
Presented to:

By:

Date:

Building improved Data

Integrity and Data

Exchange Systems with

Blockchain and Ledger

Technologies

ATIEC 2019

Amazon Web Services

Lana Kalashnyk, Principal Blockchain

Architect lkalash@amazon.com

ATIEC 2019

Let’s discuss

• Blockchain vs a Ledger Technology

• Amazon Managed Blockchain

• Amazon Quantum Ledger Database

• Customer Success Stories

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

Blockchain vs a Ledger

How do we think about

blockchain?

Need for a ledger with centralized

trust

•DMV
•Track vehicle
title history

•Manufacturers
•Track distribution of a
recalled product

•HR & Payroll
•Track changes to an
individual’s profile

•Healthcare
•Verify and track hospital
equipment inventory

•LEDGERS WITH
CENTRALIZED TRUST

•1

Challenges customers face

•Building ledgers with traditional databases

•Difficult to
manage and scale

•Impossible
to verify

•Error prone and
incomplete

•Resource
intensive

•Blockchain approaches

•Designed for a
different purpose

•Adds unnecessary
complexity

Need for running transactions

with decentralized trust

•2

•Financial
institutions
•Peer-to-peer payments

•Mortgage
lenders
•Process syndicated
loans

•Supply Chain
•Transact with suppliers
and distributers

•Retail
•Streamline customer
rewards

•TRANSACTIONS WITH
DECENTRALIZED TRUST

Complexity of Multi-Party

Businesses

• Multi-party businesses could achieve better outcomes by sharing

information, but need:

• A way to independently verify transactions

• Single, current and accurate view of data with tamper-proof history of

transactions

• To this end, organizations with multi-party business use:

• Central authorities to securely and fairly share data and

• Employ costly escrow process for asset transfers.

Blockchain

Linked transaction
data in encrypted,

redundant databases,
or ledgers, hosted
across the Internet

What is it

Makes online transactions
across enterprises more
secure and trustworthy

Lowers cost by eliminating
the need for traditional

intermediaries

What it does

No single entity
controls the data,

further reducing risk

Who

Encrypted, redundant data
prevents destruction or

falsification of data
in any single ledger

How

Perspectives

Business Technical Legal

Typical Distributed Application

Stack

Applications

APIs

Smart Contracts

Distributed Ledger

Consensus

Permissioned or Permissionless

•Permissioned

• Users enrolled before transcations

• Identifiable users

• Trace transactions to users

•Permissionless

• Anonymous

• Anyone can perform transactions

• Commonly restricted to operations on
own data

Blockchain components: “smart

contracts”

• Rules embedded in app

• Verified execution of code

• Conditional operators

• Application writes to ledger

• Contract can interact with
components outside of the
blockchain network (off-chain)

Consensus Algorithms

• Proof of Work

• Proof of Stake

• Proof of Authority

• Proof of Elapsed Time (PoET)

• Endorsement, Ordering, Validation

(PBFT)

Blockchian Components:

Sample Distributed Ledger

Block1 Header

PrevHash

…

Merkle Root

<Transactions>

Block3 Header

PrevHash

…

Merkle Root

<Transactions>

Block2 Header

PrevHash

…

Merkle Root

<Transactions>

Challenges with existing

blockchain solutions

Complicated to
manage

Setup is hard Hard to scale Expensive

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

Amazon Managed Blockchain

What is Amazon Managed

Blockchain?

Amazon Managed Blockchain is a fully managed service that makes it
easy to create and manage scalable blockchain networks using popular

open source frameworks:
Hyperledger Fabric and Ethereum

Amazon Managed Blockchain

Low cost
Only pay for resources used

Open-source variety
Support for two frameworks

Integrated
Send data to Amazon QLDB

for secure analytics

Fully managed
Create a blockchain network in minutes

Reliable & scalable
Backed with Amazon QLDB technology

Decentralized
Democratically govern the network

How Amazon Managed

Blockchain works

Amazon Managed
Blockchain

Create a network

Choose an open
source blockchain

framework

Invite members

Invite other AWS
accounts to join the

network

Add nodes

Create peer nodes
that store a copy of

the distributed ledger

Deploy applications

Create and deploy
decentralized
applications

Who ”owns” the network?

• Networks are decentralized and can remain active even after the initial creator
leaves

• Inviting members to join

• Preview: network creator can invite

• GA: members vote on who to invite and remove

• Network-wide settings

• GA: members can vote on network-wide settings and configure the

actual voting rules (e.g., majority rules or one member decides)

• Each member pays for their resources

• Amazon Managed Blockchain manages shared components like the
ordering service and networking settings

Hyperledger Fabric Ordering Service

(Orderer)

Fabric Certificate

Authority

Bank A

Peer Node

Fabric Certificate

Authority

Bank B

Peer Node

Fabric Certificate

Authority

RMO

Peer Node

Fabric Certificate

Authority

Central Bank

Peer Node

VPC Endpoint

Fabric Client Node

Fabric Network managed by Amazon Managed Blockchain

VPC Bank A

Buyer/Seller

VPC Endpoint

Fabric Client Node

VPC Bank B

Buyer/Seller

VPC Endpoint

Fabric Client Node

VPC RMO

Arbitrator

VPC Endpoint

Fabric Client Node

VPC Central

Observer

Amazon

VPC

PrivateLink

Amazon Managed Blockchain

Transaction flow with

Hyperledger Fabric

•Verify policy

•Peer-1

•Peer-n

•Transaction simulation

•Ordering service

•Submitting-client

•2

•5

•6 •Transaction delivery to peers

•Transaction
proposal

•1

•Endorsement signature•3

•Broadcast endorsement•4

Augmented Hyperledger Fabric

Ordering service

Core component of a Fabric network to guarantee delivery and order of
transactions

Production grade networks using open source will utilize Apache Kafka
for this component

Managed Blockchain uses Amazon QLDB technology, increasing
durability and reliability

Certificate authority

Open source uses a “soft” HSM

Managed Blockchain uses AWS Key Management Service (AWS KMS)
to secure the Certificate Authority service

Channels and private data for

access control

Channels allow isolation of
transactions among
specific members in the
network

Create or update a
channel with configuration
transaction (configtx)

Private data enables sub-
channel access control Member 1 Member 2 Member 3

Channel 2
Ledger

Channel 1
Ledger

Hyperledger Fabric ordering service

Channel 2Channel 1

Member 2
Peer

Member 3
Peer

Member 1

Peer

Endorsement policies

Endorsement policies allow
chaincode to specify which
members (or how many)
need to validate a
transaction before
submitting

Endorsed transactions
then get submitted to
the ordering service and
assembled into blocks

Member 1
client

Hyperledger Fabric ordering service

Ledger LedgerMember 2

Peer

Member 1

Peer

1

3 2

1

3

Problem
Nestlé is committed to bringing transparency into the
origin and quality of the ingredients used in their
products, and wants their customers to have visibility
into the end-to-end supply chain for their single
origin coffee.

Solution
AWS Professional Services built supply-chain asset-
tracking smart contracts to track single origin coffee
from farm to customer on Amazon Managed
Blockchain network, and exposed the contracts via a
RESTful API. Nestlé’s mobile app consumes the API to
capture events as the coffee moves through the
supply chain.

Impact
Nestlé and their customers can now track the high
quality single origin coffee from farmer to customer.
Nestlé now has a platform they can expand to and
trace the provenance of other products from their
brand portfolio.

Nestle

Sony Music Entertainment Japan (SMEJ) is committed to helping musicians and artists by

removing undifferentiated heavy lifting such as filing and processing content rights and allow

artists to focus more time on producing their work

Solution

Using SMEJ’ system on AWS, participants will be able to share and verify information such as date

and time of creation, and the author’s details and automatically verify the rights generation of any

piece of written work.

Outcomes

The system is expected to improve productivity while maintaining proper rights processing,

creating an environment where new generations of creators can launch hit content.

Sony Music Entertainment Japan -
Music Rights

Legal & General picked Amazon Managed Blockchain for their global Pension Risk Transfer (PRT) ecosystem . This is

a single ecosystem capable of driving every stage of the PRT reinsurance value chain including pricing, claims

handling, financial reporting and collateral, utilising data dynamically stored on the blockchain

Solution

With Amazon Managed Blockchain, Legal and General is able to create a solution that addresses not only the

greater speeds at which risks are transacted but also drives transparency and security in an increasingly

interconnected market. This platform replaces multiple processes and systems traditionally used to support each

function, with the added security of blockchain technology.

Impact

Legal & General’ platform enables the Group to provide excellent service to customers in multiple markets at lower

costs, redefining the way long term life reinsurance business is sold and managed. All Legal & General Reinsurance

clients will eventually be supported on this platform.

Legal & General Reinsurance
Pension Risk Transfer platform

Amazon Managed Blockchain

Customers

Amazon Quantum Ledger

Database

Purpose-built databases at AWS

•Relational

•Referential integrity,
ACID transactions,
schema-on-write

•Lift and shift, ERP,
CRM, finance

•Key-value

•High throughput,
low-latency

reads and writes,
endless scale

•Real-time bidding,
shopping cart, social,

product catalog,
customer preferences

•Document

•Store documents
and quickly access

querying on
any attribute

•Content
management,

personalization,
mobile

•In-memory

•Query by
key with microsecond

latency

•Leaderboards,
real-time analytics,

caching

•Graph

•Quickly and easily
create and navigate

relationships
between data

•Fraud detection,
social networking,
recommendation

engine

•Time-series

•Collect, store, and
process data

sequenced by time

•IoT applications,
event tracking

•Ledger

•Complete,
immutable, and
verifiable history
of all changes to
application data

•Systems of record,
supply chain,
healthcare,

registrations,
financial

ID Manufacturer Model Year VIN Owner

1 Tesla Model S 2012 123456789 Traci Russell

Traditional database

architecture: the log
• Typically an internal implementation

• Used for replicating data

• Difficult, or impossible, to directly access

•table

•t
x1

•t
x2

•t
x3

•t
x4

•t
x5

•t
x6

•t
x7

•t
x8

•log

How Amazon QLDB works

Amazon QLDB: the journal is the

database

• QLDB’s journal has structural similarity to a database log

• All writes go to the journal—the journal determines state

• Journal handles concurrency, sequencing, cryptographic verifiability,
and availability

• Accessible history of all transactions, document versions, document
metadata

blockAdreess hash data metadata

{strandId:"JpbmngzFZV7F
HjEuuER1Ol",sequenceN
o:78}

{{XKlKYIzWEyBPRgup1Xfa
/Qp4JE2PEbA8nc0KxlVG
m8c=}}

{Manufacturer:"Tesla",Model:
"Model
S",Year:"2012",VIN:"12345678
9",Owner:"Traci Russell"}

{id:"5PLf8cOOFPoIf7w1NJz
UXL",version:0,txTime:201
9-06-28,
txId:"3mDCDwAbtYi6vGdP
fUlDGf"}

{strandId:"60bpn7xLtB48
311uwkihe8",sequenceN
o:11}

{{ii2h58whRCHk/1zRp4RL
glG9D2SlNDa32rUWZtcS1
1E=}}

{Manufacturer:"Tesla",Model:"
Model
S",Year:"2012",VIN:"12345678
9",Owner:"Traci
Russell",owner:"Ronnie Nash"}

{id:"Kwo6aQwJ4Dz4D1oyV
qRgxY",version:1,txTime:2
019-07-
04T20:21:22.071Z,txId:"6B
Fspx97Mtq4sEid33YkMd"}

{strandId:"60bpn7xLtB48
311uwkihe8",sequenceN
o:13}

{{UdPrq7OTHfiikK9rS8YRB
pjGI0c5Pfl3DreSmQaGrfc=
}}

{Manufacturer:"Tesla",Model:"
Model
S",Year:"2012",VIN:"12345678
9",Owner:"Traci
Russell",owner:“Robert
Dennison"}

{id:"Kwo6aQwJ4Dz4D1oyV
qRgxY",version:2,txTime:2
019-07-
04T20:24:45.768Z,txId:"23k
hn4h3uvH6i8dwKefLjS"}

ID Manufacturer Model Year VIN Owner

1 Tesla Model S 2012 123456789 Robert Dennison

•history() #function to query document history

•User #standard user data, the default

•t
x1

•t
x2

•t
x3

•t
x4

•t
x5

•t
x6

•t
x7

•t
x8

•journal

blockAddress hash data metadata

{strandId:"JpbmngzFZV7
FHjEuuER1Ol",sequence
No:78}

{{XKlKYIzWEyBPRgup1Xfa
/Qp4JE2PEbA8nc0KxlVGm
8c=}}

{Manufacturer:"Tesla",Model:"
Model
S",Year:"2012",VIN:"12345678
9",Owner:"Traci
Russell",owner:“Robert
Dennison"}

{id:"5PLf8cOOFPoIf7w1NJz
UXL",version:0,txTime:201
9-06-28,
txId:"3mDCDwAbtYi6vGdP
fUlDGf"}

•Committed #includes metadata

•W
ri

ti
n

g
•R

ea
d

in
g

Amazon QLDB: the journal is the

database

ID Manufacturer Model Year VIN Owner

1 Tesla Model S 2012 123456789 Robert Dennison

•History/committed

•user

•INSERT… •UPDATE… •DELETE… •UPDATE… •UPDATE… •UPDATE…

•SEQUENCE
NUMBER: 789

•SEQUENCE
NUMBER: 790

•SEQUENCE
NUMBER: 791

•SEQUENCE
NUMBER: 793

•SEQUENCE
NUMBER: 792

•SEQUENCE
NUMBER: --

•journal

•ledger

•Application data •Amazon Quantum
Ledger Database

•W
ri

ti
n

g

ID Version Start Manufacturer Model Year VIN Owner

1 0 7/16/2012 Tesla Model S 2012 123456789 Traci Russell

1 1 8/03/2013 Tesla Model S 2012 123456789 Ronnie Nash

1 2 9/02/2016 Tesla Model S 2012 123456789 Robert Dennison

Easy to use (SQL)

•INSERT INTO cars

• { 'Manufacturer':'Tesla',

• 'Model':'Model S',

• 'Year': 2012,

• 'VIN': 123456789,

• 'Owner':'Traci Russell'

• }

•

•SELECT * FROM cars

•UPDATE cars SET owner = 'Ronnie Nash' WHERE VIN = '123456789'

Serverless, scalable, highly available

•Region

•Availability zone 1 •Availability zone 2

•Journals •Journals

•Availability zone 3

•Journals

•UPDATE… •DELETE… •UPDATE… •UPDATE… •UPDATE…

Immutable

•INSERT…

•SEQUENCE
NUMBER: 789

•SEQUENCE
NUMBER: 790

•SEQUENCE
NUMBER: 791

•SEQUENCE
NUMBER: 793

•SEQUENCE
NUMBER: 792

•SEQUENCE
NUMBER: --

• The journal is append only and sequenced

• There is no API or other method to alter committed data

• All operations, including deletes, are written to the journal

Cryptographic verification

•Entries

•Block

•QLDB SQL

•Metadata

•journal

•Record
hash

•Digest

Amazon QLDB summary

•Journal-first

•The journal is the database

•ACID Transactions

•Fully serializable isolation

•Easy to use

•Familiar SQL operators

•Highly scalable

•Serverless, highly available

•Immutable

•Append-only, sequenced

•Cryptographically verifiable

•Hash-chaining provide data integrity

QLDB’s data model: Amazon Ion

• vehicle = {

• ‘VIN’ : “KM8SRDHF6EU074761”,

• ‘MfgDate’ : “2017-03-01”

• ‘Type’: “Truck”

• ‘Mfgr’: “Ford”

• ‘Model’: “F150”

• ‘Color”: “Black”

• ‘Specs’: {

• ‘EngSize’ : 3.3

• ‘CurbWeight’: 4878

• ‘HP’: 327

• ‘BatterySize’: Null

• }

•}

•JSON document

•/* Ion supports comments. */

•vehicle = {

•‘VIN’ : “KM8SRDHF6EU074761”,

•‘MfgDate’: 2017-03-01T

•‘Type’: “Truck”

•‘Mfgr’: “Ford”

•‘Model’: “F150”

•‘Color”: “Black”

•‘Specs’: {

• ‘EngSize’ : 3.3 (decimal)

• ‘CurbWeight’: 4878 (int)

• ‘HP’: 327 (int)

• ‘BatterySize’: NULL.int

• }

•}

•Ion document

•https://github.com/amzn/ion-java

data format

https://github.com/amzn/ion-java

QLDB’s data model: PartiQL

•vehicle = {

• ‘VIN’ : “KM8SRDHF6EU074761”,

• ‘MfgDate’ : 2017-03-01T // timestamp

• ‘Type’: “Truck”

• ‘Mfgr’: “Ford”

• ‘Model’: “F150”

• ‘Color”: “Black”

• ‘Specs’: {

• ‘EngSize’ : 3.3

• ‘CurbWeight’: 4,878

• ‘HP’: 327

• ‘BatterySize’ : NULL // null values

• }

•}

•SELECT

• VIN,

• Specs.EngSize,

• Specs.HP

•FROM vehicles as v

•WHERE v.type = ‘Truck’

VIN Specs.EngSize Specs.HP

KM8SRDHF6EU074761 3.3 327

SQL-compatible language

•https://partiql.org/

Assume 3 tables

QLDB’s data model: e-commerce

data model using Ion

•Products•Customers •Orders

•CREATE TABLE Orders •CREATE TABLE Customers •CREATE TABLE Products

•INSERT INTO orders

•{

• 'order-id' : 100056,

•

• 'customer' : {

• 'document-id' : 'some-value',

• 'customer-id': 1000,

• 'first-name' : 'Mike',

• 'last-name' : 'Labib',

• 'address' : ‘126 Brampton Lane',

• 'city' : ‘Chicago',

• 'state' : 'IL'

• },

• 'order-date' : 2019-04-30T,

• 'order-details' : {

• 'item' : {

• 'document-id‘ : 'some-value',

• 'product-id' : 346211 ,

• 'product-description' : '3 pair
socks',

• 'product-color' : 'blue',

• 'price' : 15.00,

• 'quantity' : 2

• }

Ledger: Order-System

Nested document structure enables
optimal queries and data access •O

rd
er

•Products

•Customers

document-id (unique)

Ledger: Order-System

•SELECT o.order-details from orders o

•WHERE o.customer.customer-id = 1000

•AND o.order-id = 100056

•{ item:

• {'product-id': 346211,

• 'product-description': ‘3 pair socks’,

• 'product-color': ‘blue’,

• ‘price’: 15.00,

• ‘quantity’: 2

• }

•}

•query •result

Nested document query

(customer within orders)

•Products•Customers •Orders

filter on nested doc

Mapping constructs between

RDBMS & QLDB

•Table

•Relational

•Table

•QLDB

•Table row •Amazon Ion Document

•Column
•Document
•Attribute

•Index •Index

•SQL •QLDB SQL

•Audit Logs •Journal

•Database •Ledger

Deeper look at cryptographic

verifiability

• Four basic steps to seeing how QLDB’s verifiability works

•Proof: A chain of hashes that links
a document to its digest

•a4e31e36910d99bd19b7f87
5f0a04597dc0ff52c2f164a16a
9288aed9e710fdd

•d07fc3d67314905dd065d55
988790070410e87072f27ce2
d1cb56457c0879bc8

•2fc7e994c884bd13d5fd22b7
425328d0e5d5b0cdcba4d285
b198be612f229ccb

•Digest: Periodic hash covering all history

•SHA256: Unique Signature of a document

•a4e31e36910d99bd19b7f87
5f0a04597dc0ff52c2f164a16a
9288aed9e710fdd

•Merkle Trees: Chaining past hashes together

•MERKLE ROOT

•HABCD

•Hash(HAB+HCD)

•HAB

•Hash(HA+HB)

•HCD

•Hash(HC+HD)

•HA

•Hash(Tx
A)

•HB

•Hash(Tx
B)

•HC

•Hash(Tx
C)

•HD

•Hash(Tx
D)

ID Manufacturer Model Year VIN Owner

ID Version Start Manufacturer Model Year VIN Owner

How it works

•history()

•H

•cars

•C

•J

•INSERT cars

•ID:1

•Manufacturer: Tesla

•Model: Model S

•Year: 2012

•VIN: 123456789

•Owner: Traci Russell

•
Metadata: {

•Date:07/16/2012

•}

•H (T1)

•INSERT INTO cars <<

• { 'Manufacturer':'Tesla',

• 'Model':'Model S',

• 'Year':'2012',

• 'VIN':'123456789',

• 'Owner':'Traci Russell' }

• >>

•journal

ID Manufacturer Model Year VIN Owner

ID Version Start Manufacturer Model Year VIN Owner

How it works

•history()

•H

•cars

•C

•J

•INSERT cars

•ID:1

•Manufacturer: Tesla

•Model: Model S

•Year: 2012

•VIN: 123456789

•Owner: Traci Russell

•
Metadata: {

•Date:07/16/2012

•}

•H (T1)

•INSERT INTO cars <<

• { 'Manufacturer':'Tesla',

• 'Model':'Model S',

• 'Year':'2012',

• 'VIN':'123456789',

• 'Owner':'Traci Russell' }

• >>

•journal

1 Tesla Model S 2012 123456789 Traci Russell

1 1 7/16/2012 Tesla Model S 2012 123456789 Traci Russell

1 2 8/03/2013 Tesla Model S 2012 123456789 Ronnie Nash

ID Manufacturer Model Year VIN Owner

ID Version Start Manufacturer Model Year VIN Owner

How it works

•history()

•H

•cars

•C

•J

•INSERT cars

•ID:1

•Manufacturer: Tesla

•Model: Model S

•Year: 2012

•VIN: 123456789

•Owner: Traci Russell

•
Metadata: {

•Date:07/16/2012

•}

•H (T1)

•journal

1 Tesla Model S 2012 123456789 Traci Russell
•UPDATE cars SET owner = 'Ronnie Nash' WHERE
VIN = '123456789'

•UPDATE cars

•ID:1

•Owner: Ronnie Nash

•
Metadata: {

•Date:08/03/2013

•}

•H (T2)

•Ronnie Nash

1 1 7/16/2012 Tesla Model S 2012 123456789 Traci Russell

ID Manufacturer Model Year VIN Owner

ID Version Start Manufacturer Model Year VIN Owner

How it works

•history()

•H

•cars

•C

•J

•INSERT cars

•ID:1

•Manufacturer: Tesla

•Model: Model S

•Year: 2012

•VIN: 123456789

•Owner: Traci Russell

•
Metadata: {

•Date:07/16/2012

•}

•H (T1)

•journal

1 Tesla Model S 2012 123456789 Ronnie Nash

1 1 7/16/2012 Tesla Model S 2012 123456789 Traci Russell

•UPDATE cars

•ID:1

•Owner: Ronnie Nash

•
Metadata: {

•Date:08/03/2013

•}

•H (T2)

1 2 8/03/2013 Tesla Model S 2012 123456789 Ronnie Nash

•DELETE FROM cars WHERE VIN = '123456789'

•DELETE cars

•ID:1

•
Metadata: {

• Date: 09/02/2016
}

•H (T3)

1 3 9/02/2016 Deleted

•H(T2) = 86a90e4166453d9423b84d47dcbd97c0e3099b1a1f0d7cfca6c191d8fd8994ff

•H(T1) = 2526f16306c819d651af075934170d2430d246d9ab98d975d28a83baded47ca7

A digest is a hash value at a

point in time

•J

•H (T1) •H(T2)•INSERT cars

•ID:1

•Manufacturer: Tesla

•Model: Model S

•Year: 2012

•VIN: 123456789

•Owner: Traci Russell

•
Metadata: {

•Date:07/16/2012

•}

•UPDATE cars

•ID:1

•Owner: Ronnie Nash

•
Metadata: {

•Date:08/03/2013

•}

•H(T3)•DELETE cars

•ID:1

•Metadata: {

• Date: 09/02/2016

•}

•H(T3) =
ae2d64e562ec754ec3194c744eec72c9fdafffc6b559e0414d0e75bf96ca92ad

•H(T3) =
ae2d64e562ec754ec3194c744eec72c9fdafffc6b559e0414d0e75bf96ca92ad•H(T3) =
c6268578a24dbe0c7cfba07bd967411a35462b8c875d42f1991faad02c0ac93c

•H(T2) = 86a90e4166453d9423b84d47dcbd97c0e3099b1a1f0d7cfca6c191d8fd8994ff

•H(T2) = a90a9898c7e4b1aab19c705b554afd9e0bf6539bb0346df19be362ff63001098

•H(T1) = 2526f16306c819d651af075934170d2430d246d9ab98d975d28a83baded47ca7

•H(T1) =
25d0b44e6e8878151646ffc1fea4eb85c3e4bf4baec212a9fcf67b6d5a81e01a

•UPDATE cars

•ID:1

•Owner: Ronnie Nash

•
Metadata: {

•Date:08/03/2013

•}

•DELETE cars

•ID:1

•Metadata: {

• Date: 09/02/2016

•}

Changing committed data breaks

the chain

•J

•H (T1) •H(T2)•INSERT cars

•ID:1

•Manufacturer: Tesla

•Model: Model S

•Year: 2012

•VIN: 123456789

•Owner: Tracy Russell

•
Metadata: {

•Date:07/16/2012

•}

•H(T3)

Why does immutability and

verifiability matter?
•Reduce risk: ensure safeguarding of critical system-of-record applications where data loss could
be expensive.

•Improve data tracking: helps you or any parties that have access to the system to quickly and
accurately track data’s entire lineage, improving efficiency in tracking the source of issues (e.g.,
manufacturing defects, maintain supply network data hygiene)

•Auditability: helps reduce downtime caused due to audit and compliance issues, saving
hundreds of productivity hours for your team

•Reduce implementation effort: building immutability and verifiability in a traditional way is time
consuming, complex, and expensive

Blockchain Success Stories on

AWS

What’s next ?

To learn more about our services

Amazon Managed Blockchain

• Amazon Managed Blockchain : https://aws.amazon.com/managed-blockchain

Amazon QLDB

• Amazon QLDB webpage: https://aws.amazon.com/qldb

Amazon Blockchain Partners

• APN Blockchain Partners Spotlight:
https://aws.amazon.com/partners/spotlights/blockchain-partner-spotlight/

https://aws.amazon.com/managed-blockchain
https://aws.amazon.com/qldb

