable process is being developed. Any concerns will need to be addressed and resolved prior to the issuance of the Part 135 certificates for both BLVOS and OOP.
UAS Integration Pilot Program (IPP) (CSTI)

Performance Metric: The FAA will enable the safe and secure integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS).

FY 2019 Performance Target: Issue approval for two Part 135 certificates, and demonstrate capability for advanced UAS operations by enabling five distinct Beyond Visual Line of Sight (BVLOS) operations and three distinct Operations Over People (OOP) operations.

Lead Organization: Aviation Safety (AVS)

<table>
<thead>
<tr>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>2 Part 135 Certificates, 5 BVLOS operations, 3 OOP operations</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td><strong>Actual</strong></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: *Number of Part 135 certificates approved for advanced operations.*

Computation: This metric is based upon the actual issuance of certificates, and demonstrations enabling Beyond Visual Line of Sight and Operations Over People operations.

Formula: Two Part 135 certificates to be issued, five BVLOS operations will take place and three OOP will take place.

Scope of Metric:

Part 135 certificate: A Part 135 certificate is the operating rules for air carrier operations; air carrier refers to any operations for hire or lease that are operated across state lines or overseas, by a foreign entity, or transporting mail by aircraft.

Beyond Visual Line-of-Sight: When a pilot/operator of an unmanned aircraft can no longer see the aircraft with unaided vision.

Operations Over People: Unmanned aircraft flights taking place over people.

The actual issuance of the Part 135 certificates is dependent on the applicant showing it is able to meet all safety requirements to conduct Part 135 Operations. If the applicant does not demonstrate the required level of safety, the certificate will not be issued.

Method of Setting Target: The Part 135 certificate approval requires both a sufficient level of application materials as well as timely review and analysis from the FAA team handling the application.
Why the FAA and/or DOT chose this Metric: The Integration Pilot Program (IPP) is a Presidential initiative to help advance operations and engage local communities. This metric aligns with the FAA Strategic Objective on Development of Innovation. These approvals represent a significant milestone for the UAS IPP. The FAA expects to gain insight to inform future policy, better align resources around other advanced operations, and unlock future benefits of integrating unmanned aircraft in our NAS. The data and lessons learned from these operations will then inform the Department of Transportation and the FAA on developing rules for more complex operations.

Public Benefit: Safety is the FAA’s first priority. The IPP will evaluate a host of other operational concepts including night operations, package delivery, detect-and-avoid technologies, and the reliability and security of data links between pilot and aircraft. With a safe and secure integration of UAS into the NAS, the FAA is pushing the boundaries on enabling the use of UAS technology to benefit national security, critical infrastructure, agricultural operations, and emergency response management to name a few.

Partners: The UAS Office of Integration works with other offices within AVS, specifically the Flight Standards and Aircraft Certification Services, to develop a repeatable process by which these types of operations are evaluated and approved. After the process is developed, other Lines of Business within the FAA also play a role in allowing operations to be carried out in the NAS, mainly the Air Traffic Organization (ATO). The UAS IPP also enables state, local, and tribal governments to work with industry to explore ways to safely expand and manage more advanced UAS operations while also providing the DOT and the FAA with data to inform rulemaking for more advanced operations.

External Factors Affecting Performance: Industry is continually evolving and developing innovative ways to utilize UAS technology. As these technologies advance, so do the complexities of integration. The incremental process of integrating new and novel technologies like UAS provides us with new insights to our approach and helps define future obstacles. At each step, the IPP faces a multitude of challenges. Some of those challenges include Detect and Avoid (DAA) capabilities, Command and Control (C2) reliability, navigation, weather, and human factors. In order to expand safe UAS operations, the FAA must also address challenges with public policy, such as safety and education, cyber security, privacy and funding.

Source of the Data: There were ten communities selected to participate in the UAS Integration Pilot Program. The selectees were tasked to test and evaluate a host of operational concepts and advanced operations. This program will run for three years and has already made strides in testing these operations, as well as keeping the community engaged to voice their concerns regarding safety and privacy.

Statistical Issues: The part 135 certification process utilizes a phased gated approach, and the applicant must meet the requirements of each phase to gain approval. The applicant must be capable of fulfilling the required responsibilities and comply with other regulations in 14 CFR. If the applicant is unable to demonstrate that they have met all the safety requirements to conduct Part 135 Operations, no certificate will be issued.
Completeness: IPP projects were developed using a phased approach, which will allow entities the opportunity to partner with the private sector and work toward increasingly complex operations over the course of the program. The results are data-driven and help to inform future rulemaking activities, processes and procedures. The issuance of the Part 135 certificates is largely dependent on the applicant’s ability to demonstrate that they have met all the safety requirements to conduct Part 135 Operations.

Reliability: As operations are being tested and evaluated, the FAA is working to develop a repeatable process. Any concerns will need to be addressed and resolved prior to the issuance of the Part 135 certificates for both BLVOS and OOP.
Performance Measure Profile
FY 2019 Methodology Report

UAS Integration Pilot Program (IPP) Safety Risk Management (SRM) in Support of Operations Now (CSTI)

Performance Metric: The FAA will create a process to perform safety risk management for specific UAS operations enabling the FAA to address safety risk in the National Airspace System (NAS) in a more consistent, coordinated, and timely manner for UAS operations.


Lead Organization: Aviation Safety (AVS)

<table>
<thead>
<tr>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>1 SRM document</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td><strong>Actual</strong></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: The publication of the Safety Risk Management Order

Computation: This metric is based on the actual completion and publication of the Safety Risk Management document.

Formula: Once the Safety Risk Management Order has been published, this target will be considered met.

Scope of Metric:
Safety Risk Management (SRM): A formalized, five-step approach to system safety in which hazards are identified and documented; risk is analyzed and assessed; and risk is mitigated to acceptable levels.

SRM document: A safety analysis performed to predict and assess the overall risk. This document is used to present evidence supporting whether a NAS change and/or risk management strategies should be accepted by ATO or Federal Aviation Administration management officials from a safety risk perspective.

By publishing the SRM document, it demonstrates that the FAA has completed their safety risk assessment by identifying risks and have mitigated those risks down to reduced, acceptable levels.

Method of Setting Target: The UAS IPP will enable state, local, and tribunal governments to work with industry to explore ways to safely expand and manage more advanced UAS operations while also providing the DOT and the FAA with data to inform rulemaking for more advanced operations. By 2020, the FAA forecast for small UAS forecast is 7 million total with 2.6 million of those being commercial. It is critical that the FAA addresses technical and policy issues related to the exchange of data, sense and avoid technologies, and communication and navigation requirements. Publishing the SRM document will inform the public that the FAA has identified, analyzed and reduced the risks to acceptable levels.
Why the FAA and/or DOT chose this Metric: The IPP is a Presidential initiative to help advance operations and engage local communities. This metric aligns with the FAA Strategic Objective on Development of Innovation. The FAA expects to gain insight to inform future policy, better align resources around other advanced operations, and unlock future benefits of integrating unmanned aircraft in our NAS. The data resulting from these operations will then inform the Department of Transportation and the FAA on developing rules for more complex operations.

Public Benefit: Safety is the FAA’s leading priority. The IPP will evaluate a host of other operational concepts including night operations, package delivery, detect-and-avoid technologies, and the reliability and security of data links between pilot and aircraft. With a safe and secure integration of UAS into the NAS, the FAA is pushing the boundaries on national security, critical infrastructure, agricultural operations, and emergency response management to name a few.

Partners: The Office of Primary Responsibility (OPR) will be named and each office is responsible for the regulations they oversee. The UAS office will coordinate mostly with Air Traffic Organization (ATO) and Flight Standards (FS).

The UAS IPP will also enable state, local, and tribunal governments to work with industry to explore ways to safely expand and manage more advanced UAS operations while also providing the DOT and the FAA with data to inform rulemaking for more advanced operations.

External Factors Affecting Performance: Industry in continually evolving and developing innovative ways to utilize UAS technology. As these technologies advance, so do the complexities of integration. The incremental process of integrating new and novel technologies like UAS, provides us with new insights to our approach and helps define future obstacles. At each step, the IPP faces a multitude of challenges. Some of those challenges include Detect and Avoid (DAA) technologies, Command and Control (C2) links, navigation, weather and human factors. In order to expand safe UAS operations, the FAA must also address challenges with public policy, such as Safety and Education, Cyber Security, Privacy and Funding.

Source of the Data: There were ten communities selected to participate in the UAS Integration Pilot Program. The selectees were tasked to test and evaluate a host of operational concepts and advanced operations. This program will run for three years and has already made strides in the testing of these operations as well as keeping the community engaged to voice their concerns regarding safety and privacy.

Statistical Issues: The IPP will work to identify hazards, causes, mitigations and outcomes. There could be a host of potential statistical issues including software application, weather interruptions, human factors, security risks, airspace volume, and many more. These issue have the potential to prolong the program, ultimately delaying the successful completion of the IPP and final SRM document.

Completeness: The IPP was developed as a phased integrated approach which will allow entities the opportunity to partner with the private sector. The results are data-driven and help to inform future rulemaking activities, processes and procedures.
**Reliability:** The UAS Office of Integration works with industry to develop a repeatable process by which these types of operations are conducted. After the process is developed, other Line of Business within the FAA play a role in actually allowing that operation to be carried out in the NAS, mainly the Air Traffic Organization (ATO).
UAS Integration Pilot Program (IPP) Unmanned Traffic Management (UTM) Pilot Program (UPP)

**Performance Metric:** The FAA, in partnership with the National Aeronautics and Space Administration (NASA) and industry, will work to develop a framework that enables the automation of traffic management for unmanned aircraft.

**FY 2019 Performance Target:** Develop UTM Pilot Program (UPP) test environment and complete pilot program flight test and demonstration. Complete UTM pilot program and final report.

**Lead Organization:** Aviation Safety (AVS)

<table>
<thead>
<tr>
<th>FY2019 Target</th>
<th>UTM Pilot Program test environment</th>
<th>Pilot Program Flight Test and Demonstration</th>
<th>UTM Pilot Program Completion and Final Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2019 Actual</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** The development of UTM Pilot Program test environment, completion of pilot program flight test and demonstration, and completion of UTM pilot program and final report.

**Computation:** By the development and completion of the UTM test environment, demonstration, and final report.

**Formula:** Successfully test the UTM Pilot Program, then perform Flight Test and Demonstration, and complete the UTM Pilot Program and Final Report.

**Scope of Metric:**

**Unmanned Aircraft System (UAS) Traffic Management (UTM):** A "traffic management" ecosystem for uncontrolled operations that is separate from, but complementary to, the FAA's Air Traffic Management (ATM) system.

**UAS Traffic Management Pilot Program (UPP):** UTM describes a set of technologies and procedures to manage the projected increase of civil UAS operating in low altitude airspace.

By 2020, the FAA forecast for small UAS forecast is 7 million total with 2.6 million of those being commercial. It is critical that the FAA addresses technical and policy issues related to the exchange of data, sense and avoid technologies, and communication and navigation requirements. By developing the UPP, successfully performing the demonstration, and completing the final report, the FAA can address challenges to integrating UAS into the NAS while also reducing risks to public safety and security.

**Method of Setting Target:** A UTM Pilot Program (UPP) was established in April 2017 – per the Federal Aviation Administration (FAA) Extension, Safety and Security Act of 2016, Sec. 2208 – as an important component for identifying the initial set of industry and FAA capabilities required to support UTM.
operations. Analysis of test and demonstration results will provide an understanding of the level of investment required for each stakeholder’s implementation.

The UPP will demonstrate transfer of NASA’s UTM research technologies to the FAA (facilitated via the FAA-NASA UTM Research Transition Team). The results from the UPP will provide a proof of concept for UTM capabilities currently in research and development and will serve as the basis for initial deployment of UTM capabilities.

FAA completion of UPP targets will:
- Demonstrate the initial integrated UTM ecosystem comprised of UTM Services, Low Altitude Authorization & Notification Capability (LAANC) services for UAS Service Supplier (USS), and UAS Operators sharing intent and information collaboratively
- Demonstrate Dynamic Restrictions capability and the automation of parts 101(e) and 107 notifications & authorization
- Provide an understanding of the level of investment required for government and Industry stakeholders
- Document UTM Pilot Program findings to further mature UTM in a final report

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: As the FAA, the NASA, and their new industry partners move forward in response to FAA Extension, Safety and Security Act of 2016, Sec. 2208, the primary goal for the UPP is to develop, demonstrate, and provide enterprise services, using a cloud service infrastructure, which will support the implementation of initial UTM operations. These enterprise services will support the sharing of information that promotes cooperative separation and situational awareness.

The lessons learned from the UPP will inform future FAA UTM implementation plans. Per the FAA 2018 Reauthorization, H.R. 302 Section 376, upon completion of the UPP, the FAA will develop a plan for full operational capability of unmanned aircraft systems traffic management within one year.

Public Benefit: As UAS or drone traffic demand increases in the NAS, it is necessary for the FAA, along with NASA and industry partners, to develop a means to accommodate these operations in a safe and efficient manner. As an initial step in completing the UPP demonstration – and in support of the UTM ecosystem – the prototype Flight Information Management System (FIMS) has been transitioned to the FAA test facilities at the William J. Hughes Technical Center (WHJTC) for integration and testing. Developed by NASA in collaboration with the FAA, FIMS is a central component of the ecosystem providing the FAA with access to UTM data.

UTM services to be demonstrated in the UPP include sharing of flight intent between operators, the ability for a USS to generate a UAS Volume Reservation (UVR) – a capability providing authorized USSs the ability to issue notifications to UAS or drone operators regarding air or ground activities relevant to their safe operation – and share it with stakeholders (e.g., other USSs, FIMS, UAS operators). As part of this demonstration, FIMS will publish this UVR to the FAA Drone Zone.

Partners: The UAS Integration Office works with the FAA NextGen office, NASA, and industry to develop plans for conducting the UPP demonstration flights. Other Lines of Business within the FAA play a role in actually allowing UPP operations to be carried out in the NAS, mainly:
Performance Measure Profile
FY 2019 Methodology Report

- Air Traffic Organization
- Flight Standards
- Aircraft Certification Services
- And many others

External Factors Affecting Performance: Industry is continually evolving and developing innovative ways to utilize UAS UTM technology. As these technologies advance, so do the complexities of integration. The incremental process of integrating new and novel technologies like UAS, provides us with new insights to our approach and helps define future obstacles.

Source of the Data: On January 14, 2019, U.S. Department of Transportation Secretary, Elaine L. Chao, announced the FAA’s selection of three FAA UAS Test Sites to partner with the agency in the UPP:
- Nevada Institute for Autonomous Systems (NIAS)
- Northern Plains UAS Test Site (NPUASTS)
- Virginia Tech, Mid Atlantic Aviation Partnership (MAAP)

This program will run through the end of Fiscal Year 2019 and has already made strides in the testing of UTM capabilities.

Statistical Issues: The FAA has partnered with three UAS Test Sites for UPP trials - Nevada Institute for Autonomous Systems (NIAS), Northern Plains UAS Test Site (NPUASTS), and Virginia Tech Mid Atlantic Aviation Partnership (MAAP). There could be a host of potential statistical issues including software application, weather interruptions, human factors, security risks, airspace volume, and many more. These issues have the potential to prolong the program, ultimately delaying the successful completion of the UTM Pilot Program and final report.

Completeness: The UPP is underway and on track for completion by September 2019. The results are data-driven and help to inform future rulemaking activities, processes and procedures.

Reliability: As operations are being tested and evaluated, the FAA will pilot a UTM ecosystem built on an architectural infrastructure and data services that allow UAS Service Suppliers, operators, and other Government organizations to communicate and share information that will ultimately inform the FAA’s future implementation of UTM. It is the FAA’s continuous mission to provide the safest, most efficient aerospace system in the world.
Performance Measure Profile
FY 2019 Methodology Report

UAS Authorizations

Performance Metric: ATO will improve the processing time for 107.41 authorization requests.

FY 2019 Performance Targets

Target 1: Reduce the time for processing both manual and automated (LAANC) Part 107 authorizations by at least 10% to an average of 45 days by September 30, 2019.

Target 2: Reduce the time for processing manual Part 107 Airspace Authorizations by at least 10%, to an average of 86 days by September 30, 2019.

Lead Organization: Air Traffic Organization (ATO)

Reduce the time for processing both manual and automated (LAANC) Part 107 authorizations by at least 10% to an average of 45 days by September 30, 2019.

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>72 days</td>
<td>45 days</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>50 days</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Reduce the time for processing manual Part 107 Airspace Authorizations by at least 10%, to an average of 86 days by September 30, 2019.

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>86 days</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Part 107.41 Airspace Authorizations processed.

Computation: An average of the total number of processing days for Part 107.41 Authorizations completed since the beginning of FY18. Processing days are calculated as the number of days from when a Part 107.41 Authorization is received to when it is responded to through either Low Altitude Airspace and Notification Capability (LAANC), DroneZone, or through email.

Formula: Total Number of Processing Days for Applications Processed/Total Number of Applications Processed

Scope of Metric: This applies only to 107.41 Authorizations.

Method of Setting Target: This metric is effectively a continuation of the FY 2018 metric, but with baselines adjusted to reflect last year’s results. It was set to effectively monitor the approval time to process and disposition controlled airspace authorizations applications as identified in 14 CFR Part 107.41. The metric target is heavily dependent upon new implementation and automation through LAANC. The existing manual process is resource intensive and unable to keep up with the public’s demand for access to controlled airspace for small Unmanned Aircraft System (sUAS) operations.
Performance Measure Profile
FY 2019 Methodology Report

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: This is a high-priority activity to enable UAS integration into the national airspace system (NAS). Notification and awareness of sUAS activity in controlled airspace is necessary to ensure overall safety of flight objectives.

Public Benefit: Improves the amount of time it takes for the public to receive feedback on their application.

Partners: LAANC Service Providers.

External Factors Affecting Performance: The overwhelming volume of applications from the public versus the available resources to process manually.

Source of the Data: For applications in the application backlog queue, through an e-mail generated by a website application process. The applications are then manually tracked in a SharePoint site to determine how long it takes to process them. For applications submitted through DroneZone, an application is generated through a website application process then tracked in the system to determine how long it takes to process. For applications submitted through LAANC, through a web based application that provides expedited processing of airspace authorizations below the approved altitudes on the FAA UAS Facility Maps.

Statistical Issues: Volatility in the number of applications received over time through LAANC.

Completeness: The lead office (Emerging Technologies Team, AJV-115) will track Part 107.41 applications from submission to disposition through various sources discussed above. These sources are interacted with assigned staff on a daily basis. The staff follows a standard operating procedure to process applications to ensure continuity and accuracy.

The data are collected by multiple sources and merged into one to provide the reporting metric. The data pulls from both the existing manual processes and our new automated process through LAANC. The target metric was established to recognize the effect on how automation would drive down the processing time from a baseline of 96 days to 86 days representing a 10% decrease for FY2019. Quarterly monitoring was established to track progress and make assessments or adjustments if necessary.

Reliability: This is a manual process requiring queries from three data sources merged to provide a unified response. It is subject to human error.
Reduce the Regulatory Burden (Executive Order 13771 Implementation (2 for 1))

**Performance Metric:** Eliminate two existing regulations for each new rule issued to maintain an inmodal (Deregulating)/Regulating ratio of 2:1 or greater.

**FY 2019 Performance Target:** Number of FAA deregulatory actions per year equal to or greater than twice the number of regulatory actions.

**Lead Organization:** Aviation Safety (AVS)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td><strong>Actual</strong></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>5.0</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

For every significant regulation proposed (as defined by Section 3(f) of EO 12866), the FAA will propose two deregulating actions in an effort to repeal outdated, ineffective, or unnecessary regulations. In keeping with EO13771 guidance (*OMB Memo 4/5, Q 35*), the FAA shall specifically seek to provide relief from regulations that:

- Eliminate jobs, or inhibit job creation;
- Are outdated, unnecessary, or ineffective;
- Impose costs that exceed benefits;
- Create a serious inconsistency or otherwise interfere with regulatory reform initiatives and policies;
- Are inconsistent with the requirements of section 515 of the Treasure and General Government Appropriations Act, 2001;
- Derive from or implement EOs or other Presidential directives that have been subsequently rescinded or substantially modified.
- The FAA issues annual calls for rulemaking which serve as a scheduled opportunity for soliciting and identifying deregulating actions. These actions are evaluated in light of existing regulating needs to develop a balanced regulatory plan. As part of this plan the FAA may choose to bundle regulating and deregulating actions in the same regulatory action, provided these are clearly identified along with the respective cost and savings produced (*OMB Memo 2/2*).

The FAA recognizes the need for collective input and advance planning to achieve this objective, and has prioritized these factors in current revisions to our pre-rulemaking, rulemaking development processes, and portfolio/regulatory-budget management tools.

**Metric Unit:** Publication of Proposed or Final Rules.

**Computation:** Deregulating actions versus regulating actions ratio of 2:1 or greater.

**Formula:** Deregulatory action / Applicable published regulation => 2.
Performance Measure Profile
FY 2019 Methodology Report

Scope of Metric: This deregulating requirement will apply to all significant regulations, and not apply to non-significant or enabling rules, or any other rulemaking actions so designated by the Office of Management and Budget (OMB).

Method of Setting Target: Derived from Executive Order 13771.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: Consistency with Office of the Secretary of Transportation (OST) FY 2019 Performance Goals.

Public Benefit: Reduction of regulatory burden.

Partners: FAA Policy Offices for Federal Aviation Regulations.

External Factors Affecting Performance: OMB-level and cross-agency review of proposed FAA regulatory actions affect the timing and viability of each rulemaking action. Also, rulemaking actions mandated by law will require ongoing review and update of the FAA’s rulemaking schedule.


Statistical Issues: N/A

Completeness: Each rule advanced by the FAA is published to the Federal Register, as required by the Administrative Procedures Act. The rules published there represent the complete set of regulatory actions.

Reliability: Simple computation of deregulatory (relieving) actions published in the Federal Register to the number of regulatory actions.
Reduce the Regulatory Burden on the Transportation Industry & Public While Still Achieving Safety Standards – Total Annual Cost of FAA Regulations Zero Dollars or Less

Performance Metric: Meet the incremental zero-cost allowance requirement for new regulatory actions by maintaining a value of one or greater for the (Cost-Savings)/Cost ratio.

FY 2019 Performance Target: Cost-savings to cost ratio of all applicable published rules during the fiscal year Equal or greater than 1.

Lead Organization: Aviation Safety (AVS)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1 or Greater</td>
<td>1 or Greater</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>$64M</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Similar to fiscal spending caps, the establishment of regulatory cost caps per EO 13771 provides a mechanism for the prudent management and control of regulatory costs imposed on society by agencies attempting to achieve regulatory benefits. (Office of Management and Budget (OMB) Memo 2/2). The FAA manages an average workload of 25 proposed and final rules per annum, the total cost and benefits of these actions to the society can vary widely from year to year. The ability to establish fixed numeric targets and/or accumulate savings/deregulatory balances is tempered by the demand for significant safety-based regulations. Recognizing the Agency flexibility to carry forward deregulatory and/or cost saving increments from year to year (OMB Memo 4/5, Q29), and the variability from year to year, suggests that the adoption of a ratio-based (Cost-Savings/Cost) metric, which demonstrates incremental, end-of-year, in-modal, cost savings greater than zero, is logical.

Metric Unit: Ratio


Formula: N/A

Scope of Metric: This savings requirement will apply to all significant regulations, and not apply to non-significant or enabling rules, or any other rulemaking actions so designated by the Office of Management and Budget (OMB).

Method of Setting Target: Derived from Executive Order 13771.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: Consistency with OST FY19 Performance Goals.

Public Benefit: Reduction of regulatory burden.
Partners: FAA Policy Offices for Federal Aviation Regulations.

External Factors Affecting Performance: OMB-level and cross-agency review of proposed FAA regulatory actions affect the timing and viability of each rulemaking action which may affect total cost savings realized. Also, rulemaking actions mandated by law will require ongoing review and update of the FAA’s regulatory budget.


Statistical Issues: N/A

Completeness: Each rule advanced by the FAA is published to the Federal Register, as required by the Administrative Procedures Act. The rules published there represent the complete set of regulatory actions.

Reliability: N/A
MOSAIC Rulemaking Project

**Performance Metric:** Completion of FY 2019 performance target.

**FY 2019 Performance Target:** Deliver a *Comprehensive Implementation Plan* for the Modernization of Special Airworthiness Certification (MOSAIC) rulemaking project, and complete the pre-rulemaking phase.

**FY 2019 Target:** This target includes:

- The *Comprehensive Implementation Plan* consists of the following:
  - Defining desired outcomes for the project
  - Establishing a rulemaking team to execute the project
  - Completing the initial assessment of impacts of rulemaking to FAA Orders, Advisory Circulars, and information systems.
  - Drafting an initial, high-level project schedule
  - Submitting a request to DOT for approval of the project for rulemaking via assignment of a rulemaking identification number (RIN)

**Lead Organization:** Aviation Safety (AVS); Aircraft Certification Service (AIR-600)

<table>
<thead>
<tr>
<th></th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>Deliver Implementation Plan</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** Complete FY 2019 targets listed above.

**Computation:** The successful completion of the key activity is calculated.

**Formula:** Count of key activity completed.

**Scope of Metric:** This metric will address Aircraft Certification Service (AIR) completion of FY 2019 targets by September 30, 2019.

**Method of Setting Target:** This metric was set based on collaboration within the MOSAIC rulemaking team.
Additional Information on Metric

**Why the FAA chose This Metric:** This metric constitutes the key, foundational tasks in preparing for the next phase of the project -- formal rulemaking -- following assignment of a RIN.

**Public Benefit:** Benefits of MOSAIC rulemaking to the public:
- Increased safety
- Increased performance and uses of aircraft
- Provision of a replacement for expiring “Section 333 exemptions”
- More integrated operations of unmanned aircraft
- Enables innovation
- Reduced burden via providing an alternative to design/production certification and codifying prior exemptions.
- Greater flexibility to applicants via risk-/performance-based rules
- All rulemaking is enabling

**Partners:** The AVSMT has expressed support for this project. Commitment and participation across AVS services, divisions, and offices is strong. Industry has expressed strong support (GAMA, EAA, ASTM, LAMA, and AOPA). The project applies the recent accomplishment of international partnerships in completing a harmonized UAS risk methodology developed with 26 other civil aviation authorities. This rulemaking is also closely aligned with EASA and Transport Canada rulemaking.

**External Factors Affecting Performance:** MOSAIC represents the agency’s means of implementing FAA Reauthorization Act of 2018 sections 345, 347, and 581. The Comprehensive Implementation Plan is predicated on collaboration within AVS. Shifting priorities, resources, and other factors could impact completion of this effort.

**Source of the Data:** Not applicable.

**Statistical Issues:** Not applicable.

**Completeness:** This activity will be completed when the FY19 targets listed above are met.

**Reliability:** Not applicable.
Cargo Safety Risks

Performance Metric: Mitigate safety risks introduced by the carriage of air cargo. There are two targets serving as metrics for this effort: (1) producing guidance via Advisory Circular (AC) and (2) establishing a coordinated FAA approach to cargo fire research and standards.

FY 2019 Performance Targets

Mitigate safety risks introduced by the carriage of air cargo through collaboration, data collection, industry risk-based decision making, and adoption of industry policy and guidance.

Target 1: Release for review draft guidance to the Cargo Safety Executive Team that outlines a systems approach to analyzing, evaluating and mitigating risks presented through the transport of any type of cargo that may cause a change in the effectiveness of aircraft systems. Due June 28, 2019 (AVS)

Target 2: Establish a documented program to provide a coordinated, FAA approach to cargo fire research and related standards, guidance and information for the public. Due September 30, 2019 (ASH)

Co-Lead Organizations: Office of Security and Hazmat Safety (ASH); Office of Aviation Safety (AVS)

<table>
<thead>
<tr>
<th>Target</th>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete 2 targets</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Actual</td>
<td>09/30/2019</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Complete both milestones identified and coordinated by ASH and AVS.

Computation: N/A

Formula: N/A

Scope of Metric: The supporting milestones were selected and approved based on their importance to keeping the National Airspace System (NAS) safe by mitigating potential risks introduced by the carriage of air cargo. The guidance and coordinated approach to cargo fire research and standards will lay the groundwork for the FAA, air carriers, and international partners to harmonize steps to minimize cargo fire safety risk.

Method of Setting Target: The targets were selected based on the FAA’s overarching goal to keep the NAS safe and secure. Focusing on cargo fire safety research and using a systems approach to mitigate risk within the NAS are complementary targets that will advance safety within air transport by aiding operators in development and application of the most effective possible mitigations.
Why the FAA and/or DOT chose this Metric: By developing guidance on a systems approach to analyzing and mitigating cargo fire safety risk and by establishing a coordinated approach to fire safety research, the FAA and key stakeholders can reduce the risk to the NAS introduced by the air transport of goods. The systems approach can be used by operators with a Safety Management System (SMS) that conforms to 14 CFR part 5 for the assessment and management of cargo safety risks. The guidance can also be used by operators that do not have an SMS to effectively and proactively manage their cargo safety risk. Specifically, it indicates how, in a non-SMS safety program, features of the safety program can provide for monitoring and evaluation to ensure the effectiveness of cargo safety controls. In any safety program in which the guidance is used, the operator’s policy commitment to cargo safety and its promotion of the organization’s safety culture are essential to ensure the effectiveness of controls implemented to minimize safety risk.

Public Benefit: This metric provides tangible information to stakeholders for developing solutions to reduce the risks of fire when transporting flammable materials onboard an aircraft. The risk factors are to be identified; research-backed data will be provided; and effective mitigation strategies will be developed. The project will foster behavior, program and infrastructure changes that improve safety by providing valuable data for safety risk assessments along with educational materials to influence stakeholder behavior and actions in three identified areas of risk: Cabin, Flight Deck, and Cargo.

The project will contribute to the FAA’s cargo safety objective of developing and implementing strategies to mitigate the known and anticipated cargo risks on aircraft. The project is also in alignment with DOT’s strategic objectives to mitigate risks and encourage infrastructure and behavior change by using a data-driven systemic safety approach to identify risks, enhance standards and programs, and evaluate effectiveness.

Partners: Partners include, but are not limited to, FAA Lines of Business (LOBs), the Department of Transportation (DOT), and operators. In addition, Cargo Safety Risk Assessment has international attention, with two technical panels within the International Civil Aviation Organization (ICAO) working to identify specific information that operators will need to perform a safety risk assessment. Both the Flight Operations and Airworthiness panels have efforts under way to modify Annexes 6 and 8, respectively, to assist operators in performing a safety risk assessment. The FAA is participating in both groups.

External Factors Affecting Performance: External factors affecting performance of these targets are related to the ability of the participating LOBs to timely complete the targets agreed to at the start of FY19.

Source of the Data: N/A

Statistical Issues: There are no statistical issues.

Completion: The FAA will work to ensure milestones showing the continued progress of the targets are met. Progress on both the release of draft guidance to the Cargo Safety Executive Team for review and a documented program to provide a coordinated, FAA approach to cargo fire research is reported monthly via SPIRE, the FAA Business Plan reporting system, and Performance Committee meetings.

Reliability: The metric has no reliability issue. The Cargo Safety Risk targets are either complete or they are not.
Performance Measure Profile
FY 2019 Methodology Report

Air Traffic Organization (ATO) Performance Measure Profiles

Average Daily Capacity

Performance Metric: Maintain an average daily capacity for core airports of 59,303 or higher, arrivals and departures.

FY 2019 Performance Target: Maintain an average daily capacity for core airports of 59,303 or higher, arrivals and departures.

Lead Organization: Air Traffic Organization (ATO)

<table>
<thead>
<tr>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>59,122</td>
<td>57,975</td>
<td>58,006</td>
<td>59,136</td>
</tr>
<tr>
<td>Actual</td>
<td>59,166</td>
<td>60,168</td>
<td>60,987</td>
<td>60,448</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Average of daily arrival and departure rates during reportable hours.

Computation: Average Daily Capacity for a given airport and month is the sum of Efficiency Airport Arrival Rate (AAR) and Airport Departure Rate (ADR) computed over the entire month divided by the number of days in the month during reportable hours. The reportable hours intend to capture periods when at least 90% of Core Airports operations take place and generally exclude overnight hours. The annual capacity level is the weighted sum of the monthly capacity levels.

Formula: \[
\frac{\text{Sum of Daily Hourly Efficiency Arrival and Departure Rates in a Month}}{\text{Number of Days in the Month}}
\]

Scope of Metric: Only the Core Airports are included in this metric. The Core airports are those which have 1% or more of total U.S. enplanements (the DOT large hub airports) or 0.75% or more of total U.S. non-military itinerant operations.

Reportable hours are based on a review of called rates and actual flight counts for each of the Core airports.

15 Reportable Hours: DFW, IAH, LGA, MCO, PHX, SLC
16 Reportable Hours: ATL, BOS, CLT, DCA, DEN, FLL, IAD, LAS, MDW, MIA, MSP, ORD, PHL, SEA, SFO, TPA
17 Reportable Hours: BWI, DTW, EWR, HNL, LAX, SAN
18 Reportable Hours: JFK
24 Reportable Hours: MEM

Each airport facility determines the number of arrivals and departures it can handle for each hour of each day, depending on conditions, including weather. These numbers are the called arrival and departure rates of the airport for that hour. Data are summed for daily, monthly, and annual totals.

Method of Setting Target: Annual targets are set using historical trend data for the previous three years, information on upcoming construction impacts, and inputs from individual Air Traffic Control facilities.

Methodology Report
Why the FAA and/or DOT chose this Metric: Growth in air travel has generally been accomplished by increasing the number of flights. Measuring the growth of airport capacity indicates the limit at which increased service can be accommodated without affecting delay.

Public Benefit: The public benefits from increased capacity by experiencing a decrease in delays and improved on-time performance.

Partners: ATO & ARP

External Factors Affecting Performance: Called rates at airports, which are adjusted in real time throughout the day, are primarily impacted by weather, construction/maintenance impacts, procedural changes, and equipment outages.

Source of the Data: The Aviation System Performance Metrics (ASPM) database, maintained by the FAA’s Office of Performance Analysis (AJR-G), provides the data for this metric. The individual air traffic facilities for the Core Airports provide arrival and departure rates. ATO staff feed this information into the ASPM database.

Statistical Issues: None

Completeness: Fiscal year data are finalized approximately 90 days after the close of the fiscal year.

Reliability: The reliability of ASPM is verified on a daily basis by the execution of a number of audit checks, comparison to other published data metrics, and through the use of ASPM by over 3,000 registered users.
Performance Measure Profile
FY 2019 Methodology Report

Ground Based Safety - Reduce the risk of runway incursions by implementing improvements and mitigations (OSI)

Performance Metric: At locations with high frequency or severe wrong surface operations risk, conduct at least three (3) Special Focus Runway Safety Action Team (SFRSAT) meetings per Service Area (i.e., Eastern Service Area, Central Service Area, and Western Service Area) and develop a minimum of nine (9) Runway Safety Action Plans by September 30, 2019.

FY 2019 Performance Target: Conduct at least three (3) SFRSAT meetings per Service Area and develop a minimum of nine (9) Runway Safety Action Plans by September 30, 2019.

Lead Organization: Air Traffic Organization (ATO)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>9 Meetings 9 Plans</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Complete target by the due date of September 30, 2019.

Computation: Total of 9 SFRSAT (3 per each of the 3 Service Areas) and 9 Runway Safety Action Plans complete by September 30, 2019

Formula: No formula is required to calculate the metric.

Scope of Metric: A SFRSAT convenes to address a specific problem and focus additional resources at locations where extra attention is required and to formulate a Runway Safety Action Plan to address the specific problem. It includes all the relevant stakeholders of a specific airport (see “Partners” below).

Method of Setting Target: The target was selected in response a safety requirement resulting from the Safety Risk Management Wrong Surface Landings Risk Assessment conducted in the Fall of 2017. The safety risk requirements were validated in February 2018.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: SFRSAT are an effective means of increasing awareness of a specific problem, analyzing and developing mitigation strategies for the problem, fostering support from all the relevant stakeholders.

Public Benefit: A reduction in the frequency and severity of wrong surface operations is an indication of overall safety performance improvements for the flying public in the surface environment.
Performance Measure Profile
FY 2019 Methodology Report

**Partners:** Airport Management, Tenants, Military, FBOs / fuel truck drivers, flight schools, user groups (EAA/airport group), SSC Manager and District Tech Ops, ARFF, FAA Regional Airports Division, FSDO, FAA Safety Team (FAASTeam), State Aviation representative, Terminal District focal or District Manager, Service Area focal, regional Runway Safety office, anyone who operates the Airport Operations Area.

**External Factors Affecting Performance:** The pilot community and Airport Operations personnel are key components of an effective and actionable SFRSAT. If these persons do not make themselves available and/or come prepared and actively participate, the SFRSAT will not have the wide-ranging impact intended.

**Source of the Data:** The Runway Safety Group Manager and the respective Regional Runway Safety Program Managers organize and facilitate the SFRSAT.

**Statistical Issues:** There are no statistical issues in the reporting of the metric.

**Completeness:** A SFRSAT is considered complete once the meeting has occurred and the RSAP is submitted to Runway Safety Group Manager for acceptance. The RSAP is considered complete once it is accepted by the Runway Safety Group Manager and is entered into the national database used to track actions through to completion. An independent minute’s recorder attends each SFRSAT to document the event and the action items to be included in the RSAP. Conducting SFRSATs is documented in FAA Order 7050.1 Runway Safety Program. A comprehensive RSAT Tool Kit is located on the AJI-1400 Runway Safety Group Knowledge Services Network.

**Reliability:** The occurrence of the SFRSAT and the documented RSAP are self-evident.
Ground Based Safety—Reduce the risk of runway incursions by implementing improvements and mitigations (CSTI)

Performance Metric:

Target 1: Establish an agreed-upon process for data-sharing between industry, other government entities, labor (where appropriate) and FAA such that specific causal factors associated with surface safety events can be depicted from the vehicle operator’s, air traffic controller’s, and pilot’s perspectives. Due July 31, 2019.


FY 2019 Performance Targets

Target 1: Establish an agreed-upon process for data-sharing between industry, other government entities, labor (where appropriate) and FAA such that specific causal factors associated with surface safety events can be depicted from the vehicle operator’s, air traffic controller’s, and pilot’s perspectives. Due July 31, 2019.

Target 2: Begin using the comprehensive data set to inform Runway Safety Action Teams. Due September 30, 2019

Lead Organization: Air Traffic Organization (ATO)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2 targets</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Complete each target by the specified due dates.

Computation: No calculation is required.

Formula: No formula is required to calculate the measure.

Scope of Metric: The scope of the metric is self-explanatory.

Method of Setting Target: The target was selected based on the potential impact on reducing surface safety risk.

Additional Information on Metric
Why the FAA and/or DOT chose this Metric: A full investigation of runway safety events, from every perspective, will foster the development and implementation of more targeted and impactful mitigations.

Public Benefit: More targeted and impactful mitigations will lead to a reduction in the severity and number of surface events. The result will be overall safety performance improvements for the flying public in the surface environment.

Partners: National Transportation Safety Board, Airlines for America, American Association for Airline Executives, Airline Pilot Association, National Association of Flight Instructors, Aircraft Owners and Pilots Association, Regional Airline Association, National Business Aviation Association, Experimental Airline Association, Airlines

External Factors Affecting Performance: Delay in external collaboration because of the unavailability of resources and/or the low priority among external stakeholders.

Source of the Data: The Runway Safety Council (RSC).

Statistical Issues: There are no statistical issues in the reporting of the metric.

Completeness: The FAA Co-Chairs the Runway Safety Council (RSC) with Air Line Pilots Association (ALPA). The RSC was established to facilitate the collaboration of government and industry leadership to develop and focus implementation of an integrated, data-driven strategy to reduce the severity and number of surface events.

Reliability: The RSC meets once a quarter each fiscal year.
Performance Measure Profile
FY 2019 Methodology Report

Hazard Risk Mitigations

**Performance Metric:** Implement approved activities in association with ATO’s Top Five (5) identified safety issues/hazards that affect safety risk in the National Airspace System (NAS).

**FY 2019 Performance Target:** Implement 80% of approved activities in association with ATO’s Top Five (5) identified safety issues/hazards that affect safety risk in the NAS. The Top Five (5) safety issues/hazards that will be addressed in FY19: Traffic Advisories/Safety Alerts, Altitude Compliance, Wrong Surface Landings, Pilot Reports (PIREP) Solicitation/Dissemination and Operational Risk Management (Coordination).

**Lead Organization:** Air Traffic Organization (ATO)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td><strong>Actual</strong></td>
<td>94%</td>
<td>92%</td>
<td>88%</td>
<td>93%</td>
<td>89%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** The metric counts the number of activities implemented to address the Top 5 issues/hazards. Each activity is a defined action.

**Computation:** Implementation of 80% of the activities identified for the fiscal year

**Formula:** \(100 \times \frac{\text{Number of Activities Completed}}{73 \text{ Activities Identified for FY2019}}\)

**Scope of Metric:** This metric measures the ATO success of implementing mitigations to address trending issues in the NAS, as well as the impact of those mitigations on the originally identified trend. The list of FY2019 issues are Traffic Advisories / Safety Alerts, Altitude Compliance, Wrong Surface Landings, Pilot Reports (PIREP) Solicitation / Dissemination and Operational Risk Management (Coordination)

**Method of Setting Target:** There will be five phases of the Top 5 process—Candidate selection, Corrective Action Plan (CAP) development, CAP implementation, monitoring, and close-out. Metrics have been set that will measure success in each of those phases, all of which are deadline driven. Each major deadline that is coming up in a fiscal year will count as an activity toward the metric.
Why the FAA and/or DOT chose this Metric: This metric was identified because it addresses the issues found within the NAS and moves the agency away from merely counting mistakes. By identifying the Top 5 trending safety issues, developing activities to address them, ensuring mitigations are implemented, monitoring the impact of mitigations, and closing out an issue once we have met performance targets, the agency is taking a proactive stance in identifying and mitigating issues.

Public Benefit: The adoption of this metric benefits the public by identifying and reducing trending safety issues within the NAS.

Partners: ATO Safety and Technical Training works collaboratively with stakeholders including other ATO Service Units (Mission Support, Tech Ops, Air Traffic, etc.); the National Air Traffic Controllers Association (NATCA); the pilot community (A4A, NBAA, AOPA, etc.); and other FAA organizations (Airports, Flight Standards, etc.) to develop comprehensive activities to address the issues identified in the NAS.

External Factors Affecting Performance: There are no external factors that affect the performance of this metric.

Source of the Data: ATO Safety and Technical Training reaches out to responsible organization points of contact to track the implementation progress of the approved activities and distributes monthly progress reports.

Statistical Issues: Not applicable.

Completeness: The activities (e.g., corrective action and monitoring plans) to address the Top 5 trending safety issues are formed using specific subject matter experts who are led through a data-driven process. Safety data are comprehensively reviewed to select well-defined issues to the list. Then, CAPs are developed and reviewed by the pertinent responsible organizations to ensure they address the identified issue and can be feasibly accomplished. The monitoring plans measure against safety performance targets to determine whether or not the mitigations are in place and reducing the observed trend. Once those targets are met, the issue is eligible for close-out, and the process begins again to review safety data to select a new issue to the list.

This cycle is broken down for each Top 5 into a plan for the coming fiscal year. Once the plans are signed, they represent specific and comprehensive plans that when executed, should contribute to improved safety in the NAS. Safety and Technical Training solicits status updates regularly from responsible organizations to ensure the work is meeting the intent of the original action and will be completed on time. The activity is not closed until a deliverable confirms its completion. Additionally, a director-level ATO Top 5 Steering Committee oversees the prioritization and decision-making needs of the Top 5. This committee ensures awareness, transparency, and buy-in at the highest levels.

Reliability: There is no reliability issue with this metric. The activity is either implemented during this fiscal year or not. ATO Safety and Technical Training considers an activity implemented when the requirements associated with the activity are met. Each activity has a point of contact that provides the implementation status to the program manager.
FY2019 Top 5 Issues:

TRAFFIC ADVISORIES / SAFETY ALERTS
Air traffic control not issuing traffic advisories and/or safety alerts where required.

ALTITUDE COMPLIANCE
Aircraft operating at unexpected or unintended altitude.

WRONG SURFACE LANDINGS
Aircraft landing on the wrong runway or on a taxiway.

PILOT REPORT (PIREP) SOLICITATION/DISSEMINATION
Air traffic control not meeting the requirement to solicit and/or disseminate PIREP information.

OPERATIONAL RISK MANAGEMENT (COORDINATION)
NAS status or interruption information not formally coordinated with impacted parties.
System Risk Event Rate (SRER)

**Performance Metric:** Reduce risks in flight by limiting the rate of the most serious losses of standard separation to 10 or fewer for every thousand (.01) losses of standard separation within the National Airspace System (NAS).

**FY 2019 Performance Target:** Reduce risks in flight by limiting the rate of the most serious losses of standard separation to 10 or fewer for every thousand (.01) losses of standard separation within the National Airspace System (NAS).

**Lead Organization:** Air Traffic Organization (ATO)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Actual</td>
<td>2.62</td>
<td>2.66</td>
<td>2.44</td>
<td>3.58</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** All instances of violation of prescribed radar separation standards are losses of standard separation. **Loss of Standard Separation:** The violation of a prescribed radar separation standard, as defined in FAA Order 7110.65 or other national directive, for an operation under ATO services, including a pilot deviation, which results in less than the applicable separation minima between two or more airborne aircraft. **Serious Loss of Standard Separation:** All validated losses of standard separation events with 66 percent or less of standard separation are categorized as Risk Analysis Events (RAE) that are examined by a panel consisting of bargaining unit representatives, pilots, and other experts using a disciplined and exhaustive Risk Analysis Process. Criteria used to determine those RAEs that constitute a serious event include: proximity, closure rate, repeatability and severity. **System Risk Event Rate (SRER):** The serious loss of standard separation data will be used to compute the SRER, which is the rate of the most serious losses, for every thousand losses of standard separation within the system.

**Computation:** Rolling 12-month rate of serious losses of standard separation per thousand losses of standard separation.

**Formula:** \[ \sum \text{(Serious Loss of Standard Separation)} / \text{(Loss of Standard Separation)} \times 1,000 \]

**Scope of Metric:** This metric will measure the separation performance of radar controlled aircraft flying under Instrument Flight Rules.

**Method of Setting Target:** The target of 20 had been set for FY 2012 through FY 2016 to establish a baseline while deploying improved analysis and loss of standard separation detection capability. Based on analysis of historical data, the determination was made to lower the target to 10 for FY2017, FY2018, and FY2019. It will set a minimum level of system performance that should be attainable while continuing an improving trend over historical performance.
Additional Information on Metric

Why the FAA and/or DOT chose this Metric: The ATO ensures that aircraft flying within the National Airspace System maintain required separation. With this metric, FAA will be able to:

- Align our approach to safety with our international partners,
- Integrate pilot and controller performance data on all air traffic incidents,
- Evaluate separation incidents caused by other factors, including pilot deviations,
- Avoid under-reporting and misclassification of incidents, and
- Facilitate the safe transition to NextGen.

Public Benefit: The data used to calculate the SRER provides the FAA with a quantifiable list of hazards that contribute to the highest risk events in the NAS. By addressing the most serious hazards, this targeted approach has become one of the ATO’s most powerful examples of how to prioritize its resources to identify hazards, take corrective action to mitigate the likelihood of severe events and monitor the results. Our approach is the culmination of our proactive safety management process, which includes valuing input from frontline employees, developing new policies and deploying new technology, which results in a greater measure of safety for the flying public.

Partners: The Federal Aviation Administration (FAA) through its Air Traffic Organization (ATO) internally coordinates with Quality Assurance, Voluntary Safety Reporting Programs, Air Traffic Services and Runway Safety to identify, assess and validate operational safety trends in an effort to mitigate safety risk. The ATO partners with the Air Traffic and Technical Operations labor organizations, the National Transportation Safety Board (NTSB), Aviation Safety (AVS), Commercial Aviation Safety Team (CAST) and various industry organizations to develop national corrective action plans and initiate safety enhancements.

External Factors Affecting Performance: Subject matter experts from multiple disciplines participate in the various processes needed to generate the information used in the metric calculation. Until additional capabilities are deployed to automate many of the manual processes, reductions in staffing could impact the identification of hazards and risk within the system.

Source of the Data: The data used to calculate the SRER will be obtained through the reporting of loss of standard separation events in accordance with the FAA orders or other national directives. These events will be collected via the Comprehensive Electronic Data Analysis and Reporting (CEDAR) System and the Traffic Analysis and Review Program (TARP) from all the FAA’s air traffic control facilities.

Statistical Issues: There are no identified statistical issues with calculating this metric. All validated loss of standard separation events will be included in the SRER.

Completeness: The FAA has implemented procedures, equipment and systems to identify, facilitate reporting, and validate all losses of separation. The FAA verifies and validates the accuracy of the data through the initial validation process followed by quality assurance and quality control reviews. Reconciliation of the databases is conducted monthly and anomalies are explored and resolved. In cases where significant discrepancies are identified, a request to re-submit occurrence data is requested. The data are typically not finalized for 90 days following the close of the fiscal year.
Reliability: Performance data and information is collected through a defined, repeatable risk analysis process. The FAA conducts annual reviews of reported data and compares them with data reported from previous years as part of our validation and verification processes.
Performance Measure Profile
FY 2019 Methodology Report

Commercial and Non-Commercial Surface Safety Risk Index

Commercial Aviation Performance Metric: Maintain the weighted surface safety risk index at or below 0.35 per million operations for Commercial Aviation

FY 2019 Commercial Aviation Performance Target: 0.35 per million operations

Non-Commercial Aviation Performance Metric: Maintain the weighted surface safety risk index at or below 0.60 per million operations for Non-Commercial Aviation.

FY 2019 Non-Commercial Aviation Performance Target: 0.60 per million operations

Lead Organization: Air Traffic Safety (ATO)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Commercial</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.35</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Non-Commercial</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.60</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Commercial Metric Unit: Rate of Commercial Aviation involved in Category A & B (most serious) runway incursions per million operations

Commercial Computation: Total number of Commercial Aviation involved in Category A and B (most serious) runway incursions divided by the total number of Commercial Aviation operations multiplied by 1 million

Commercial Formula: Number of Commercial Aviation involved in Category A & B (most serious) runway incursions divided by the number of Commercial Aviation Operations multiplied by 1,000,000

Non-Commercial Metric Unit: Rate of Non-Commercial Aviation involved in Category A & B (most serious) runway incursions per million operations

Non-Commercial Computation: Total number of Non-Commercial Aviation involved in Category A and B (most serious) runway incursions divided by the total number of Non-Commercial Aviation operations multiplied by 1 million

Non-Commercial Formula: Number of Non-Commercial Aviation involved in Category A & B (most serious) runway incursions divided by Non-Commercial Aviation Operations multiplied by 1,000,000
Scope of Metric: The metric measures the overall safety performance of the NAS in the runway environment. It includes all manner of operations (commercial and other types), aircraft, vehicles and pedestrians that occur in that environment. It includes runway collision accidents, runway excursion accidents, taxiway collision accidents, runway incursion incidents, runway excursion incidents, and taxiway surface incidents. Operations are defined as total takeoffs and landings. Commercial operations are considered those operating under FAR Parts 121, 129, and 135; all other operation types are considered non-commercial.

Method of Setting Target: Forecast modeling was used to attain challenging but reasonable targets based on past performance of the metric.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: By including various types of surface accidents and incidents the Surface Safety Metric provides a larger picture of National Airspace System (NAS) safety than previous metrics have. Additionally, because the Metric weights accidents and incidents based on their closeness to fatal accidents, it is more representative of safety risk than metrics that focus on simply counting occurrences.

Public Benefit: The Surface Safety Metric represents potential for fatal accidents on the runway or taxiway surface. A reduction in the Surface Safety Metric score is an indication of overall safety performance improvements for the flying public in the surface environment.

Partners: The FAA Co-Chairs the Runway Safety Council (RSC) with Air Line Pilots Association (ALPA). Other Council members include National Air Traffic Controllers Association, Airlines for America, Aircraft Owners and Pilots Association, National Association of Flight Instructors, National Business Aviation Association, Regional Airline Association, National Air Traffic Controllers Association, the American Association of Airport Executives, along with FAA Flight Standards, Office of Airports, and Air Traffic. The RSC collaborates government and industry leadership to develop and focus implementation of an integrated, data-driven strategy to reduce the number and severity of runway incursions.

External Factors Affecting Performance: Runway accidents and incidents are the result of an error by an air traffic controller, pilot, and/or vehicle/pedestrian event. The FAA has direct influence on air traffic controller performance, but indirect influence on pilots and airport personnel.

Source of the Data: The National Transportation Safety Board (NTSB) database is the primary source of runway accident data. Runway excursion data is supplemented by AVP’s Aviation System Analysis and Sharing (ASIAS) database, which aggregates runway excursion data from multiple sources. Air traffic controllers and pilots are the primary source of runway incursion and surface incident reports. The data are recorded in the Comprehensive Electronic Data Analysis Reporting (CEDAR) system. CEDAR replaced the FAA Air Traffic Quality Assurance (ATQA) database for the Air Traffic Organization. Preliminary incident reports are evaluated when received and evaluation can take up to 90 days. Operations data
used to calculate the runway incursion rate are provided via OPSNET, and are downloaded directly from the FAA Operations and Performance Data database.

**Statistical Issues:** Categorization of the various accidents is performed using statistical modeling, which is prone to sampling error.

**Completeness:** The FAA verifies and validates the accuracy of runway incursion and surface incident data through the initial validation process followed by quality assurance and quality control reviews. Reconciliation of the databases is conducted monthly and anomalies are explored and resolved. In cases where major problems are identified, a request to re-submit is issued. The FAA conducts annual reviews of reported data and compares them with data reported from previous years. Annual runway incursion incident data are used to provide a statistical basis for research, analysis, and outreach initiatives.

The Surface Safety Metric will be recalculated if accidents or incidents are reported late or if operations data are retroactively adjusted.

**Reliability:** A classification algorithm with approximately 95% accuracy is used to classify NTSB events as runway collisions, taxiway collisions, or runway excursions. Given this classification error, there is a small chance that irrelevant accidents will be included in the Surface Safety Metric calculation or relevant accidents will be excluded.
Performance Measure Profile
FY 2019 Methodology Report

Noise and Community Involvement

Performance Metric: Develop a procedural communication campaign that results in better coordination and collaboration across lines of business, staff offices and stakeholders to address a wide range of concerns including aircraft noise.

FY 2019 Performance Targets

Target 1: Continue to facilitate a series of Agency-wide, community involvement-focused seminars and/or workshops that solidify standard operating procedures by September 30, 2019.

Target 2: Develop a noise screening methodology document that will be used to develop updated noise screening capabilities for FAA by September 30, 2019

Lead Organization: Air Traffic Organization (ATO) and Office of Environment and Energy (AEE)

Definition of Metric

Metric Unit: Binary yes/no of completion of the target.

Computation: No calculation is required.

Formula: No formula is required to calculate the measure.

Scope of Metric:
Target 1: The overall objective of the Strategic Community Involvement (CI) Framework is to delineate strategic actions and organize priorities to enable standardized and scalable practices for conducting CI activities across the FAA.

Target 2: Provide a more streamlined methodology to consistently assess noise impacts for federal actions across all FAA lines of business with National Environmental Policy Act (NEPA) responsibilities. As with existing policy and practice, this updated noise screening methodology would continue to support determinations for when a Categorical Exclusion (CATEX) may apply.

Method of Setting Target:
Target 1: The target was set based on the assumption that CI practitioners will attend at least one of these workshops/seminars every two years.

Target 2: The target was set based the need to gain input from all FAA lines of business with NEPA responsibilities through a Noise Screening Workgroup, which would then be used to inform technical validation and implementation activities planned for FY20.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric:
Target1: Since 2016, FAA has been transforming CI strategy and practices. A comprehensive and strategic approach to CI efforts is central to this transformation. The desired outcome is to establish
standardized, scalable, repeatable practices across the agency for greater consistency in conducting CI nationwide.

**Target 2:** In recent years, the evolution of actions subject to NEPA review and the need to assess them in a more coordinated and streamlined manner has demonstrated a need to update and consolidate the FAA’s noise screening tools to better serve the agency’s needs. Preparation of an updated noise screening methodology provides a rigorous documentation of noise screening assumptions.

**Public Benefit:**
**Target 1:** Greater consistency in FAA CI practices nationwide. While the details naturally differ from case to case and scenario to scenario across the country, there are often identifiable similarities on which standardized practices are built. The public benefits from experiencing a more unified approach from the FAA, particularly as community groups in different parts of the country have begun to communicate with each other and compare responses from the FAA.

**Target 2:** Greater consistency in the initial evaluation of noise across different types of actions subject to NEPA. A more consistent and documented noise screening methodology will aid the public’s understanding of the way in which FAA makes environmental determinations for noise.

**Partners:** N/A – Internal to FAA

**External Factors Affecting Performance:**
**Target 1:** Resource and budget constraints are the impediments to a campaign to standardize community engagement practices for airspace actions.

**Target 2:** Time and resource constraints in coordinating agency-wide input from all FAA lines of business with NEPA responsibilities.

**Source of the Data:**
**Target 1:** The FAA formed a leadership-level cross-agency forum, the Noise Steering Group (NSG), to discuss aviation noise issues and the FAA’s response to them. Discussions at the NSG, experiences at various open public meetings addressing airspace changes, noise-related complaints from individuals, and reporting from ATO Service Centers and FAA regional offices have all provided data and feedback for forming a strategy to increase consistency of FAA policy and response to the public and to members of Congress.

**Target 2:** Coordinated input from all FAA lines of business with NEPA responsibilities on their needs and use cases for noise screening evaluations will inform the areas of research needed to validate and implement a new consolidated noise screening tool.

**Statistical Issues:** There are no statistical issues in the reporting of the metric for Target 1 or Target 2.

**Completeness:**
**Target 1:** As community involvement best practices continue to evolve, it will be necessary to revisit the CI materials and revise them on a regular basis to ensure they are valid and support the agency’s CI
policy. This metric should be viewed as the first step needed to address the establishment of more standardized, repeatable, and scalable CI practices across the FAA.

**Target 2:** After input from FAA lines of business with NEPA responsibilities is consolidated into an updated noise screening methodology, the requirements to assess and validate the assumptions needed to streamline its implementation will need to be determined. This validation will occur in FY20 once the updated methodology has been established; however, should the validation process uncover specific technical or policy challenges, elements of the methodology may need to be revisited.

**Reliability:** The metric has no reliability issues for Target 1 or Target 2.
Performance Measure Profile
FY 2019 Methodology Report

National Airspace System (NAS) On-Time Arrivals

Performance Metric: Achieve a NAS on-time arrival rate of 88 percent at Core airports.

FY 2019 Performance Target: Achieve a NAS on-time arrival rate of 88 percent at Core airports.

Lead Organization: Air Traffic Organization (ATO)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>88.00%</td>
<td>88.00%</td>
<td>88.00%</td>
<td>88.00%</td>
<td>88.00%</td>
</tr>
<tr>
<td>Actual</td>
<td>90.57%</td>
<td>92.01%</td>
<td>92.98%</td>
<td>89.80%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Total On-Time Arrival measure helps monitor the overall NAS performance by providing a baseline for all on-time performance measures. It is the percentage of all flights arriving at the Core Airports equal to or less than 15 minutes late, based on the carrier flight plan filed with the FAA. It includes minutes of delay incurred due to all causal factors as defined by ASQP. The number of flights arriving on or before 15 minutes of flight plan arrival time is divided by the total number of completed flights, and the result is multiplied by 100 to convert it to a percentage. The FAA collects the data quarterly for the purpose of monitoring NAS performance as a whole. This measure contains uncontrolled volatile causal factors that may have a major effect on the metric for total on-time performance. Therefore, there is no target set for this measure.

Metric Unit: Percentage of flights arriving no more than 15 minutes late.

Computation: NAS On-Time Arrival is the percentage of all flights arriving at the Core Airports equal to or less than 15 minutes late, based on the carrier flight plan filed with the FAA, and excluding minutes of delay attributed by air carriers to extreme weather, carrier action, security delay, and prorated minutes for late arriving flights at the departure airport. The number of flights arriving on or before 15 minutes of flight plan arrival time is divided by the total number of completed flights, and the result is multiplied by 100 to convert it to a percentage.

Formula: \[
\frac{\text{NAS On Time Flights}}{\text{Total Flights}} \times 100
\]

\[
\text{NAS On Time Flights} = \text{Total Flights} - \text{NAS Delayed Flights}
\]

NAS Delayed Flights: The time of arrival of completed passenger flights to and from the Core Airports is compared to their flight plan scheduled time of arrival. For delayed flights, delay minutes attributable to extreme weather, carrier caused delay, security, and a prorated share of delay minutes due to a late arriving flight at the departure airport are subtracted from the total minutes of delay. If the flight is still late, it is counted as a delayed flight attributed to the National Aviation System (NAS) and the FAA.

Scope of Metric: A flight is considered on time if it arrives no later than 15 minutes after its published, scheduled arrival time. This definition is used in both the DOT Airline Service Quality Performance (ASQP), and Aviation System Performance Metrics (ASPM) reporting systems. Air carriers, however, also
file up-to-date flight plans for their services with the FAA that may differ from their published flight schedules. This metric measures on-time performance against the carriers’ filed flight plan, rather than what may be a dated published schedule.

The Core airports are those which have 1% or more of total U.S. enplanements (the DOT large hub airports) or 0.75% or more of total U.S. non-military itinerant operations.

**Method of Setting Target:** The target is set based on three years of historical trending data.

### Additional Information on Metric

**Why the FAA and/or DOT chose this Metric:** On-time performance is a measure of the ability of the FAA to deliver services. A major weakness of using air carrier scheduled on-time performance as a metric is that it contains flight delays caused by incidents outside the FAA’s control. However, the air carriers have supplied information on the causation of flight delay, by flight, since June 2003 under revised Part 234 instructions. Removal of delays not attributable to the FAA provides a more accurate and equitable method of measuring the FAA’s performance.

**Public Benefit:** This metric helps members of the flying public reach their destinations on time.

**Partners:** FAA; Airlines for America (A4A); National Business Aviation Association (NBAA); airlines

**External Factors Affecting Performance:** Weather, airline scheduling practices, runway construction/maintenance, and ramp/airport congestion may all affect on time performance.

**Source of the Data:** The ASPM database, maintained by the FAA’s Office of Performance Analysis (AJR-G), in conjunction with DOT’s ASQP causation database, provides the data for this metric. By agreement with DOT, certain major U.S. carriers file ASQP flight data for flights to and from most large and medium hubs. Flight records contained in the Traffic Flow Management System (TFMS) supplement the flight data.

**Statistical Issues:** Data are not reported for all carriers; at present, 10 operating carriers report monthly into the ASQP reporting system.

**Completeness:** Fiscal year data are finalized approximately 90 days after the close of the fiscal year.

**Reliability:** The reliability of ASPM is verified on a daily basis by the execution of a number of audit checks, comparison to other published data metrics, and through the use of ASPM by over 3,000 registered users. ASQP data is filed monthly with DOT under 14 CFR Part 234, Airline Service Quality Performance Reports, which separately requires reporting by major U.S. air carriers on domestic flights to and from Core airports.
Exert Global Leadership at International Civil Aviation Organization (ICAO)

Performance Metric: Work through the International Civil Aviation Organization (ICAO) to align global direction and priorities with U.S. policy and positions.

FY 2019 Performance Target: Based on the 13th Air Navigation Conference concludes, identify priority issues and implement an action plan, including regional and bilateral outreach, to promote, advance, and secure FAA’s top three objectives relating to safety, air navigation, and emerging issues for the ICAO 40th Assembly. Due September 30, 2019

Lead Organization: Office of Policy, International Affairs & Environment (API)

<table>
<thead>
<tr>
<th>Target</th>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>09/30/2019</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Milestones identified and coordinated by API, validated by the International Steering Committee (ISC) and approved by the International Advisory Board (IAB).

Computation: N/A.

Formula: N/A.

Scope of Metric:
Target 1 – Coordinate and prepare a paper identifying the priority outcomes from the 13th Air Navigation Conference based on input from FAA and other U.S. Government Agencies.

Target 2 – Develop and implement an action plan to promote, advance, and secure FAA’s top three objectives relating to safety, air navigation, and emerging issues for the ICAO 40th Assembly including regional and bilateral outreach.

Method of Setting Target: Outcomes from the ICAO 13th Air Navigation Conference provided a foundation to prioritize and promote U.S. policies within the ICAO process. The ISC and IAB directed the Office of International Affairs identify the priority outcomes and support U.S. policies at the ICAO 40th Assembly.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: The U.S. benefits from FAA global leadership to realize improvements in aviation safety, efficiency, capacity, and environmental sustainability. U.S. citizens travelling abroad and flights between the U.S. and other countries benefit from increased safety due to FAA expertise and leadership in developing global regulations and standards. FAA programs promote seamless connectivity across borders for air navigation and product exchanges. Worldwide acceptance
of U.S. policies and regulatory approaches removes barriers for the U.S. aerospace industry, a vital component of the U.S. economy.

**Public Benefit:** This metric will allow the FAA to make better resource decisions about how we engage globally using an integrated data-informed approach. We will make decisions about our international activities and programs based on our ability to enhance U.S. influence and better target our resources to shape global standards and assist countries to improve aviation safety, efficiency, capacity, and environmental sustainability to the benefit of the U.S. flying public.

**Partners:** Partners include, but are not limited to, FAA Lines of Business, bilateral partners in civil aviation authorities and air navigation service providers, U.S. industry, regional organizations, and U.S. Government Agencies.

**External Factors Affecting Performance:** Historically the U.S. shaped the global aviation sector based on its size, technological advancement, expertise, and regulatory development. The FAA has been the leading model for safety, efficiency, and environmental sustainability for decades. However, the global transportation network is changing with more entities striving to influence global standards based on their regional/State priorities (not those of the U.S.). While the U.S. still maintains the largest airspace in the world, its percentage of overall global traffic and operational aerospace products is decreasing. Hence, the FAA needs to adapt its international approach to maintain and enhance its leadership position. Several trends illustrate the challenge:

- Growth of aviation globally;
- U.S. Industry outsources globally;
- Varying levels of aviation safety oversight;
- Divergent Standards and Practices;
- Alternatives and complexity increases;
- Foreign regions consolidate their influence; and
- Resource constraints.

These trends have altered the global aviation landscape. Further, rapid growth has occurred in parts of the world—Latin America, Asia-Pacific, and the Middle East—where the FAA has traditionally had a lower profile. The FAA’s International Strategy was developed to reflect this new reality.

**Source of the Data:** After reviewing the existing Global Leadership Initiative (GLI) and ICAO outcomes, the FAA identified strategic safety and efficiency improvements in proposed ICAO global aviation issues as top priorities.

**Statistical Issues:** No statistical issues.

**Completeness:** As the GLI and the integrated FAA International Strategy evolve, it may be necessary to revisit the identified data and revise the criteria on a regular basis to ensure it is valid and supports the strategy.
**Reliability:** The identified data collection criteria will change on a regular basis as it is updated at the source. Although this may not affect the future inclusion of this criterion in the future, it would affect the prioritization process.

**Advance U.S. Standards and Safety Culture through Development of Strategic Plans to Support the U.S. Government Goals and Priorities for International Engagement**

**Performance Metric:** Advance U.S. standards to foster the safety of U.S. citizens traveling internationally and reduce regulatory barriers to U.S. aviation firms globally. Implement the FAA’s International Strategy to Focus and Enhance International Engagement, and by September 30, 2019:

**FY 2019 Targets**

Target 1: Establish an agency-wide approach to enterprise-level international training

Target 2: Provide, and have approved by the FAA Management Board, a list of priorities and programs for FY 2020

**Lead Organization:** Office of Policy, International Affairs & Environment (API)

<table>
<thead>
<tr>
<th></th>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>9/30/2019</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Actual</td>
<td>9/30/2019</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** Milestones identified and coordinated by API, validated by the International Steering Committee (ISC) and approved by the International Advisory Board (IAB).

**Computation:** N/A.

**Formula:** N/A.

**Scope of Metric:** Target 1 – Prepare a corporate definition of and approach to international training that transforms and expands FAA’s influence and impact upon the global aviation community to create support for and implementation of U.S. approach to aviation safety.

Target 2 – Incorporate current goals and expectations with regional and global perspectives to promote U.S.-based standards and best practices.

**Method of Setting Target:** Target 1 – The ISC, IAB, Deputy’s Meeting, and Management Board directed the Office of International Affairs to undertake an intra-agency process to establish a formal International Training Program, beginning with foundational concepts/elements, by the end of FY 2019.
Target 2 – Milestones will be developed and aligned with the integrated FY 2019 FAA International Strategy to ensure support of the strategic priorities of the agency.

Additional Information on Metric

**Why the FAA and/or DOT chose this Metric:** The U.S. benefits from FAA global leadership to realize improvements in aviation safety, efficiency, capacity, and environmental sustainability. U.S. citizens travelling abroad and flights between the U.S. and other countries benefit from increased safety due to FAA expertise and leadership in developing global regulations and standards. FAA programs promote seamless connectivity across borders for air navigation and product exchanges. Worldwide acceptance of U.S. policies and regulatory approaches removes barriers for the U.S. aerospace industry, a vital component of the U.S. economy.

**Public Benefit:** This metric will allow the FAA to make better resource decisions about how we engage globally using an integrated data-informed approach. We will make decisions about our international activities and programs based on our ability to enhance U.S. influence and better target our resources to shape global standards and assist countries to improve aviation safety, efficiency, capacity, and environmental sustainability to the benefit of the U.S. flying public.

**Partners:** Partners include, but are not limited to, FAA Lines of Business, bilateral partners in civil aviation authorities and air navigation service providers, U.S. industry, regional organizations, and U.S. Government Agencies.

**External Factors Affecting Performance:** Historically the U.S. shaped the global aviation sector based on its size, technological advancement, expertise, and regulatory development. The FAA has been the leading model for safety, efficiency, and environmental sustainability for decades. However, the global transportation network is changing with more entities striving to influence global standards based on their regional/State priorities (not those of the U.S.). While the U.S. still maintains the largest airspace in the world, its percentage of overall global traffic and operational aerospace products is decreasing. Hence, the FAA needs to adapt its international approach to maintain and enhance its leadership position. Several trends illustrate the challenge:

- Growth of aviation globally;
- U.S. Industry outsources globally;
- Varying levels of aviation safety oversight;
- Divergent Standards and Practices;
- Alternatives and complexity increases;
- Foreign regions consolidate their influence; and
- Resource constraints.

These trends have altered the global aviation landscape. Further, rapid growth has occurred in parts of the world—Latin America, Asia-Pacific, and the Middle East—where the FAA has traditionally had a lower profile. The FAA’s International Strategy was developed to reflect this new reality.
**Source of the Data:** At the request of agency executives, the Office of International Affairs was tasked to examine the agency’s current process for program planning, including the focus and effectiveness of international training.

**Statistical Issues:** There are no statistical issues.

**Completeness:** As the integrated FAA International Strategy evolves, it may be necessary to revisit the identified data and revise the criteria on a regular basis to ensure it is valid and supports the strategy.

**Reliability:** It can be assumed that the identified data collection criteria will change on a regular basis as it is updated at the source. Although this may not affect the future inclusion of this criterion in the future, it would affect the prioritization process and possibly the end product.
Implement Supersonic Plan

**Performance Metric:** Concurrence of Notice of Proposed Rulemaking (NPRM) titled Special Flight Authorizations for Testing Supersonic Aircraft (Part 91, Appendix B) by December 21, 2018

**FY 2019 Performance Target:** Concurrence of NPRM titled Special Flight Authorizations for Testing Supersonic Aircraft (Part 91, Appendix B) by December 21, 2018

**Lead Organization:** Office of Environment and Energy (AEE)

**Definition of Metric**

**Metric Unit:** Concurrence – Yes or No

**Computation:** N/A

**Formula:** N/A

**Scope of Metric:** This metric tracks whether a milestone concurrence has been received prior to issuing the NPRM by 12/31/2019.

**Method of Setting Target:** This target reflects detailed planning to support the congressional requirement that FAA issue this NPRM by December 21, 2019. This NPRM will modernize the application process for a person applying to operate a civil aircraft at supersonic speeds for the purposes stated in that rule.

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** This action is a major milestone in the ability to publish a NPRM to solicit public comment on changes to the Part 91 Appendix B. These changes are designed to modernize the application process for a person applying to operate a civil aircraft at supersonic speeds for the purposes stated in that rule. The metric was selected to track critical milestones needed prior to publication of the NPRM in the Federal Register.

**Public Benefit:** The public will benefit from the rule as it is deregulatory because of the increased clarity, information, and accessibility it would provide to applicants and expects to reduce the number of follow-up requests for additional information between the FAA and applicants. In the future, FAA will examine the possibility of further revising Part 91 to address civil aircraft sonic boom (91.817).

**Partners:** Office of the Secretary of Transportation, Components of the Executive Office of the President including the Office of Management and Budget (OMB)

**External Factors Affecting Performance:** The drafting of the NPRM is a Departmental responsibility.

**Source of the Data:** The NPRM does not require additional data than what FAA already had as it is meant to modernize and clarify.
Statistical Issues: N/A

Completeness: The Office of Environment and Energy (AEE), Office of the Chief Counsel (AGC), and Aviation Safety (AVS) are responsible for resolving policy issues and reviewing and completing preamble sections that will constitute the final rule. AEE is the lead office for this rule.

Reliability: AEE and ARM are responsible for tracking and reporting the approval process necessary to obtain the Secretary’s concurrence.
Simplify and Enhance Environmental Review Processes for Major Transportation Projects on Schedule (Projects on Schedule)

**Performance Metric:** Percent of FAA Owned Projects Posted on Permitting Dashboard that are on Schedule.

**FY 2019 Performance Target:** 90%

**Lead Organization:** Office of Environment and Energy (AEE)

<table>
<thead>
<tr>
<th></th>
<th>FY 2018</th>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>40%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Actual</td>
<td>100%</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** Percent of Projects on Schedule.

**Computation:** This metric tracks adherence to timelines for environmental review milestones for FAA’s major transportation projects on the Permitting Dashboard. The metric offers a “snapshot” of the percent of projects on schedule at any given time.

**Formula:** N/A

**Scope of Metric:** This measure tracks the schedules for Environmental Assessments (EAs) and Environmental Impact Statements (EISs) for major transportation projects for which FAA is the lead agency. These projects are posted on the Federal Infrastructure Permitting Dashboard, an online tool for Federal agencies, project developers, and interested members of the public to track the Federal government’s environmental review and authorization processes for large or complex infrastructure projects, part of a government-wide effort to improve coordination, transparency, and accountability. The Permitting Dashboard includes project timelines and milestones with target and actual dates.

For the purposes of this metric, “major transportation projects” are certain infrastructure projects undertaken by FAA or for which FAA is providing funding, approving a change to an airport sponsor’s Airport Layout Plan, or issuing a Commercial Space launch operator license to an applicant, and that require an EIS or an EA. “Major transportation projects” include Metroplex projects (air traffic procedures in metropolitan areas with multiple airports and complex air traffic flows); new airports, new runways, major runway extensions, terminal projects and ancillary facilities; new commercial space launch sites; projects subject to the environmental streamlining provisions of 49 U.S.C. sec. 47171 and certain projects of national importance to the National Plan of Integrated Airport Systems.

**Method of Setting Target:** Because the FAA did not have a baseline of past performance for this measure when this target was set, and the Permitting Dashboard had not yet been modified to fully accommodate permitting timetables, a conservative target was set for the first few years. In FY18, DOT made improvements and clarified guidance for the Permitting Dashboard which makes it easier for FAA...
to keep the information up-to-date. As a result, we exceeded our initial FY18 target of 40% and reset the target at our end goal of 90% of projects on schedule for the remaining four years of this APG.

### Additional Information on Metric

**Why the FAA and/or DOT chose this Metric:** The metric was established by FAA to further the principles of 49 U.S.C. 47171, the *Aviation Streamlining Approval Act of 2003*, and the directives in Executive Order 13807, *Establishing Discipline and Accountability in the Environmental Review and Permitting Process for Infrastructure*. DOT has adopted a similar Agency Priority Goal, *Simplify and Enhance Environmental Review Process for Major Transportation Projects*, which only covers EISs meeting certain criteria. The FAA’s APG covers a broader set of projects and includes both EISs and EAs.

**Public Benefit:** Reporting on the extent to which the environmental review for these projects are on schedule allows the FAA to monitor situations which may lead to delays in project implementation and to identify patterns of delay that may need to be addressed.

**Partners:** The FAA will collaborate with state and local leaders, as well as other agencies as applicable, to achieve this metric.

**External Factors Affecting Performance:** N/A

**Source of the Data:** The data used to track progress for this metric is pulled from the Federal Infrastructure Permitting Dashboard, which is populated by the FAA Permitting Dashboard Administrator. The Dashboard Administrator works with representatives from each line of business to ensure that all data is captured in a timely, efficient, and accurate manner.

**Statistical Issues:** This metric provides a “snapshot” of FAA performance, and may not reflect long-term performance. For example, in Q1 FY 2018 the FAA met 100% of the project milestones, based on the five major Transportation Projects in progress, but a minor delay in one project resulted in a drop to 93% for the first month of Q2 FY 2018.

**Completeness:** The FAA will work to ensure that data associated with Major Transportation Projects is updated on the Permitting Dashboard in a timely, accurate, consistent manner and that all data is complete. FAA’s Permitting Dashboard Administrator will conduct regular check-ins with all FAA lines of business to ensure that all projects are up to date and accurate.

**Reliability:** The accuracy and completeness of this data relies on the lines of businesses responsible for providing project data to the Permitting Dashboard Administrator.
Performance Measure Profile
FY 2019 Methodology Report

Simplify and Enhance Environment Review - Projects (Months to Complete)


FY 2019 Performance Target: Complete environmental review for FAA owned projects in 24 months

Lead Organization: Office of Environment and Energy (AEE)

<table>
<thead>
<tr>
<th></th>
<th>FY 2018</th>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>48</td>
<td>42</td>
<td>36</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Actual</td>
<td>11.74</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Months to Complete Environmental Review

Computation: This metric will calculate the number of months elapsed from inception to completion for all EAs and EISs for major transportation projects completed in a given year. For EAs, this includes the time from the first FAA involvement (e.g., initiation of work on a draft EA or receipt of a draft EA from an applicant) to a Finding of No Significant Impact (FONSI) or determination that an EIS is needed. For an EIS the time calculated begins with issuance of a Notice of Intent (NOI) to prepare an EIS to a Record of Decision (ROD).

Formula: N/A

Scope of Metric: This measure tracks progress towards reducing the average time to complete Environmental Assessments (EAs) and Environmental Impact Statements (EISs) for major transportation projects for which FAA is the lead agency. These projects are posted on the Federal Infrastructure Permitting Dashboard, an online tool for Federal agencies, project developers, and interested members of the public to track the Federal government’s environmental review and authorization processes for large or complex infrastructure projects. This is a part of a government-wide effort to improve coordination, transparency, and accountability. The Permitting Dashboard includes target and actual dates for project milestones.

For the purposes of this metric, “major transportation projects” are certain infrastructure projects undertaken by FAA or for which FAA is providing funding, approving a change to an airport sponsor’s Airport Layout Plan, or issuing a Commercial Space launch operator license to an applicant, and that require an EIS or an EA. “Major transportation projects” include Metroplex projects (air traffic procedures in metropolitan areas with multiple airports and complex air traffic flows); new airports, new runways, major runway extensions, terminal projects and ancillary facilities; new commercial space launch sites; projects subject to the environmental streamlining provisions of 49 U.S.C. sec. 47171 and certain projects of national importance to the National Plan of Integrated Airport Systems.

Method of Setting Target: FAA has reduced the time for processing an EIS since 2003, when a GAO Report found that new runway construction from initial planning to completion was taking a median of 10 years, to a median of 6.63 years for EISs initiated after 2003 and completed by June 2018. FAA expects to reduce that time further still under the One Federal Decision framework established by
Performance Measure Profile
FY 2019 Methodology Report

Executive Order 13807, *Establishing Discipline and Accountability in the Environmental Review and Permitting Process for Infrastructure*, which set a goal of two years (24 months) to complete an EIS. FAA did not have a baseline for the EAs covered by this metric when this target was set, but in FY18 four EAs were completed for Major Transportation Projects with an average completion time of 11.74 months. Based on FY18 performance, and with the expectation of one or more EISs being completed in FY19 and FY20, we confirmed the original declining annual targets that would reach the 24-month goal in the fifth year.

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** The metric was established by FAA to further the principles of 49 U.S.C. 47171, the *Aviation Streamlining Approval Act of 2003*, and the directives in Executive Order 13807, *Establishing Discipline and Accountability in the Environmental Review and Permitting Process for Infrastructure*. DOT has adopted a similar Agency Priority Goal, *Simplify and Enhance Environmental Review Process for Major Transportation Projects*, which only covers EISs meeting certain criteria. The FAA’s APG covers a broader set of projects and includes both EISs and EAs.

**Public Benefit:** Achieving the goals established by this metric will allow the public to reap the benefits of FAA transportation projects more quickly than previous efforts. Additionally, the tracking system used to achieve this metric, The Federal Infrastructure Permitting Dashboard, will allow for greater transparency of project efforts.

**Partners:** The FAA will work with DOT, as well as any cooperating agencies as applicable by project to achieve our 24-month goal.

**External Factors Affecting Performance:** The length of time needed to complete environmental reviews is dependent on many factors, including the scope and complexity of the project, the extent of potential environmental impacts, the sensitivity of affected resources, public interest and political involvement. The process can take as a little as a few months for a simple project’s EA; however, a more complex project involving multiple environmental issues can require an EIS that may take several years to complete.

**Source of the Data:** The data used to track progress for this metric is pulled from the Federal Infrastructure Permitting Dashboard, which is populated by the FAA Permitting Dashboard Administrator.

**Statistical Issues:** The environmental reviews captured by this metric range from EAs focused on a limited number of impact areas to comprehensive EISs for complex projects may not reflect long-term performance because of a relatively small data set. We anticipate that this metric will fluctuate as new Major Transportation Projects begin and new EAs and EISs are added to the data set. At any given time we may have one or more complex projects driving up the average number of months to complete an environmental review, or we may have a greater number of EAs for simpler projects driving down the average.

**Completeness:** FAA’s Permitting Dashboard Administrator monitors the Dashboard and coordinates regularly with FAA program offices and with DOT’s Infrastructure Permitting Improvement Center in
OST-P to ensure that all data is complete.

**Reliability:** The accuracy and completeness of this data relies on the lines of businesses responsible for providing project data to the Permitting Dashboard Administrator.
Performance Measure Profile
FY 2019 Methodology Report

Assistant Administrator for Finance and Management (AFN) Performance Measure Profiles

Cybersecurity/Information Technology (IT) Risk Management and Information Systems Security

Performance Metric: Implement vulnerability management processes to address high value risks threats and vulnerabilities to FAA Information Systems. Continue to provide information to the Cybersecurity Steering Committee to assure consistent risk acceptance decisions.

FY 2019 Performance Target: Address 80% of Internet Protocol (IP) based high value risks within 30 days.

Lead Organization: Office of Finance and Management (AFN), Office of Information and Technology Services (AIT)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>80% of high value risks within 30 days</td>
</tr>
<tr>
<td><strong>Actual</strong></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

**Metric Unit:** Percentage of high value risks addressed within 30 days from initial incident detection. High value risks are defined as:

1. Threats that are identified by the US Computer Emergency Response Team (US-CERT) as high and deemed exploitable within FAA’s infrastructure, or
2. Vulnerabilities that affect high risk systems – Plan of Action & Milestones (POA&Ms) that can be easily exploited, or
3. Vulnerabilities related to current attacks (such as US-CERT) that are exploitable in the environment or that are related to current incidents

**Computation:** The performance target is measured by dividing the number of high value risks that were addressed within 30 days from initial detection by the total number of high value risks detected.

**Formula:** \( \frac{(\text{High Value Risks Addressed within 30 Days}) \times 100}{\text{Total Number of High Value Risks}} \)

**Scope of Metric:** High value risks detected across the three FAA operating domains: Mission Support, National Air Space (NAS), and Research & Development (R&D). Risks are introduced from several different channels, such as audits, scans, vulnerabilities, etc.

**Method of Setting Target:**

80 % Goal: The FAA’s Security Operations Center (SOC) executes the process to identify high value risks and track their disposition by establishing a baseline and notifying domain POCs with high value risk
Performance Measure Profile
FY 2019 Methodology Report

information. Domain POCs will address risks within 30 days and report disposition to FAA SOC. The Cybersecurity Steering Committee will review for consistent risk acceptance decisions.

Reporting will occur monthly to the Cybersecurity Steering Committee and quarterly to the Business Council, or as requested.

**Providing Information to the Cybersecurity Steering Committee to assure consistent risk acceptance decisions:** Provide data monthly to ensure that the appropriate Authorizing Official within each of the three operating domains approves security incidents and/or vulnerabilities with residual risks.

**Visualizing vulnerabilities on all FAA information systems:** Vulnerabilities visualized through the deployment of a visualization dashboard in conjunction with implementation of continuous diagnostics and mitigation (CDM) capabilities, providing near, real-time information about Agency hardware, software, and vulnerabilities. In addition, support of other Information Security Continuous Monitoring (ISCM) activities, such as integrating information from the NAS domain.

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** Today’s electronically dependent environment demands that IT systems be delivered securely and cost effectively, while meeting the agency’s diverse business requirements. The Information Systems Security (ISS) measure ensures that the FAA and its critical infrastructure is well protected against a persistent and evolving cyber threat, while recognizing an effective response is required, should deterrence fail.

**Public Benefit:** The Office of the Chief Information Officer (CIO-AIT) is dedicated to providing the highest level of cybersecurity available and is committed to the security and protection of personally identifiable information.

**Partners:** AIT continues to strengthen ties with partners in the DOT and the Department of Homeland Security (DHS). DOT and DHS support our efforts of a cyber-defense strategy to harden the internal backbone of FAA systems and networks to avoid disruptions to services. Collaboration, both internally and externally, will help mitigate risks to an acceptable level.

The SOC, a 24x7x365 day operation, is the central reporting point for all cyber events occurring within the FAA and Department of Transportation (DOT). The SOC also represents the DOT as the single source provider of the cyber “big picture” when reporting to the Department of Homeland Security.

**External Factors Affecting Performance:** The occurrence, pace and volume of emerging threats and vulnerabilities that could potentially target the FAA are unpredictable.

**Source of the Data:** High value risks are threats and vulnerabilities identified by the DHS National Cybersecurity and Communications Integration Center (NCCIC). The NCCIC conducts persistent network and vulnerability scans of all Federal civilian agency internet-accessible systems to identify known critical vulnerabilities and configuration errors, capturing the total number of critical vulnerabilities in the Cyber Hygiene Report. Critical systems are rated as Federal Information Processing Standards (FIPS)-199
Performance Measure Profile
FY 2019 Methodology Report

“HIGH” in the Cyber Security Assessment and Management (CSAM) system, and support mission-essential services identified in the FAA Continuity of Operations Plans.

Statistical Issues: None

Completeness: The FAA’s Security Operations Center (SOC) develops and executes the process to identify high value risks and track their disposition by establishing a baseline and notifying domain POCs with high value risk information. Domain POCs will address high value risks within 30 days from initial incident detection and report the disposition to FAA SOC. The Cybersecurity Steering Committee will review high value risks monthly to ensure consistent risk acceptance decisions. For high value risks not addressed within 30 days, a detailed justification must be submitted to DHS within the same 30-day period, outlining any barriers, planned steps for resolution, and a timeframe for mitigation.

Reliability: The governance process validates whether threat data received impacts FAA information and systems, and the potential risk to each domain. The technical implementation of this approach, divided into three phases: threat, vulnerability and consequence, involves the flow of data from threat reporting sources into the SOC, as shown in the graphic below.
Cybersecurity in the Aviation Ecosystem

Performance Metric: FAA Aviation Ecosystem and Stakeholder Engagement Office briefing on Aviation Ecosystem Cybersecurity to the Aviation Government Coordinating Council (AGCC) and the Aviation Sector Coordinating Council (ASCC). Finalize the Aviation Cyber Initiative (ACI) Charter with Signatures of the Secretaries of the three tri-chair Departments to transition the Inter-Agency Core Cyber Team (ICCT) functions into the ACI.

FY 2019 Performance Target: Deliver a briefing to the AGCC and ASCC on FAA cybersecurity efforts to enable greater information sharing. Complete DOT/FAA approval of the ACI Charter by obtaining Secretary of Transportation’s signature. Due: 08/31/2019

Lead Organization: Office of Information and Technology Services (AIT), Aeronautical Information Services (AIS)

<table>
<thead>
<tr>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Deliver briefing &amp; Complete approval</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Actual</td>
<td>Briefing 03/05/19 Approval 05/30/19</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: N/A

Computation: N/A

Formula: N/A

Scope of Metric: N/A

Method of Setting Target: The FY 2019 performance target was established as part of the work done by the Aviation Ecosystem and Stakeholder Engagement Office to assess the potential impacts of cyber events to stakeholders across the Ecosystem. Briefing the AGCC and ASCC on the FAA’s cybersecurity efforts is an expansion of cyber information sharing with the Aviation Ecosystem stakeholders. The ACI is a core body implementing cyber aspects of the National Strategy for Aviation Security (NSAS), encompassing broad engagement with stakeholders across the Aviation Ecosystem. Approval of the ACI Charter through the signatures of the tri-chair Department Secretaries, and specifically the Secretary of Transportation, will enable the FAA to transition the ICCT into the ACI to enhance aviation ecosystem cybersecurity collaboration and information sharing.

Additional Information on Metric
**Performance Measure Profile**

**FY 2019 Methodology Report**

**Why the FAA and/or DOT chose this Metric:** Aviation Ecosystem cybersecurity efforts are driven by collaboration and information sharing among stakeholders. Briefings and discussions with groups such as the AGCC and ASCC are an essential element of information sharing on aviation cybersecurity. The ICCT has been the central inter-agency collaborative mechanism for aviation cybersecurity engagement and will be enhanced by transition into the ACI which is recognized in the NSAS as the focal point for cybersecurity engagement across the Aviation Ecosystem. The primary objective for these efforts is to help ensure the resiliency of the aviation ecosystem by facilitating informed and actionable conversations about cyber risks with stakeholders throughout the ecosystem.

- The AIS-030 office serves as a focal point for internal FAA coordination and external engagement on risk reduction and information sharing for the Aviation Ecosystem.
- The Aviation Cyber Initiative (ACI) has a “Tri-Chair” governance structure that includes DHS, DoD, and DoT/FAA. The DoT/FAA ACI lead is our Aviation Ecosystem Stakeholder Engagement Office.

**Public Benefit:** The primary objective for this effort is to help ensure the resiliency of the aviation ecosystem by facilitating informed and actionable conversations about cyber risks with stakeholders throughout the ecosystem.

The aviation ecosystem is an increasingly interconnected environment. Identifying and addressing cybersecurity risks in the ecosystem is growing in importance every day as a component of ensuring a safe and efficient National Airspace System for the flying public and the American economy. As both an operator of critical infrastructure and civil aviation regulator, FAA cybersecurity engagement with stakeholders serves as a “bully pulpit,” seeking to build a shared vision and creating a cyber aware and responsive culture in aviation.

**Partners:** The FAA will work with stakeholders across the US Government, industry, and international partners to identify and address cybersecurity issues, risks, and challenges in aviation. These stakeholders range from airlines to aviation suppliers to aviation personnel to foreign partners in air traffic management and regulation as well as many others.

**External Factors Affecting Performance:** N/A

**Source of the Data:** N/A

**Statistical Issues:** N/A

**Completeness:** N/A

**Reliability:** N/A

**Unmodified Audit Opinion**
**Performance Metric**: Obtain an unmodified audit opinion on the FAA’s FY19 financial statements. This goal requires both an unmodified audit opinion and no material weaknesses identified by external independent auditors.

**FY 2019 Performance Target**: Obtain an unmodified audit opinion on the FAA’s FY19 financial statements. This goal requires both an unmodified audit opinion and no material weaknesses identified by external independent auditors.

**Lead Organization**: Office of Finance and Management (AFN)

<table>
<thead>
<tr>
<th>Target</th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unqualified Audit Opinion w/NMW</td>
<td>Unmodified Audit Opinion w/NMW</td>
<td>Unmodified Audit Opinion w/NMW</td>
<td>Unmodified Audit Opinion w/NMW</td>
<td>Unmodified Audit Opinion w/NMW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual</th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmodified Audit Opinion w/NMW</td>
<td>Unmodified Audit Opinion w/NMW</td>
<td>Unmodified Audit Opinion w/MW (target not met)</td>
<td>Unmodified Audit Opinion w/NMW</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit**: *Unmodified independent auditors’ opinion rendered on FAA’s annual financial statements, with no material weaknesses.*

**Computation**: N/A

**Formula**: N/A

**Scope of Metric**: The scope of this measure includes FAA’s annual audited financial statements, which include several required elements such as related footnotes, required supplementary information, and management’s discussion and analysis. The financial statements, together with the auditors’ report (the audit opinion referenced in this goal), are published by FAA in its annual Performance and Accountability Report.

**Method of Setting Target**: This measure was set as “unmodified”. This means that in the opinion of independent auditors, FAA’s financial statements are fairly stated in accordance with generally accepted accounting principles. In addition, when systems of internal control contain material weaknesses, they are subject to risk that a material misstatement of financial data may occur and not be detected and corrected in a timely manner. Therefore, FAA will not accept the existence of material weaknesses as a satisfactory performance measure. Accordingly, the goal of obtaining an unmodified audit opinion is substantially more rigorous when, in addition, such an opinion must be rendered by the auditors without any material weaknesses being detected.

**Additional Information on Metric**
**Why the FAA and/or DOT chose this Metric:** The FAA chooses this measure because it is an independent assessment of FAA’s financial statements. During the course of the financial statements audit, the auditors also consider the internal control environment over financial reporting, and FAA’s compliance with certain laws and regulations.

**Public Benefit:** The public benefits because an unmodified opinion by independent auditors is a critical indicator of financial condition. It is an independent assessment of the fair presentation of FAA’s financial statements, and in connection with that process, considers the internal controls over financial reporting.

**Partners:** Although the Office of Financial Services takes the lead in achieving this goal, all FAA organizations have key roles. They have responsibility for initiating only bona fide transactions, entering accurate and timely source data into the accounting system, and following accounting policy properly. These are essential components to achieving an unmodified audit with no material weaknesses. The following activities in particular, are required from all lines of business and staff offices to accomplish this goal (but this is not an all-inclusive list):

- Financial and budgetary transactions (e.g., obligations and expenditures) must be accurate, timely, and for bona-fide needs. This also includes taking transactions off the books accurately and timely (e.g., de-obligating, closing out contracts, recording asset retirements, etc.).
- The Enterprise Services Center (ESC) must achieve a good audit result on its data center audit so that any information technology and systems security-related findings are insignificant. Similarly, the Office of Information and Technology (AIT) must adopt and enforce appropriate information technology controls to protect the data that is processed through FAA’s business systems.
- Lines of business and staff offices must continue to review their aged obligations (defined as no activity for 12 months) quarterly and de-obligate amounts no longer needed. They must also take the Federal Managers’ Financial Integrity Act (FMFIA) vulnerability assessment process seriously to identify and mitigate any significant financial control weaknesses.
- Program offices must process paperwork for asset acquisitions and deployments in a timely manner. Also, they must report asset transfers and disposal activities timely so that the financial effects of those activities can be recorded into the FAA’s financial statement.

**External Factors Affecting Performance:** External factors that can affect FAA’s financial audit results include the fact that certain financial data, such as excise tax revenue of the Airport and Airway Trust Fund (AATF), are collected and attributed to the AATF by the Department of Treasury (Treasury). While FAA analyzes this data to ensure reasonableness, FAA must rely, to some degree, upon various Treasury bureaus (such as the Internal Revenue Service) for the accuracy of these amounts which are reported in FAA’s financial statements.

**Source of the Data:** The data used to evaluate FAA’s measure against this target comes from the independent auditors’ report, issued at the conclusion of their audit of FAA’s annual financial statements. The auditors’ report is published annually in FAA’s Performance and Accountability Report.

**Statistical Issues:** None
Completeness: Because of the nature of this measure and how the outcome is reported, there is virtually no possibility that the result could be reported inaccurately or incompletely. FAA reports the outcomes of this goal in its annual Performance and Accountability (PAR) together with a full copy of the auditors’ official report (called the audit “opinion letter”). The auditors’ opinion letter is the official “ruling” from the independent third party source (the auditors) of the outcome of this measure. The auditors’ opinion is published on the letterhead stationery of the audit firm, and bears the signature of the audit partner on behalf of the audit firm. Therefore, the FAA does not have any opportunity to interpret the results, translate data, make projections, or perform calculations, in order to identify whether this goal was met or not. The auditors tightly control the publication of the PAR and will not allow FAA to publish or release the report until they have verified that it includes the official and final version of their audit report. Office of Management and Budget Circular A-136, Financial Reporting Requirements, specifies that agency financial statements, together with the auditors’ report on those financial statements be published no later than November 15th annually.

Finally, the financial statements audit is the responsibility of the independent Office of Inspector General (OIG). The OIG must perform sufficient quality control procedures over the contract auditors’ work, so that the OIG can accept the conclusions reached as their own. As evidence of the OIG’s quality control review over the work and conclusions reached by the third party auditors, the OIG issues a quality control memorandum, on the OIG’s letterhead, under the signature of the Inspector General. The OIG’s quality control memorandum is also fully published in FAA’s PAR. For these reasons, the performance of this measure that is reported by FAA is beyond reproach. There is virtually no method of erroneously reporting this measure because both the third party auditors and the OIG provide the final outcome in written documents that they each issue and that FAA publishes without any summarization or interpretation.

Reliability: The outcome of this measure is reliable because it is reported by a third party auditor and the OIG in the PAR. This document is closely scrutinized by both the contract auditors and the OIG before it is published; therefore, it is virtually impossible that this result could be reported inaccurately.

Definitions: From Professional Auditing Standards that are issued by the American Institute of Certified Public Accountants.

A deficiency in internal control exists when the design or operation of a control does not allow management or employees, in the normal course of performing their assigned functions, to prevent, or detect and correct misstatements on a timely basis.

A deficiency in design exists when:

- A control necessary to meet the control objective is missing; or
- An existing control is not properly designed so that, even if the control operates as designed, the control objective would not be met.

A deficiency in operation exists when:

- A properly designed control does not operate as designed; or
- The person performing the control does not possess the necessary authority or competence to perform the control effectively.
A material weakness is a deficiency, or combination of deficiencies, in internal control, such that there is a reasonable possibility that a material misstatement of the entity's financial statements will not be prevented, or detected and corrected on a timely basis.

A significant deficiency is a deficiency, or a combination of deficiencies, in internal control that is less severe than a material weakness, yet important enough to merit attention by those charged with governance.

Timely manner is determined by the judgment of the auditors. They determine, based on their professional judgment, when something is timely and when it is not.
Cost Control

**Performance Metric:** Complete documented cost savings and cost avoidance of $42.45 million in FY19

**FY 2019 Target:** Achieve $42.45 million of cost savings and cost avoidance

**Lead Organization:** Office of Finance and Management (AFN)

<table>
<thead>
<tr>
<th>Target</th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Achievement of</strong></td>
<td>$30 Million of Cost Savings and Cost Avoidance</td>
<td>$50.27 Million of Cost Savings and Cost Avoidance</td>
<td>$42.46 Million of Cost Savings and Cost Avoidance</td>
<td>$41.37 Million of Cost Savings and Cost Avoidance</td>
<td>TBD</td>
</tr>
<tr>
<td>Actual</td>
<td>$59.8 Million</td>
<td>$61.12 Million</td>
<td>$43.41 Million</td>
<td>$58.75 Million</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** Dollar amount of cost savings and cost avoidance year-to-date.

**Computation:** Sum of individual program savings.

**Formula:** \((\text{Sum of Fiscal Year Targeted Savings for Individual Programs}) \times (90\%) = \text{FY 2019 Target}\)

**Scope of Metric:** Reduction or avoidance of costs associated with agreed upon actions (activities) that save money, avoid incurring additional costs, or streamline a process. Examples include contracts for strategic acquisition of goods and services, modernization of training delivery, proactive and centralized management of injury claims, square foot reduction of administrative space, personnel savings from the Voluntary Early Retirement Authority (VERA) and the Voluntary Separation Incentive Program (VSIP) and consolidation of similar activities that may have been performed at more than one location within the agency.

**Method of Setting Target:** This measure is a dollar savings based measure. This target was chosen because of the maturity of the program and the ability of organizations to accurately project cost savings.

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** Presidential budget proposals and Reauthorization Acts have challenged the FAA to operate more efficiently under tight budget constraints. To address these concerns, the agency continues to take aggressive steps to stem the growth of operating costs. Cost Control is a centrally developed and managed initiative under the executive direction of FAA’s Chief Financial Officer. It provides the impetus for implementing sustained and successful cost control activities. Organizations’ participation and progress is reported to the Performance Committee members and during the AFN Monthly Performance Meetings.

**Public Benefit:** The public benefit to this measure is that funds received by the FAA are being used in a more efficient and cost effective manner.
Partners: The Office of Financial Services (ABA) partners with FAA Lines of Business (LOB) and Staff Offices (SO) to document and review savings activities throughout the agency. ABA reviews and validates cost control initiatives across the Agency, establishes the approved savings and consolidates and reports on the total cost savings and avoidances on a monthly basis.

External Factors Affecting Performance: External factors affecting performance of this measure are related to the ability of each LOB/SO to meet their individual targeted savings. Some of the factors that affect the LOBs/SOs are funding, need and timing.

Source of the Data: LOBs/SOs utilize a financial template designed by ABA to propose cost saving and/or cost avoidance activities. Once submitted, the templates are reviewed by ABA analysts who validate the proposals and associated financial computations. Cost control activities are then tracked and reported on a monthly basis through an Excel spreadsheet maintained by ABA. Organizations provide monthly status updates on progress toward their annual goals.

Statistical Issues: None

Completeness: Each completed template and monthly status spreadsheet is retained on an ABA shared drive.

Reliability: ABA verifies organizations’ activities, milestones, and dollars saved/avoided using a template completed by the organizations. In addition to ABA’s monthly financial tracking, individual organizations are responsible for maintaining files and spreadsheets containing supporting calculations and documentation on their activities.
Critical Acquisitions on Schedule

Performance Metric: Critical Acquisitions on Schedule

FY 2019 Performance Target: 90% of the critical acquisitions selected annual milestones are achieved by their planned completion dates. (See attachment).

Lead Organization: Finance and Management (AFN)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>90.00%</td>
<td>90.00%</td>
<td>90.00%</td>
<td>90.00%</td>
<td>90.00%</td>
</tr>
<tr>
<td>Actual</td>
<td>96.00%</td>
<td>96.00%</td>
<td>100%</td>
<td>95.16%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Number of milestones completed by their target due date, compared to the number of milestones selected as the starting baseline of measurement, results in percentage of milestones completed by their target due date.

Computation: Performance is measured by dividing the total number of milestones for the Fiscal Year (FY) that completed on or before their target due dates by the total number of milestones planned.

Formula: \[
\frac{\text{Total Number of Critical Acquisition Milestones Met}}{\text{Total Number of Critical Acquisition Milestones Tracked}} \times 100
\]

Scope of Metric: FAA organizations in coordination with the Capital Program Formulation Branch (ABP-340) select annual milestones and target completion dates based on specific criteria. Programs strategically important to the FAA and programs with approved Acquisition Management System (AMS) Acquisition Categories (ACATs) of new investment, technology refreshment, variable quantity and facility programs are the basis for this goal.

The designation of “critical acquisition programs” in the title of the performance target expresses the critical value of the program to the FAA. The schedule measure is set to only those milestones selected at the beginning of the current fiscal year. Once the selected milestones are approved, no milestones are added, deleted or changed during the year.

Method of Setting Target: Maintaining the 90 percent target each year ensures that FAA demonstrates its commitment to meet cost and schedule goals and benchmarks using a 90% target parameter that is well established across government agencies.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: The Critical Acquisitions on Schedule target represents a progressive measure for each fiscal year of the performance of FAA acquisition programs. The performance measure began in FY 2003 and will continue each fiscal year through the acquisition of the selected programs. The performance target increased each year until it reached 90 percent in FY 2008.
Performance Measure Profile
FY 2019 Methodology Report

Public Benefit: FAA’s ability to keep acquisitions within specific schedule dates demonstrates the Agency’s commitment and accountability to meet key schedule commitments. These commitments also indicate the FAA’s ability to manage programs that will allow for a timely transition of NextGen programs. The transition involves acquiring numerous systems to support precision satellite navigation, digital, networked communications, integrated weather information, layered adaptive security, and more.

Partners: ABP-340 works with the FAA Lines of Business (LOBS)/Service Units (SU) responsible for the programs selected. These organizations include ATO, AFN, AVS, etc. Programs provide monthly updates of the critical acquisition schedule milestones using the SPIRE system. A rigorous assessment and review process is conducted monthly to ensure status and appropriate commentary is completed.

External Factors Affecting Performance: External factors that may affect the achievement of this performance target include funding limitations, unanticipated political developments, legislative constraints, or policy changes.

Source of the Data: FAA tracks and reports status of all schedule targets using Strategic Planning, Implementation, Reporting and Evaluation (SPIRE) tool, an automated database. FAA LOBs provide a monthly red, yellow, or green assessment that indicates their confidence level in meeting their established milestones. Comments are provided monthly that detail problems, issues, and corrective actions to ensure milestones meet their planned target dates. The performance status is reported monthly during the AFN monthly performance reviews and performance committee meetings.

Statistical Issues: The programs and milestones that are selected each fiscal year represent a cross section of programs within the Agency. There is no bias with the selection of milestones, and there are established criteria for selecting milestones included in the annual goal. The milestones selected represent the program offices’ determination as to what efforts they deem “critical” or important enough to warrant inclusion in the critical acquisitions performance goal for the year.

Completeness: This measure is current with no missing data. Reporting will begin 30 days after finalization of the milestones included in this measure.

Reliability: Each FAA organization uses the data during periodic acquisition program reviews, to determine resource requests. They are also used during the annual budget preparation process, for reporting progress made in the President’s budget and for making key program management decisions. The monthly status is reported through the automated databases and included in monthly high-level management reviews. Since the Critical Acquisitions on Schedule target is a fiscal year performance measure, the specific milestones and date selected are set at the beginning of each fiscal year and are not changed. Once the milestone is approved, it is reported on with detailed commentary each month and assigned a red, yellow, or green confidence indicator that the milestone will be met on schedule. These detailed reports are reviewed at all levels of the appropriate organization, executive levels up to the Performance Committee.
Performance Measure Profile
FY 2019 Methodology Report

Major System Investment

Performance Metric: 90% of major baselined acquisition programs (20) must be maintained within 10% of their current acquisition cost, schedule and performance baseline as of the end of fiscal year 2019.

FY 2019 Performance Target: 90% of major baselined acquisition programs must be maintained within 10% of their current acquisition cost, schedule and performance baseline as of the end of fiscal year 2019.

Lead Organization: Finance and Management (AFN)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Actual</td>
<td>100%</td>
<td>95.45%</td>
<td>95.24%</td>
<td>90.5%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Percentage of programs within a 10 percent variance of the investment’s total established baseline cost at completion, baseline schedule duration at completion and performance baseline.

Computation:

- Cost performance for each Major Investment program is measured by subtracting the Estimated Cost at Completion (ECAC) from the total Baseline Cost at Completion (BCAC) established with the approved Acquisition Program Baseline (APB), resulting in a Cost Variance at Completion (CVAC).
- Schedule performance for each program is measured by subtracting the Estimated Schedule duration at Completion (ESAC) from the Baseline Schedule duration at Completion (BSAC) (first milestone to last milestone) established with the approved APB, resulting in a Schedule Variance at Completion (SVAC).
- Performance Variance at Completion (PVAC) is computed by subtracting the estimated performance at completion from the baseline performance values.

Formula: \((\text{Total Number of Programs within 10% Variance of Cost, Schedule, and Performance Baseline}) \times 100 / \text{Total Number of Programs Tracked}\)

Scope of Metric: Programs classified as Acquisition Category (ACAT) 1, 2, or 3 or is considered strategic or part of NextGen are considered “Major” programs and included in this measure. For FY 2019, twenty major acquisition programs (see attachment) will be tracked and monitored. This measure is consistent with Public Law 104-264, which requires the FAA Administrator to consider termination of a program if the program is breaching the cost, schedule, or performance baseline by more than 10%.

Method of Setting Target: Public Law 104-264 dated October 9, 1996 requires the FAA Administrator to consider the termination of acquisition programs if a program: 1) is more than 10 percent over the cost goal established for the program; 2) fails to achieve at least 90 percent of the performance goals.
established for the program; or 3) is more than 10 percent behind the schedule goal established for the program.

Additional Information on Metric

**Why the FAA and/or DOT chose this Metric:** The Major Systems Investment target represents a progressive measure for each fiscal year of the performance of major FAA acquisition programs. The performance measure will continue each fiscal year through the acquisition and implementation phase of the selected programs. Choosing this measure ensures continuity and consistency with the Public Law reporting. Public Law 104-264, dated October 9, 1996, requires the FAA Administrator to consider terminating any substantial acquisition with cost, schedule, or performance variances greater than 10 percent. In addition, the law requires the FAA Administrator to terminate programs funded from Facilities and Equipment (F&E) appropriations with variances greater than 50 percent for cost, schedule, or performance initiated after the enactment of the Air Traffic Management System Performance Improvement Act of 1996.

**Public Benefit:** FAA’s ability to keep acquisitions within budget and schedule will allow for a timely transition of NextGen programs. The transition to NextGen involves acquiring numerous systems to support precision satellite navigation; digital, networked communications; integrated weather information; layered, adaptive security; and more.

**Partners:** Capital Program Formulation Branch (ABP-340) works with the LOBs/SOs organizations that are responsible for the programs identified. These organizations include ATO, AFN, etc. ABP-340 works to monitor and track the cost, schedule and performance of these major programs through an automated system. The processes, disciplines, and infrastructure are in place to provide monthly monitoring and reporting.

**External Factors Affecting Performance:** External factors that may affect the achievement of this performance target include funding limitations, unanticipated political developments, legislative constraints or policy changes.

**Source of the Data:** FAA Lines of Business (LOB) report monthly status of their APBs using the Simplified Program Information Reporting and Evaluation (SPIRE) tool, an automated database. FAA LOBs provide a monthly status of the ECAC, ESAC and performance including an analysis of the risks in maintaining program baselines. Performance Indicators and commentary is provided monthly that details problems, issues, and corrective actions, to ensure baselines are maintained within the established acquisition baseline parameters. The performance status is reported monthly to the senior level managers via the monthly Performance Committee Meetings.

**Statistical Issues:** The programs selected each fiscal year represent a cross section of programs within the FAA. They include Automation, Communication, Facility, NextGen, Navigation, Weather, and Surveillance programs that have an Acquisition Category 1, 2, or 3 is or are of strategic importance to the agency.
Completeness: This measure is current with no missing data. Reporting will begin 30 days after the list of programs is finalized.

Reliability: Each organization having major acquisitions uses the data during periodic acquisition program reviews. They are also used during the annual budget preparation process, for reporting progress made in the President’s budget and for making key program management decisions. The monthly status is reported through the SPIRE tool and included in monthly high-level management reviews. Detailed status is reported each month, supported by Red, Yellow, or Green measures for cost, schedule, and performance parameters. These detailed reports are reviewed with the appropriate Lines of Business and Executive levels.
Performance Measure Profile
FY 2019 Methodology Report

Assistant Administrator for NextGen (ANG) Performance Measure Profiles

NextGen Advisory Committee (NAC) Recommendations

Performance Metric: Complete 80% of the NAC Recommendations

FY 2019 Performance Target: Achieve eighty 80% of NextGen Priorities Joint Implementation Plan commitments, excluding industry-controlled milestones, within a calendar quarter of their scheduled dates and within 10% of the planned cost (OSI target). Due September 30, 2019.

Lead Organization: NextGen (ANG)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>80/90%</td>
<td>80/90%</td>
<td>80/90%</td>
<td>80/90%</td>
<td>80%</td>
</tr>
<tr>
<td>Actual</td>
<td>97/97%</td>
<td>95/95%</td>
<td>92/92%</td>
<td>100/100%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: The metric unit is the number of target goals completed that make up the NextGen Priorities commitments to the NAC and to Congress.

Computation: The requirement is Completion of the 23 milestones (implementation and pre-implementation commitments as well as activities that support future NextGen commitments)

\[ \frac{\text{Total Recommendations Completed} - \text{Total Recommendations}}{\text{Total Recommendations}} \times 100 \]

Formula: The NAC OSI performance target is completion of 80% of the total 41 targets contained in the NAC Recommendations – complete 33 targets.

Scope of Metric: This metric measures the NextGen’s success in completing the identified milestones in five areas: Surface Operations and Data Sharing (Surface); Multiple Runway Operations (MRO); Data Communications (DataComm); Performance-Based Navigation (PBN), and Northeast Corridor (NEC).

Method of Setting Target: The Overall NAC Recommendation schedule for completion of all targets and milestones is by quarter 3 of calendar year 2019. The FY 2019 schedule is to complete the 41 targets within the business plan by September 30, 2019.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: The Overall NAC Recommendation schedule for completion of all targets and milestones is by quarter 3 of calendar year 2019. The FY 2019 schedule is to complete the 42 targets within the business plan by September 30, 2019.

Public Benefit: These capabilities were identified by the NAC as “high priority, high readiness” capabilities that could bring tangible, near-term benefits to NAS users. Each of the five focus areas provides a different benefit to the public. MRO capabilities increase airport efficiency and reduce flight delays. PBN procedures...
provide shorter, more direct flight paths, improved airport arrival rates, and increased safety due to repeatable and predictable flight paths. Surface operations increase predictability and provide actionable and measurable surface efficiency improvements. DataComm enhances safety by reducing communication errors between the pilot and air traffic control. NEC recommended implementations will mitigate and address adverse weather, deconflict arrivals in the New York area, improve arrival and departure throughput, ease congestion points, and address community noise.”

**Partners:** Air Traffic Organization (ATO) – ATO is responsible for implementing the vast majority of commitments. Aviation Safety (AVS) – AVS is responsible for several of the pre-implementation commitments and has coordination role in some industry commitments. NAC - The NAC is responsible for ensuring industry delivers their commitments as outlined in the NextGen Priorities Joint Implementation Plan.

**External Factors Affecting Performance:** The implementation of these capabilities are subject to change based on budget conditions or unanticipated logistical issues such as airport construction.

**Source of the Data:** Completion of these commitments are closely tracked, monitored, and coordinated across ANG, AVS, and ATO lines of business. The agency will continue to monitor progress by conducting internal meetings at least monthly to oversee implementation status. Senior FAA and industry leadership will provide quarterly updates to the NAC’s subcommittee. Progress reports will be provided publicly through the NAC with advance notice available to the public in the Federal Register. The FAA will also report on progress against the milestones for each focus area of the NextGen Performance Snapshots website.

**Statistical Issues:** There are no statistical issues related to the NextGen Priorities.

**Completeness:** The decision to declare a commitment complete is as follows:

- Implement a functioning capability at a specific location or finish an assessment/study.
- Hold the bi-weekly NAC NextGen Priorities meeting where Subject Matter Experts (SME) share recent accomplishments with ANG, ATO, and AVS leadership.
- ANG, ATO, and AVS leadership jointly determine if the commitments is complete. If so, the commitment’s status is changed from “on track” to “complete” on the public NextGen Performance Snapshot website.

**Reliability:** The metric has no reliability issue. The NAC recommended commitments are either complete or they are not.
**Northeast Corridor (NEC) Commitments**

**Performance Metric:** Complete 80/90% of the NextGen priorities for the Northeast Corridor (NEC) Commitments

**FY 2019 Performance Targets**

Target 1: Achieve eighty (80) percent of NextGen priorities for the Northeast Corridor (NEC) commitments, excluding industry-controlled milestone, with a calendar quarter of their scheduled dates. Due September 30, 2019

Target 2: Achieve ninety (90) percent of NextGen priorities for the Northeast Corridor (NEC) commitments, excluding industry-controlled milestone, with a calendar quarter of their scheduled dates. Due September 30, 2019

**Lead Organization:** NextGen (ANG)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>80/90%</td>
</tr>
<tr>
<td><strong>Actual</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** The metric unit is the number of target goals completed that make up the Northeast Corridor commitments to the NAC and to Congress.

**Computation:** The requirement is completion of the 19 milestones (implementation and pre-implementation commitments as well as activities that support future NextGen commitments)

\[
\frac{\text{Total NEC Commitments} - \text{Total NEC Commitments Completed}}{\text{Total Recommendations}} \times 100
\]

**Formula:** The NEC OSI performance target is completion of 80% of the total 19 targets contained in the NEC Commitments – completed 15 NEC Commitments.

The NEC CSTI performance target is completion of 90% of the total 19 targets contained in the NEC Commitments – completed 17 NEC Commitments.

**Scope of Metric:** This metric measures the NextGen’s success in completing the identified milestones in five areas: Surface Operations and Data Sharing (Surface); Multiple Runway Operations (MRO); Data Communications (DataComm); Performance-Based Navigation (PBN), and Northeast Corridor (NEC).

**Method of Setting Target:** The NEC Commitments schedule for completion of all targets and milestones is by quarter 3 of calendar year 2019. The FY 2019 schedule is to complete the XX targets within the business plan by September 30, 2019.
Why the FAA and/or DOT chose this Metric: The NEC Commitments schedule for completion of all targets and milestones is by quarter 3 of calendar year 2019. The FY 2019 schedule is to complete the XX targets within the business plan by September 30, 2019.

Public Benefit: The Northeast Corridor (NEC) covers the most congested airports and airspace in the United States, and has a significant effect on the daily operations of the national aviation system. Nearly 50 percent of aviation delays in the entire U.S. National Airspace System (NAS) are attributable to the Northeast Corridor. The commitments in this report identify near-term initiatives that will enhance operations and are focused on the NAC’s stated goal to improve execution of today’s operations. Given the complex and compact nature of NEC operations, and its connection to the rest of the NAS, single operational improvements can have significant savings in time and during weather events. These enhancements establish a foundation and framework for longer-term effective implementation of NextGen using time-based management techniques and precise repeatable Performance Based Navigation procedures for a more predictable and efficient operation.

Partners: Air Traffic Organization (ATO) – ATO is responsible for implementing the vast majority of commitments. Aviation Safety (AVS) – AVS is responsible for several of the pre-implementation commitments and has coordination role in some industry commitments. NAC - The NAC is responsible for ensuring industry delivers their commitments as outlined in the NextGen Priorities Joint Implementation Plan.

External Factors Affecting Performance: The implementation of these capabilities are subject to change based on budget conditions or unanticipated logistical issues such as airport construction.

Source of the Data: Completion of these commitments are closely tracked, monitored, and coordinated across ANG, AVS, and ATO lines of business. The agency will continue to monitor progress by conducting internal meetings at least monthly to oversee implementation status. Senior FAA and industry leadership will provide quarterly updates to the NAC’s subcommittee. Progress reports will be provided publicly through the NAC with advance notice available to the public in the Federal Register. The FAA will also report on progress against the milestones for each focus area of the NextGen Performance Snapshots website.

Statistical Issues: There are no statistical issues related to the NextGen Priorities.

Completeness: The decision to declare a commitment complete is as follows:

- Implement a functioning capability at a specific location or finish an assessment/study.
- Hold the bi-weekly NAC NextGen Priorities meeting where Subject Matter Experts (SME) share recent accomplishments with ANG, ATO, and AVS leadership.
- ANG, ATO, and AVS leadership jointly determine if the commitments is complete. If so, the commitment’s status is changed from “on track” to “complete” on the public NextGen Performance Snapshot website.

Reliability: The metric has no reliability issue. The NEC commitments are either complete or they are not.
Remote Towers

**Performance Metric:** Develop a strategy for long term Remote Tower integration into the NAS and continue the evaluation and assessment of remote towers projects at Leesburg and Fort Collins. Work with AJW and ATO to develop a documented process to achieve the Type Certification of Remote Tower systems.

**FY 2019 Performance Targets**

Target 1: Complete system optimization, airport information collection, and Safety Risk Assessment planning for Remote Towers at Northern Colorado Regional Airport.

Target 2: Conduct Safety Risk Management Panel (SRMP) to identify potential safety risks in order to enter Combined Positions and Failure Mode Analysis.

Target 3: Complete initial Safety Risk Assessment for Remote Towers at Northern Colorado Regional Airport.

Target 4: Deliver Remote Tower Operational Requirements Document for the provision Airport Traffic Control Tower Services with a Remote Tower system.

**Lead Organization:** NextGen (ANG)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4</td>
</tr>
<tr>
<td><strong>Actual</strong></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** Complete the four targets by their prescribed due dates.

**Computation:** N/A

**Formula:** N/A

**Scope of Metric:** This metric measures ANG progress in supporting certifications of Non-Federal Remote Tower Systems.

**Method of Setting Target:** The approach for setting this target takes into consideration the need for safety requirements in integrating a new system into the National Airspace System (NAS). The FAA does not have a process in place for approving non-federal Remote Tower equipment and operations. There are no existing Remote Tower systems in the National Airspace (NAS), which are alike and used for providing Air Traffic Control Tower (ATCT) services without an out-the-window view. Therefore, no established requirements or certification approval process exist.
Why the FAA and/or DOT chose this Metric: The FAA is exploring the viability of Remote Tower technologies at smaller communities as a potential lower-cost alternative to building brick-and-mortar air traffic control towers. Specifically, the FAA is exploring if air traffic control services can be provided safely, efficiently and potentially at a lower cost. This is an opportunity for federal, state government, and private partnerships. FAA provides subject matter expertise and the states provide equipment at local facilities. Through these partnerships, we are developing, documenting, and validating a structure that will guide communities to adapt and fund these technologies to grow their local infrastructure.

Public Benefit: Remote Tower systems will potentially provide more cost effective solutions to airports than traditional brick and mortar towers, especially for smaller rural communities. By certifying these systems, the FAA will grant NAS access to small communities, providing opportunities for improved efficiency, economic growth and aviation safety.

Partners: External stakeholders include the local airport authorities at the test sites, the surrounding communities and pilot populations, and the Remote Tower system vendors. The Department of Defense is also evaluating of Remote Tower technology, and the FAA is sharing data and lessons learned with them. European entities are also working with the FAA to establish global requirements for Remote Towers.

External Factors Affecting Performance: The FAA has been working with remote tower system vendors to evaluate the viability of the concept and the capability of the technology to safely provide air traffic services in the NAS. This sequence of evaluations yielded that the capability is not yet fully mature and is currently still developmental in nature. As a result of the evaluations, the system vendors are continuing to make significant system adjustments to ensure higher levels of robustness of the remote tower capability. For the near-term, the performance of these remote tower systems will continue to depend on the vendors’ abilities to address system shortfalls such that safe and efficient operations are fully enabled.

In addition, the FAA has been collaborating with other air navigation service providers worldwide to develop international standards for remote towers. These service providers are applying remote tower technologies into differing environments, which necessitates extensive international coordination as the associated remote tower standards are being developed. Although many countries have been evaluating and validating various elements of the remote tower concept, none of the other service providers have applied remote tower technologies into as complex of an air traffic environment as the US. As a result, the FAA needs to conduct significant amount testing of the capability to ensure safe introduction of remote tower technologies into the NAS.

Source of the Data: Remote Tower evaluation sites, Remote Tower system vendors, FAA Air Traffic Organization (ATO), FAA NextGen (ANG), and international safety and standards development organizations such as ICAO, EASA, and EUROCAE.

Statistical Issues: N/A
Completeness:

The FAA continues to make good progress on its remote tower system evaluations, which directly inform its development of remote tower standards in the US. These evaluations are also allowing vendors to continue to mature their remote tower system capabilities, which should ensure more robust operations for the long-term. At the same time, the FAA is applying its findings to influence other international air navigation service providers and lead the international community toward worldwide remote tower standards development. The FAA is applying its safety risk management processes throughout the remote tower capability evaluations and associated standard development activities.

Specifically, for the Leesburg remote tower project, the FAA conducted passive shadow evaluations in 2016, followed by active testing of the remote tower system in 2017. In June 2018, the FAA began its initial operating capability of the Leesburg remote tower system. During this evaluation, the FAA noted multiple system performance issues that the system vendor is having to address via system adjustments and redesigns. Overall, this effort is providing the FAA with critical information in verifying and validating the Leesburg remote tower system’s effectiveness and long-term viability. In October 2018, the FAA conducted its Safety Risk Management Panel (SRMP) to identify potential safety risks in order to enter Combined Positions and Failure Mode Analysis. This milestone completed the “FY 2019 Target 2” Performance Target.

Under the Fort Collins remote tower project, the FAA has been collaborating with the State of Colorado and the system vendor since 2017 to define the concept and associated design. Based on that design, the vendor installed the system and conducted system optimization activities during 2018. Subsequently, the FAA collected information on the airport environment and held its initial evaluation of the system in October 2018, leading to its safety risk assessment of the Northern Colorado Regional Airport remote tower system in December 2018. This completed the “FY 2019 Target 1” Performance Target. As the outcome of this initial evaluation, the FAA provided a list of system capability shortfalls back to the vendor. To address these shortfalls, the vendor is currently making system improvements of the Fort Collins system. Based on the outcome of the safety risk assessment, the associated safety risk management document is currently in final review and is on track to be completed in August 2019, which will ultimately complete the “FY 2019 Target 3” Performance Target. Based on the completion of the safety risk management document, the plan is to begin passive evaluation of the system in the fall of 2019. Overall, the Fort Collins system is planned to go through the same safety centric evaluation process that was applied at Leesburg.

In terms of overarching remote tower standards development, both the Leesburg and Fort Collins activities have provided and are continuing to provide relevant data. The FAA conducted a series of workshops with the air traffic community in 2018 and 2019 to define initial visual operational requirements for remote tower systems. The captured Remote Tower Operational Requirements document is currently being circulated for final review and is on track to be completed by July 2019. This will complete the “FY 2019 Target 4” Performance Target. Applying the operational requirements information, the FAA is now drafting its initial version of remote tower system standards. At the same time, the FAA has been working with the International Civil Aviation Organization (ICAO), the European Union Aviation Safety Agency (EASA) and the European Organization for Civil Aviation Electronics (EUROCAE) to establish remote tower standardization and guidance material for worldwide compliance. To fully characterize standards for remote towers, including airports with more complex environments, significant additional evaluation of the technology will still be required over the next decade.
To move forward with these activities, the FAA is now executing its Remote Tower Pilot Program, with Leesburg and Fort Collins being its first two sites. These two sites are being considered initial evaluation sites within the US, with the technology still being developmental in nature. At its future third site of the Pilot Program, the FAA plans to conduct verification and validation of its newly drafted advisory circular to ensure that the drafted process can be seamlessly applied at additional future airports. For its fourth and fifth Pilot Program sites, the FAA is considering airports with higher levels of environmental complexity, such as longer runways, multiple runways and crossing runways. The FAA is also considering to test the viability of remoting video to the FAA Technical Center in Atlantic City, NJ to qualify and quantify the viability and data security of remote tower technologies when it comes to truly remote operations. Finally, for its sixth site, the FAA is considering the application of remote tower capabilities at a larger hub airport. This effort would likely require considerable system adjustments as compared to the systems begin evaluated today. Overall, the execution of these Remote Tower Pilot Program plans are dependent on availability of future funding over the next decade.

Reliability: N/A
Integrating Commercial Space Transportation into the NAS by Implementing Launch and Reentry of Suborbital and Orbital Expendable and Reusable Launch Vehicles


Lead Organization: Commercial Space Transportation (AST)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>12 April</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>12 April</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Publication of NPRM entitled “Streamlined Launch and Reentry Licensing Rule in the Federal Register

Computation: This metric is determined by the actual date the proposed MPRM is published in the Federal Register

Formula: There is no formula used to calculate completion. It is a binary pass/fail event.

Scope of Metric: This NPRM includes the full range of commercial space transportation launch and reentry activities that fall under the regulatory purview of the United States and complies with national responsibilities under the Outer Space treaty of 1967.

Method of Setting Target: The original target was to accomplish publication of the NPRM not later than 1 February 2019 as mandated by Presidential Space Policy Directive 2, dated 24 May 2018. However, the partial government shutdown precluded meeting the specified date. Following discussions between OMB and OST following the shutdown, a new date of 12 April 2019 was established. This date was achieved.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: This metric was assigned by the President on 24 May 2018.

Public Benefit: This NPRM provides the commercial space transportation industry greater flexibility and innovation, and potentially reduced costs by reducing the regulatory burden. This NPRM reduced the proscriptive burden on space operators and moves towards performance-based regulation for launch and reentry operators.
**Partners:** External stakeholders included the National Space Council, Department of Defense, Department of the Air Force, the national Aeronautics and Space Administration, and the Airspace Access Aviation Rulemaking Committees.

**External Factors Affecting Performance:** This metric was adversely impacted by the partial government shutdown. The NPRM was signed out by the FAA Administrator and sent to OST on 30 November 2018 on schedule. The partial government shutdown and recovery activities following resumption of full government operations were directly responsible for not meeting the 1 February 2019 original date established in SPD-2. OMB, in coordination with OST issued a revised target date following the resumption of government operations.

**Source of the Data:** Not Applicable.

**Statistical Issues:** This is not a statistical metric

**Completeness:** The achievement of the target was specified by publication in the Federal Register.

**Reliability:** This is a single event dictated by a Presidential policy directive. The target achievement was fully documented through publication and request for comment in the Federal Register.
Commercial Space Launch and Reentry Accidents

Performance Metric: Maintain the AST Goal of ZERO fatalities, serious injuries, or property damage resulting from an AST licensed or permitted launch or reentry activity.

FY 2019 Performance Target: Achieve zero fatalities, serious injuries, or property damage resulting from an AST licensed or permitted launch or reentry activity

Lead Organization: Commercial Space Transportation (AST)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Actual</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Report the number of fatalities or serious injuries or dollar damage in excess of $1 incurred by the public as a result of AST to the uninvolved public

Computation: This metric is a raw number. It includes the actual number of people killed or seriously injured as a result of launch and reentry operations licensed or permitted by the Federal Aviation Administration Office of Commercial Space transportation.

Formula: This is a raw number of fatalities, injuries, or dollar damage greater than zero. There is no further calculation.

Scope of Metric: This metric applies to all member of the uninvolved public, i.e., those not directly participating in the launch or reentry effort either as flight crew, spaceflight participants, or support crew and staff.

Method of Setting Target: This target was established as the baseline safety metric for Commercial Space Transportation and has been in place since 1984.

Additional Information on Metric

Why the FAA and/or DOT choose this Metric: This Goal was selected as the AST baseline measure of our success in the mission of the Office of Commercial Space Transportation: ensuring safety of operations and people. This has been the touchstone metric for AST since its inception in 1984 and though this metric is well-established it fulfillment is becoming significantly harder to maintain. The introduction of new space transportation systems, new launch sites and launch site operators, new missions to include the transport of NASA astronauts to the International Space Station and back, commercial resupply missions, sub-orbital spaceflight tourism, provision of low-earth orbit services to the federal government, increasing oversight of launch operations from overseas launch sites by US operators, and commercial missions to the moon and beyond, have placed AST under greater stress than ever before.
Performance Measure Profile
FY 2019 Methodology Report

Public Benefit: The public benefits in multiple ways. First, protection for the public from death, injury or financial loss from property damage is an immediate public good. However, the public also benefits greatly from the provision of space-based services that rely on assured access to space provided by AST-licensed launch operations. These include long-haul communications, geophysical observation and mapping, navigation, weather, entertainment, and the GPS timing signal that provides enabling technology for cell phones and banking services. Any disruption in launch services, assured access to space, or launch and reentry capability directly impacts the ability of space-based service providers to maintain these capabilities which are essential to the United States National and Economic security, as well as the general public.

Partners: To achieve this goal, AST coordinates with federal, state, and local launch site operators, the Departments of Defense and Homeland Security, and the FAA’s Air Traffic Control Organization and Airports and Aviation Safety Lines of Business.

External Factors Affecting Performance: AST’s ability to maintain this goal can be impacted by equipment failure, weather, or cybersecurity breaches or hostile acts.

Source of the Data: Data derives from reported deaths, physical injuries, or damage resulting from launch or reentry operations as reported by federal, state, and local emergency response personnel.

Statistical Issues: None. Results are derived directly from raw data. There are no statistical computation.

Completeness: This metric provides the ultimate determination of our success in executing the commercial spaceflight safety mission. Since this goal is a measure of raw data, not interpreted through statistical analysis and of such high visibility, its veracity is beyond reproach.

Reliability: This metric is derived from raw numbers and is not subject to statistical manipulation. Reliability is rated high.
Performance Measure Profile
FY 2019 Methodology Report

Office of Airports (ARP) Performance Measure Profiles

Infrastructure Investment for National Operational Impact

Performance Metric: Develop strategy to improve infrastructure through Airport Improvement Program (AIP) for rural communities.

FY 2019 Performance Target: Administer a portion of the $1 billion supplemental AIP grant program as described in the Consolidated Appropriations Act, 2018, such that rural airports receive the priority consideration for funds as required in the Act.

Lead Organization: Office of Airports (ARP)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>50%</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: The metric unit is the percentage of the $1 billion appropriated by Congress estimated to be awarded to rural airports in FY 2019 through the supplemental AIP program. This metric does not include funding already provided in Round 1 ($205 million to rural airports in FY 2018). A rural airport is defined as a “priority consideration” airport based on the description in the Consolidated Appropriations Act, 2018. As defined, a rural airport is either (1) a nonprimary airport classified as a Regional, Local, or Basic airport and not located within a Metropolitan or Micropolitan Statistical Area (as defined by the Office of Management and Budget) or (b) a primary airport that is classified as a Small Hub or Nonhub airport.

Computation: The percentage of the $1 billion is computed based on the remaining unobligated amount, which is currently $780 million. Of this $780 million, $600 million is designated for rural airports based on the May 15, 2019, U.S. Department of Transportation (DOT) Secretary announcement of an intent to award funding. The FAA estimates it will obligate 50 percent of the remaining funds designated for rural airports, which is approximately $300 million by the end of FY 2019.

Formula: N/A

Scope of Metric: This metric focuses on rural airports that applied for and are intended to receive a grant for supplemental funding under Round 2 in FY 2019.

Method of Setting Target: The target is based on the percentage of rural airports that will be receiving a portion of the $1 billion supplemental AIP grant money apportioned by Congress through the Consolidated Appropriations Act, 2018, under Round 2 in FY 2019. This activity has been underway since FY 2018. On September 12, 2018, the DOT and the FAA announced $205 million in Round 1 supplemental grants for airport projects that met eligibility requirements for FY 2018 funding. On May
15, 2019, the DOT Secretary announced the full list of intended Round 2 grants. The funds pertaining specifically to this metric are a portion of the funds that will be obligated in FY 2019 for rural airports (as individual projects are ready to proceed during Round 2). The remaining funds from Round 2 are on track to be obligated by the end of FY 2020. Based on the criteria set forth in the Consolidated Appropriations Act, 2018, the FAA set the target (including both Round 1 and Round 2 grants) for rural airports; that is, those airports meeting the criteria for “priority consideration.”

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: This is a new target based on DOT’s Strategic Plan for FY 2018-2022. It reflects the Secretary’s priorities for achieving DOT’s mission through one of its four goals, which is to invest in infrastructure to ensure mobility and accessibility and to stimulate economic growth, productivity and competitiveness for American workers and businesses. This metric also aligns with one of the FAA’s strategic activities, which is to develop a strategy to improve infrastructure through AIP for rural communities and provide support to sustain and improve the safety and operability of rural airports.

Public Benefit: Airports are vital to the local and regional economy and support critical transportation needs. This supplemental funding allows investment in important infrastructure needs at the nation’s airports, especially those serving smaller and rural communities. Airports will use this funding for construction or equipment to increase their safety, capacity, and security. Selected projects include runway reconstruction and rehabilitation, and the maintenance of taxiways, aprons, and terminals. The construction and equipment supported by this funding increase the airports’ safety, emergency response capabilities, capacity, and could support further potential growth and development within each airport’s region.

Partners: To achieve this metric, the FAA and DOT partner with airport owners, airport sponsors, localities, and U.S. States and territories.

External Factors Affecting Performance: The FAA’s ability to obligate funds for these grants could depend on various factors, including project readiness, inability to perform the work due to poor weather conditions, an unordinary long permitting process, bid protests, and other external factors that are beyond the FAA’s control.

Sources of the Data: The FAA’s Office of Airports Planning and Programming grant administration program and Delphi (for final obligation of funds only)

Statistical Issues: N/A

Completeness: To be eligible, all project requests must have been submitted in accordance with the stated deadlines and addressed the evaluation criteria outlined in the Federal Register notice on Supplemental Guidance on the Airport Improvement Program (AIP) for Fiscal Years 2018-2020 (83 FR 31834, July 9, 2018). In addition, all project requests must have met basic AIP eligibility and justification requirements as a first step. The FAA used multiple criteria to help determine final project selections. Both quantitative and qualitative factors were considered.
The FAA applied a national approach to ensure that the remaining funding was distributed with due consideration of the needs of the national system of airports. The high demand, as noted by the large number of project requests received under Round 2, is proof of the overall airport infrastructure needs at airports of all sizes across the system. Finally, the FAA also considered the availability of other types of AIP funds, including the current FY 2019 regular AIP program.

Discuss how the data support the results for the metric: The FAA has a longstanding AIP process of providing grants to public agencies — and, in some cases, to private owners and entities — for the planning and development of public-use airports that are included in the National Plan of Integrated Airport Systems. This longstanding process is similar to the process the FAA is using to review and issue supplemental discretionary grants, including the grants to be issued throughout FY 2019 to rural airports. The FAA follows the Uniform Guidance (2 CFR § 200), which streamlines and consolidates government requirements for receiving and using federal awards so as to reduce administrative burden and improve outcomes.

Reliability: In rare instances, the metric may be influenced by factors that are outside the FAA’s control. These include a grant being withdrawn by an airport and the possibility of a grant being delayed indefinitely when circumstances extensively delay or halt a project (for example, construction activities uncover a burial ground).
Runway Pavement

Performance Metric: Maintain runway pavement in excellent, good, or fair condition for 93% of the paved runways in the National Plan of Integrated Airport Systems.

FY 2019 Performance Target: Maintain runway pavement in Excellent, Good, or Fair condition (based on visual inspections) for 93% of the paved runways in the National Plan of Integrated Airport Systems.

Lead Organization: Office of Airports (ARP)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>93.0%</td>
<td>93.0%</td>
<td>93.0%</td>
<td>93.0%</td>
<td>93.0%</td>
</tr>
<tr>
<td>Actual</td>
<td>97.6%</td>
<td>97.6%</td>
<td>97.7%</td>
<td>97.9%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: This metric tracks, on an annual basis, the number of open and paved runways at public use airports included in the federal airport system that meet FAA’s standard for safe operation of aircraft with runway pavement considered to be in excellent, good, or fair condition. The metric covers all paved runways at federally funded NPIAS airports.

Computation: Runway Pavement Condition data is collected annually by FAA Airport Certification Safety Inspectors during their physical inspection of all certified airports in the U.S. and its territories. Other Public use airports are inspected by airports or airport safety data inspectors under an FAA contract every three years. Information is collected through visual inspection of runway pavement in accordance with existing FAA guidance, resulting in a condition rating for each runway of excellent, good, fair, poor, or failed. The number of paved runways in the National Plan of Integrated Airport Systems (NPIAS) with surface ratings in each of the five conditions (excellent, good, fair, poor, and failed) is totaled. Paved runway ratings are then numbered by condition: excellent = 5; good = 4; fair=3; poor=2; failed=1. Landing surfaces that are not paved, including water, dirt, turf, gravel, and permafrost, are not included. The percentage of runways rated excellent, good, and fair is calculated based on the total number of paved runways at NPIAS airports.

Formula: \( \frac{X \text{ condition 5 runways} + y \text{ condition 4 runways} + z \text{ condition 3 runways}}{\text{Total NPIAS paved runways}} \times 100 \)

Scope of Metric: The metric covers all open and paved runways at federally funded NPIAS airports.

Method of Setting Target: Maintaining runway pavement conditions requires careful coordination, often years in advance, of a runway rehabilitation project. Projects must be timed carefully, regardless of whether they involve the phased reconstruction of a single-runway airport or the sequential resurfacing of multiple runways over a period of several years. In addition, there cannot be too many runways undergoing reconstruction at any one time; if we reconstruct too many in any given year, then we lose system-wide capacity during reconstruction, and if we reconstruct too few in any given year, then we lay the groundwork for having to catch up in a subsequent year, with a corresponding impact on system-wide capacity. Due to the length of time required to plan and implement major pavement
projects and in order to maintain the overall condition of the system, 93% of the system in excellent, good or fair condition is a long established standard that sponsors understand and support, and with a goal of 93%, this means no more than 7% of the runways should be undergoing reconstruction at a time. Some of the nation’s largest airports resurface their runways on an established revolving basis. As a result, at times the FAA is able to exceed the goal. However, this does not necessarily represent a sustainable trend. For major reconstruction, runways must typically be taken out of service for a full construction season or longer. It can be particularly challenging to rehabilitate one runway while keeping intersecting runways operational. FAA works with airports to ensure that the system never has too many runways out of service at any given time.

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** This metric was chosen because if runway pavement is neglected, severe deterioration can cause damage to airframes, engines, and landing gear, unnecessarily compromising safety, and leading to higher rehabilitation costs.

**Public Benefit:** Periodic maintenance of runways, particularly resurfacing, has proven a cost effective way to delay the need for major runway rehabilitation. The FAA funds a broad range of capital infrastructure development at most NPIAS airports; however, airports are generally responsible for funding periodic and ongoing maintenance. More significant rehabilitation, resurfacing or reconstruction projects may be funded through a variety of funding sources, including Airport Improvement Program (AIP) grants, Passenger Facility Charge (PFC) revenues, airport revenues and/or other funding sources. Deferred or delayed maintenance creates an increased risk of damage to aircraft and is a safety concern for the travelling public, increasing both the scope and cost of eventual rehabilitation or reconstruction.

**Partners:** FAA’s Regional Airports Division and Airports District Offices partner with individual airports to identify poor or failed pavements. Three other FAA offices support this effort: the Air Traffic organization, which helps evaluate and minimize the capacity and delay impacts resulting from runway reconstruction projects and helps communicate temporary closures; the Aircraft Certification Service, which helps assess the impact of pavement conditions on aircraft; and the William J. Hughes Technical Center, which assists with a broad range of pavement research. External partners include State aeronautical agencies and other aeronautical user groups.

**External Factors Affecting Performance:** Airport infrastructure, particularly airfield facilities at commercial service airports, is exposed to constant heavy use and harsh environmental conditions. Runways, taxiways, and aprons are designed to withstand the heavy equipment that operates on them, but even so these facilities require frequent maintenance and rehabilitation in order to remain in good working condition. Runways and taxiways have to be kept clear of snow, ice, and ponding water that can jeopardize aircraft directional control or braking action. Chemicals and plowing, as well as freeze-thaw cycles, all take a toll on runways, taxiways, and other paved areas. Even at smaller, non-commercial airports, pavement degradation due to meteorological conditions quickly leads to more serious damage if periodic maintenance and resurfacing is not completed in a timely manner. At the same time, limited financial resources can lead airport operators to try to defer needed capital projects, which both increases costs and may impact operational capacity if runways and taxiways require more in-depth
reconstruction. Funding constraints may significantly affect when the airport sponsor is able to fund
pavement rehabilitation. This is why it is so crucial that the FAA can offer airports financial assistance in
the form of Airport Improvement Program (AIP) grants, in order to ensure infrastructure is properly
protected and preserved at the lowest possible cost.

Source of the Data: Data and information is collected through visual inspection of runway pavement in
accordance with existing FAA guidance; including Advisory Circular 150/5320-17 Airfield Pavement
Surface Evaluation and Rating Manuals provide uniformity to field observations made by individuals
collecting data for the Airport Master Record (FAA Form 5010). The pavement condition is reported in
the 5010 Airport Master Record database and results of the inspections are entered into FAA’s National
Airspace System Resource.

Statistical Issues: None

Completeness: The inspection and reporting of conditions are conducted in accordance with existing
FAA guidance. The data are publicly available and therefore can be examined and evaluated by any
federal auditor.

Reliability: N/A
Performance Measure Profile
FY 2019 Methodology Report

Assistant Administrator for Human Resources (AHR) Performance Measure Profiles

Shared Services - Business Partner Review

Performance Metric: In collaboration with LOBs/SOs, identify redundant, duplicative or unnecessary steps in the overall HR processing model. Redesign and implement updated HR service delivery and streamlined processes, resulting in improved efficiency. Abolish or restructure 5% of positions identified as performing duplicative and/or unnecessary tasks, based on outcomes of Management Board Workforce Reduction Initiative: Cut HR Paperwork and Processes, and then Shadow Staff. Due September 30, 2019

FY 2019 Performance Target: Abolish or restructure 5% of positions identified as performing duplicative and/or unnecessary task (HR intake and delivery process) NOTE: The absence of a quantifiable metric as a baseline to measure the % abolished and/or restructured renders the target “Not Measurable”

Lead Organization: Human Resource Management (AHR)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0%(^1)</td>
<td>See Note(^2)</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: Number of full or part-time shadow staff performing HR intake and delivery activities and found to be performing duplicative and/or unnecessary activities.

Computation: The metric is calculated by dividing the number of shadow staff performing duplicative and/or unnecessary activities by the total number of shadow staff on board and multiplying by 100 for a percentage decrease.

Formula: \[
\frac{\text{# staff performing duplicative/unnecessary activities}}{\text{Total # of shadow staff}} \times 100
\]

Scope of Metric: This metric calculates the number of full or part-time shadow staff personnel.

Method of Setting Target: FAA leadership set the 5% target, which has recently changed to 10%.

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: This metric was chosen by the FAA Management Board as a response to the initiative which sought to Cut HR Paperwork and Processes First and Then Cut Shadow Staff. The FAA Management Board adopted this initiative and assigned AHR to conduct the review.

---

\(^1\) Phase 1 of the Business Partner review conducted in FY 2018 did not result in a percentage increase

\(^2\) The FY 2019 target (percentage decrease) is not achievable this FY due to the absence of a baseline metric

\(^3\) The total number of shadow staff in the HR intake and delivery process is unconfirmed
Performance Measure Profile
FY 2019 Methodology Report

**Public Benefit:** This initiative supports workforce reform. Changes in the HR intake and delivery process will improve efficiency of government. Efficiency of government is a public benefit.

**Partners:** No external partners are participating in this initiative. Internally, AHR is partnering with all LOB and SOs, with the exception of AOA and AAE because of their small size.

**External Factors Affecting Performance:** Budget - changes to the HR intake and delivery process require additional funding.

**Source of the Data:** The source of the data collected and reviewed are LOB and SOs and AHR lines of businesses (Labor and Employee Relations, Compensation, Work Life and Benefits, Learning and Development, and Personnel Action Processing). Information collected through interviews with LOB and SOs are also sources of data.

**Statistical Issues:** The major statistical issue is the absence of a baseline metric to calculate the percentage decrease.

**Completeness:** Data used to inform the findings in this review are validated through interviews with LOB and SOs. In addition LOB and SOs will review the draft report and verify/validate the quantitative data and description/characterization of their HR intake and service delivery model. The metric in this target cannot be achieved through this review in FY 2019 for two reasons (1) a baseline metric was not established to measure a percentage decrease and (2) the outcome of the review does not conclude that a significant causal relationship between the elimination of HR paperwork and the size and scale of shadow staff exist and a moderate causal relationship between the efficiency of HR intake processes on the LOB and SO side and the size and scale of shadow staff.

**Reliability:** The review is near reliable. However, the difficulty in reaching a mutually agreed upon baseline on the number of full or part-time shadow staff reduces the reliability of this review’s ability to reach a percentage decrease target.
Aviation Workforce - Strategic Partnerships

**Performance Metric:** Increase the number of activities tracked by the national program office by 50%, from a FY18 baseline of 154 engagements to 231 engagements in FY19. Due: September 30, 2019.

**FY 2019 Performance Target:** Increase the number of activities tracked by national program office by from 154 activities to 231 activities

**Lead Organization:** Human Resource Management (AHR) Executive Development and Organizational Effectiveness (AHD)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY2016</th>
<th>FY2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>154</td>
<td>231</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>137</td>
<td>TBD</td>
</tr>
<tr>
<td>Actual To Date</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>335 (145%)</td>
</tr>
</tbody>
</table>

**Definition of Metric**

**Metric Unit:** Outreach events as logged in the STEM AVSED website

**Computation:** This is a simple count per the entered events.

**Formula:** This is a simple count per the entered events.

**Scope of Metric:** This is a simple count per the entered events.

**Method of Setting Target:** Aviation Workforce Executive Steering Committee

**Additional Information on Metric**

**Why the FAA and/or DOT chose this Metric:** External concerns from the aviation industry

**Public Benefit:** Overall safety in aviation as a result of having enough professionals prepared to be in the workforce (pilots, mechanics, engineers).

**Partners:** Government (US Air Force, Department of Education, Department of Labor, DOT), Industry (i.e., GE Aviation, Pratt & Whitney, Boeing...), Academia (FAA COEs, Embry Riddle...)

**External Factors Affecting Performance:** The goal has been exceeded.

**Source of the Data:** Outreach events as logged in the STEM AVSED website

**Statistical Issues:** This is a simple count per the entered events.
Completeness: The quality standards are established through completion of the eLMS course which provides the certification for an Outreach Representative to conduct an Outreach event. Materials for Outreach events are standard FAA STEM program materials vetted for quality.

Reliability: The eLMS training and standard events materials ensure consistency and reliability.
Performance Measure Profile
FY 2019 Methodology Report

Workforce Transformation: Program Effectiveness-FAA Leadership and Learning Institute (FLLI)

Performance Metric: Deliver FAA foundational leadership and management training to 2,400 students. Due September 30, 2019

FY 2019 Performance Target: Increase leadership and management training from 2,200 student to 2,400 students

Lead Organization: Human Resource Management (AHR)

<table>
<thead>
<tr>
<th></th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>N/A</td>
<td>1,400</td>
<td>1,800</td>
<td>2,200</td>
<td>2,400</td>
</tr>
<tr>
<td>Actual</td>
<td>N/A</td>
<td>2,501</td>
<td>3,265</td>
<td>2,938</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Definition of Metric

Metric Unit: The metric is based on the number of FAA Managers attending an instructor-led (ILT) course.

Computation: The computation is derived by querying the FAA Electronic Learning Management System (ELMS). FLLI personnel enter course completion data into ELMS after each class. On the 5th of each month, a report is generated that lists each FLLI ILT course and the number of personnel who have completed that course. Totals are derived from that data.

Formula: No formula utilized.

Scope of Metric: The metric applies to only Centrally Funded course completions.

Method of Setting Target: The target is based on the projected available funding for the next fiscal year, projected corporate assessment funding anticipated for the next fiscal year, and the results of the FAA Call-for-Training. Student throughput data from previous years play a minor role since a substantial backlog of students continues to grow and total throughout is based on the number of classes offered.

Additional Information on Metric

Why the FAA and/or DOT choose this Metric: The methodology was chosen in order to ensure the FAA was keeping up with the demand to provide leadership and management training to employees.

Public Benefit: The FAA manager group provides the day-to-day supervision of more than 40,000 aerospace professionals. Effective training in leadership and management principles ensure the safe skies concept adopted by the FAA.

Partners: None
External Factors Affecting Performance: The ability to meet the performance target is primarily based on budgetary factors. This includes central funding, corporate assessment, obligated travel dollars and funding available to each Line of Business (LOB/) and Staff Office (SO) for Fee-for-Service programs.

Source of the Data: FAA Electronic Learning Management System

Statistical Issues: Reporting numbers are usually not available until the 5th of each following month.

Completeness: The process used to develop the metric is a straight line process. Students sign up for a course, attend the course, sign the course completion roster for the course, FLLI personnel enter course completion data into ELMS throughout the reporting period, and end-of-month results are garnered on the 5th of the next month. Quality control is conducted monthly by FLLI logistics specialists. Limitation of data compilation is “if” the FAA ELMS system goes down or becomes corrupted (neither has occurred in 17 years of its existence). Data is presented to three FAA senior committees (Workforce Transformation Executive Steering Committee and the FAA Learning and Development Council) who ensure high standards are maintained and best practices are utilized and the Performance Committee who oversee the accomplishment of FAA corporate goals.

Reliability: No reliability exceptions noted.
Performance Measure Profile
FY 2019 Methodology Report

Workforce Transformation: Drive Performance - Performance Management

Performance Metric: Selection and procurement of a performance management system for bargaining unit employees to replace existing, inefficient performance management system

FY 2019 Performance Target: Select system options and begin procurement activities for a new information technology solution or system for the Pass/Fail Performance Management. Due Feb 8, 2019.

This target was established due to a failing performance management system (system is losing data) as well as the current system’s inability to run timely and accurate reports for performance plans development and for mid-year and annual performance reviews.

Lead Organization: Office of Human Resource Management (AHR)

Definition of Metric

Metric Unit: To measure progress against this target, the FAA needed to select one system for performance management activities for bargaining unit employees, begin procurement activities and implement a system with the assumptions that managers must be able to input FY20 plans beginning 10/1/19.

Computation: More than one system was evaluated using established process of the Operations Governance Board (OGB) and then one system was selected. Options evaluated were: using the non-BU system (Valuing Performance System) for BU employees, selection of a commercial of the shelf tool, or using the same system as used for executives, USA Performance

Note: The Office of Human Resource Management recommended a system option at the Operations Governance Board (OGB) meeting in November 2018.

Formula: 1 system selected for implementation

Three options were considered:
   1. SaaS, the selected option
   2. USA Performance, which is not scalable to the FAA needs, and
   3. Built in-house which is cost-prohibitive

Scope of Metric: System must be selected using established process of the OGB and address the following gaps in the current system:
   • Built on older platform no longer to be supported
   • Difficult to create a performance plan from anything other than a generic plan
   • User receives error messages while creating plans
   • Auto-system lockout after 60 days
   • Unable to create an individual performance plan without Lines of Business loading their business plan
   • Not user friendly – 21,000 out of 35,000 plans done on paper only with no central location
   • No capability to track plans or plan status (mid-years completed, end of year, etc.)
   • System usage for managers is not mandatory
Method of Setting Target: Established procurement and OGB processes to achieve system selection

Additional Information on Metric

Why the FAA and/or DOT chose this Metric: Existing system was failing/losing data. Also, the existing system did not have timely and accurate reporting capability; larger a paper-based process. The agency needed a way to monitor and track performance; the selection of a new system was deemed the best way to meet this need.

Public Benefit: Performance management system identifies those who are meeting performance standards and those that are not, allowing for further action as needed. Performance management structure and systems engage, develop, and inspire a diverse, capable workforce.

Partners: Office of Information and Technology Services (AIT)

External Factors Affecting Performance: Contractor delivery, government shut-down delay of contract award


Statistical Issues: None

Completeness: Complete (1 system selected and procurement activities conducted)

Reliability: Reliability of metric is 100% as system was selected and procurement activities conducted in accordance with AIT and OGB processes