Aeronautical Information Services

Aeronautical Chart
User’s Guide

Effective as of 26 March 2020
Table of Contents

INTRODUCTION

- KEEP YOUR CHARTS CURRENT .. 7
- EFFECTIVE DATE OF CHART USER’S GUIDE AND UPDATES 7
- COLOR VARIATION ... 7
- REPORTING CHART DISCREPANCIES .. 7

WHAT’S NEW? ... 9

- VFR CHARTS .. 9
- IFR ENROUTE CHARTS ... 9
- TERMINAL PROCEDURE PUBLICATIONS (TPPS) 9

EXPLANATION OF VFR TERMS AND SYMBOLS 11

- WATER FEATURES (HYDROGRAPHY) .. 11
- LAND FEATURES (TERRAIN) AND OBSTRUCTIONS 11
- LAND FEATURES - MOUNTAIN PASSES ... 14
- RADIO AIDS TO NAVIGATION .. 15
- AIRPORTS ... 15
- AIRSPACE ... 17
- TERMINAL AREA CHART (TAC) COVERAGE 20
- INSET AND SPECIAL CHART COVERAGE 20
- CHART TABULATIONS .. 20
- CARIBBEAN VFR AERONAUTICAL CHARTS (CAC) 22

VFR SECTIONAL AND TERMINAL AREA CHARTS 23

- AIRPORTS ... 23
- RADIO AIDS TO NAVIGATION .. 25
- AIRSPACE INFORMATION .. 26
- NAVIGATIONAL AND PROCEDURAL INFORMATION 32
- CULTURE ... 34
- HYDROGRAPHY ... 37
- RELIEF ... 40

VFR FLYWAY PLANNING CHARTS 43

- GENERAL INFORMATION .. 43
- AIRPORTS ... 43
- RADIO AIDS TO NAVIGATION .. 43
- AIRSPACE INFORMATION .. 44
- NAVIGATIONAL AND PROCEDURAL INFORMATION 47
- CULTURE ... 47
- BOUNDARIES .. 47
- HYDROGRAPHY ... 48
- RELIEF ... 48
Table of Contents

HELCOPTER ROUTE CHARTS
- GENERAL INFORMATION... 49
- AIRPORTS ... 49
- RADIO AIDS TO NAVIGATION ... 50
- AIRSPACE INFORMATION ... 51
- NAVIGATIONAL AND PROCEDURAL INFORMATION 54
- CULTURE .. 55

AIRSPACE ... 57

EXPLANATION OF IFR ENROUTE TERMS ... 59
- AIRPORTS ... 59
- RADIO AIDS TO NAVIGATION ... 61
- AIRSPACE INFORMATION ... 62
- INSTRUMENT AIRWAYS ... 64
- TERRAIN CONTOURS ON AREA CHARTS ... 67
- AIRPORTS ... 69

IFR ENROUTE LOW / HIGH ALTITUDE SYMBOLS (U.S., PACIFIC AND ALASKA CHARTS) ... 69
- RADIO AIDS TO NAVIGATION ... 70
- AIRSPACE INFORMATION ... 75
- NAVIGATIONAL AND PROCEDURAL INFORMATION 88
- CULTURE .. 89
- HYDROGRAPHY .. 89
- TOPOGRAPHY .. 89

U.S. TERMINAL PROCEDURES PUBLICATION 91
- EXPLANATION OF TPP TERMS AND SYMBOLS 91
- INSTRUMENT APPROACH PROCEDURE CHART 92
- PLANVIEW ... 98
- NAVAIDS .. 101
- MISSED APPROACH INFORMATION ... 107
- PROFILE VIEW ... 108
- LANDING MINIMUMS .. 111
- AIRPORT SKETCH .. 113
- AIRPORT DIAGRAMS ... 114
- DEPARTURE PROCEDURES (DPs) .. 116
- STANDARD TERMINAL ARRIVAL (STARs) CHARTS 117
- CHARTED VISUAL FLIGHT PROCEDURE (CVFP) CHARTS 117

U.S. TERMINAL PROCEDURES PUBLICATION SYMBOLS 119
- GENERAL INFORMATION .. 119
- LEGEND - STANDARD TERMINAL ARRIVAL (STAR) CHARTS - DEPARTURE PROCEDURE (DP) CHARTS .. 119
- APPROACH LIGHTING SYSTEM ... 120
Table of Contents

- AIRPORT DIAGRAM/AIRPORT SKETCH ... 122
- PLANVIEW SYMBOLS .. 123
- PROFILE VIEW .. 125
- COLD TEMPERATURE AIRPORTS ... 126

REFERENCES .. 127

ABBREVIATIONS .. 129

<table>
<thead>
<tr>
<th>Letter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>129</td>
</tr>
<tr>
<td>B</td>
<td>129</td>
</tr>
<tr>
<td>C</td>
<td>129</td>
</tr>
<tr>
<td>D</td>
<td>129</td>
</tr>
<tr>
<td>E</td>
<td>129</td>
</tr>
<tr>
<td>F</td>
<td>129</td>
</tr>
<tr>
<td>G</td>
<td>129</td>
</tr>
<tr>
<td>H</td>
<td>130</td>
</tr>
<tr>
<td>I</td>
<td>130</td>
</tr>
<tr>
<td>J</td>
<td>130</td>
</tr>
<tr>
<td>K</td>
<td>130</td>
</tr>
<tr>
<td>L</td>
<td>130</td>
</tr>
<tr>
<td>M</td>
<td>130</td>
</tr>
<tr>
<td>N</td>
<td>130</td>
</tr>
<tr>
<td>O</td>
<td>130</td>
</tr>
<tr>
<td>P</td>
<td>130</td>
</tr>
<tr>
<td>R</td>
<td>131</td>
</tr>
<tr>
<td>S</td>
<td>131</td>
</tr>
<tr>
<td>T</td>
<td>131</td>
</tr>
<tr>
<td>U</td>
<td>131</td>
</tr>
<tr>
<td>V</td>
<td>131</td>
</tr>
<tr>
<td>W</td>
<td>131</td>
</tr>
</tbody>
</table>
INTRODUCTION

This Chart User’s Guide is an introduction to the Federal Aviation Administration’s (FAA) aeronautical charts and publications. It is useful to new pilots as a learning aid, and to experienced pilots as a quick reference guide.

The FAA is the source for all data and information utilized in the publishing of aeronautical charts through authorized publishers for each stage of Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) air navigation including training, planning, and departures, enroute (for low and high altitudes), approaches, and taxiing charts. Digital charts are available online at:

- VFR Charts - https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/vfr/
- IFR Charts - https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/ifr/
- Chart Supplements - https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/dafd/

Paper copies of the charts are available through an FAA Approved Print Provider. A complete list of current providers is available at http://www.faa.gov/air_traffic/flight_info/aeronav/print_providers/

The FAA Aeronautical Information Manual (AIM) Pilot/Controller Glossary defines in detail, all terms and abbreviations used throughout this publication. Unless otherwise indicated, miles are nautical miles (NM), altitudes indicate feet above Mean Sea Level (MSL), and times used are Coordinated Universal Time (UTC).

The Notices to Airmen Publication (NOTAM) includes current Flight Data Center (FDC) NOTAMs. NOTAMs alert pilots of new regulatory requirements and reflect changes to Standard Instrument Approach Procedures (SIAPs), flight restrictions, and aeronautical chart revisions. This publication is prepared every 28 days by the FAA, and is available by subscription from the Government Printing Office. For more information on subscribing or to access online PDF copy, http://www.faa.gov/air_traffic/publications/notices/

In addition to NOTAMs, the Chart Supplement and the Safety Alerts/Charting Notices page of the Aeronautical Information Services website are also useful to pilots.

KEEP YOUR CHARTS CURRENT

Aeronautical information changes rapidly, so it is important that pilots check the effective dates on each aeronautical chart and publication. To avoid danger, it is important to always use current editions and discard obsolete charts and publications.

To confirm that a chart or publication is current, refer to the next scheduled edition date printed on the cover. Pilots should also check Aeronautical Chart Bulletins and NOTAMs for important updates between chart and publication cycles that are essential for safe flight.

EFFECTIVE DATE OF CHART USER’S GUIDE AND UPDATES

All information in this guide is effective as of 26 March 2020. All graphics used in this guide are for educational purposes. Chart symbology may not be to scale. Please do not use them for flight navigation.

The Chart User’s Guide is updated as necessary when there is new chart symbology or changes in the depiction of information and/or symbols on the charts. When there are changes, it will be in accordance with the 56-day aeronautical chart product schedule.

COLOR VARIATION

Although the digital files are compiled in accordance with charting specifications, the final product may vary slightly in appearance due to differences in printing techniques/processes and/or digital display techniques.

REPORTING CHART DISCREPANCIES

Your experience as a pilot is valuable and your feedback is important. We make every effort to display accurate information on all FAA charts and publications, so we appreciate your input. Please notify us concerning any requests for changes, or potential discrepancies you see while using our charts and related products.

FAA, Aeronautical Information Services
1305 East-West Highway
SSMC4, Room 3424
Silver Spring, MD 20910-3281

Telephone Toll-Free 1-800-638-8972
Aeronautical Inquires: https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/Aeronautical_Inquiries/
The following charting items have been added to the Online Chart User’s Guide since the Guide was last published on 30 January 2020:

VFR CHARTS

Airport Symbol to Indicate Fuel Availability

There has been a criteria change for the depiction of fuel availability. The airport symbol tick marks will be shown when fuel is available at the airport. This is for any fuel type and any availability. Users should consult the Chart Supplement for the full details of fuel availability.

The revised note on the VFR Sectional Legend reads as follows:

IFR ENROUTE CHARTS

Coincident Airways/Routes with Unusable Segment

When two airways/routes are coincident, but only one airway/route is designated as unusable, the following note indicating which airway the unusable symbology applies to will be placed in close proximity to the airway/route identifiers.

TERMINAL PROCEDURE PUBLICATIONS (TPPS)

No Changes Applied
This chapter covers the Sectional Aeronautical Chart (Sectional). These charts include the most current data at a scale of (1:500,000) which is large enough to be read easily by pilots flying by sight under Visual Flight Rules. Sectionals are named after a major city within its area of coverage.

The chart legend includes aeronautical symbols and information about drainage, terrain, the contour of the land, and elevation. You can learn to identify aeronautical, topographical, and obstruction symbols (such as radio and television towers) by using the legend.

A brief description next to a small black square indicates the exact location for many of the landmarks easily recognized from the air, such as stadiums, pumping stations, refineries, etc. A small black open circle with descriptive type indicates oil, gas or mineral wells. A small black circle with descriptive type indicates water, oil or gas tanks. The scale for some items may be increased to make them easier to read on the chart.

Aeronautical Information Services' charts are prepared in accordance with specifications of the Interagency Air Committee (IAC) and are approved by representatives of the Federal Aviation Administration (FAA) and the Department of Defense (DoD).

WATER FEATURES (HYDROGRAPHY)

Water features are depicted using two tones of blue, and are considered either "Open Water" or "Inland Water." "Open Water," a lighter blue tone, shows the shoreline limitations of all coastal water features at the average (mean) high water levels for oceans and seas. Light blue also represents the connecting waters like bays, gulfs, sounds and large estuaries.

Exceptionally large lakes like the Great Lakes, Great Salt Lake, and Lake Okeechobee, etc., are considered Open Water features. The Open Water tone extends inland as far as necessary to adjoin the darker blue "Inland Water" tones. All other bodies of water are marked as "Inland Water" in the darker blue tone.

LAND FEATURES (TERRAIN) AND OBSTRUCTIONS

The elevation and configuration of the Earth's surface is important to pilots. Our Aeronautical Information Specialists are devoted to showing the contour of the earth and any obstructions clearly and accurately on our charts. We use five different techniques: contour lines, shaded relief, color tints, obstruction symbols, and Maximum Elevation Figures (MEF).

1. Contour lines join points of equal elevation. On Sectionals, basic contours are spaced at 500' intervals. Intermediate contours are typically at 250' intervals in moderately level or gently rolling areas. Auxiliary contours at 50', 100', 125', or 150' intervals occasionally show smaller relief features in areas of relatively low relief. The pattern of these lines and their spacing gives the pilot a visual concept of the terrain. Widely spaced contours represent gentle slopes, while closely spaced contours represent steep slopes.

2. Shaded relief shows how terrain may appear from the air. Shadows are shown as if light is coming from the northwest, because studies have shown that our visual perception has been conditioned to this view.

3. Different color tints show bands of elevation relative to sea level. These colors range from light green for the lower elevations, to dark brown for the higher elevations.
4. Obstruction symbols show man-made vertical features that could affect safe navigation. FAA's Aeronautical Information Manual (AIM) maintains a database of over obstacles in the United States, Canada, the Caribbean, Mexico and U.S. Pacific Island Territories. Aeronautical Specialists evaluate each obstacle based on charting specifications before adding it to a visual chart. When a Specialist is not able to verify the position or elevation of an obstacle, it is marked UC, meaning it is "under construction" or being reported, but has not been verified.

The FAA uses a Digital Obstacle File (DOF) to collect and disseminate data. Because land and obstructions frequently change, the source data on obstructions and terrain is occasionally incomplete or not accurate enough for use in aeronautical publications. For example, when the FAA receives notification about an obstruction, and there is insufficient detail to determine its position and elevation, the FAA Flight Edit Program conducts an investigation.

The Flight Edit crew visually verifies the cultural, topographic, and obstacle data. Charts are generally flight-checked every four years. This review includes checking for any obstruction that has been recently built, altered, or dismantled without proper notification.

Obstructions under construction are indicated by placing the letters UC adjacent to the obstacle type. Obstacles with high-intensity strobe lighting systems may operate part-time or by proximity activation and are shown as follows:

5. The Maximum Elevation Figure (MEF) represents the highest elevation within a quadrant, including terrain and other vertical obstacles (towers, trees, etc.). A quadrant on Sectionals is the area bounded by ticked lines dividing each 30 minutes of latitude and each 30 minutes of longitude. MEF figures are rounded up to the nearest 100’ value and the last two digits of the number are not shown.
MEFs over land and open water areas are used in areas containing man-made obstacles such as oil rigs.

In the determination of MEFs, the FAA uses extreme care to calculate the values based on the existing elevation data shown on source material. Aeronautical Information Specialists use the following procedure to calculate MEFs:

MEF - Man-made Obstacle

When a man-made obstacle is more than 200’ above the highest terrain within the quadrant:

1. Determine the elevation of the top of the obstacle above MSL.

2. Add the possible vertical error of the source material to the above figure (100’ or 1/2 contour interval when interval on source exceeds 200’. U.S. Geological Survey Quadrangle Maps with contour intervals as small as 10’ are normally used).

3. Round the resultant figure up to the next higher hundred-foot level.

Example:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation of obstacle top (MSL)</td>
<td>2649</td>
</tr>
<tr>
<td>Possible obstacle error</td>
<td>+100</td>
</tr>
<tr>
<td>equals</td>
<td>2749</td>
</tr>
<tr>
<td>Raise to the following 100’ level</td>
<td>2800</td>
</tr>
<tr>
<td>Maximum Elevation Figure (MEF)</td>
<td>28</td>
</tr>
</tbody>
</table>
MEF - Natural Terrain Feature or Natural Vertical Obstacle

When a natural terrain feature or natural vertical obstacle (e.g. a tree) is the highest feature within the quadrangle:

1. Determine the elevation of the feature.

2. Add the possible vertical error of the source to the above figure (100’ or 1/2 the contour interval when interval on source exceeds 200’).

3. Add a 200’ allowance for uncharted natural or manmade obstacles. Chart specifications don’t require the portrayal of obstacles below minimum height.

4. Round the figure up to the next higher hundred-foot level.

Example:

Elevation of obstacle top (MSL) 13161
Possible vertical error +100
Obstacle Allowance +200
equals 13461
Raise to the following 100’ level 13500
Maximum Elevation Figure (MEF) 135

Pilots should be aware that while the MEF is based on the best information available to the Specialist, the figures are not verified by field surveys. Also, users should consult the Aeronautical Chart Bulletin in the Chart Supplement or Aeronautical Information Services website to ensure that your chart has the latest MEF data available.

LAND FEATURES - MOUNTAIN PASSES

Mountain Pass symbol does not indicate a recommended route or direction of flight and pass elevation does not indicate a recommended clearance altitude. Hazardous flight conditions may exist within and near mountain passes.
RADIO AIDS TO NAVIGATION

On VFR Charts, information about radio aids to navigation (NAVAID) are boxed, as illustrated. Duplication of data is avoided. When two or more radio aids in a general area have the same name with different frequencies, Tactical Air Navigation (TACAN) channel numbers, or identification letters, and no misinterpretation can result, the name of the radio aid may be indicated only once within the identification box. Very High Frequency/Ultra High Frequency (VHF/UHF) NAVAID names and identification boxes (shown in blue) take precedence. Only those items that differ (e.g., frequency, Morse Code) are repeated in the box in the appropriate color. The choice of separate or combined boxes is made in each case on the basis of economy of space and clear identification of the radio aids.

A NAVAID that is physically located on an airport may not always be represented as a typical NAVAID symbol. A small open circle indicates the NAVAID location when collocated with an airport icon.

The type of NAVAID will be identified by: "VOR," (VHF Omni-Directional Range) "VORTAC" (VOR Tactical Aircraft Control), "VOR-DME," (VOR-Distance Measuring Equipment) or "DME" (Distance Measuring Equipment) positioned on and breaking the top line of the NAVAID box.

DMEs are shown without the compass rose.

AIRPORTS

Airports in the following categories are charted as indicated (additional symbols are shown later in this Section).

Public use airports:

- Hard-surfaced runways greater than 8069' or some multiple runways less than 8069'
- Hard-surfaced runways 1500' to 8069'
- Other than hard-surfaced runways
- Seaplane bases

Military airports:

- Other than hard-surfaced runways

Hard-surfaced runways are depicted the same as public-use airports.

U.S. military airports are identified by abbreviations such as AAF (Army Air Field), AFB (Air Force Base), MCAS (Marine Corps Air Station), NAS (Naval Air Station), NAV (Naval Air Facility), NAAS (Naval Auxiliary Air Station), etc. Canadian military airports are identified by the abbreviation DND (Department of National Defense).

Fuel Available:

Fuel availability indicated by use of tick marks around the basic airport symbol. Consult Chart Supplement for details and availability.

Other airports with or without fuel:
Airports are plotted in their true geographic position unless the symbol conflicts with a NAVAID at the same location. In such cases, the airport symbol will be displaced, but the relationship between the airport and the NAVAID will be retained.

Airports are identified by their designated name. Generic parts of long airport names (such as "airport," "field," or "municipal") and the first names of persons are commonly omitted unless they are needed to distinguish one airport from another with a similar name.

The figure at right illustrates the coded data that is provided along with the airport name.

The elevation of an airport is the highest point on the usable portion of the landing areas. Runway length is the length of the longest active runway, including displaced thresholds and excluding overruns. Runway length is shown to the nearest 100', using 70 as the rounding point; a runway 8070' in length is charted as 81, while a runway 8069' in length is charted as 80. If a seaplane base is collocated with an airport, there will be additional seaplane base water information listed for the elevation, lighting and runway.

<table>
<thead>
<tr>
<th>Flight Service Station on field</th>
<th>Elevation in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airports where fixed wing special VFR operations are prohibited (shown above airport name) FAR 91</td>
<td>285</td>
</tr>
<tr>
<td>Indicates FAR 93 Special Air Traffic Rules and Airport Traffic Pattern</td>
<td>Lighting in operation Sunset to Sunrise</td>
</tr>
<tr>
<td>Location Identifier</td>
<td>Lighting limitations exist; refer to Chart Supplement</td>
</tr>
<tr>
<td>ICAO Location Identifier</td>
<td>Length of longest runway in hundreds of feet; usable length may be less.</td>
</tr>
<tr>
<td>Control Tower (CT) - primary frequency</td>
<td>72</td>
</tr>
<tr>
<td>Star indicates operation part-time. See tower frequencies tabulation for hours of operation</td>
<td>Aeronautical advisory station</td>
</tr>
<tr>
<td>Follows the Common Traffic Advisory Frequency (CTAF)</td>
<td>122.95</td>
</tr>
<tr>
<td>Automatic Terminal Information Services</td>
<td>Runways with Right Traffic Patterns (public use)</td>
</tr>
<tr>
<td>Automatic Flight Information Service</td>
<td>RP 23.34</td>
</tr>
<tr>
<td>Automated Surface Weather Observing Systems; shown when full-time ATIS is not available.</td>
<td>See Chart Supplement</td>
</tr>
<tr>
<td></td>
<td>VFR Advisory Service Shown when ATIS is not available and frequency is other than the primary CT frequency.</td>
</tr>
<tr>
<td></td>
<td>Weather Camera (Alaska)</td>
</tr>
<tr>
<td></td>
<td>Airport of Entry</td>
</tr>
<tr>
<td></td>
<td>When information is lacking, the respective character is replaced by a dash. Lighting codes refer to runway edge lights and may not represent the longest runway or full length lighting.</td>
</tr>
</tbody>
</table>

Airports with Control Towers (CT) and their related data are shown in blue. All other airports and their related data are shown in magenta. The \(\text{L} \) symbol indicates that runway lights are on from dusk to dawn. \(\text{L} \) indicates that the pilot must consult the Chart Supplement to determine runway lighting limitations, such as: available on request (by radio-call, letter, phone, etc), part-time lighting, or pilot/airport controlled lighting. Lighting codes refer to runway edge lights. The lighted runway may not be the longest runway available, and lights may not be illuminated along the full length of the runway. The Chart Supplement has a detailed description of airport and air navigation lighting aids for each airport. A dash represents no runway edge lights.

The symbol \(\heartsuit \) indicates the existence of a rotating or flashing airport beacon operating from dusk to dawn. The Aeronautical Information Manual (AIM) thoroughly explains the types and uses of airport lighting aids.

Right traffic information is shown using the abbreviation 'RP' for right pattern, followed by the appropriate runway number(s) (RP 18). Special conditions or restrictions to the right pattern are indicated by the use of an asterisk (*RP) to
direct the pilot to the Chart Supplement for special instructions and/or restrictions.

The type “OBJECTIONABLE” associated with an airport symbol indicates that an objectionable airspace determination has been made for the airport per FAA JO 7400.2 Section 4, Airport Charting and Publication of Airport Data. Objectionable airspace determinations are based upon a number of factors including conflicting traffic patterns with another airport, hazardous runway conditions, or natural or man-made obstacles in close proximity to the landing area. FAA Regional Airports Offices are responsible for airspace determinations. Address any challenges to objectionable airspace determinations to your FAA Regional Airports Office.

AIRSPACE

CONTROLLED AIRSPACE

Controlled airspace consists of those areas where some or all aircraft may be subject to air traffic control, such as: Class A, Class B, Class C, Class D, Class E Surface (SFC) and Class E Airspace.

Class A Airspace within the United States extends from 18,000’ up to FL600. While visual charts do not depict Class A, it is important to note its existence.

Class B Airspace is shown in abbreviated form on the Caribbean Charts (CAC). The Sectional Aeronautical Chart (Sectional) and Terminal Area Chart (TAC) show Class B in greater detail. The MSL ceiling and floor altitudes of each sector are shown in solid blue figures with the last two zeros omitted. Floors extending “upward from above” a certain altitude are preceded by a (+). Operations at and below these altitudes are outside of Class B Airspace. Radials and arcs used to define Class B are prominently shown on TACs. Detailed rules and requirements associated with the particular Class B are shown. The name by which the Class B is shown as LAS VEGAS CLASS B for example.

Class C Airspace is shown in abbreviated form on Caribbean Charts (CAC). Sectionals and TACs show Class C in greater detail. The MSL ceiling and floor altitudes of each sector are shown in solid magenta figures with the last two zeros eliminated.

The figure at left identifies a sector that extends from the surface to the base of the Class B.

Class C Airspace is identified by name: BURBANK CLASS C

Separate notes, enclosed in magenta boxes, give the approach control frequencies to be used by arriving VFR aircraft to establish two-way radio communication before entering the Class C (generally within 20 NM):

Class C operating less than continuous is indicated by the following note:

Class D Airspace is identified with a blue dashed line. Class D operating less than continuous is indicated by the following note:

A minus in front of the figure is used to indicate "from surface to, but not including..."

Class E Surface (SFC) Airspace is symbolized with a magenta dashed line. Class E (SFC) operating less than continuous is indicated by the following note:

Class E Airspace exists at 1200’ AGL unless designated otherwise. The lateral and vertical limits of all Class E, (up to, but not including 18,000’) are shown by narrow bands of vignette on Sectionals and TACs.

Controlled airspace floors of 700’ above the ground are defined by a magenta vignette; floors other than 700’ that laterally abut uncontrolled airspace (Class G) are defined by a blue vignette; differing floors greater than 700’ above the ground are annotated by a symbol and a number indicating the floor.
If the ceiling is less than 18,000’ MSL, the value (preceded by the word “ceiling”) is shown along the limits of the controlled airspace. These limits are shown with the same symbol indicated above.

UNCONTROLLED AIRSPACE

Class G Airspace within the United States extends up to 14,500’ Mean Sea Level. At and above this altitude is Class E, excluding the airspace less than 1500’ above the terrain and certain special use airspace areas.

SPECIAL USE AIRSPACE

Special Use Airspace (SUA) confines certain flight activities and restricts entry, or cautions other aircraft operating within specific boundaries. Except for Controlled Firing Areas, SUA areas are depicted on VFR Charts. Controlled Firing Areas are not charted because their activities are suspended immediately when spotter aircraft, radar, or ground lookout positions indicate an aircraft might be approaching the area. Nonparticipating aircraft are not required to change their flight paths. SUA areas are shown in their entirety (within the limits of the chart), even when they overlap, adjoin, or when an area is designated within another area. The areas are identified by type and identifying name/number, and are positioned either within or immediately adjacent to the area.

* Alert Areas do not extend into Class A, B, C and D airspace, or Class E airport surface areas.

OTHER AIRSPACE AREAS

Mode C Required Airspace (from the surface to 10,000’ MSL) within a 30 NM radius of the primary airport(s) for which a Class B is designated, is depicted by a solid magenta line.

Mode C is required, but not depicted for operations within and above all Class C up to 10,000’ MSL.

Enroute Mode C requirements (at and above 10,000’ MSL except in airspace at and below 2500’ AGL) are not depicted. See FAR 91.215 and the AIM.

FAR 93 Airports and heliports under Federal Aviation Regulation 93 (FAR 93), (Special Air Traffic Rules and Airport Traffic Patterns), are shown by “boxing” the airport name.

FAR 91 Airports where fixed wing special visual flight rules operations are prohibited (FAR 91) are shown with the type “NO SVFR” above the airport name.

National Security Areas indicated with a broken magenta line and Special Flight Rules Areas (SFRAs) indicated with the following symbol: , consist of airspace with defined vertical and lateral dimensions established at locations where there is a requirement for increased security and safety of ground facilities. Pilots should avoid flying through these depicted areas. When necessary, flight may be temporarily prohibited.

The Washington DC Flight Restricted Zone (FRZ) is related to National Security. It is depicted using the Prohibited/Restricted/Warning Area symbology and is located within the SFRA. It is defined as the airspace within approximately a 13 to 15 NM radius of the DCA VOR-DME. Additional requirements are levied upon aviators requesting access to operate inside the National Capital Region.

Temporary Flight Restriction (TFR) Areas Relating to National Security are indicated with a broken blue line . A Temporary Flight Restriction (TFR) is a type of Notice to Airmen (NOTAM). A TFR defines an area where air travel is restricted due to a hazardous condition, a special event, or a general warning for the entire airspace. The text of the actual TFR contains the fine points of the restriction. It is important to note that only TFRs relating to National Security are charted.
Air Defense Identification Zones (ADIZs) are symbolized using the ADIZ symbol:

As defined in Code of Federal Regulations 14 (CFR 14) Part 99, an ADIZ is an area in which the ready identification, location, and control of all aircraft is required in the interest of national security. ADIZ boundaries include Alaska, Hawaii, Guam, Canada and the Contiguous U.S.

Terminal Radar Service Areas (TRSAs) are shown in their entirety, symbolized by a screened black outline of the entire area including the various sectors within the area.

The outer limit of the entire Terminal Radar Service Areas (TRSA) is a continuous screened black line. The various sectors within the TRSA are symbolized by narrower screened black lines.

Each sector altitude is identified in solid black color by the MSL ceiling and floor values of the respective sector, eliminating the last two zeros. A leader line is used when the altitude values must be positioned outside the respective sectors because of charting space limitations. The TRSA name is shown near the north position of the TRSA as follows: PALM SPRINGS TRSA. Associated frequencies are listed in a table on the chart border.

Military Training Routes (MTRs) are shown on Sectionals and TACs. They are identified by the route designator: IR21. Route designators are shown in solid black on the route centerline, positioned along the route for continuity. The designator IR or VR is not repeated when two or more routes are established over the same airspace, e.g., IR201-205-227. Routes numbered 001 to 099 are shown as IR1 or VR99, eliminating the initial zeros. Direction of flight along the route is indicated by small arrowheads adjacent to and in conjunction with each route designator.

The following note appears on Helicopters, Sectionals and TACs except for Hawaiian Islands which is different.

<table>
<thead>
<tr>
<th>MILITARY TRAINING ROUTES (MTRs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All IR and VR MTRs are shown, and may extend from the surface upwards. Only the route centerline, direction of flight along the route, and the route designator are depicted - route widths and altitudes are not shown.</td>
</tr>
<tr>
<td>Since these routes are subject to change every 36 days, you are cautioned and advised to contact Flight Service for route dimensions and current status of those routes affecting your flight.</td>
</tr>
<tr>
<td>Routes with a change in the alignment of the charted route centerline will be indicated in the Aeronautical Chart Bulletin of the Chart Supplement.</td>
</tr>
<tr>
<td>DoD users refer to Area Planning AP/1B Military Training Routes North and South America for current routes.</td>
</tr>
</tbody>
</table>

There are IFR (IR) and VFR (VR) routes as follows:

Route identification:

a. Routes at or below 1500’ AGL (with no segment above 1500’) are identified by four-digit numbers; e.g., VR1007, etc. These routes are generally developed for flight under Visual Flight Rules.

b. Routes above 1500’ AGL (some segments of these routes may be below 1500’) are identified by three or fewer digit numbers; e.g., IR21, VR302, etc. These routes are developed for flight under Instrument Flight Rules.

MTRs can vary in width from 4 to 16 miles. Detailed route width information is available in the Flight Information Publication (FLIP) AP/1B (a Department of Defense publication), or through the 56 Day NASR Subscription from the National Flight Data Center (NFDC).

Special Military Activity areas are indicated on Sectionals by a boxed note in black type. The note contains radio frequency information for obtaining area activity status.

<table>
<thead>
<tr>
<th>SPECIAL MILITARY ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC MOBILE RADIO ON 123.6 FOR ACTIVITY STATUS</td>
</tr>
</tbody>
</table>
TERMINAL AREA CHART (TAC) COVERAGE

TAC coverage is shown on appropriate Sectionals by a 1/4” masked line as indicated below. Within this area pilots should use TACs, which provide greater detail. A note indicating that the area is on the TAC appears near the masked boundary line.

LOS ANGELES TERMINAL AREA
Pilots are encouraged to use the Los Angeles VFR Terminal Area Chart for flights at or below 10,000’

INSET AND SPECIAL CHART COVERAGE

Inset and Special Chart Coverage (i.e., Grand Canyon Chart) is shown on appropriate Sectionals by a 1/8” masked line as indicated below. A note to this effect appears near the masked boundary line. (Additional examples shown in VFR Sectional and Terminal Charts > Navigational and Procedural Information > Chart Limits.)

CHART TABULATIONS

Airport Tower Communications are provided in a columnized tabulation for all tower-controlled airports that appear on the respective chart. Airport names are listed alphabetically. If the airport is military, the type of airfield, e.g., AAF, AFB, NAS, is shown after the airfield name. In addition to the airport name, tower operating hours, primary Very High Frequency/Ultra High Frequency (VHF/UHF) local Control Tower (CT), Ground Control (GND CON), and Automatic Terminal Information Service (ATIS) frequencies, when available, will be given. Airport Surveillance Radar (ASR) and/or Precision Approach Radar (PAR) procedures are listed when available.

Approach Control Communications are provided in a columnized tabulation listing Class B, Class C, Terminal Radar Service Areas (TRSA) and Selected Approach Control Facilities when available. Primary VHF/UHF frequencies are provided for each facility. Sectorization occurs when more than one frequency exists and/or is approach direction dependent. Availability of service hours is also provided.

Special Use Airspace (SUA): Prohibited, Restricted and Warning Areas are presented in blue and listed numerically for U.S. and other countries. Restricted, Danger and Advisory Areas outside the U.S. are tabulated separately in blue. A tabulation of Alert Areas (listed numerically) and Military Operations Areas (MOA) (listed alphabetically) appear on the chart in magenta. All are supplemented with altitude, time of use and the controlling agency/contact facility, and its frequency when available. Users need to be aware that a NOTAM addressing activation will NOT be issued to announce permanently listed times of use. The controlling agency will be shown when the contact facility and frequency data is unavailable.
Starting in 2016, the FAA CARIBBEAN VFR Aeronautical Charts were first published, replacing the discontinued World Aeronautical Charts (WACs), parts of CH-25, CJ-26, and CJ-27, with CJ-26’s last effective date of 1 February 2018 and CJ-27 last effective date of 29 March 2018. The Caribbean Charts are published as two VFR Charts: Caribbean 1 (CAC-1) covers Southern Florida, Cuba, Haiti and the Bahamas; Caribbean 2 (CAC-2) covers Puerto Rico, Haiti, Dominican Republic, the Lesser Antilles and Leeward Islands. CAC-1 is updated annually and CAC-2 biennially.

Caribbean Charts are designed for VFR and provide aeronautical and topographic information of the Caribbean. The aeronautical information includes airports, radio aids to navigation, Class B airspace and special use airspace. The topographic information includes city tint, populated places, principal roads, drainage patterns and shaded relief.

The chart symbols used on the Caribbean Charts are similar to those used in the Sectional and Terminal Area Charts, the major difference being in scale. The Caribbean VFR Chart scale is 1:1,000,000 vs the Sectional Chart Scale of 1:500,000 and Terminal Area Chart Scale of 1:250,000. Chart symbology will appear smaller on the Caribbean VFR Charts.

Example from Caribbean 1 VFR Aeronautical Chart

Airport Traffic Service and Airport Space Information Unique to CAC

Only airway and reserved airspace effective below 18,000’ MSL in the U.S. airspace and below FL200 outside of the U.S. airspace are shown.
VFR SECTIONAL AND TERMINAL AREA CHARTS

GENERAL INFORMATION

The symbols shown in this section illustrate those that appear in the Sectional Aeronautical Charts (Sectionals) and Terminal Area Charts (TACs). The same symbology is utilized in VFR Flyway Planning Charts, Helicopter Route Charts and Caribbean Aeronautical Charts (CACs), however the scale of the symbols may be different due to the particular chart scales. Where symbology is distinctive to a given chart, examples and explanations are given in the additional examples.

AIRPORTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Non-Towered</th>
<th>Towered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landplane: Civil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Towered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Landplane: Emergency

- **Public Use** - (Soft surfaced runway, or hard surfaced runway less than 1500’ in length.) Fuel not available.
- **Restricted or Private** - (Soft surfaced runway, or hard surfaced runway less than 1500’ in length.) Use only in emergency, or by specific authorization.
- **Objectionable**
 - **Objecionable** is an airport that has an airspace determination based upon a number of factors including conflicting traffic patterns with another airport, hazardous runway conditions, or natural or man-made obstacles in close proximity to the landing area.
- **Unverified** - A landing area available but warranting more than ordinary precaution due to:
 1. Lack of current information on field conditions,
 2. Available information indicates peculiar operating limitations.
- **Abandoned** - Depicted for landmark value or to prevent confusion with an adjacent usable landing area. (Normally at least 3000’ paved).

Seaplane: Civil

- **Seaplane: Emergency**

 Fuel not available or complete information is not available.

Ultralight Flight Park

- **(Selected)**

 Appropriate note as required for hard surfaced runways only: "(CLOSED)"
AIRPORTS (Continued)

Airport Data Grouping

(Pvt): Non-public use having emergency or landmark value.

“OBJECTIONABLE”: This airport may adversely affect airspace use.

<table>
<thead>
<tr>
<th>Flight Service Station on field</th>
<th>Location Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSS</td>
<td>(NAM)</td>
</tr>
<tr>
<td>airports where fixed-wing special VFR operations are prohibited (shown above airport name) FAR 91</td>
<td>(PNAM)</td>
</tr>
</tbody>
</table>

Indicates FAR 93 Special Air Traffic Rules and Airport Traffic Pattern

<table>
<thead>
<tr>
<th>Control Tower (CT) - primary frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT - 118.3</td>
</tr>
</tbody>
</table>

Star indicates operation part-time. See tower frequencies tabulation for hours of operation

<table>
<thead>
<tr>
<th>Elevation in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lighting in operation Sunset to Sunrise</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lighting limitations exist; refer to Chart Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>*L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length of longest runway in hundreds of feet; usable length may be less.</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
</tr>
</tbody>
</table>

Aeronautical advisory station

<table>
<thead>
<tr>
<th>Runways with Right Traffic Patterns (public use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 23,34</td>
</tr>
</tbody>
</table>

See Chart Supplement

VFR Advisory Service Shown when ATIS is not available and frequency is other than the primary CT frequency.

<table>
<thead>
<tr>
<th>Weather Camera (Alaska)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WX CAM</td>
</tr>
</tbody>
</table>

Airport of Entry

When information is lacking, the respective character is replaced by a dash. Lighting codes refer to runway edge lights and may not represent the longest runway or full length lighting.
RADIO AIDS TO NAVIGATION

VOR

Operates less than continuous or On-Request

Underline indicates no voice on this frequency

VORTAC

When an NDB NAVAID shares the same name and Morse Code as the VOR NAVAID the frequency can be collocated inside the same box to conserve space.

VOR-DME

Crosshatch indicates Shutdown status

DME

DME co-located at an airport

Note: DMEs are shown without the compass rose.

Compass Rose

Compass Rose is “reference” oriented to magnetic north

Non-Directional Radio Beacon (NDB)

Underline indicates no voice on this frequency

NDB-DME

ILS Components

TAC - Shown when used in description of Class B airspace.

Compass Rosette

Shown only in areas void of VOR roses.

Compass rosette will be based on the five year epoch magnetic variation model.

Example of VOR NAVAID co-located at airport

Open circle symbol shown when NAVAID located on airport. Type of NAVAID shown in top of box.
RADIO AIDS TO NAVIGATION (Continued)

Automated Weather Broadcast Services

Automated Weather Observing System (AWOS) / Automated Surface Observing System (ASOS).

Flight Service Station (FSS)

Heavy line box indicates Flight Service Station (FSS). Frequencies 121.5, 122.2, 243.0 and 255.4 (Canada - 121.5, 126.7, and 243.0) are normally available at all FSSs and are not shown above boxes. All other frequencies are shown. Frequencies transmit and receive except those followed by an R.

R - receive only

International Flight Service Station

AIRSPACE INFORMATION

Class B Airspace

Sectional

Appropriate notes as required may be shown.

Only the airspace effective below 18,000 feet MSL are shown.

(Mode C see FAR 91.215 / AIM)

Off Airport AWOS/ASOS

Broadcast Stations (BS)

Remote Communications Outlet (RCO)

Frequencies above thin line box are remoted to NAVAID site. Other frequencies at FSS providing voice communication may be available determined by altitude and terrain. Consult Chart Supplement for complete information.

Thin line box without frequencies and controlling FSS name indicates no FSS frequency available.

AIRSPACE INFORMATION

Class B Airspace

Sectional

LAS VEGAS CLASS B

All mileages are nautical (NM).

All radials are magnetic.

Terminal Area Chart (TAC)
AIRSPACE INFORMATION (Continued)

Class C Airspace

Appropriate notes as required may be shown.

(Mode C see FAR 91.215/AIM)

![Burbank Class C graphic]

![CTC Burbank APP WITHIN 20 NM ON 124.6 966.0]

Class E Airspace

The limits of Class E airspace shall be shown by narrow vignettes or by the dashed magenta symbol. Individual units of designated airspace are not necessarily shown; instead, the aggregate lateral and vertical limits shall be defined by the following:

- Airspace beginning at the surface (sfc) designated around airports...
- Airspace beginning at 700 feet AGL that laterally abuts 1200 feet or higher Class E Airspace...
- Airspace beginning at 700 feet AGL that laterally abuts uncontrolled (Class G) airspace...
- Airspace beginning at 1200 feet AGL that laterally abuts uncontrolled (Class G) airspace...
- Differentiates floors of airspace greater than 700 feet above the surface...
- When the ceiling is less than 18,000 feet MSL, the value prefixed by the word “CEILING”, shall be shown along the limits.

Class D Airspace

Altitude in hundreds of feet MSL

![Class D graphic]

(A minus in front of the figure is used to indicate “from surface to but not including...”)

- Airspace beginning at the surface (sfc) designated around airports...
- Airspace beginning at the surface with an airspace exclusion area where Class E airspace is excluded below 1200’ MSL.
AIRSPACE INFORMATION (Continued)

Class E Airspace (Continued)

Low Altitude Airways VOR and LF/MF (Class E Airspace)

Low altitude Federal Airways are indicated by centerline.

Only the controlled airspace effective below 18,000 feet MSL is shown.

Miscellaneous Air Routes

Combined Federal Airway/RNAV 2 “T” Routes are identified in solid blue type adjacent to the solid magenta federal airway identification.

The joint route symbol is screened magenta.

Canadian Airspace

Individual units of designated Canadian airspace are not necessarily shown; instead, the aggregate lateral and vertical limits shall be portrayed as closely as possible to the comparable U.S. airspace.

Appropriate notes as required may be shown.

Flight Information Regions (FIR)

Oceanic Control Areas (OCA)

Control Areas (CTA)

Offshore Control Areas
AIRSPACE INFORMATION (Continued)

Special Conservation Areas

National Park, Wildlife Refuge, Primitive and Wilderness Areas, etc.

Special Flight Rules Area (SFRA) Relating to National Security

Example: Washington DC

Appropriate notes as required may be shown.

Note: Delimiting line not shown when it coincides with International Boundary, projection lines or other linear features.

Temporary Flight Restriction (TFR) Relating to National Security

Example: Washington DC

Appropriate notes as required may be shown.

CAUTION CONTACT FLIGHT SERVICE FOR LATEST FLIGHT RESTRICTION STATUS AND NOTAMS ASSOCIATED WITH P-40 AND R-4009

NOAA Regulated National Marine Sanctuary Designated Areas

Flight operations below 1000' AGL over the designated areas within the Gulf of Farallones National Marine Sanctuary violate NOAA regulations (see 15 CFR 922).
AIRSPACE INFORMATION (Continued)

Special Flight Rules Area (SFRA)

Special Use Airspace

Only the airspace effective below 18,000 feet MSL is shown.

The type of area shall be spelled out in large areas if space permits.

* Alert Areas do not extend into Class A, B, C and D airspace, or Class E airport surface areas.

Special Air Traffic Rules / Airport Patterns (FAR Part 93)

Appropriate boxed note as required shown adjacent to area.

Flight Restricted Zone (FRZ) Relating to National Security

National Security Area

Appropriate notes as required may be shown

Special Awareness Training Areas

Mode C (FAR 91.215)

Appropriate notes as required may be shown.

Air Defense Identification Zone (ADIZ)

Note: Delimiting line not shown when it coincides with International Boundary, projection lines or other linear features.
AIRSPACE INFORMATION (Continued)

High Energy Radiation Areas

Appropriate notes as required may be shown.

Military Training Routes (MTR)

Special Military Activity Routes (SMAR)

Boxed notes shown adjacent to route.

IFR Routes

Arrival

Departure

Arrival/Departure

Special Security Notice Permanent Continuous Flight Restriction Areas

Sporting Event Temporary Flight Restriction (TFR) Sites

Space Operations Area (FAR Part 91.143)

Miscellaneous Activity Areas

Aerobatic Practice Area

Glider Operations

Hang Glider Activity

Ultralight Activity

Unmanned Aircraft Activity

Parachute Jumping Area with Frequency

Space Launch Activity Area
AIRSPACE INFORMATION (Continued)

VFR Transition Routes

Appropriate notes as required may be shown.

- Uni-directional
- Bi-directional
- Bi-directional with NAVAID Ident and Radial

Terminal Radar Service Area (TRSA)

- TRSA Name: **HARRISBURG TRSA**
- TRSA Boundaries
- TRSA Sectors

Appropriate notes as required may be shown.

NAVIGATIONAL AND PROCEDURAL INFORMATION

Isogonic Line and Value

Isogonic lines and values shall be based on the five year epoch magnetic variation model.

- **42°E**

Local Magnetic Notes

- Unreliability Notes

Intersections

Named intersections used as reporting points. Arrows are directed toward facilities which establish intersection.

Aeronautical Lights

- By Request
- Rotating or Oscillating
- Isolated Location
- Rotating Light with Flashing Code Identification Light
- Rotating Light with Course Lights and Site Number
Airport Beacons
Rotating or Flashing
Isolated Locations
VFR Checkpoints
Underline indicates proper name of VFR Checkpoint.

VFR Waypoints
RNAV
Stand-Alone
Collocated with VFR Checkpoint

Obstruction
Above 200’ & below 1000’ AGL (above 299’ AGL in urban area)
Under Construction (UC) or reported and position/elevation unverified
1000’ and higher (AGL)
Wind Turbines

High-Intensity Obstruction Lights
Less than 1000’ (AGL)
1000’ and higher (AGL)
Wind Turbine
Group obstruction
Wind Turbines
High-intensity lights may operate part-time or by proximity activation.

Marine Lights
With Characteristics of Light

Red
White
Green
Blue
Sector
Fixed
Single Occulting
Group Occulting
Composite Group Occulting
Isophase
Flashing
Group Flashing
Composite Group Flashing
Quick
Interrupted Quick
Morse Code
Fixed and Flashing
Alternating
Group
Long Flash
Group Quick Flashing
Interrupted Quick Flashing
Very Quick Flashing
Group Very Quick Flashing
Interrupted Very Quick Flashing
Ultra Quick Flashing
Interrupted Ultra Quick Flashing

* Marine Lights are white unless otherwise noted. Alternating lights are red and white unless otherwise noted.

Group Obstruction
Above 200’ & below 1000’ AGL (above 299’ AGL in urban area)
1000’ and higher (AGL)
At least two in group
1000’ and higher (AGL)

Wind Turbines

Wind Turbine Farms
When highest wind turbine is unverified, UC will be shown after MSL value.

Maximum Elevation Figure (MEF)
(see VFR Terms tab for explanation)
NAVIGATIONAL AND PROCEDURAL INFORMATION (Continued)

Chart Limits

Outline on Sectional of Terminal Area Chart

Outline on Sectional of Inset Chart

Outline of Special Chart on Sectional and Terminal Area Chart

Outline on Sectional of Inset Chart

CULTURE

Railroads

Single Track

Double Track

More Than Two Tracks

Electric

Non-operating, Abandoned or Under Construction

Roads

Dual-Lane Divided Highway Category 1

Primary Category 2

Secondary Category 2

Trails

Category 3

Provides symbolization for dismantled railroad when combined with label “dismantled railroad.”

Railroad Yards
Limiting Track To Scale

Location Only

Railroad Stations

Railroad Sidings and Short Spurs

Road Markers

Interstate Route No.

U.S. Route No.

Air Marked Identification Label

Road Names

Roads Under Construction
CULTURE (Continued)

Related Features to Railroads and Roads

Bridges and Viaducts
- Railroad

Causeways

Overpasses and Underpasses

Tunnels-Road and Railroad

Bridges and Viaducts
- Road

Ferries, Ferry Slips and Fords

Populated Places

Yellow tinted areas indicate populated places.

Small circle indicates an area too small to depict using yellow tint.

Font Style and Size indicate the category of the populated area:

- **Large Cities Category 1**
 - population more than 250,000
 - ST LOUIS

- **Cities and Large Towns Category 2**
 - population 25,000 to 250,000
 - NASHVILLE

- **Towns and Villages Category 3**
 - population less than 25,000
 - Frankfort
CULTURE (Continued)

BOUNDARIES

International

State or Province

Convention or Mandate Line

RUSSIA

UNITED STATES

Miscellaneous Cultural Features

Dams

Passable Locks

Weirs and Jetties

Breakwaters

Pipelines

Underground

Landmark Features

Mines or Quarries

Shaft Mines or Quarries

Wells

Other than water

Lookout Towers

(Elevation Base of Tower)

Aerial Cableways, Conveyors, Etc.

Dam Carrying Road

Small Locks

Seawalls

Piers, Wharfs, Quays, etc.

Power Transmission and Telecommunication Lines

Tanks

Outdoor Theater

Race Tracks

Coast Guard Station

Landmark Areas

Time Zones

Date Line

INTERNATIONAL

DATE LINE

(Monday)

(Sunday)

FAA Chart User's Guide - VFR Symbology - Sectional and Terminal Area Charts
HYDROGRAPHY

Open Water

Open/Inland Water

Lakes
Label as required.

Perennial
When too numerous to show individual lakes, show representative pattern and descriptive note. Number indicates elevation.

Non-Perennial
(dry, intermittent, etc.) Illustration includes small perennial lake.

Reservoirs

Inland Water

Shorelines
Definite
Fluctuating
Unsurveyed
Indefinite
Man-made

Too small to show to scale
Under Construction
HYDROGRAPHY (Continued)

Streams
Perennial
Non-Perennial
Fanned Out
Alluvial fan
Braided
Disappearing
Seasonally Fluctuating
with undefined limits
with maximum bank limits, prominent and constant
Sand Deposits in and along riverbeds

Wet Sand Areas
Within and adjacent to desert areas

Aqueducts
To Scale
Abandoned or Under Construction
Underground

Canals
To Scale
Abandoned or Under Construction
Abandoned to Scale
Small Canals and Drainage / Irrigation Ditches
Perennial
Non-Perennial
Abandoned or Ancient
Numerous
Representative pattern and/or descriptive note.

Suspended or Elevated

Tunnels
Kanats
Underground with Air Vents

Rapids
Double-Line
Single-Line
HYDROGRAPHY (Continued)

Salt Evaporators and Salt Pans Man Exploited

Hummocks and Ridges

Peat Bogs

Rice Paddies

Extensive areas indicated by label only.

Springs, Wells and Waterholes

Permanent Snow and Ice Areas

Glaciers

Glacial Moraines

Ice Cliffs

Snowfields, Ice Fields And Ice Caps

Foreshore Flats

Tidal flats exposed at low tide.

Swamps, Marshes and Bogs

Mangrove And Nipa

Cranberry Bogs

Land Subject To Inundation

Tundra
HYDROGRAPHY (Continued)

Reefs-Rocky or Coral

- ![Reef Symbol](image1)

Fish Ponds and Hatcheries

- ![Fish Pond Symbol](image2)

RELIEF

Contours

- **Basic**
- **Approximate**
- **Intermediate**
- **Auxiliary**

Depression (Illustration includes mound within depression)

Values

Sand or Gravel Areas

- **To Scale**

Sand Dunes

- **To Scale**

Hachuring

Miscellaneous Underwater Features Not Otherwise Symbolized

- **Wrecks**
 - Exposed
- **Rocks-Isolated**
 - Bare or Awash

Spot Elevations

- **Position Accurate**
 - ![Elevation 2216](image3)
- **Position Accurate, Elevation Approximate**
 - ![Elevation 2200](image4)
- **Highest in General Area**
 - ![Elevation 6973](image5)
- **Highest on Chart**
 - ![Elevation 12770](image6)

Mountain Pass

- **Distorted Surface Areas**

Lava Flows

Sand Ridges

- **To Scale**

Shaded Relief
RELIEF (Continued)

Quarries To Scale

Craters

Unsurveyed Areas
Label appropriately as required

Levees And Eskers

Rock Strata Outcrop

Strip Mines, Mine Dumps And Tailings
To Scale

Escarptions, Bluffs, Cliffs, Depressions, Etc.

Uncontoured Areas
Label appropriately as required
VFR FLYWAY PLANNING CHARTS

GENERAL INFORMATION

VFR Flyway Planning Charts are printed on the reverse sides of the Baltimore-Washington, Charlotte, Chicago, Cincinnati, Dallas-Ft. Worth, Denver, Detroit, Houston, Las Vegas, Los Angeles, Miami, Orlando, New Orleans, Phoenix, St. Louis, Salt Lake City, San Diego, San Francisco and Seattle Terminal Area Charts (TACs). The scale is 1:250,000, with area of coverage the same as the associated TACs. Flyway Planning Charts depict flight paths and altitudes recommended for use to by-pass areas heavily traversed by large turbine-powered aircraft. Ground references on these charts provide a guide for visual orientation. VFR Flyway Planning charts are designed for use in conjunction with TACs and are not to be used for navigation.

AIRPORTS

Landplane

No distinction is made between airports with fuel and those without fuel. Runways may be exaggerated to clearly portray the pattern. Hard-surfaced runways which are closed but still exist are included in the charted pattern.

FAR 91 - Fixed wing special VFR operations prohibited.

Landplane (continued)

(Pvt): Non-public use having emergency or landmark value.

“OBJECTIONABLE”: This airport may adversely affect airspace use.

ABANDONED - Depicted for landmark value or to prevent confusion with an adjacent usable landing area. Only portrayed beneath or close to the VFR flyway routes or requested by the FAA. (Normally at least 3000’ paved).

RADIO AIDS TO NAVIGATION

VHF Omni-Directional Radio Range (VOR)

VORTAC

VOR-DME

DME

Example: DME co-located at an airport.

Non-Directional Radio Beacon (NDB)

NDB-DME

NAVAIDS Used to Define Class Airspace

Example: DME co-located at an airport.
AIRSPACE INFORMATION

Class B Airspace

- Appropriate notes as required may be shown.
- All mileages are nautical (NM).
- All radials are magnetic.
- Floors extending “upward and above” a certain altitude are preceded by a +. Operations at or below these altitudes are outside of the Class B Airspace.

Class D Airspace

- (A minus sign in front of the figure used to indicate “from surface to but not including...”)
- ALTITUDE IN HUNDREDS OF FEET MSL.

Class C Airspace

- Appropriate notes as required may be shown.

Class E Surface (SFC) Airspace

Special Airspace Areas

Special Flight Rules Area (SFRA) Relating to National Security

Example: Washington DC

- Appropriate notes as required may be shown.
- Note: Delimiting line not shown when it coincides with International Boundary, projection lines or other linear features.
AIRSPACE INFORMATION (Continued)

Flight Restricted Zone (FRZ) Relating To National Security

Example: Washington DC

Temporary Flight Restriction (TFR) Relating To National Security

Example: Washington DC

Appropriate notes as required may be shown.

Special Use Airspace

Only the airspace effective below 18,000 feet MSL is shown.

The type of area shall be spelled out in large areas if space permits.

Air Defense Identification Zone (ADIZ)

Note: Delimiting line not shown when it coincides with International Boundary, projection lines or other linear features.
AIRSPACE INFORMATION (Continued)

Special Air Traffic Rules/Airport Traffic Areas (FAR Part 93)

Appropriate boxed note as required shown adjacent to area.

Terminal Radar Service Area (TRSA)

IFR Routes

Arrival

Departure

Arrival/Departure

VFR Transition Routes

Appropriate notes as required may be shown.

Uni-directional

Bi-directional

Bi-directional with NAVAID Ident and Radial

Special Conservation Areas

NOAA Regulated National Marine Sanctuary Designated Areas

Mode C (FAR 91.215)

Appropriate notes as required may be shown.

Sporting Event Temporary Flight Restriction (TFR) Sites

Miscellaneous Activity Areas

Aerobatic Practice Area

Glider Operations

Hang Glider Activity

Ultralight Activity

Unmanned Aircraft Activity

Parachute Jumping Area with Frequency

Space Launch Activity Area

Example: Los Angeles

Suggested VFR Flyway And Altitude

Military Training Routes (MTR)
VFR Checkpoints
Underline indicates proper name of VFR Checkpoint

VFR Waypoints
Stand-Alone
Collocated with VFR Checkpoint

Navigational Data

Obstructions
Only obstacles greater than 999’ above ground level (AGL) or specified by the local ATC Facility shall be shown.

AGL heights are not shown. High-intensity lights may operate part-time or by proximity activation.

Under Construction or reported and position/elevation unverified.

CULTURE

Railroads
Single and Multiple Tracks

Populated Places
Built-up Areas

Towns

BOUNDARIES
International

Roads
Dual-Lane
Divided Highway Primary

Prominent Pictorials

Power Transmission Lines

Landmarks
HYDROGRAPHY

Shorelines

Reservoirs

Major Lakes and Rivers

RELIEF

Spot Elevations
Position Accurate
Mountain Peaks
HELIICOPTER ROUTE CHARTS

GENERAL INFORMATION

Helicopter Route Charts are three-color charts that depict current aeronautical information useful to helicopter pilots navigating in areas with high concentrations of helicopter activity. Information depicted includes helicopter routes, four classes of heliports with associated frequency and lighting capabilities, NAVAIDS, and obstructions. In addition, pictorial symbols, roads, and easily-identified geographical features are portrayed. The scale is 1:125,000. These charts are updated every three years or as needed to accommodate major changes.

AIRPORTS

Landplane
All recognizable runways, including some which may be closed, are shown for visual identification.

Public
Private
Unverified
Abandoned

Seaplane

Airport Data Grouping
Boxed airport name indicates airport for which a Special Traffic Rule has been established.

(Pvt): Non-public use having emergency or landmark value. “OBJECTIONABLE”: This airport may adversely affect airspace use.

Flight Service Station on field
Airspace where fixed wing special visual flight rules operations are prohibited (shown above airport name) FAR 91

Indicates FAR 93 Special Air Traffic Rules and Airport Traffic

Location Identifier
ICAO Location Identifier
Control Tower (CT) - primary frequency
Star indicates operation part-time. See tower frequencies tabulation for hours of operation

When lighting is lacking, the respective character is replaced by a dash.

Lighting codes refer to runway edge lights and may not represent the longest runway or full length lighting. Dashes are not shown on heliports or helipads unless additional information follows the elevation (e.g. UNICOM, CTA).
RADIO AIDS TO NAVIGATION

NAVAIDs

VHF Omni-Directional Radio (VOR) Range

Open circle symbol shown when NAVAID located on airport. Type of NAVAID shown in top of box.

Compass Rose is “reference” oriented to magnetic north.

VOR

continous or On-Request

NDB-DME

Non-Directional Radio Beacon (NDB)

Underline indicates no voice on this frequency

VORTAC

When an NDB NAVAID shares the same name and Morse Code as the VOR NAVAID the frequency can be collocated inside the same box to conserve space.

VOR-DME

Crosshatch indicates Shutdown status

DME

Flight Service Station (FSS)

Heavy line box indicates Flight Service Station (FSS)

Frequencies 121.5, 122.2, 243.0 and 255.4 (Canada 121.5, 126.7, and 243.0) are available at many FSSs and are not shown above boxes. All other frequencies are shown.

Certain FSSs provide Airport Advisory Service, refer to Chart Supplement.

R - Receive Only

Broadcast Stations (BS)

On request by the proper authority or when a VFR Checkpoint.

Remote Communications Outlet (RCO)

Frequencies above thin line box are remoted to NAVAID site. Other FSS frequencies providing voice communications may be available as determined by altitude and terrain. Consult Chart Supplement for complete information.

Thin line box without frequencies and controlling FSS name indicates no FSS frequency available.
AIRSPACE INFORMATION

Class B Airspace

Appropriate notes as required may be shown. (Mode C see FAR 91.215/AIM)

All mileages are nautical (NM)

(Floors extending "upward from above" a certain altitude are preceded by a +. Operations at and below these altitudes are outside of Class B Airspace.)

All radials are magnetic.

Class D Airspace

(A minus in front of the figure is used to indicate “from surface to but not including...”)

Altitudes in hundreds of feet MSL.

Class C Airspace

Appropriate notes as required may be shown. (Mode C see FAR 91.215/AIM)

Class E Surface (SFC) Airspace

Special Airspace Areas

Special Flight Rules Area (SFRA) Relating to National Security

Example: Washington DC

Appropriate notes as required may be shown.

Note: Delimiting line not shown when it coincides with International Boundary, projection lines or other linear features.
Special Airspace Areas (Continued)

Flight Restricted Zone (FRZ) Relating to National Security

Special Security Notice Permanent Continuous Flight Restriction Areas

Air Defense Identification Zone (ADIZ)

Note: Delimiting line not shown when it coincides with International Boundary, projection lines or other linear features.

Special Air Traffic Rules / Airport Traffic Areas (FAR Part 93)

SPECIAL NOTICE
Pilots are required to obtain an ATC clearance prior to entering this area.

Sporting Event Temporary Flight Restriction (TFR) Sites

Miscellaneous Activity Areas

Aerobatic Practice Area

Glider Operations

Hang Glider Activity

Ultralight Activity

Unmanned Aircraft Activity

Parachute Jumping Area with Frequency

Space Launch Activity Area

FAA Chart User’s Guide - VFR Chart Symbology - Helicopter Charts
AIRSPACE INFORMATION (Continued)

Military Training Routes (MTR)

Police Zones

Special Use Airspace

Only the airspace effective below 18,000 feet MSL is shown.
The type of area shall be spelled out in large areas if space permits.

Helicopter Routes

Primary Route with Route Name and Tower Frequency

Secondary Route

Transition Symbol

Reporting Points

Non-compulsory
Compulsory

Reporting Point Name

Canadian Airspace

Class B, C or D TCA
Airspace Ceiling and Floor

Class E Control Zone

Special Conservation Areas

National Park, Wildlife Refuge, Primitive and Wilderness Areas, etc.

NOAA Regulated National Marine Sanctuary Designated Areas

Flight operations below 1000’ AGL over the designated areas within the Gulf of Farallones National Marine Sanctuary violate NOAA regulations (see 15 CFR 811).
NAVIGATIONAL AND PROCEDURAL INFORMATION

VFR Checkpoints
Underline indicates proper name of VFR Checkpoint.

Obstruction
Above 299’ and below 1000’ AGL
1000’ and higher AGL

High-Intensity Obstruction Lights
High-intensity lights may operate part-time or by proximity activation.

Navigation Data

VFR Waypoints
Stand-Alone
Collocated with VFR Checkpoint
Collocated with VFR Checkpoint & Reporting Point

Group Obstruction
Above 299’ and below 1000’ AGL
1000’ and higher AGL

Wind Turbine Farms
When highest wind turbine is unverified, UC will be shown after MSL value.

Maximum Elevation Figure (MEF)
(see VFR Terms tab for explanation)
CULTURE
Railroads
- Single Track
- Double Track

Bridges

Populated Places
- Built-up Areas

Roads
- Dual-Lane: Divided Highways
- Major Boulevards & Major Streets
- Primary Boundaries

Boundaries
- International
- State or Province

Power Transmission Lines

Prominent Pictorials

Landmarks
- Landmark-stadium, factory, school, etc.
- Lookout Tower
- Mines or Quarries
- Race Track
- Outdoor Theater
- Tank-water, oil or gas
U.S. Airspace depiction as shown on Visual Aeronautical Charts
Excerpt from Detroit Sectional Chart
EXPLANATION OF IFR ENROUTE TERMS

FAA charts are prepared in accordance with specifications of the Interagency Air Committee (IAC), and are approved by representatives of the Federal Aviation Administration and the Department of Defense (DoD). Some information on these charts may only apply to military pilots.

The explanations of symbols used on Instrument Flight Rule (IFR) Enroute Charts and examples in this section are based primarily on the IFR Enroute Low Altitude Charts. Other IFR products use similar symbols in various colors. The chart legends portray aeronautical symbols with a brief description of what each symbol depicts. This section provides more details of the symbols and how they are used on IFR Enroute charts.

AIRPORTS

Active airports are shown on IFR Enroute Charts.

Low Charts:

- All IAP Airports are shown on the Low Altitude Charts (US and Alaska).
- Non-IAP Airports are shown on the U.S. Low Altitude Charts (Contiguous US) have a minimum hard surface runway of 3,000’.
- Non-IAP airports are shown on the U.S. Low Altitude Alaska Charts are show if the runway is 3000’ or longer, hard or soft surface.
- Public heliports with an Instrument Approach Procedure (IAP) or requested by the FAA or DoD are depicted on the IFR Enroute Low Altitude Charts.
- Seaplane bases requested by the FAA or DoD are depicted on the IFR Enroute Low Altitude Charts.

On IFR Enroute Low Altitude Charts, airport tabulation is provided which identifies airport names, IDs and the panels they are located on.

High Charts:

- Airports shown on the U.S. High Enroute Charts (Contiguous US) have a minimum hard surface runway of 5000’.
- Airports shown on the U.S. High Enroute Alaska Charts have a minimum hard surface runway of 4000’.

Charted airports are classified according to the following criteria:

LOW/HIGH ALTITUDE

- **Blue** - Airports with an Instrument Approach Procedure and/or RADAR MINIMA published in the high altitude DoD Flight Information Publications (FLIPs)
- **Green** - Airports which have an approved Instrument Approach Procedure and/or RADAR MINIMA published in either the U.S. Terminal Procedures Publications (TPPs) or the DoD FLIPs
- **Brown** - Airports without a published Instrument Approach Procedure or RADAR MINIMA

Airports are plotted at their true geographic position.

Airports are identified by the airport name. In the case of military airports, Air Force Base (AFB), Naval Air Station (NAS), Naval Air Facility (NAF), Marine Corps Air Station (MCAS), Army Air Field (AAF), etc., the abbreviated letters appear as part of the airport name.
Airports marked "Pvt" immediately following the airport name are not for public use, but otherwise meet the criteria for charting as specified above.

Runway length is the length of the longest active runway (including displaced thresholds but excluding overruns) and is shown to the nearest 100 feet using 70 feet as the division point; e.g., a runway of 8,070' is labeled 81. The following runway compositions (materials) constitute a hard-surfaced runway: asphalt, bitumen, chip seal, concrete, and tar macadam. Runways that are not hard-surfaced have a small letter "s" following the runway length, indicating a soft surface.

AIRPORT DATA DEPICTION

Low Altitude

1. Airport elevation given in feet above or below mean sea level
2. Pvt - Private use, not available to general public
3. A solid line box enclosed the airport name indicates FAR 93 Special Requirements - see Directory/Supplement
4. “NO SVFR” above the airport name indicates FAR 91 fixed-wing special VFR flight is prohibited.
5. C or D following the airport identifier indicates Class C or Class D Airspace

High Altitude - U.S.

6. Associated city names for public airports are shown above or preceding the airport name. If airport name and city name are the same, only the airport name is shown. The airport identifier in parentheses follows the airport name. City names for military and private airports are not shown.
7. Airport Ident ICAO Location Indicator shown outside contiguous U.S.
8. AFIS Alaska only

LIGHTING CAPABILITY

<table>
<thead>
<tr>
<th>Lighting Available</th>
<th>Pilot Controlled Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Part-time or on request</td>
<td>Part-time or on request</td>
</tr>
</tbody>
</table>

A L symbol between the airport elevation and runway length means that runway lights are in operation sunset to sunrise. A L symbol indicates there is Pilot Controlled Lighting. A L symbol means the lighting is part-time or on request, the pilot should consult the Chart Supplement for light operating procedures. The Aeronautical Information Manual (AIM) thoroughly explains the types and uses of airport lighting aids.

VOR Minimum Operational Network (MON) Airports Designator

MON Airports with the MON Airport designator at the top of the Airport Data Block. The MON designation is to alert pilots to those airports that have retained ILS and VOR instrument approach procedures for safe recovery in the event of a GPS outage. Refer to the Aeronautical Information Manual (AIM) for expanded MON Airport guidance.
RADIO AIDS TO NAVIGATION

All IFR radio NAVAIDs that have been flight checked and are operational are shown on all IFR Enroute Charts. Very High Frequency/Ultrahigh Frequency (VHF/UHF) NAVAIDs, Very high frequency Omnidirectional Radio range (VORs), Tactical Air Navigation (TACANs) are shown in black, and Low Frequency/Medium Frequency (LF/MF) NAVAIDs, (Compass Locators and Aeronautical or Marine NDBs) are shown in brown.

On IFR Enroute Charts, information about NAVAIDs is boxed as illustrated below. To avoid duplication of data, when two or more NAVAIDs in a general area have the same name, the name is usually printed only once inside an identification box with the frequencies, TACAN channel numbers, identification letters, or Morse Code Identities of the different NAVAIDs are shown in appropriate colors.

NAVAIDs in a shutdown status have the frequency and channel number crosshatched. Use of the NAVAID status "shutdown" is only used when a facility has been decommissioned but cannot be published as such because of pending airspace actions.

<table>
<thead>
<tr>
<th>NAVIGATION AND COMMUNICATION BOXES - COMMON ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW ENROUTE CHARTS</td>
</tr>
<tr>
<td>RCO Frequencies</td>
</tr>
<tr>
<td>NAVAID Name</td>
</tr>
<tr>
<td>FREQ, Ident, CH, Morse Code</td>
</tr>
<tr>
<td>Latitude, Longitude</td>
</tr>
<tr>
<td>Controlling FSS Name</td>
</tr>
<tr>
<td>HIGH ENROUTE CHARTS</td>
</tr>
<tr>
<td>RCO Frequencies</td>
</tr>
<tr>
<td>NAVAID Name</td>
</tr>
<tr>
<td>Frequency, Ident, Channel,</td>
</tr>
<tr>
<td>Latitude, Longitude</td>
</tr>
<tr>
<td>Controlling FSS Name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMON ELEMENTS (HIGH AND LOW CHARTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCO FREQUENCY</td>
</tr>
<tr>
<td>Single Frequency</td>
</tr>
<tr>
<td>Multiple Frequencies</td>
</tr>
<tr>
<td>Frequencies transmit and receive except those</td>
</tr>
<tr>
<td>followed by R and</td>
</tr>
<tr>
<td>T:</td>
</tr>
<tr>
<td>R - Receive Only</td>
</tr>
<tr>
<td>T - Transmit Only</td>
</tr>
</tbody>
</table>

| NAVAID BOX |
| Thin line NAVAID boxes without frequency(s) and FSS|
| radio name indicates no FSS frequencies available. |
| Shadow NAVAID box indicates NAVAID and Flight |
| Service Station (FSS) have same name. |

| FREQUENCY PROTECTION |
| Frequency Protection usable range at 18,000' AGL - |
| 40 NM |
| Frequency Protection usable range at 12,000' AGL - |
| 25 NM |

| DISTANCE MEASURING EQUIPMENT |
| Facilities that operate in the “Y” mode for DME |
| reception |

| VOICE COMMUNICATIONS VIA NAVAID |
| Voice Transmitted |
| 112.6 |
| No Voice Transmitted |
| 111.0 |

| NAVAID SHUTDOWN STATUS |
| VHF/UHF |
| LF/MF |

| PART TIME OR ON-REQUEST |
| VHF/UHF |
| LF/MF |
Automated Weather Broadcast Services (ASOS/AWOS) - Automated Surface Observing Station/Automated Weather Observing Station

<table>
<thead>
<tr>
<th>VHF/UHF</th>
<th>LF/MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Automated weather, when available, is broadcast on the associated NAVAID frequency.

Latitude and Longitude coordinates are provided for those NAVAIDs that make up part of a route/airway or a holding pattern. All TACAN facilities will include geographic coordinates.

Low Enroute

High Enroute

Airspace Information

Controlled Airspace

Controlled airspace consists of those areas where some or all aircraft are subjected to air traffic control within the following airspace classifications of A, B, C, D, & E.

Air Route Traffic Control Centers (ARTCC) are established to provide Air Traffic Control to aircraft operating on IFR flight plans within controlled airspace, particularly during the enroute phase of flight. Boundaries of the ARTCCs are shown in their entirety using the symbol below.

Air Route Traffic Control Center (ARTCC)

When Controller Pilot Data Link Communication (CPDLC) exists for an ARTCC, the text CPDLC (LOGON KUSA) will be shown parallel to the boundary above or below the ARTCC identification as shown below.

Air Route Traffic Control Center (ARTCC) with Controller Pilot Data Link Communication (CPDLC)

The responsible ARTCC Center names are shown adjacent and parallel to the boundary line. ARTCC sector frequencies are shown in boxes outlined by the same symbol.

Class A Airspace is depicted as open area (white) on the IFR Enroute High Altitude Charts. It consists of airspace from 18,000 Mean Sea Level (MSL) to FL600.

Class B Airspace is depicted as screened blue area with a solid line encompassing the area.

Class C Airspace is depicted as screened blue area with a dashed line encompassing the area with a following the airport name.

Class B and Class C Airspace consist of controlled airspace extending upward from the surface or a designated floor to specified altitudes, within which all aircraft and pilots are subject to the operating rules and requirements specified in the Federal Aviation Regulations (UHF) 71. Class B and C Airspace are shown in abbreviated forms on IFR Enroute Low Altitude Charts. A general note adjacent to Class B airspace refers the user to the appropriate VFR Terminal Area Chart.

Class D Airspace (airports with an operating control tower) are depicted as open area (white) with a following the airport name.

Class E Airspace is depicted as open area (white) on the IFR Enroute Low Altitude Charts. It consists of airspace below FL180.
UNCONTROLLED AIRSPACE

Class G Airspace within the United States extends to 14,500' MSL. This uncontrolled airspace is shown as screened brown.

SPECIAL USE AIRSPACE

Special Use Airspace (SUA) confines certain flight activities, restricts entry, or cautions other aircraft operating within specific boundaries. SUA areas are shown in their entirety, even when they overlap, adjoin, or when an area is designated within another area. SUA with altitudes from the surface and above are shown on the IFR Enroute Low Altitude Charts. Similarly, SUA that extends above 18,000' MSL are shown on IFR Enroute High Altitude Charts. IFR Enroute Charts tabulations identify the type of SUA, ID, effective altitudes, times of use, controlling agency and the panel it is located on. Users need to be aware that a NOTAM addressing activation will NOT be issued to announce permanently listed times of use.

<table>
<thead>
<tr>
<th>High and Low</th>
<th>Low Altitude Only</th>
<th>Canada Only</th>
<th>Caribbean Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>P - Prohibited Area</td>
<td>MOA - Military Operations Area</td>
<td>CYA - Advisory</td>
<td>D - Danger</td>
</tr>
<tr>
<td>R - Restricted Area</td>
<td>A - Alert Area *</td>
<td>CYD - Danger Area</td>
<td></td>
</tr>
<tr>
<td>W - Warning Area</td>
<td></td>
<td>CYR - Restricted Area</td>
<td></td>
</tr>
</tbody>
</table>

* Alert Areas do not extend into Class A, B, C and D airspace, or Class E airport surface areas.

See Airspace Tabulation on chart for complete information.

OTHER AIRSPACE

FAR 91 Special Air Traffic Rules are shown with the type NO SVFR above the airport name.

FAR 93 Special Airspace Traffic Rules are shown with a solid line box around the airport name, indicating FAR 93 Special Requirements see Chart Supplement.

Mode C Required Airspace (from the surface to 10,000' MSL) within 30 NM radius of the primary airport(s) for which a Class B airspace is designated, is depicted on IFR Enroute Low Altitude Charts as a blue circle labeled MODE C 30 NM.

Mode C is also required for operations within and above all Class C airspace up to 10,000’ MSL, but not depicted. See FAR 91.215 and the AIM.
INSTRUMENT AIRWAYS

The FAA has established two fixed route systems for air navigation. The VOR and LF/MF system-designated from 1,200’ Above Ground Level (AGL) to but not including FL 180 is shown on IFR Enroute Low Altitude Charts, and the Jet Route system designated from FL 180 to FL 450 inclusive is shown on IFR Enroute High Altitude Charts.

VOR LF/MF AIRWAY SYSTEM (IFR LOW ALTITUDE ENROUTE CHARTS)

In this system VOR airways - airways based on VOR or VORTAC NAVAIDs - are depicted in black and identified by a "V" (Victor) followed by the route number (e.g., "V12").

LF/MF airways - airways based on LF/MF NAVAIDs - are sometimes called "colored airways" because they are identified by color name and number (e.g., "Amber One", charted as "A1"). In Alaska Green and Red airways are plotted east and west, and Amber and Blue airways are plotted north and south. Regardless of their color identifier, LF/MF airways are shown in brown.

AIRWAY/ROUTE DATA

On both series of IFR Enroute Charts, airway/route data such as the airway identifications, magnetic courses bearings or radials, mileages, and altitudes (e.g., Minimum Enroute Altitudes (MEAs), Minimum Reception Altitudes (MRAs), Maximum Authorized Altitudes (MAAs), Minimum Obstacle Clearance Altitudes (MOCA s), Minimum Turning Altitudes (MTAs) and Minimum Crossing Altitudes (MCAs)) are shown aligned with the airway.

As a rule the airway/route data is charted and in the same color as the airway, with one exception. Charted in blue, Global Navigation Satellite System (GNSS) MEAs, identified with a "G" suffix, have been added to "V" and "colored airways" for aircraft flying those airways using Global Positioning System (GPS) navigation.

Airways/Routes predicated on VOR or VORTAC NAVAIDs are defined by the outbound radial from the NAVAID. Airways/Routes predicated on LF/MF NAVAIDs are defined by the inbound bearing.

- **Minimum Enroute Altitude (MEA)** - The MEA is the lowest published altitude between radio fixes that assures acceptable navigational signal coverage and meets obstacle clearance requirements between those fixes. The MEA prescribed for a Federal airway or segment, RNAV low or high route, or other direct route applies to the entire width of the airway, segment, or route between the radio fixes defining the airway, segment, or route. MEAs for routes wholly contained within controlled airspace normally provide a buffer above the floor of controlled airspace consisting of at least 300 feet within transition areas and 500 feet within control areas. MEAs are established based upon obstacle clearance over terrain and man-made objects, adequacy of navigation facility performance, and communications requirements.

- **Minimum Reception Altitude (MRA)** - MRAs are determined by FAA flight inspection traversing an entire route of flight to establish the minimum altitude the navigation signal can be received for the route and for off-course NAVAID facilities that determine a fix. When the MRA at the fix is higher than the MEA, an MRA is established for the fix and is the lowest altitude at which an intersection can be determined.

- **Maximum Authorized Altitude (MAA)** - An MAA is a published altitude representing the maximum usable altitude or flight level for an airspace structure or route segment. It is the highest altitude on a Federal airway, jet route, RNAV low or high route, or other direct route for which an MEA is designated at which adequate reception of navigation signals is assured.

- **Minimum Obstruction Clearance Altitude (MOCA)** - The MOCA is the lowest published altitude in effect between fixes on VOR airways, off-airway routes, or route segments that meets obstacle clearance requirements for a VOR. The MOCA seen on the enroute chart may have been computed by adding the required obstacle clearance (ROC) to the controlling obstacle in the primary area or computed by using a TERPS chart if the controlling obstacle is located in the secondary area. This figure is then rounded to the nearest 100 foot increment (i.e., 2,049 feet becomes 2,000, and 2,050 feet becomes 2,100 feet). An extra 1,000 feet is added in mountainous areas, in most cases.
• **Minimum Turning Altitude (MTA)** - Minimum turning altitude (MTA) is a charted altitude providing vertical and lateral obstruction clearance based on turn criteria over certain fixes, NAVAIDs, waypoints, and on charted route segments. When a VHF airway or route terminates at a NAVAID or fix, the primary area extends beyond that termination point. When a change of course on VHF airways and routes is necessary, the enroute obstacle clearance turning area extends the primary and secondary obstacle clearance areas to accommodate the turn radius of the aircraft. Since turns at or after fix passage may exceed airway and route boundaries, pilots are expected to adhere to airway and route protected airspace by leading turns early before a fix. The turn area provides obstacle clearance for both turn anticipation (turning prior to the fix) and flyover protection (turning after crossing the fix). Turning fixes requiring a higher MTA are charted with a flag along with accompanying text describing the MTA restriction.

• **Minimum Crossing Altitude (MCA)** - An MCA is the lowest altitude at certain fixes at which the aircraft must cross when proceeding in the direction of a higher minimum enroute IFR altitude. MCAs are established in all cases where obstacles intervene to prevent pilots from maintaining obstacle clearance during a normal climb to a higher MEA after passing a point beyond which the higher MEA applies. The same protected enroute area vertical obstacle clearance requirements for the primary and secondary areas are considered in the determination of the MCA.

AREA NAVIGATION (RNAV) "T" ROUTE SYSTEM

The FAA has created new low altitude area navigation (RNAV) "T" routes for the enroute and terminal environments. The RNAV routes will provide more direct routing for IFR aircraft and enhance the safety and efficiency of the National Aerospace System. To utilize these routes aircraft are required to be equipped with IFR approved GNSS. In Alaska, TSO-145a and 146a equipment is required.

Low altitude RNAV only routes are identified by the prefix "T", and the prefix "TK" for RNAV helicopter routes followed by a three digit number (T-200 to T-500). Routes are depicted in blue on the IFR Enroute Low Altitude Charts. RNAV route data (route line, identification boxes, mileages, waypoints, waypoint names, magnetic reference courses and MEAs) will also be printed in blue. Magnetic reference courses will be shown originating from a waypoint, fix/reporting point or NAVAID. GNSS MEA for each segment is established to ensure obstacle clearance and communications reception. GNSS MEAs are identified with a "G" suffix.

Joint Victor/RNAV routes are charted as outlined above except as noted. The joint Victor route and the RNAV route identification boxes are shown adjacent to each other. Magnetic reference courses are not shown. MEAs are charted above the appropriate identification box or stacked in pairs, GNSS and Victor. On joint routes, RNAV specific information will be printed in blue.
UNUSABLE AIRWAY/ROUTE SEGMENTS

Airway/Route segments designated by the FAA as unusable will be depicted as shown below.

Pilots should not file a flight plan for or accept a clearance that includes navigation on any route or route segment depicted as unusable. Pilots using RNAV may request ATC clearance to fly point-to-point between valid waypoints or fixes, even those on routes depicted as unusable (refer to AC 90-108 for RNAV eligibility).

Coincident Airways/Routes with Unusable Segment

When two airways/routes are coincident, but only one airway/route is designated as unusable, the following note indicating which airway the unusable symbology applies to will be placed in close proximity to the airway/route identifiers.

OFF ROUTE OBSTRUCTION CLEARANCE ALTITUDE (OROCA)

The Off Route Obstruction Clearance Altitude (OROCA) is depicted on IFR Enroute Low Altitude and Pacific charts and is represented in thousands and hundreds of feet above MSL. OROCAs are shown in every 30 x 30 minute quadrant on Area Charts, every one degree by one degree quadrant for IFR Enroute Low Altitude Charts - U.S. and every two degree by two degree quadrant on IFR Enroute Low Altitude Charts - Alaska. The OROCA represents the highest possible obstruction elevation including both terrain and other vertical obstruction data (towers, trees, etc.) bounded by the ticked lines of latitude/longitude including data 4 NM outside the quadrant. In this example the OROCA represents 12,500 feet.

OROCA is computed just as the Maximum Elevation Figure (MEF) found on Visual Flight Rule (VFR) Charts except that it provides an additional vertical buffer of 1,000 feet in designated non-mountainous areas and a 2,000 foot vertical buffer in designated mountainous areas within the United States. For areas in Mexico and the Caribbean, located outside the U.S. Air Defense Identification Zone (ADIZ), the OROCA provides obstruction clearance with a 3,000 foot vertical buffer. Evaluating the area around the quadrant provides the chart user the same lateral clearance an airway provides should the line of intended flight follow a ticked line of latitude or longitude. OROCA does not provide for NAVAID signal coverage, communication coverage and would not be consistent with altitudes assigned by Air Traffic Control. OROCAs can be found over all land masses and open water areas containing man-made obstructions (such as oil rigs).

MILITARY TRAINING ROUTES (MTRs)

Military Training Routes (MTRs) are routes established for the conduct of low-altitude, high-speed military flight training (generally below 10,000 feet MSL at airspeeds in excess of 250 knots Indicated Air Speed). These routes are depicted in brown on IFR Enroute Low Altitude Charts, and are not shown on inset charts or on IFR Enroute High Altitude Charts. IFR Enroute Low Altitude Charts depict all IFR Military Training Routes (IRs) and VFR Military Training Routes (VRs), except those VRs that are entirely at or below 1,500 feet AGL.

MTRs are identified by designators (IR-107, VR-134) which are shown in brown on the route centerline. Arrows are shown to indicate the direction of flight along the route. The width of the route determines the width of the line that is plotted on the chart.
Route segments with a width of 5 NM or less, both sides of the centerline, are shown by a .02" line.

Route segments with a width greater than 5 NM, either or both sides of the centerline, are shown by a .035" line.

MTRs for particular chart pairs (ex. L1/2, etc.) are alphabetically, then numerically tabulated. The tabulation includes MTR type and unique identification and altitude range.

JET ROUTE SYSTEM (HIGH ALTITUDE ENROUTE CHARTS)

Jet routes are based on VOR or VORTAC NAVAIDs, and are depicted in black with a "J" identifier followed by the route number (e.g., "J12"). In Alaska, Russia and Canada some segments of jet routes are based on LF/MF NAVAIDs.

AREA NAVIGATION (RNAV) "Q" ROUTE SYSTEM (IFR ENROUTE HIGH ALTITUDE CHARTS)

The FAA has adopted certain amendments to Title 14, Code of Federal Regulations which paved the way for the development of new area high altitude navigation (RNAV) "Q" routes in the U.S. National Airspace System (NAS). These amendments enable the FAA to take advantage of technological advancements in navigation systems such as the GPS. RNAV "Q" Route MEAs are shown when other than FL 180 MEAs for DME/DME/Inertial Reference Unit (IRU) RNAV aircraft have a "D" suffix.

RNAV routes and associated data are charted in blue."Q" Routes on the IFR Gulf of Mexico charts are shown in black. Magnetic reference courses are shown originating from a waypoint, fix/reporting point, or NAVAID.

Joint Jet/RNAV route identification boxes will be located adjacent to each other with the route charted in black. With the exception of Q-Routes in the Gulf of Mexico, GNSS or DME/DME/IRU RNAV are required, unless otherwise indicated. DME/DME/IRU RNAV aircraft should refer to the Chart Supplement for DME information. Q-Routes in Alaska are GNSS Only. Altitude values are stacked highest to lowest.

Joint Jet/RNAV Route

TErrAIN CONTOURS ON AREA CHARTS

Based on a recommendation of the National Transportation Safety Board, terrain contours have been added to the Enroute Area Charts and are intended to increase pilots' situational awareness for safe flight over changes in terrain. The following Area Charts portray terrain: Anchorage, Denver, Fairbanks, Juneau, Los Angeles, Nome, Phoenix, San Francisco, Vancouver and Washington.

When terrain rises at least 1,000 feet above the primary airports' elevation, terrain is charted using shades of brown with brown contour lines and values. The initial contour will be 1,000 or 2,000 feet above the airports' elevation. Subsequent intervals will be 2,000 or 3,000 foot increments.

Contours are supplemented with a representative number of spots elevations and are shown in solid black. The highest elevation on an Area Chart is shown with a larger spot and text.

The following boxed note is added to the affected Area Charts.

NOTE: TERRAIN CONTOURS HAVE BEEN ADDED TO THOSE AREA CHARTS WHERE THE TERRAIN ON THE CHART IS 1000 FOOT OR GREATER THAN THE ELEVATION OF THE "REFERENT" AIRPORT.
IFR ENROUTE LOW / HIGH ALTITUDE SYMBOLS
(U.S., PACIFIC AND ALASKA CHARTS)

AIRPORTS

Airport Data - Low/High Altitude

Civil
Charts: High/Low

Civil And Military
Charts: High/Low

Military
Charts: High/Low

Seaplane - Civil
Charts: Low

Heliport
Charts: Low

Emergency Use Only
Pacific Only

Facilities in BLUE or GREEN have an approved Instrument Approach Procedure and/or RADAR MINIMA published in either the FAA Terminal Procedures Publication or the DoD FLIPS. Those in BLUE have an Instrument Approach Procedure and/or RADAR MINIMA published at least in the High Altitude DoD FLIPS. Facilities in BROWN do not have a published Instrument Procedure or RADAR MINIMA.

All IAP Airports are shown on the Low Altitude Charts.

Non-IAP Airports shown on the U.S. Low Altitude Charts have a minimum hard surface runway of 3000’.

Airports shown on the U.S. High Altitude Charts have a minimum hard surface runway of 5000’.

Airports shown on the Alask High Altitude Charts have a minimum hard or soft surface runway of 4000’.

Associated city names for public airports are shown above or preceding the airport name and city name are the same only the airport name is shown. City names for military and private airports are not shown.

The airport identifier in parentheses follows the airport name or Pvt.

Pvt - Private Use

AIRPORT DATA DEPICTION

Low Altitude

1. Airport elevation given in feet above or below mean sea level
2. Pvt - Private use, not available to general public
3. A solid line box enclosed the airport name indicates FAR 93 Special Requirements - see Directory/Supplement
4. “NO SVFR” above the airport name indicates FAR 91 fixed-wing special VFR flight is prohibited.
5. C or D following the airport identifier indicates Class C or Class D Airspace

High Altitude - U.S.

6. Associated city names for public airports are shown above or preceding the airport name. If airport name and city name are the same, only the airport name is shown. The airport identifier in parentheses follows the airport name. City names for military and private airports are not shown.

7. Airport Ident ICAO Location Indicator shown outside contiguous U.S.

8. AFIS Alaska only

High Altitude - Alaska
Airports (Continued)

LIGHTING CAPABILITY

Lighting Available

Pilot Controlled Lighting

Part-time or on request

No lighting available

At private facilities - indicates no lighting information is available

RADIO AIDS TO NAVIGATION

NAVAIDS

<table>
<thead>
<tr>
<th>VOR</th>
<th>VOR/DME</th>
<th>TACAN</th>
<th>DME</th>
<th>NDB</th>
<th>NDB/DME</th>
<th>Reporting Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>![VOR Icon]</td>
<td>![VOR/DME Icon]</td>
<td>![TACAN Icon]</td>
<td>![DME Icon]</td>
<td>![NDB Icon]</td>
<td>![NDB/DME Icon]</td>
<td>Non Compulsory Reporting or Off Airway</td>
</tr>
<tr>
<td>![VOR Icon]</td>
<td>![VOR/DME Icon]</td>
<td>![TACAN Icon]</td>
<td>![DME Icon]</td>
<td>![NDB Icon]</td>
<td>![NDB/DME Icon]</td>
<td>Compulsory Reporting</td>
</tr>
</tbody>
</table>

Note: VHF/UHF is depicted in Black. LF/MF is depicted in Brown. RNAV is depicted in Blue

Compass Roses

VHF/UHF

LF/MF

Compass Roses are orientated to Magnetic North of the NAVAID which may not be adjusted to the charted isogonic values.

Compass Locator Beacon

LOW ALTITUDE

Chart Example: Enroute Low L-27 US
RADIO AIDS TO NAVIGATION (Continued)

ILS LOCALIZER

ILS Localizer Course with additional navigation function

ILS Localizer Back Course with additional navigation function

HIGH ALTITUDE - ALASKA

VOR/DME RNAV WAYPOINT DATA

Coordinates

Frequency

Identifier

Reference Facility Elevation

Radial/Distance (Facility to Waypoint)

NAVIGATION AND COMMUNICATION BOXES - COMMON ELEMENTS

LOW ENROUTE CHARTS

RCO Frequencies

NAVAID Name

FREQ, Ident, CH, Morse Code

Latitude, Longitude

Controlling FSS Name

HIGH ENROUTE CHARTS

RCO Frequencies

NAVAID Name

Frequency, Ident, Channel,

Latitude, Longitude

Controlling FSS Name

COMMON ELEMENTS (HIGH AND LOW CHARTS)

RCO Frequency

Single Frequency

Multiple Frequencies

Frequencies transmit and receive except those followed by R and T:

R - Receive Only T - Transmit Only

NAVAID Box

Thin line NAVAID boxes without frequency(s) and FSS radio name indicates no FSS frequencies available.

Shadow NAVAID box indicates NAVAID and Flight Service Station (FSS) have same name.
RADIO AIDS TO NAVIGATION (Continued)

Navigation and Communication Boxes - Common Elements

<table>
<thead>
<tr>
<th>Frequency Protection</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Protection usable range at 18,000’ AGL - 40 NM</td>
<td>(T)</td>
</tr>
<tr>
<td>Frequency Protection usable range at 12,000’ AGL - 25 NM</td>
<td></td>
</tr>
</tbody>
</table>

DISTANCE MEASURING EQUIPMENT

Facilities that operate in the “Y” mode for DME reception

| (Y) |

VOICE COMMUNICATIONS VIA NAVAID

Voice Transmitted

VHF/UHF LF/MF

| 112.6 |

No Voice Transmitted

VHF/UHF LF/MF

| 111.0 |

NAVAID SHUTDOWN STATUS

PART TIME OR ON-REQUEST

| VHF/UHF LF/MF |

AUTOMATED WEATHER BROADCAST SERVICES

ASOS/AWOS - Automated Surface Observing Station/Automated Weather Observing Station

VHF/UHF LF/MF

| A | A |

LATITUDE AND LONGITUDE

Latitude and Longitude coordinates are provided for those NAVAIDs that make up part of a route/airway or a holding pattern. All TACAN facilities will include geographic coordinates.

LOW ENROUTE CHARTS

VOR

R - Receive only 122.1R

Controlling FSS Name - ANDERSON

(T) - Service Volume

Receive & Transmit on 122.35

(T) - Service Volume

Latitude and Longitude

Controlling FSS Name - MACON

HIGH ENROUTE CHARTS

VOR

CECIL 112.9 VQQ

LATITUDE AND LONGITUDE
RADIO AIDS TO NAVIGATION (Continued)

Navigation And Communication Boxes - Examples (Continued)

LOW ENROUTE CHARTS

VOR/DME

No Voice Communications
(Y) Mode DME

R - Receive only 122.1R
Controlling FSS Name - BUFFALO

Shadow NAVAID Box
FSS Associated with NAVAID

TACAN

TACAN Channels are without voice but not underlined

Part Time NAVAID

VORTAC

Shutdown status

DME

DME Channel, Ident, Morse Code, VHF Frequency

NDB

A - ASOS/AWOS Available

Shutdown status

NDB/DME

No Voice Communications
(Y) Mode DME

Shadow NAVAID Box
FSS Associated with NAVAID

Notes:

HIGH ENROUTE CHARTS

VOR/DME

Off Route (Greyed NAVAID Box and NAVAID)

Service Volume - L
DME in Y Mode

Shadow NAVAID Box
FSS Associated with NAVAID

TACAN

Off Route

Off Route - Part Time NAVAID
(Greyed NAVAID Box and NAVAID)
Service Volume - L

VORTAC

Off Route (Greyed NAVAID Box and NAVAID)
Service Volume - L

DME

DME Channel, Ident, VHF Frequency

NDB

No Voice Communications
(Y) Mode DME

Shadow NAVAID Box
FSS Associated with NAVAID

Notes: Morse Code is not shown on High NAVAID Boxes.
RADIO AIDS TO NAVIGATION (Continued)

Stand Alone Flight Services and Communication Outlets

Flight Service Station (FSS)

Shadow NAVAID boxes indicate Flight Service Station (FSS) locations. Frequencies 122.2, 255.4 and emergency 121.5 and 243.0 are available at many FSSs and are not shown. All other frequencies are show above the box.

Certain FSSs provide Local Airport Advisory (LAA) on 123.6.

Frequencies transmit and receive except those followed by R and T:
R - Receive Only
T - Transmit Only

In Canada, shadow boxes indicate FSSs with standard group frequencies of 121.5, 126.7 and 243.0.

Remote Communications Outlet (RCO)

Thin line NAVAID boxes without frequencies and controlling FSS name indicate no FSS frequencies available. Frequencies positioned above the thin line boxes are remoted to the NAVAID sites. Other frequencies at the controlling FSS named are available, however altitude and terrain may determine their reception.

In Canada, a “D” after the frequency indicates a dial-up remote communications outlet.

Stand Alone AWOS & ASOS
AIRSPACE INFORMATION

Airway/Route Types

Low and High Enroute Airway Data:

<table>
<thead>
<tr>
<th>Low Enroute Charts</th>
<th>High Enroute Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor Airways</td>
<td>Jet Routes</td>
</tr>
<tr>
<td>V 0</td>
<td>J 000</td>
</tr>
<tr>
<td>LF/MF Airway</td>
<td>Atlantic Routes</td>
</tr>
<tr>
<td>A 0</td>
<td>ARO ARO</td>
</tr>
<tr>
<td>Uncontrolled LF/MF Airway</td>
<td>Bahama Routes</td>
</tr>
<tr>
<td>A 0</td>
<td>BROL BROL</td>
</tr>
<tr>
<td>RNAV T Route</td>
<td>RNAV Q Routes</td>
</tr>
<tr>
<td>T 000</td>
<td>Q 000</td>
</tr>
<tr>
<td>RNAV TK Helicopter Route</td>
<td></td>
</tr>
<tr>
<td>Preferred Single Direction</td>
<td></td>
</tr>
<tr>
<td>Victor Route</td>
<td>Jet Routes</td>
</tr>
<tr>
<td>V 0</td>
<td>J 000</td>
</tr>
</tbody>
</table>

- **Unusable Route Segment**
- **Direction of Flight Indicator Canadian Routes Only**
 - Even

Military Training Routes (MTR)

- MTRs 5NM or less both sides of centerline
 - IR-000
 - VR-000
- MTRs greater than 5NM either or both sides of centerline
 - IR-000
 - VR-000

- Arrow indicates direction of route

- See MTR tabulation for altitude range information

- All IR and VR MTRs are shown except those VRs at or below 1500' AGL

CAUTION: Inset charts do not depict MTRs

Low and High Enroute Charts

- **ATS Route**
 - A 0
- **Oceanic Route**
 - A 00 A 00

VHF/UHF Data is depicted in Black.
LF/MF Data is depicted in Brown.
RNAV Route data is depicted in Blue.

FAA Chart User’s Guide - IFR Enroute Symbology

Substitute Route

- **All relative and supporting data shown in brown.**
- See NOTAMs or appropriate publication for specific information.
Airspace Information (Continued)

FIXES

<table>
<thead>
<tr>
<th>VHF/UHF</th>
<th>LF/MF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPORTING FUNCTION

- **Compulsory Position Reporting**
- **Non-Compulsory Position Reporting**

WAYPOINTS

RNAV

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

RNAV

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Distance Measuring Equipment (DME) Fix

Denotes DME fix (distance same as airway / route mileage)

Example:

First segment, 5NM; second segment 10NM; total mileage provided in encircled DME arrow.

MILEAGE BETWEEN OTHER FIXES, NAVAIDs AND/OR MILEAGE BREAKDOWN

Total Mileages between Compulsory Reporting Points or NAVAIDs

Note: All mileages are in Nautical Miles

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

FACILITY LOCATOR BOATS

Crosshatch indicates Shutdown status of NAVAID

RADIAL OUTBOUND FROM A VHF/UHF NAVAID

All Radials are magnetic.

BEARING INBOUND TO AN LF/MF NAVAID

All Bearings are magnetic.

MAGNETIC REFERENCE BEARING

Outbound from a NAVAID or Fix

Note: Not shown on joint Victor/RNAV or Jet/RNAV Routes.
Airspace Information (Continued)

<table>
<thead>
<tr>
<th>VHF/UHF</th>
<th>LF/MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW CHARTS</td>
<td>LOW CHARTS</td>
</tr>
<tr>
<td>0000</td>
<td>0000</td>
</tr>
</tbody>
</table>

HIGH CHARTS HIGH CHARTS

MEA-29000 MEA-FL240

MINIMUM ENROUTE ALTITUDE (MEA)
All Altitudes Are MSL Unless Otherwise Noted.

Directional MEAs

MEAs are shown on IFR High Altitude Charts when MEA is other than 18,000’.

MINIMUM ENROUTE ALTITUDE (MEA) GAP
MEA is established when there is a gap in navigation signal coverage.

Maximum Authorized Altitude (MAA)
All Altitudes Are MSL Unless Otherwise Noted.

MAAs are shown on IFR High Altitude Charts when MAA is other than 45,000’.

Minimum Obstruction Clearance Altitude (MOCA)
All Altitudes Are MSL Unless Otherwise Noted.

Minimum Turning Altitude (MTA) and Minimum Crossing Altitude (MCA)
See Low Enroute Chart Example below for examples of both MTAs and MCAs.

MINIMUM RECEPTION ALTITUDE (MRA)
ALTITUDE CHANGE
MEA, MOCA and/or MAA change at other than NAVAIDs

CHANGEOVER POINT
Changeover Point giving mileage to NAVAIDs (Not shown at midpoint locations.)

HOLDING PATTERNS
RNAV Holding Pattern Magnetic Reference Bearing is determined by the isogonic value at the waypoint or fix.

Holding Pattern with maximum restriction airspeed 210K applies to altitudes 6000’ to and including 14000’. 175K applied to all altitudes. Airspeed depicted is Indicated Airspeed (IAS)
Enroute Chart Examples
Low Enroute Chart (Continued)

Reference Number

1. **Multiple MCAs at a NAVAID**
 - V21 and V257 - MCA at DBS of 8600' traveling North
 - V298 - MCA at DBS of 9800' traveling West
 - V343 - MCA at DBS of 8500' traveling North
 - V520 - MCA at DBS of 9000' traveling East
 - V520 - MCA at DBS of 10600' traveling West

2. **MCA and MRA at a Fix**
 - MCA at SABAT on V298 of 11,100 traveling East.
 - MRA at SABAT of 10000.

3. **Example of MOCA and directional MEAs along a Victor Route**
 - Traveling East from DBS, MEA 13,000' the first two segments, 15,000 along third segment.
 - Traveling West from QUIRT, MEA of 15,000' the first segment, MEA of 10,000 the second segment and MEA of 9,000 the third segment.
 - MOCA for DBS to SABAT and SABAT to LAMON segments of 8100

4. **MCA Example**
 - MCA at OSITY on V330. MCA of 9500' traveling East on V330 from Idaho Falls (IDA) VOR-DME.
AIRSPACE INFORMATION (Continued)

Enroute Chart Examples

Low Enroute Chart (Continued)

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| **5** | **MEA VHF and RNAV Example**
| | MEA for aircraft utilizing VHF NAVAID of 15000’
| | MEA for aircraft utilizing RNAV of 13300’
| | MOCA of 13300’ |
| **6** | **MCA and MTA Example at a NAVAID**
| | MCA for aircraft traveling West along V520 to cross JAC at 15200’
| | MCA for aircraft traveling West along V330 to cross JAC at 13400’
| | MTA for aircraft crossing over and turning at JAC:
| | Aircraft traveling NE on V465 and turning to V330 on a W heading or turning to V520 on a W heading must turn at altitude of 16000’ or higher
| | Aircraft traveling E on V520 and turning to V330 on a W heading must turn at altitude of 14200’
| | Aircraft traveling E on V330 and turning to V520 on a W heading must turn at altitude of 16000’ or higher
| | Aircraft traveling NW on V328 and turning to V465 on a SW heading must turn at altitude of 15100’ or higher |
Airspace Information (Continued)

Enroute Chart Examples
High Enroute Chart

Reference Number

Description

1. High RNAV Route with MEA for DME/DME/IRU RNAV Aircraft
 MEA of 24,000'

2. Directional Jet Route with Time Restrictions
 Jet Route 34 available between 1100 - 0300Z
Enroute Chart Examples
High Enroute Chart (Continued)

Reference Number

Directional Jet Route with Time Restrictions, MAA and MEA
Jet Route 149 available between 1100 - 0300Z
MAA - 41,000'
MEA - 31,000'

Air Defense Identification Zone (ADIZ)

Adjoining ADIZ

Air Traffic Service Identification Data

Flight Information Regions (FIR)

Upper Information Regions (UIR)

Upper Control Areas (UTA)

AIRSPACE BOUNDARIES

Air Route Traffic Control Center (ARTCC)
ARTCC Remoted Sites with discrete VHF and UHF frequencies

Air Route Traffic Control Center (ARTCC) with Controller Pilot Data Link Communications (CPDLC)

Altimeter Setting Change

Control Areas (CTA)

Additional Control Areas

LOW ALTITUDE

HIGH ALTITUDE
AIRSPACE INFORMATION (Continued)

Airspace - U.S.

Class A

Open Area (White)

High Chart Only

Controlled Airspace

That airspace from 18,000' MSL to and including FL 600, including the airspace overlying the waters within 12 NM of the coast of the contiguous United States and Alaska and designated offshore areas, excluding Santa Barbara Island, Farallon Island, the airspace south of latitude 25° 04' 00" N, the Alaska peninsula west of longitude 160° 00' 00" W, and the airspace less than 1,500' AGL.

That airspace from 18,000' MSL to and including FL 450, including Santa Barbara Island, Farallon Island, the Alaska peninsula west of longitude 160° 00' 00" W, and designated offshore areas.

Class B

Low Chart Only

Screened Blue with a Solid Blue Outline

Controlled Airspace

That airspace from the surface to 10,000' MSL (unless otherwise designated) surrounding the nation’s busiest airports. Each Class B airspace area is individually tailored and consists of a surface area and two or more layers.

Mode C Area

Low Chart Only

A Solid Blue Outline

Controlled Airspace

That airspace within 30 NM of the primary airports of Class B airspace and within 10 NM of designated airports. Mode-C transponder equipment is required. (See FAR 91.215)

Example:

See Chart example above.
AIRSPACE INFORMATION (Continued)

Airspace - U.S. (Continued)

CLASS C

Low Chart Only

Controlled Airspace

Screened Blue with a Solid Blue Dashed Outline

That airspace from the surface to 4,000’ (unless otherwise designated) above the elevation of selected airports (charted in MSL). The normal radius of the outer limits of Class C airspace is 10NM. Class C airspace is also indicated by the letter C in a box following the airport name.

CLASS D

Low Chart Only

Controlled Airspace

Open Area (White)

That airspace from the surface to 2,500’ unless otherwise designated) above the airport elevation (charted in MSL), surrounding those airports that have an operational control tower. Class D airspace is indicated by the letter D in a box following the airport name.

CLASS E

Low Chart Only

Controlled Airspace

Open Area (White)

That controlled airspace below 14,500’ MSL which is not Class B, C or D.

Federal Airways from 1,200’ AGL to but not including 18,000’ MSL (unless otherwise specified).

Other designated control areas below 14,500’ MSL.

Not Charted

That airspace from 14,500’ MSL to but not including 18,000’ MSL, including the airspace overflying the waters within 12 NM of the coast of the contiguous United States and Alaska and designated offshore areas, excluding the Alaska peninsula west of longitude 160°00’00” W, and the airspace less than 1,500’ AGL.
Airspace Information (Continued)

AIRSPACE - U.S.

CLASS G Screened Brown Area

High and Low Chart

Uncontrolled Airspace

Low Altitude

That portion of the airspace below 14,500’ MSL that has not been designated as Class B, C, D or E Airspace.

High Altitude

That portion of the airspace from 18,000’ MSL and above that has not been designated as Class A airspace.

AIRSPACE - CANADIAN

CLASS B Screened Brown Checkered Area

Low Charts Only

Controlled Airspace

Controlled airspace above 12,500’ MSL
AIRSPACE INFORMATION (Continued)

Special Use Airspace - U.S.

Low and High Charts

P - Prohibited Area

R - Restricted Area

W - Warning Area

Example: P-56 - Washington DC, Area A-1 Chart

Example: P-40 and R-4009 - Washington DC, Area A-1 Chart

Example: R3601A -

See Airspace Tabulation on each chart for complete documentation information on:

Area Identification
Effective Altitude
Operating Times
Controlling Agency Voice Call

Example: W-50

MOA - Military Operations Area

See Airspace Tabulation on each chart for complete documentation information on:

Area Identification
Effective Altitude
Operating Times
Controlling Agency Voice Call

Low Charts Only

A - Alert Area

* Alert Areas do not extend into Class A, B, C and D airspace, or Class E airport surface areas.
Off Route Obstruction Clearance Altitude (OROCA)

OROCA is computed similarly to the Maximum Elevation Figure (MEF) found on Visual charts except that it provides an additional vertical buffer of 1,000 feet in designated non-mountainous areas and a 2,000 foot vertical buffer in designated mountainous areas within the United States.

Example: 12,500 feet

Special Flight Rules Area (SFRA)

SFRA Symbology

Example: Low Chart (Washington Area Chart)

Example: High Chart (H-12)
AIRSPACE INFORMATION (Continued)

Special Use Airspace - Canada & Caribbean

Low and High Charts

Canada Only

CYA - Advisory Area

CYD - Danger Area

CYR - Restricted Area

Caribbean Only

D - Danger Area

In the Caribbean, the first two letters represent the country code, i.e. (MY) Bahamas, (MU) Cuba

NAVIGATIONAL AND PROCEDURAL INFORMATION

Cruising Altitudes - Low Charts - U.S. Only

IFR outside controlled airspace.

IFR within controlled airspace as assigned by ATC.

ALL courses are magnetic.

VFR above 3000' AGL unless otherwise authorized by ATC.

Cruising Altitudes - High Charts - U.S. Only

IFR within controlled airspace as assigned by ATC

All courses are magnetic.

18,000' MSL to FL280

RVSM Levels FL290 to FL410

FL430 and above

VFR or VFR On Top add 500'

No VFR flights within Class A Airspace above 3000' AGL unless otherwise authorized

No VFR or VFR On Top authorized above FL285 in RVSM airspace.
Navigational and Procedural Information (Continued)

ISOGONIC LINE AND VALUE

LOW/HIGH CHARTS

MORSE CODE

MATCH MARK

TIME ZONE

All time is Coordinated Universal Time (UTC)

Mountain Std +7 = UTC
Central Std +6 = UTC

During periods of Daylights Savings Time (DT), effective hours will be one hour earlier than shown. All states observe DT except Arizona and Hawaii.

CULTURE

Boundaries

International

LOW/HIGH ALTITUDE

[Not shown when coincident with ARTCC or FIR]

U.S./Russia Maritime Line

LOW/HIGH ALTITUDE

HYDROGRAPHY

SHORELINES

TOPOGRAPHY

TERRAIN

Area Charts
U.S. TERMINAL PROCEDURES PUBLICATION

The U.S. Terminal Procedures Publication (TPPs) includes the Instrument Approach Procedures (IAPs), Departure Procedures (DPs) charts, Standard Terminal Arrival (STAR) charts, Charted Visual Flight Procedure (CVFP) charts, and Airport Diagrams. Also included are Takeoff Minimums, (Obstacle) Departure Procedures, Diverse Vector Area (RADAR Vectors), RADAR and Alternate Minimum textual procedures.

EXPLANATION OF TPP TERMS AND SYMBOLS

The information and examples in this section are based primarily on the IFR (Instrument Flight Rules) Terminal Procedures Publication (TPP). The publication legends list aeronautical symbols with a brief description of what each symbol depicts. This section will provide more detailed information of some of the symbols and how they are used on TPP charts.

FAA Terminal charts are prepared in accordance with specifications of the Interagency Air Committee (IAC) and their supporting technical groups for the purpose of standardization, which are approved by representatives of the Federal Aviation Administration (FAA), and the Department of Defense (DoD).

TheTerminal Procedure Publication is made up of the following charts:

- Instrument Approach Procedure (IAP) Charts
- Airport Diagrams
- Departure Procedures (DP)
- Standard Terminal Arrival (STAR) Charts
- Charted Visual Flight Procedure (CVFP) Charts
The IAPs (charts) are divided into various sections:

- Margin Identification Information
- Briefing Strip Information
- Planview
- Missed Approach Information
- Profile View
- Landing Minimums
- Airport Sketch

INSTRUMENT APPROACH PROCEDURE CHART

ORLANDO, FLORIDA

AL-305 (FAA)

<table>
<thead>
<tr>
<th>BRIEFING STRIP INFORMATION</th>
<th>Margin Identification Information</th>
<th>Planview</th>
<th>Missed Approach Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIS 127.25</td>
<td>EXECUTIVE TOWER 118.7 (CTAF) 239.0</td>
<td>GND CON 121.4 239.0</td>
<td>CLNC DEL 128.45 UNICOM 122.95</td>
</tr>
</tbody>
</table>

RADAR REQUIRED

NOT FOR NAVIGATION

- VGCI and RNAV glidepath not coincident
- [VGCI Angl 3.00°/TCP 90°]

CATEGORY

- **A**
- **B**
- **C**
- **D**

LANDING MINIMUMS

- **LPV DA** 308/24 200 (200-1°)
- **ILS DA** 804-2 696 (700-2)
- **ILS MDA** 800-1 692 (700-1°)
- **CIRCLING** 800-2 687 (700-2°) 860-2°
The margin identification at the top, bottom, and sides of the chart provides information about the airport location, procedure identification, and chart currency. The charts are organized by city first, then airport name and state, with the exception of military charts, which are organized by airport name. Going from the top of the chart, reading from left to right, and going down the chart, Margin Identification Information is organized in the following way.

Top Margin Information:

The city and state with which the airport is associated is located on both the top and bottom margins.

At the center of the top margin is the FAA numbering system. This Approach and Landing (AL) number is followed by the organization responsible for the procedure in parentheses, e.g., AL-18 (FAA), AL-227 (USAF).

The procedure title is located on both the top and bottom margins. It is derived from the type of navigational facility that is providing the final approach course guidance. The title is abbreviated, e.g. ILS, RNAV, NDB, etc. For airports with parallel runways and simultaneous approach procedures, “L”, “R” or “C” follows the runway number to distinguish between left, right, and center runways.
The airport name is shown on both the top and bottom margins below the procedure title. The airport identifier is shown in parentheses following the airport name. Airports outside the contiguous United States will be shown with the FAA designated identifier followed by the ICAO location identifier.

The Date of Latest Revision is shown on the top margin above the procedure title. The Date of Latest Revision identifies the Julian date the chart was last revised for any reason. The first two digits indicate the year, the last three digits indicate the day of the year (001 to 365/6).

<table>
<thead>
<tr>
<th>WASHINGTON, DC</th>
<th>AL-5326 (FAA)</th>
<th>15344</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS</td>
<td>APP CRS</td>
<td>326°</td>
</tr>
<tr>
<td>CH 56239</td>
<td>TDZE</td>
<td>182</td>
</tr>
<tr>
<td>W34B</td>
<td>Apt Elev</td>
<td>192</td>
</tr>
<tr>
<td>RNAV (GPS) RWY 34L</td>
<td>MANASSAS RGNL/HARRY P DAVIS FIELD (HEF)</td>
<td></td>
</tr>
</tbody>
</table>

Side Margin Information:

The side margins show the volume identification, i.e. SW-3, followed by the current issue date and the next issue date, e.g. SW-3, 21 JUL 2016 to 15 SEP 2016.

Bottom Margin Information:

The FAA Procedure Amendment Number, located on the left bottom margin below the City, State, represents the most current amendment of a given procedure. The Procedure Amendment Effective Date represents the AIRAC cycle date on which the procedure amendment was incorporated into the chart. Updates to the amendment number and effective date represent procedural/criteria revisions to the charted procedure, e.g., course, fix, altitude, minima, etc.

Example: Original Procedure Date

<table>
<thead>
<tr>
<th>WASHINGTON, DC</th>
<th>Orig 10DEC15</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANASSAS RGNL/HARRY P DAVIS FIELD (HEF)</td>
<td>38°43'N-77°31'W</td>
</tr>
<tr>
<td>RNAV (GPS) RWY 34L</td>
<td></td>
</tr>
</tbody>
</table>

Example: Amendment Procedure Date

<table>
<thead>
<tr>
<th>WASHINGTON D.C.</th>
<th>Amd 18 28MAY15</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANASSAS RGNL/HARRY P DAVIS FIELD (HEF)</td>
<td>38°43'N-77°31'W</td>
</tr>
<tr>
<td>RNAV (GPS) RWY 16R</td>
<td></td>
</tr>
</tbody>
</table>

The coordinates for the airport reference point are located at the center of the bottom margin.

BRIEFING STRIP INFORMATION

At the top of every TPP is the Briefing Strip which consists of three stacked strips of information immediately above the planview. Information varies depending upon the type of procedure.

<table>
<thead>
<tr>
<th>WASHINGTON, DC</th>
<th>AL-443 (FAA)</th>
<th>15288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Briefing Strip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILS or LOC/DME RWY 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RONALD REAGAN WASHINGTON NATIONAL (DCA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle Briefing Strip</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communications Briefing Strip</td>
<td></td>
</tr>
<tr>
<td>ATIS 132.65</td>
<td>119.9</td>
<td>124.2</td>
</tr>
<tr>
<td>RNAV DP (CS)</td>
<td>141.4</td>
<td>287.6</td>
</tr>
<tr>
<td>(EAST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

94
Top Briefing Strip

The top briefing strip contains procedural information in three separate boxes, in the following sequence from left to right:

1. **Box 1: Primary Procedure Navigation Information**: The primary navigation type (VOR, LOC, NDB, RNAV, etc.) with its identifier and frequency/channel. If applicable, WAAS, the WAAS Channel Number, and the WAAS Reference Path indicator are shown stacked top to bottom. If the primary navigation type is GBAS, then the following information is shown, stacked top to bottom: GBAS, CH NNNN, RPI XXXX. If there is not a primary Navigation Box required, the first box is removed.

2. **Box 2: Final Approach Course Information**: The inbound Approach Course (APP CRS) is shown.

3. **Box 3: Runway Landing Information**: Stacked top to bottom, the runway landing distance (Rwy Ldg), the Touchdown Zone Elevation (TDZE), and the Airport Elevation (Apt Elev) are shown. Rwy Ldg may not reflect full runway length due to displaced thresholds and shorter declared distances.

Top Briefing Strip Examples:

Ground based NAVAID:

```
DENVER, COLORADO

LOC/DME I-DZG
111.55
Chan 52 (Y)

APP CRS
082°

Rwy Ldg
12000
TDZE
5352
Apt Elev
5434
```

RNAV-WAAS:

```
DENVER, COLORADO

WAAS
CH 82628 W16B

APP CRS
173°

Rwy Ldg
16000
TDZE
5326
Apt Elev
5434
```

GBAS:

```
NEWARK, NEW JERSEY

GBAS
CH 22727 G04A

APP CRS
039°

Rwy Ldg
8460
TDZE
10
Apt Elev
17
```

No Primary NAVAID box:

```
DENVER, COLORADO

APP CRS
173°

Rwy Ldg
12000
TDZE
5339
Apt Elev
5434
```

Circling Approach:

```
ROANOKE, VIRGINIA

VOR ODR
114.9

APP CRS
236°

Rwy Ldg
N/A
TDZE
N/A
Apt Elev
1175
```

FAA Chart User’s Guide - Terminal Procedures Publication (TPP) - Terms
Sidestep Procedure:

Middle Brie

The middle briefing strip may contain information in up to three separate boxes, when available, in the following sequence from left to right:

1. **NOTES BOX**
2. **APPROACH LIGHTING SYSTEM**
3. **MISSING APPROACH PROCEDURE TEXT BOX**

- **Box 1: Notes Box**: contains procedure notes, Equipment/Requirements Notes box and Takeoff, Alternate, RADAR, WAAS, and/or Cold Weather indicators (details provided below under Notes Box).

- **Box 2: Approach Lighting System Box (when applicable)**: shows the approach lighting system name and charting icon. Multiple approach lighting systems may be shown for approaches that have straight-in minimums for parallel runways.

- **Box 3: Missed Approach Procedure Text Box**: The full textual description of the missed approach procedure is provided here.

Notes Box

Procedure Equipment Requirements Notes Box

Users will begin to see Performance-Based Navigation (PBN) Requirements and ground-based Equipment Requirements prominently displayed in separate, standardized notes boxes. For procedures with PBN elements, the PBN box will contain the procedure’s navigation specification(s); and, if required: specific sensors or infrastructure needed for the navigation solution; any additional or advanced functional requirements; the minimum Required Navigation Performance (RNP) value and any amplifying remarks. Items listed in this PBN box are REQUIRED. The separate Equipment Requirements Box will list ground-based equipment requirements.

On procedures with both PBN elements and ground-based equipment requirements, the PBN requirements box will be listed first.
Notes Symbols

Several different symbols may appear within the Notes Box:

- **Non-Standard Takeoff minimums and/or Departure Procedures exist. Refer to Takeoff Minimum, (Obstacle) Departure Procedures, and Diverse Vector Area (RADAR VECTORS) section of the TPP**

- **Non-standard IFR alternate minimums exist. Refer to IFR Alternate Airport Minimums section of the TPP.**

- **Alternate minimums are not authorized due to unmonitored facility or absence of weather reporting service.**

- **WAAS (Wide Area Augmentation System)**

- **Cold Temperature Restricted Airport**

The negative symbol within a black square box symbol shown in the Notes section below any “A” or “T” Symbol indicates that outages of the WAAS (Wide Area Augmentation System) vertical guidance may occur daily at this location due to initial system limitations. WAAS NOTAMs for vertical outages are not provided for this approach. Use LNAV minima for flight planning at these locations, whether as a destination or alternate. For flight operations at these locations, when the WAAS avionics indicate that LNAV/VNAV or LPV service is available, then vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the procedure, reversion to LNAV minima may be required.

When **-12°C** appears in the Notes section below all other symbols it indicates a cold temperature altitude correction is required at that airport when the reported temperature is at or below the published restricted temperature. Advise ATC when altitude correction is made in the intermediate and/or missed approach segment. Reporting corrections to ATC in final segment is not required. See Notices to Airmen Publication (NTAP) Graphic Notices General for complete list of published airports, temperature/s, segments and procedure information.

When “ASR”, “PAR” or “ASR/PAR” appear in the Note section immediately below the “T” and “A” symbols it indicates there are published Radar Instrument Approach Minimums. Where radar is approved for approach control service, it is used not only for radar approaches (Airport Surveillance Radar [ASR] and Precision Approach Radar [PAR]) but is also used to provide vectors in conjunction with published non-radar approaches based on radio NAVAIDs (ILS, VOR, NDB, TACAN). Radar vectors can provide course guidance and expedite traffic to the final approach course of any established IAP or to the traffic pattern for a visual approach.

Bottom Briefing Strip (Communications Information)

The communications briefing strip contains communication information when available, in separate boxes, listed from left to right in the order that they would be used during arrival with the tower frequency box bolded:

<table>
<thead>
<tr>
<th>ATIS</th>
<th>APP CON</th>
<th>TOWER</th>
<th>GND CON</th>
<th>CLNC DEL</th>
<th>UNICOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
</tr>
</tbody>
</table>

- ATIS, AFIS (AK Only) or ASOS/AWOS frequencies (when available, ATIS or AFIS will be the only weather frequency/s published)
- the Approach Control (APP CON) name and frequencies; when the approach service is provided by other than Approach Control, e.g. FSS (Radio), Tower, Center, the appropriate air traffic facility call name is provided.
- the Control Tower (TWR) name and frequencies, to include Precision Radar Monitoring (PRM) and frequency
- Ground Control (GND CON) frequencies
- Clearance Delivery (CLNC DEL) frequencies; where a Control Tower does not exist or is part-time, a remoted CLNC DEL may be listed.
- Controller Pilot Data Link Communication (CPDLC)
- Ground Communications Outlet (GCO) frequency
- Common Traffic Advisory Frequency (CTAF), shown in parentheses when shares a frequency, e.g. UNICOM 122.8 (CTAF)
- UNICOM or AUNICOM frequency

Note: Part-time operations will be annotated with a star. Check Chart Supplement for times of operation.
PLANVIEW

The planview of the IAP charts provides an overhead view of the entire instrument approach procedure.

The data on the planview is shown to scale, unless concentric rings, scale breaks or an inset have been used.

Approach Segments
- NAVAIDs
- Hydrography
- International Boundary
- Obstacles (Man-made, Terrain and Vegetation)
- Special Use Airspace
- Minimum Safe Altitude
- Terminal Arrival Areas
- Helicopter (Copter) Procedures

Approach Segments

The planview includes a graphical depiction of procedure entry through missed approach.

Sample IAP Example

Legend
- Feeder Route
- Initial Approach
- Intermediate Approach
- Final Approach Course
- Missed Approach
Complex IAP Example with RF Legs

- **Feeder Routes** (highlighted in blue - See Simple IAP Example on previous page) may be used to provide a transition from the enroute structure to the IAF.

- **Initial Approach** (highlighted in purple in examples above) is the segment between the initial approach fix (IAF) and the intermediate fix (IF) or the point where the aircraft is established on the intermediate course or final approach course.

- **Intermediate Approach** (highlighted in yellow in examples above) is the segment between the intermediate fix or point and the final approach fix.

- **Final Approach Course** (highlighted in red in the examples above) is the segment between the final approach fix or point and the runway, airport, or missed approach point.

- **Missed Approach** (highlighted in green in the example above) begins at the MAP and continues until the designated fix or waypoint. Missed Approach Procedure Track is shown as a hash marked line in the planview. If the missed approach fix falls outside of the area of the planview it will be shown in a separate box in the planview.
• **DME arcs or Radius-to-Fix legs (RF)** are shown as smooth arcs from a designated start point to a designated terminus.

• **Visual segment** - Instrument approach procedures, including Copter approach procedures, that terminate or have missed approaches prior to the airport/heliport, and are authorized to proceed visually, will depict the visual flight path by a dashed line symbol from the missed approach point to the airport.

On RNAV charts where the visual track may only apply to a specific line of minima, the visual procedure track line will not be shown in the planview. There will be a note directed to that portion of the procedure track.
NAVAIDS

NAVAIDs used on ground based charts will show the appropriate symbol accompanied by a data box that contains the facility name, frequency, identifier and Morse code. A NAVAID box with a heavy line indicates the primary NAVAID used for the approach.

NAVAIDs used on GPS based charts show the appropriate symbol identified with the name and identifier.

Localizer Depiction

The localizer is depicted in the Planview using the following symbol. The size of the charted localizer symbol does not serve as an indication of the service volume.

Restrictive Airspeeds Along the Procedure Track

Restrictive airspeeds along the procedure track are shown paired with their respective fix/facility.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Speed</td>
<td>Recommended speed is depicted with no lines above or below it</td>
<td>180K</td>
</tr>
<tr>
<td>Minimum Speed</td>
<td>Minimum speed is depicted as a number with a line below it</td>
<td>120K</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>Maximum speed is depicted as a number with a line above it</td>
<td>250K</td>
</tr>
<tr>
<td>Mandatory Speed</td>
<td>Mandatory speed is depicted as a number with a line above and below it</td>
<td>175K</td>
</tr>
</tbody>
</table>
Altitudes

Restrictive altitudes along the procedure track are shown paired with their respective fix/facility. Minimum, Maximum, Mandatory and Recommended Altitudes are shown.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Altitude</td>
<td>Recommended altitude is depicted with no lines above or below it.</td>
<td>3000</td>
</tr>
<tr>
<td>Minimum Altitude</td>
<td>Minimum altitude is depicted as a number with a line below it.</td>
<td>2500</td>
</tr>
<tr>
<td>Maximum Altitude</td>
<td>Maximum altitude is depicted as a number with a line above it.</td>
<td>4300</td>
</tr>
<tr>
<td>Mandatory Altitude</td>
<td>Mandatory altitude is depicted as a number with a line above and below it.</td>
<td>5500</td>
</tr>
<tr>
<td>Mandatory Block Altitude</td>
<td>Mandatory block altitude is depicted with a minimum and a maximum altitude.</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
</tr>
</tbody>
</table>

Altitudes that are shown along a route are minimum altitudes.

![Minimum Route Altitude Diagram]

Holding Patterns and Procedure Turns

Holding Patterns are used for many reasons, including deteriorating weather or high traffic volume. Holding might also be required following a missed approach. Each holding pattern has a fix, a direction to hold from the fix, and an airway, bearing, course, radial, or route on which the aircraft is to hold. These elements, along with the direction of the turns, define the holding pattern.

- **Missed Approach**
- **Hold In-Lieu of Procedure Turn**
- **Arrival**

If a holding pattern has a non-standard speed restriction, it will be depicted by an icon with the limiting air speed shown inside the holding pattern symbol. These elements, along with the direction of the turns, define the holding pattern. If two types of holds are located at the same point, the procedural holding pattern will be shown in-lieu of arrival or missed approach holding patterns. Timing or distance limits for Hold-in-lieu of Procedure Turn Holding Patterns will be shown.

Waypoints designated as a holding fix are shown as fly-by, without the circle around the symbol. However, in the event the holding fix/waypoint is also designated in some other part of the procedure (i.e., IAF) with a fly-over function, then the holding fix/waypoint will be charted as a fly-over point.

A procedure turn (PT) is the maneuver prescribed to perform a course reversal to establish the aircraft inbound on an intermediate or final approach course. The procedure turn or hold-in-lieu-of procedure turn is a required maneuver when it is depicted on the approach chart. However, the procedure turn or the hold-in-lieu-of PT is not permitted when the symbol “NoPT” is depicted on the initial segment being flown, when a RADAR VECTOR to the final approach course is provided, or when conducting a timed approach from a holding fix. The procedure turn will be shown in the planview and in the profile of the chart.
Airports

The primary approach airport is shown to scale by a pattern of all the runways. Airports other than the primary approach airport may be shown with an airport pattern and name when in close proximity to the primary airport.

Relief (Terrain Features)

Terrain is depicted in the planview portion of all IAPs at airports that meet the following criteria:

- If the terrain within the planview exceeds 4,000 feet above the airport elevation, or
- If the terrain within a 6.0 nautical mile radius of the Airport Reference Point (ARP) rises to at least 2,000 feet above the airport elevation.

When an airport meets either of the above criteria, terrain will be charted by use of contours, spot elevations, and gradient tints of brown on all IAPs for that airport. Contour layers will be shown in no more than five brown tints, with consecutively darker tints used for consecutively higher elevation contour layers.
Hydrography (Water)

Water Depiction is depicted in grey, in the planview portion of IAPs. See previous example. The following hydrographic features are shown:

- Oceans
- Significant rivers and streams
- Significant lakes - If only one river or one small lake is involved, not located in the immediate airport vicinity, the hydrographic information requirement may be waived.

International Boundary

When the planview includes a boundary of another country the International boundaries are shown by a dashed line. International boundaries are identified with country name within the country area.

Obstacles (Man-made, Terrain and Vegetation)

Obstacles are shown as ▲ when they are man-made or vegetation or as a ● when they are terrain. The highest obstacle, whether man-made or terrain is depicted with a bolder and larger symbol along with larger elevation font size. Any obstacle which penetrates a slope of 67:1 emanating from any point along the centerline of any runway shall be considered for charting within the area shown to scale. Obstacles specifically identified by the approving authority for charting shall be charted regardless of the 67:1 requirement.

Unverified obstacles shall be indicated by a doubtful accuracy symbol ± following the elevation value.

On non-precision approaches, obstacles should be considered when determining where to begin descent from the MDA.

Special Use Airspace (SUA)

SUAs consists of that airspace wherein activities must be confined because of their nature, or wherein limitations are imposed upon aircraft operations that are not a part of those activities, or both. These are prohibited areas, restricted areas, warning areas, Military Operations Areas (MOAs), and alert areas. SUA that falls within the area of coverage of the instrument approach procedure chart are shown only when designated by the approving authority.

Air Defense Identification Zone (ADIZ)

ADIZ is an area of airspace in which the identification, location, and control of aircraft is required in the interest of national security. When designated by the approving authority, ADIZ boundaries that fall within the area of coverage of the chart are shown.
Minimum Safe Altitude (MSA)

MSAs are published for emergency use on IAP charts. MSAs appear in the planview of all IAPs except on approaches for which a Terminal Arrival Area (TAA) is used. The MSA is based on the primary NAVAID, waypoint, or airport reference point on which the IAP is predicated. The MSA depiction on the approach chart contains the identifier of the NAVAID/waypoint/airport used to determine the MSA altitudes. MSAs are expressed in feet above mean sea level and normally have a 25 NM radius; however, this radius may be expanded to 30 NM if necessary to encompass the airport landing surfaces. Ideally, a single sector altitude is established and depicted on the planview of approach charts; however, when necessary to obtain relief from obstructions, the area may be further sectored and as many as four MSAs established. When established, sectors may be no less than 90° in spread. MSAs provide 1,000 feet clearance over all obstructions but do not necessarily assure acceptable navigation signal coverage.

Terminal Arrival Areas (TAAs)

The TAA icons will be positioned in the planview relative to their relationship to the procedure. The icon will not have feeder routes, airways, or radar vectors depicted. The TAA provides a transition from the enroute structure to the terminal environment with little required pilot/air traffic control interface for aircraft equipped with Area Navigation (RNAV) systems. A standard TAA has three areas: straight-in, left base, and right base. The arc boundaries of the three areas of the TAA are published portions of the approach. A TAA provides minimum altitudes with standard obstacle clearance when operating within the TAA boundaries. TAAs are primarily used on RNAV approaches but may be used on an ILS approach when RNAV is the sole means for navigation to the IF; however, they are not normally used in areas of heavy concentration of air traffic.
Non-standard TAAs may also be published; i.e., one base leg, no base legs.

Helicopter (Copter) Procedures

Copter procedures may contain either a visual or a VFR segment. Visual segments are depicted using the dashed line symbol below.

Visual Flight Segment

VFR Segments are not depicted with a line, but include the reference bearing and distance information at the endpoint of the VFR Segment, when provided, as shown below.

When a visual flight path or VFR segment is required from the MAP to the heliport or alighting area, and as necessary for an explicit portrayal, an inset of the MAP area may be provided. This MAP area will depict significant landmark visual features. The procedure track, value and distance to the MAP and the visual segment and value to the landing point shall be
shown within this inset. If it is a VFR segment, the reference bearing and distance text will be shown at the landing point.

MISSED APPROACH INFORMATION

Missed approach information is shown in 3 locations on the chart:

- **The Middle Briefing Strip** - The complete textual missed approach instructions are provided at the top of the approach chart in the middle pilot briefing strip.

- **The Planview** - The missed approach track is drawn using a thin, hash marked line with a directional arrow. If the missed approach fix is off the chart, the missed approach track shall extend to the chart border.

- **The Profile Box** - Missed Approach Icons will be depicted in the upper left or upper right of the profile box. The Missed Approach Icons are intended to provide quick, at a glance intuitive guidance to the pilot, to supplement the textual missed approach instructions in the briefing strip. Space permitting, all textual missed approach instructions will be graphically depicted in sequence. If space does not permit the depiction of all missed approach icons, only the first four icon boxes will be shown.

<table>
<thead>
<tr>
<th>Example Missed Approach Icons</th>
<th>Missed Approach Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon] 13000 RIL 250 TEKGU INT RIL 19 EKR R 179 WOKPA EKR 44.2</td>
<td>MISSED APPROACH: Climb to 13000 on RIL VOR/DME R-250 to TEKGU INT/RIL 19 DME and on EKR VOR/DME R-179 to WOKPA/EKR 44.2 DME and hold, continue climb-in-hold to 13000.</td>
</tr>
<tr>
<td>![Icon] 8000 Reverse Course SVC R 128</td>
<td>MISSED APPROACH: Climbing left turn to 8000 via SVC R-128, then reverse course to SVC VOR/DME and hold.</td>
</tr>
<tr>
<td>![Icon] 9000 tr 112° JETRY 6700 tr 112° PAKPE tr 289° WULKU tr 289° JNC</td>
<td>MISSED APPROACH: Climb to 9000 on track 112° to JETRY, cross JETRY at or above 6700, and on track 112° to PAKPE, right turn to WULKU, and on track 289° to JNC VOR/DME and hold.</td>
</tr>
</tbody>
</table>
Example Missed Approach Icons

<table>
<thead>
<tr>
<th>14000</th>
<th>HOMDU</th>
<th>160°</th>
<th>DEVEC</th>
<th>160°</th>
<th>FTI</th>
</tr>
</thead>
</table>

Missed Approach Text

MISSED APPROACH: Climb to 14000 via 174° course to HOMDU and via 160° track to DEVEC and 160° track to FTI VORTAC and hold.

<table>
<thead>
<tr>
<th>5800</th>
<th>10000</th>
<th>SVC R-193</th>
<th>KUNRE</th>
</tr>
</thead>
</table>

Missed Approach Text

MISSED APPROACH: Climb to 5800, then climbing left turn to 10000 via heading 190° and SVC VOR/DME R-193 to KUNRE INT/SVC VOR/DME 24.1 DME and hold.

PROFILE VIEW

A profile diagram of the instrument approach procedure is shown below the planview. The published descent profile and graphical depiction of the vertical path using those facilities, intersections, fixes, etc. identified in the procedure to the runway are shown. A profile view of the procedure track is shown. The approach track begins toward the top of the primary facility line, unless otherwise dictated by the procedure, and shall descend to where the final approach ends and the missed approach begins.

RNAV and GLS PROCEDURES WITH VERTICAL GUIDANCE

Precision Approaches

On precision approaches, the glideslope (GS) intercept altitude is illustrated by a zigzag line and an altitude. This is the minimum altitude for GS interception after completion of the procedure turn. Precision approach profiles also depict the GS angle of descent, threshold crossing height (TCH) and GS altitude at the outer marker (OM) or designated fix.
Non-Precision Approaches

On nonprecision approaches, the final segment begins at the Final Approach Fix (FAF) which is identified with the Maltese cross symbol ⊳. When no FAF is depicted, the final approach point is the point at which the aircraft is established inbound on the final approach course. Stepdown fixes may also be provided between the FAF and the airport for authorizing a lower minimum descent angle (MDA) and are depicted with the fix or facility name and a dashed line. On RNAV procedures without precision minima i.e., DAs, the approach track descends to the MDA or VDP point, thence horizontally to the missed approach point. On non-RNAV procedures without precision minima, the horizontal segment is shown from the VDP, when it exists, or the MDA when there is no VDP, and a vertical glide angle/TCH is provided.

Visual Descent Point (VDP)

The Visual Descent Point (VDP), is shown by a bold letter “V” positioned above the procedure track and centered on the accompanying dashed line. (See example below.) The VDP is a defined point on the final approach course of a nonprecision straight-in approach procedure from which normal descent from the MDA to the runway touchdown point may be commenced.
Vertical Descent Angle (VDA) and Threshold Crossing Heights (TCH)

A VDA and TCH may be published on non-precision approaches. For Copter approach procedures, a Heliport Crossing Height (HCH) will be depicted in place of the TCH. The VDA is strictly advisory and provides a means to establish a stabilized descent to the MDA. The presence of a VDA does not guarantee obstacle protection in the visual segment. If there are obstacles in the visual segment that could cause an aircraft to destabilize the approach between MDA and touchdown, the profile will not show a VDA and will instead show a note that states either “Descent Angle NA” or “Descent Angle NA-Obstacles”.

Visual Flight Path

Instrument approach procedures, including Copter approach procedures, that terminate or have missed approaches prior to the airport, and are authorized to proceed visual, shall depict the visual segment by the dashed line symbol from the missed approach point to the airport. The note “Fly visual” (“Proceed visually” on Copter procedures) along with the bearing and distance shall be shown leadered to the visual flight path.

RNAV charts sometimes have visual flight for LNAV/VNAV minima which do not start at the missed approach point. An additional note indicating “LNAV/VNAV” will be placed above the note.

Copter approach procedures with a VFR segment from the missed approach point will not depict the VFR segment with a line in the profile. The note similar to “Proceed VFR from MAP” will be shown.

Chart Examples

<table>
<thead>
<tr>
<th>Traditional (NAVAID) Approach</th>
<th>RNAV Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ILS Glide Slope and RNAV Glidepath

A note providing the glide slope (GS) or glidepath (GP) angle and the threshold crossing height (TCH), are positioned in the lower half of the profile box

- GS will be shown on all ILS procedures.
- GP will be shown GLS procedures and all RNAV procedures with a published decision altitude

Threshold Crossing Height (TCH) has been traditionally used in "precision" approaches as the height of the glide slope above threshold. With publication of LNAV/VNAV minimums and RNAV descent angles, including graphically depicted descent profiles, TCH also applies to the height of the “descent angle,” or glidepath, at the threshold.
34:1 Surface Clear Stipple Symbol

On RNAV approach charts, a small shaded arrowhead shaped symbol from the end of the VDA to the runway indicates that the 34:1 Obstacle Clearance Surface (OCS) for the visual segments is clear of obstacles. (See example in VDP Section.)

LANDING MINIMUMS

The landing minimums section is positioned directly below the profile. This section gives the pilot the lowest altitude and visibility requirements for the approach. There are two types of landing minimums: Straight-in landing or Circling. Straight-in landing minimums are the MDA and visibility, or DH and visibility, required for a straight-in landing on a specified runway. Circling minimums are the MDA and visibility required for the circle-to-land maneuver.

The minimums for straight-in and circling are located under each aircraft category. When there is not a division line between minimums for each category, the minimums apply to two or more categories.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS 27</td>
<td>1352/24</td>
<td>200</td>
<td>(200-½)</td>
<td></td>
</tr>
<tr>
<td>S-LOC 27</td>
<td>1440/24</td>
<td>288</td>
<td>(300-½)</td>
<td>1440/50</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>1540-1</td>
<td>1640-1</td>
<td>1640-½</td>
<td>1740-2</td>
</tr>
<tr>
<td>MDA</td>
<td>361 (400-1)</td>
<td>461 (500-1)</td>
<td>461 (500-½)</td>
<td>561 (600-2)</td>
</tr>
</tbody>
</table>

LANDING MINIMA FORMAT

In this example airport elevation is 1179, and runway touchdown zone elevation is 1152.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>COPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-176°</td>
<td>680-½</td>
</tr>
<tr>
<td></td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>(400-½)</td>
</tr>
</tbody>
</table>

Copter Approach Direction

Height of MDA/DA
Above Landing Area (HAL)

No circling minimums are provided

A second category of straight-in minimums called "sidestep" may be depicted where parallel runways exist.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS 24R</td>
<td>320/18</td>
<td>200</td>
<td>(200-½)</td>
<td></td>
</tr>
<tr>
<td>S-LOC 24R</td>
<td>460/24</td>
<td>340 (400-½)</td>
<td>460/40</td>
<td></td>
</tr>
<tr>
<td>SİDESTEP</td>
<td>580/50</td>
<td>459 (500-1)</td>
<td>580-½</td>
<td></td>
</tr>
<tr>
<td>RWY 24L</td>
<td>459 (500-1½)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The terms used to describe the minimum approach altitudes differ between precision and nonprecision approaches. Precision approaches use DH, which is referenced to the height above touchdown elevation (HAT). Nonprecision approaches use MDA, referenced to “feet MSL.” The MDA is also referenced to HAT for straight-in approaches, or height above airport (HAA) for circling approaches. The figures listed parenthetically are for military operations and are not used in civil aviation.

A-111
The visibility values are shown after the DA/DH or MDA. They are provided in statute miles or runway visual range (RVR). RVR is reported in hundreds of feet. If the visibility is in statute miles, there is an altitude number, hyphen, whole or fractional number, e.g. 530-1. This indicates 530 feet MSL and 1 statute mile of visibility. The RVR value is separated from the minimum altitude with a slash, e.g., 1540/24. This indicates 1540 feet MSL and RVR of 2400 feet. When an RVR value is shown, the comparable statute mile equivalent is shown within the military minimums in parentheses as shown in the examples above. This value is determined from the Comparable Values of RVR and Visibility table located in the TPP Legend.

<table>
<thead>
<tr>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>1/4</td>
<td>2400</td>
<td>1/8</td>
<td>3500</td>
<td>1/8</td>
<td>5500</td>
<td>1</td>
</tr>
<tr>
<td>1800</td>
<td>1/8</td>
<td>2600</td>
<td>1/8</td>
<td>4000</td>
<td>1/8</td>
<td>6000</td>
<td>1/8</td>
</tr>
<tr>
<td>2000</td>
<td>1/8</td>
<td>3000</td>
<td>1/4</td>
<td>4500</td>
<td>1/4</td>
<td>7000</td>
<td>1</td>
</tr>
<tr>
<td>2200</td>
<td>1/4</td>
<td>3200</td>
<td>1/4</td>
<td>5000</td>
<td>1</td>
<td>8000</td>
<td>1</td>
</tr>
</tbody>
</table>

When a reference mark (*, **, #, etc.) is shown on a line of minimums, the qualifying footnote is provided in the notes section.
Circling Minimums

There was a change to the TERPS criteria in 2012 that affects circling area dimension by expanding the areas to provide improved obstacle protection. To indicate that the new criteria had been applied to a given procedure, a \text{C} is placed on the circling line of minimums. The new circling tables and explanatory information is located in the Legend of the TPP.

The approaches using standard circling approach areas can be identified by the absence of the \text{C} on the circling line of minima.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV DA</td>
<td>308/24</td>
<td>200</td>
<td>(200-2h)</td>
<td></td>
</tr>
<tr>
<td>LNAV/ VNAV DA</td>
<td>804-2</td>
<td>696</td>
<td>(700-2)</td>
<td></td>
</tr>
<tr>
<td>LNAV MDA</td>
<td>800/24</td>
<td>692</td>
<td>(700-2h)</td>
<td>800-1 2/3</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>800-1</td>
<td>687</td>
<td>(700-1)</td>
<td>800-2</td>
</tr>
</tbody>
</table>

Apply Standard Circling Approach Maneuvering Radius Table

Apply Expanded Circling Approach Maneuvering Airspace Radius Table

AIRPORT SKETCH

The airport sketch is a depiction of the airport with emphasis on runway pattern and related information, positioned in either the lower left or lower right corner of the chart to aid pilot recognition of the airport from the air and to provide some information to aid on ground navigation of the airport. The runways are drawn to scale and oriented to true north. Runway dimensions (length and width) are shown for all active runways.

Runway(s) are depicted based on what type and construction of the runway.

<table>
<thead>
<tr>
<th>Hard Surface</th>
<th>Other Than Hard Surface</th>
<th>Metal Surface</th>
<th>Closed Runway</th>
<th>Under Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stopways, Taxiways, Parking Areas

<table>
<thead>
<tr>
<th>Displaced Threshold</th>
<th>Closed Pavement</th>
<th>Water Runway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taxiways and aprons are shaded grey. Other runway features that may be shown are runway numbers, runway dimensions, runway slope, arresting gear, and displaced threshold.

Other information concerning lighting, final approach bearings, airport beacon, obstacles, control tower, NAVAIDs, helipads may also be shown.

Airport Elevation and Touchdown Zone Elevation

The airport elevation is shown enclosed within a box in the upper left corner of the sketch box and the touchdown zone elevation (TDZE) is shown in the upper right corner of the sketch box. The airport elevation is the highest point of an airport’s usable runways measured in feet from mean sea level. The TDZE is the highest elevation in the first 3,000 feet of the landing surface. Circling only approaches will not show a TDZE.
Runway Declared Distance Information

Runway declared distance information when available will be indicated by □ and is shown to the right of the airport elevation in the sketch box. Declared distances for a runway represent the maximum distances available and suitable for meeting takeoff and landing distance performance requirements.

Runway Lights

Notes regarding approach lighting systems are shown at the bottom of the sketch box. Runway lights (HIRL) (MIRL) (LIRL) (TDZL)(TDZ/CL) shall be indicated by a note, e.g. HIRL Rwy 9-27.

Other approach lighting is shown on the airport sketch as a symbol on the side of the runway where they are actually located. Symbols that are shown in negative indicate pilot-controlled lighting.

Runway centerline lights (CL) are installed on some precision approach runways to facilitate landing under adverse visibility conditions. They are located along the runway centerline and are spaced at 50 foot intervals. Runways with CL are shown in a negative dot pattern through the middle of the solid runway as illustrated in the airport sketch to right.

Runway centerline lights will be indicated by a note only when paired with TDZL, e.g., TDZ/CL Rwys 6 and 24.

Time/Distance Table

When applicable, a Time/Distance Table is provided below the airport sketch. The table provides the distance and time that is required from the final approach fix to the missed approach point for select groundspeeds.

Base Information (Copter Approaches Only)

Base Information, as required and necessary to identify the MAP area and in the vicinity of the landing area shall be provided. Information shall be limited to and depict significant visual landmark features at and surrounding the MAP area and the heliport/pad of intended landing.

AIRPORT DIAGRAMS

Airport Diagrams are specifically designed to assist in the movement of ground traffic at locations with complex runway/taxiway configurations. Airport Diagrams are not intended for use in approach and landing operations. An airport diagram assists pilots in identifying their location on the airport, thus reducing requests for “progressive taxi instructions” from controllers.
Airport Diagram Features:

1. Runways
 a. complete with magnetic headings (including magnetic variation and epoch year) and identifiers.
 b. Runways under construction shall also be shown.
 c. Runway dimensions, displaced thresholds, runway end elevations.
 d. Runway surface composition
 e. Weight bearing capacity (landing gear configuration or Pavement Classification Number)
 f. Land and Hold Short (LAHSO) lines, ILS hold lines, Localizer/Glide Slope Critical Areas.
 g. Arresting Gear. To include Engineered Materials Arresting System (EMAS).

2. Taxiways, with identifiers. Taxiways under construction shall also be shown.
3. Hot Spot locations.
4. Parking areas, run-up pads, alert areas, landing pads, “Non-Movement” areas (where pilot is NOT under air traffic control), ramps, aprons and hold pads.
5. Turnarounds, blast pads, stopways, overruns, and clearways (include dimensions when known).
6. Large tanks, including fueling area.
7. Control towers (include tower height).
8. Airport beacon.
11. Highest obstruction within diagram boundary.
12. Any building that pilot can taxi to. Other buildings to include terminal/administration and Base operations, fire station, NWS, AFSS, FAA, FSDO, ANG, USCG, FBO.
13. Comm Frequencies.

Note: Star when used in the Comm Frequencies indicates part-time status. Check Chart Supplement for times of operation.
Runway Construction

Runway construction is depicted as follows:

<table>
<thead>
<tr>
<th>Hard Surface</th>
<th>Other Than Hard Surface</th>
<th>Metal Surface</th>
<th>Closed Runway</th>
<th>Under Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stopways, Taxiways, Parking Areas</th>
<th>Displaced Threshold</th>
<th>Closed Pavement</th>
<th>Water Runway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hot Spots

Hot Spots (HS) are a runway safety related problem area or intersection on an airport. Typically it is a complex or confusing taxiway/taxiway or taxiway/runway intersection. A confusing condition may be compounded by a miscommunication between a controller and a pilot, and may cause an aircraft separation standard to be compromised. The area may have a history of surface incidents or the potential for surface incidents.

Hot Spots are indicated on the Airport Diagram with a brown open circle or polygon leadered to a Hot Spot number, e.g., HS 1. The number corresponds to a listing and description on the Hot Spot page in the front the TPP. More information and location of Hot Spots can be found at http://www.faa.gov/airports/runway_safety/hotspots/hotspots_list/.

DEPARTURE PROCEDURES (DPs)

Departure Procedures (DPs) are designed specifically to assist pilots in avoiding obstacles during the climb to the minimum enroute altitude, and/or airports that have civil IFR takeoff minimums other than standard. There are two types of DPs: Obstacle Departure Procedures (ODPs), printed either textually or graphically and Standard Instrument Departures (SIDs), always printed graphically. SIDs are primarily designed for system enhancement and to reduce pilot/controller workload, and require ATC clearance. ODPs provide obstruction clearance via the least onerous route from the terminal area and may be flown without ATC clearance. All DPs provide the pilot with a safe departure from the airport and transition to the enroute structure.

Generally, DP charts are depicted “not to scale” due to the great distances involved on some procedures or route segments. A “to scale” portrayal may be used if readability is assured.

The DP will show the departure routing, including transitions to the appropriate enroute structure. All routes, turns, altitudes, NAVAIDs, facilities forming intersections and fixes, and those facilities terminating the departure route are shown. A textual description of the departure procedure is also provided. For RNAV DPs, the transition text consists of the transition name and associated computer code. On non-RNAV DPs, the transition text will also include the description of all turns, altitudes, radials, bearings and facilities/fixes needed to guide the user from the common departure point to the terminating facility fix.
Copter DPs may also include a visual or VFR segment. Visual segments are depicted using the dashed line symbol below.

![Visual Flight Segment](image)

VFR Segments are not depicted with a line, but include the reference bearing and distance information at the endpoint of the VFR Segment, when provided, as shown below.

![Example of Copter with VFR Segment](image)

STANDARD TERMINAL ARRIVAL (STARs) CHARTS

STARs are pre-planned Instrument Flight Rule (IFR) air traffic control arrival procedures for pilot use in graphic and/or textual form. STARs depict prescribed routes to transition the aircraft from the enroute structure to a fix in the terminal area from which an instrument approach can be conducted. STARs reduce pilot/controller workload and air-ground communications, minimizing error potential in delivery and receipt of clearances.

STAR charts generally shall be depicted ‘not to scale’ due to the great distances involved on many procedures and route segments. A ‘to scale’ depiction may be used only if readability is assured.

The STAR will show the arrival routing, including transitions from the appropriate enroute structure. All routes, turns, altitudes, NAVAIDs, facilities forming intersections and fixes, and those facilities/fixes terminating or beginning the arrival route shall be shown in the graphic depiction. A textual description of the arrival procedure is also provided. For RNAV STARs, transition text will consist of the transition name and associated computer code. For non-RNAV STARs, the transition text will also include a description of all turns, altitudes, radials, bearings and facilities/fixes needed to guide the user from the entry point to the common facility/fix.

CHARTED VISUAL FLIGHT PROCEDURE (CVFP) CHARTS

CVFPs are charted visual approaches established for environmental/noise considerations, and/or when necessary for the safety and efficiency of air traffic operations. The approach charts depict prominent landmarks, courses, and recommended altitudes to specific runways. CVFPs are designed to be used primarily for turbojet aircraft. CVFPs are not instrument approaches and do not have missed approach segments.

CVFPs are named for the primary landmark and the specific runway for which the procedure is developed, such as: RIVER VISUAL RWY 18, STADIUM VISUAL RWY 24. The CVFP charts are divided into planview and notes sections separated by a bar scale in 1 NM increments. The planview of the CVFP includes the portrayal of visual approach procedures information, such as landmarks, NAVAIDs, visual track, hydrography, special use airspace and cultural features, as applicable.

CVFPs originate at or near, and are designed around, prominent visual landmarks and typically do not extend beyond 15 flight path miles from the landing runway. Visual tracks start at a geographical point or landmark where the procedure must be flown visually to the airport. The visual track is indicated by a dashed line. Visual tracks may include the track value, distance and minimum or recommended altitudes.
Symbols shown are for the Terminal Procedures Publication (TPP) which includes Standard Terminal Arrival (STARs) Charts, Departure Procedures (DPs), Instrument Approach Procedures (IAP) and Airport Diagrams.

LEGEND - STANDARD TERMINAL ARRIVAL (STAR) CHARTS - DEPARTURE PROCEDURE (DP) CHARTS

RADIO AIDS TO NAVIGATION

COMPULSORY:

- VOR
- VOR/DME
- DME
- NDB
- NDB/DME

NON-COMPULSORY:

- VOR
- VOR/DME
- TACAN
- DME
- NDB
- NDB/DME

LEGEND - STANDARD TERMINAL ARRIVAL (STAR) CHARTS - DEPARTURE PROCEDURE (DP) CHARTS

APPLIES TO BOTH STAR AND DP CHARTS UNLESS OTHERWISE NOTED.

MEASUREMENTS

- 1.25 NM = 2.33 Mils
- 500 Feet = 1/2 Mile
- 1 Minute of Latitude = 1 Nautical Mile

PROTECTION RANGES

- STAR: 1,000 - 3,000 Feet
- DP: 1,000 - 2,000 Feet

COORDINATES

- N (North) = Positive, S (South) = Negative
- E (East) = Positive, W (West) = Negative

DISTANCE UNITS

- NM (Nautical Mile) = 1,852 Meters
- FT (Feet) = 3.281 Meters

ELEVATION UNITS

- FT (Feet) = 3.281 Meters
- M (Meters) = 1.000 Feet

AIRPORTS

- Civil
- Military
- Joint

MISCELLANEOUS

- Changeover Point
- Distance not to scale (DP)
- International Boundary (DP)
- Air Defense Identification Zone
- Takeoff Minimums and Obstacle Departure Procedures entry published (DP)
APPROACH LIGHTING SYSTEM (Continued)

LEGEND 18256

INSTRUMENT APPROACH PROCEDURES (CHARTS)
APPROACH LIGHTING SYSTEM - UNITED STATES

Approach lighting and visual glide slope systems are indicated on the airport sketch by an identifier, PAPI, etc.

A dot " " portrayed with approach lighting letter identifier indicates sequenced flashing lights (F) installed with the approach lighting system e.g., . Negative symbology, e.g., , indicates Pilot-Communicated Lighting (PCL).

1. PRECISION APPROACH PATH INDICATOR
PAPI

2. PULSATING VISUAL APPROACH SLOPE INDICATOR
PVASI

CAUTION: When viewing the pulsating visual approach slope indicators in the pulsating white or pulsating red sectors, it is possible to mistake this lighting aid for another aircraft or a ground vehicle. PIlots should exercise caution when using this type of system.

3. "T"-VISUAL APPROACH SLOPE INDICATOR
"T"-VASI

"T" on both sides of RWY and correct approach slope.

4. TRI-COLOR VISUAL APPROACH SLOPE INDICATOR
TRCV

CAUTION: When the aircraft descends from green to red, the pilot may see a dark amber color during the transition from green to red.

5. ALIGNMENT OF ELEMENTS SYSTEMS
APAP

Painted panels which may be lighted at night. To use this system the pilot positions the aircraft so the elements are in alignment.
AIRPORT DIAGRAM/AIRPORT SKETCH

LEGEND

INSTRUMENT APPROACH PROCEDURES (CHARTS)

Runways
- Hard Surface
- Other Than Hard Surface
- Runway, Taxiway, Parking Areas
- Metal Surface
- Closed Runway
- Closed Surface
- Under Construction
- Water Runway

ARRESTING GEAR: Specific arresting gear systems; e.g., BAK12, MA-2A, etc., shown on airport diagrams, not applicable to Civil Pilots. Military Pilots refer to appropriate DOD publications.

uni-directional bidirectional Jet Barrier

ARRESTING SYSTEM (EMAS)

REFERENCE FEATURES

Displaced Threshold
Hot Spot
Runway Holding Position Markings
Buildings
24-Hour Self-Serve Fuel Markings
Tanks
Obstructions
Airport Beacon
Runway
Radar Beacon
Control Tower

When Control Tower and Rotating Beacon are co-located, Beacon symbol will be used and further identified on TWR.

A fuel symbol is shown to indicate 24-hour self-serve fuel available; see appropriate Chart Supplement for information.

NOTE:
All new and revised airport diagrams are shown referenced to the World Geodetic System (WGS) (noted on appropriate diagram), and may not be compatible with local coordinates published in TUP (Foreign Only)

Runway Weight Bearing Capacity/PCN Pavement Classification Number is shown as a certified expression. Refer to the appropriate Supplement/Directory for applicable codes.

e.g., Rwy 14-32 PCN 80 F/D/X/X/L 5-75 5-13-175 20-225

Helicopter Alighting Areas
Negative Symbols used to identify Cooper Procedures starting point
Landmark features depicted on Cooper Approach insets and sketches are provided for visual reference only.

Runway TDZ elevation
(when runway slope is greater than or equal to 0.3%)

Runway Slope
(0.8% UP down)

NOTE:
Runway Slopes measured to midpoint on runways 8000 feet or longer.

U.S. Navy Optical Landing System (OLED) "OLS" location is shown because of its height of approximately 7 feet and proximity to edge of runway may create an obstruction for some types of aircraft.

Approach light symbols are shown in the Flight Information Handbook.

Airport diagram scales are variable.

True/magnetic North orientation may vary from diagram to diagram.

Coordinate values are shown in 1 or 1/2 minute increments. They are further broken down into 6 second ticks, within each 1 minute increment.

Positional accuracy within ±600 feet unless otherwise noted on the chart.

Runway length depicted is the physical length of the runway (end-to-end, including displaced thresholds if any) but excluding areas designated as taxiways.

A symbol is shown to indicate runway declared distance information available, see appropriate Chart Supplement for distance information.

SCOPE:
Airport diagrams are specifically designed to assist in the movement of ground traffic at locations with complex runway/taxiway configurations. Airport diagrams are not intended to be used for approach and landing or departure operations. For revisions to Airport Diagrams: Consult FAA Order 7910.4.
PLANVIEW SYMBOLS

LEGEND

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procedure Track</td>
</tr>
<tr>
<td></td>
<td>Missed Approach</td>
</tr>
<tr>
<td></td>
<td>Visual Flight Path</td>
</tr>
<tr>
<td></td>
<td>Procedure Turn</td>
</tr>
<tr>
<td></td>
<td>Holding Pattern</td>
</tr>
<tr>
<td></td>
<td>Fix/ATC Reporting Requirements</td>
</tr>
<tr>
<td></td>
<td>Fixes/ATC Reporting Requirements</td>
</tr>
<tr>
<td></td>
<td>Indicated Airspeed</td>
</tr>
<tr>
<td></td>
<td>Radio Aids to Navigation</td>
</tr>
</tbody>
</table>

TERMINAL ROUTES

- Procedure Track
- Missed Approach
- Visual Flight Path
- Procedure Turn
- Holding Patterns

INDICATED AIRSPEED

- **175K**: Mandatory Airspeed
- **120K**: Minimum Airspeed
- **250K**: Maximum Airspeed
- **180K**: Recommended Airspeed

RADIO AIDS TO NAVIGATION

- **VOR**: VOR
- **VORTAC**: VORTAC
- **DME**: DME
- **ND**: ND
- **LOM/LOM**: LOM/LOM (Compass locator at Outer Marker/Middle Marker)
- **TACAN**: TACAN
- **ND/ND**: ND/ND

HOLDING PATTERNS

- **Hold-in-Lieu of Procedure Turn**
- **Hold**: Holding Pattern

FIXES/ATC REPORTING REQUIREMENTS

- **Waypoint**: Waypoint
- **Flyover Point**: Flyover Point
- **Map WP**: Map WP

ALTITUDES

- **3500**: Mandatory Altitude
- **2500**: Minimum Altitude
- **2300**: Maximum Altitude
- **3000**: Recommended Altitude
- **3000**: Mandatory Block
- **3000**: Altitude

LEGEND

- **2086**: Instrument Approach Procedures (Charts)
PROFILE VIEW

INSTRUMENT APPROACH PROCEDURES (CHARTS)

PROFILE VIEW

Three different methods are used to depict either electronic or vertical guidance: "GS", "GP", or "VDA".

1. "GS" indicates an Instrument Landing System (ILS) electronic glide slope (a ground antenna) provides vertical guidance. The profile section of ILS procedures depict a GS angle and TCH in the following format: GS 3.0°/TCH 30°.

2. "GP" on GLS and RNAV procedures indicates either electronic vertical guidance (via Wide Area Augmentation System - WAAS or Ground Based Augmentation System - GBAS) or barometric vertical guidance is provided. GLS and RNAV procedures with a published decision altitude (DA/H) depict a GP angle and TCH in the following format: GP 3.0°/TCH 30°.

3. An advisory vertical descent angle (VDA) is provided on non-vertically guided conventional procedures and RNAV procedures with only a minimum descent altitude (MDA) to assist in preventing controlled flight into terrain. On Civil (FAA) procedures, this information is placed above or below the procedure track following the fix it is based on. Absence of a VDA or a note that the VDA is not authorized indicates that the prescribed obstacle clearance surface is not clear and the VDA must not be used below MDA. VDA is depicted in the following format: VDA 3.0°/TCH 15°.

On Copter procedures this is depicted in the following format: VDA 3.0°/TCH 15°.

ILS or LOC APPROACH

As the aircraft approaches the airport, the pilot will follow the ILS (Instrument Landing System) or LOC (Localizer) approach. The glide slope (GS) is a radio signal that guides the aircraft to the runway. The TCH (Threshold Crossing Height) is the altitude at which the glide slope is intercepted.

RNAV and GLS PROCEDURES WITH VERTICAL GUIDANCE

RNAV (Remote Area Navigation) and GLS (Ground-based Localizer) procedures provide vertical guidance to the pilot. These procedures are used in areas where the ILS is not available. The GS angle and TCH are depicted on the chart.

NON-VERTICALLY GUIDED CONVENTIONAL PROCEDURES AND RNAV PROCEDURES WITH MDA ONLY

For non-vertically guided conventional procedures and RNAV procedures with a minimum descent altitude (MDA), the vertical descent angle (VDA) is depicted. The VDA is the angle at which the pilot must descend to maintain adequate clearance from obstacles.

DESCENT FROM HOLDING PATTERN

When the aircraft is in a holding pattern, it must descend to the holding altitude before continuing its approach to the runway.

ALTIMETRY

- Mandatory Altitude
- Recommended Altitude
- Maximum Altitude

PROFILE SYMBOLS

- Visual Flight Path
- Visual Approach Path
- Visual Descent Path

LEGEND 18200
COLD TEMPERATURE AIRPORTS

NOTE: A symbol indicates a cold temperature altitude correction is required at this airport when reported temperature is at or below the published restricted temperature. Pilots familiar with cold temperature procedure in the Notice to Airmen Publication (NTAP) and correcting all altitudes from the IAF to the MA final holding altitude do not have to reference the NTAP. Pilots wishing to correct on individual segments must reference the NTAP airport list for affected segments. See Notice to Airmen Publication (NTAP) Graphic Notices General for complete list of published airports, temperature, segments, and procedure information. [link]

Pilots will advise ATC with the required altitude correction when making a correction to any segment other than the final segment. See following Cold Temperature Error Table to make manual corrections.

<table>
<thead>
<tr>
<th>REPORTED TEMP °C</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1500</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>-10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>-30</td>
<td>40</td>
</tr>
<tr>
<td>-40</td>
<td>50</td>
</tr>
<tr>
<td>-50</td>
<td>60</td>
</tr>
</tbody>
</table>
There are several references available from the FAA to aid pilots and other interest parties to learn more about FAA Charts and other aspects of aviation.

<table>
<thead>
<tr>
<th>Publication</th>
<th>FAA Publication ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Information Manual (AIM)</td>
<td>FAA-H-8083-3A</td>
</tr>
<tr>
<td>URL: http://www.faa.gov/air_traffic/publications/</td>
<td></td>
</tr>
<tr>
<td>Airplane Flying Handbook</td>
<td>FAA-H-8083-21A</td>
</tr>
<tr>
<td>URL: https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/airplane_handbook/</td>
<td></td>
</tr>
<tr>
<td>Helicopter Flying Handbook</td>
<td>FAA-H-8083-16B</td>
</tr>
<tr>
<td>URL: http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/</td>
<td></td>
</tr>
<tr>
<td>URL: http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/instrument_procedures_handbook/</td>
<td></td>
</tr>
<tr>
<td>Pilot's Handbook of Aeronautical Knowledge</td>
<td>FAA-H-8082-22</td>
</tr>
<tr>
<td>URL: https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/phak/</td>
<td></td>
</tr>
<tr>
<td>URL: http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/remote_pilot_study_guide.pdf</td>
<td></td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>AAF - Army Air Field</td>
</tr>
<tr>
<td>AAS - Airport Advisory Service</td>
</tr>
<tr>
<td>AAUP - Attention All Users Page</td>
</tr>
<tr>
<td>AC - Advisory Circular</td>
</tr>
<tr>
<td>ADF - Automatic Direction Finder</td>
</tr>
<tr>
<td>ADIZ - Air Defense Identification Zone</td>
</tr>
<tr>
<td>ADS - Automatic Dependent Surveillance</td>
</tr>
<tr>
<td>ADS-B - Automatic Dependent Surveillance-Broadcast Advsry - Advisory</td>
</tr>
<tr>
<td>AFB - Air Force Base</td>
</tr>
<tr>
<td>AFIS - Automatic Flight Information Service</td>
</tr>
<tr>
<td>AFS - Air Force Station</td>
</tr>
<tr>
<td>AFSS - Automated Flight Service Station</td>
</tr>
<tr>
<td>AGL - Above Ground Level</td>
</tr>
<tr>
<td>AIM - Aeronautical Information Manual</td>
</tr>
<tr>
<td>AIRAC - Aeronautical Information Regulation And Control</td>
</tr>
<tr>
<td>AK - Alaska</td>
</tr>
<tr>
<td>AL - Approach and Landing</td>
</tr>
<tr>
<td>ANG - Air National Guard</td>
</tr>
<tr>
<td>APP - Approach</td>
</tr>
<tr>
<td>APP CON - Approach Control</td>
</tr>
<tr>
<td>APP CRS - Approach Course</td>
</tr>
<tr>
<td>Apt - Airport</td>
</tr>
<tr>
<td>APV - Approaches with Vertical Guidance</td>
</tr>
<tr>
<td>ARP - Airport Reference Point</td>
</tr>
<tr>
<td>ARTCC - Air Route Traffic Control Center</td>
</tr>
<tr>
<td>ASDA - Accelerate-Stop Distance Available</td>
</tr>
<tr>
<td>ASDE-X - Airport Surface Detection Equipment-Model X</td>
</tr>
<tr>
<td>ASOS - Automated Surface Observing Station</td>
</tr>
<tr>
<td>ASR - Airport Surveillance Radar</td>
</tr>
<tr>
<td>ATC - Air Traffic Control</td>
</tr>
<tr>
<td>ATIS - Automatic Terminal Information Service</td>
</tr>
<tr>
<td>ATS - Air Traffic Service</td>
</tr>
<tr>
<td>AUNICOM - Automated Aeronautical Advisory Station</td>
</tr>
<tr>
<td>AWOS - Automated Weather Observing Station</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>CAC - Caribbean Aeronautical Chart</td>
</tr>
<tr>
<td>CAT - Category</td>
</tr>
<tr>
<td>CFA - Controlled Firing Areas</td>
</tr>
<tr>
<td>CFR - Code of Federal Regulations</td>
</tr>
<tr>
<td>CH - Channel</td>
</tr>
<tr>
<td>CL - Runway Centerline Lights</td>
</tr>
<tr>
<td>CLNC DEL - Clearance Delivery</td>
</tr>
<tr>
<td>CNF - Computer Navigation Fix</td>
</tr>
<tr>
<td>COP - Changeover Point</td>
</tr>
<tr>
<td>CPDLC - Controller Pilot Data Link Communication</td>
</tr>
<tr>
<td>CRS - Course</td>
</tr>
<tr>
<td>CT - Control Tower</td>
</tr>
<tr>
<td>CTA F - Common Traffic Advisory Frequency</td>
</tr>
<tr>
<td>CVFP - Charted Visual Flight Procedure</td>
</tr>
<tr>
<td>CZ - Control Zone (Canada)</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>DA - Decision Altitude</td>
</tr>
<tr>
<td>DA - Density Altitude</td>
</tr>
<tr>
<td>D-ATIS - Digital Automatic Terminal Information Service</td>
</tr>
<tr>
<td>DH - Decision Height</td>
</tr>
<tr>
<td>DME - Distance Measuring Equipment</td>
</tr>
<tr>
<td>DND - Department of National Defense (Canada)</td>
</tr>
<tr>
<td>DoD - Department of Defense</td>
</tr>
<tr>
<td>DOF - Digital Obstacle File</td>
</tr>
<tr>
<td>DP - Departure Procedure</td>
</tr>
<tr>
<td>DT - Daylight Savings Time</td>
</tr>
<tr>
<td>DVA - Diverse Vector Area</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E - East</td>
</tr>
<tr>
<td>EFAS - Enroute Flight Advisory Service</td>
</tr>
<tr>
<td>EFB - Electronic Flight Bag</td>
</tr>
<tr>
<td>Elev - Elevation</td>
</tr>
<tr>
<td>EMAS - Engineered Materials Arresting System</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>FAA - Federal Aviation Administration</td>
</tr>
<tr>
<td>FAF - Final Approach Fix</td>
</tr>
<tr>
<td>FAP - Final Approach Point</td>
</tr>
<tr>
<td>FAR - Federal Aviation Regulation</td>
</tr>
<tr>
<td>FBO - Fixed-Based Operator</td>
</tr>
<tr>
<td>FIR - Flight Information Region</td>
</tr>
<tr>
<td>FL - Flight Level</td>
</tr>
<tr>
<td>FLIP - Flight Information Publication</td>
</tr>
<tr>
<td>FMS - Flight Management System</td>
</tr>
<tr>
<td>FREQ - Frequency</td>
</tr>
<tr>
<td>FRZ - Flight Restricted Zone</td>
</tr>
<tr>
<td>FSDO - Flight Standards District Office</td>
</tr>
<tr>
<td>FSS - Flight Service Station</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>GBAS - Ground-Based Augmentation System</td>
</tr>
<tr>
<td>GCO - Ground Communications Outlet</td>
</tr>
<tr>
<td>GLS - GBAS Landing System</td>
</tr>
<tr>
<td>GND - Ground</td>
</tr>
<tr>
<td>GND CON - Ground Control</td>
</tr>
<tr>
<td>GNSS - Global Navigation Satellite System</td>
</tr>
<tr>
<td>GP - Glide Path</td>
</tr>
<tr>
<td>GPS - Global Positioning System</td>
</tr>
<tr>
<td>GS - Glide Slope</td>
</tr>
<tr>
<td>GS - Ground Speed</td>
</tr>
</tbody>
</table>

FAA Chart User’s Guide - Abbreviations

129
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAA</td>
<td>Height Above Airport</td>
</tr>
<tr>
<td>HAR</td>
<td>High Altitude Redesign</td>
</tr>
<tr>
<td>HAT</td>
<td>Height Above Touchdown</td>
</tr>
<tr>
<td>HCH</td>
<td>Heliport Crossing Height</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>HS</td>
<td>Hot Spot</td>
</tr>
<tr>
<td>IAC</td>
<td>Interagency Air Committee</td>
</tr>
<tr>
<td>IACC</td>
<td>Interagency Air Cartographic Committee</td>
</tr>
<tr>
<td>IAF</td>
<td>Initial Approach Fix</td>
</tr>
<tr>
<td>IAP</td>
<td>Instrument Approach Procedure</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Authority</td>
</tr>
<tr>
<td>IDT</td>
<td>Identifier</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Fix</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>IMC</td>
<td>Instrument Meteorological Conditions</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial Navigation System</td>
</tr>
<tr>
<td>IR</td>
<td>Instrument Route (Military)</td>
</tr>
<tr>
<td>IRU</td>
<td>Inertial Reference Unit</td>
</tr>
<tr>
<td>KIAS</td>
<td>Knots</td>
</tr>
<tr>
<td>LAA</td>
<td>Local Airport Advisory</td>
</tr>
<tr>
<td>LAAS</td>
<td>Local Area Augmentation System</td>
</tr>
<tr>
<td>LAHSO</td>
<td>Land and Hold Short</td>
</tr>
<tr>
<td>LDA</td>
<td>Landing Distance Available</td>
</tr>
<tr>
<td>LDA</td>
<td>Localizer-type Directional Aid</td>
</tr>
<tr>
<td>Ldg</td>
<td>Landing</td>
</tr>
<tr>
<td>LF</td>
<td>Low Frequency</td>
</tr>
<tr>
<td>LIRL</td>
<td>Low Intensity Runway Lights</td>
</tr>
<tr>
<td>LNAV</td>
<td>Lateral Navigation</td>
</tr>
<tr>
<td>LOC</td>
<td>Localizer</td>
</tr>
<tr>
<td>LOM</td>
<td>Locator Outer Marker</td>
</tr>
<tr>
<td>LPV</td>
<td>Localizer Performance with Vertical Guidance</td>
</tr>
<tr>
<td>LLRS</td>
<td>Long Range Radar Station</td>
</tr>
<tr>
<td>LTP</td>
<td>Landing Threshold Point</td>
</tr>
<tr>
<td>MAA</td>
<td>Maximum Authorized Altitude</td>
</tr>
<tr>
<td>MAP</td>
<td>Missed Approach Point</td>
</tr>
<tr>
<td>MCA</td>
<td>Minimum Crossing Altitude</td>
</tr>
<tr>
<td>MCAS</td>
<td>Marine Corps Air Station</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Descent Altitude</td>
</tr>
<tr>
<td>MDH</td>
<td>Minimum Descent Height</td>
</tr>
<tr>
<td>MEA</td>
<td>Minimum Enroute Altitude</td>
</tr>
<tr>
<td>MEF</td>
<td>Maximum Elevation Figure</td>
</tr>
<tr>
<td>MF</td>
<td>Medium Frequency</td>
</tr>
<tr>
<td>MIA</td>
<td>Minimum IFR Altitude</td>
</tr>
<tr>
<td>MIRL</td>
<td>Medium Intensity Runway Lights</td>
</tr>
<tr>
<td>MOA</td>
<td>Military Operations Areas</td>
</tr>
<tr>
<td>MOCA</td>
<td>Minimum Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>MON</td>
<td>Minimum Operational Network</td>
</tr>
<tr>
<td>MORA</td>
<td>Minimum Off-Route Altitude</td>
</tr>
<tr>
<td>MRA</td>
<td>Minimum Reception Altitude</td>
</tr>
<tr>
<td>MSA</td>
<td>Minimum Safe Altitude</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>MTA</td>
<td>Minimum Turning Altitude</td>
</tr>
<tr>
<td>MTR</td>
<td>Military Training Route</td>
</tr>
<tr>
<td>MVA</td>
<td>Minimum Vector Altitude</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NA</td>
<td>Not Authorized</td>
</tr>
<tr>
<td>NAAS</td>
<td>Naval Auxiliary Air Station</td>
</tr>
<tr>
<td>NAS</td>
<td>Naval Air Station</td>
</tr>
<tr>
<td>NAS</td>
<td>National Airspace System</td>
</tr>
<tr>
<td>NAV</td>
<td>Naval Air Facility</td>
</tr>
<tr>
<td>NAVAID</td>
<td>Navigational Aid (Ground based)</td>
</tr>
<tr>
<td>NDB</td>
<td>Non-Directional Radiobeacon</td>
</tr>
<tr>
<td>NextGen</td>
<td>Next Generation Air Transportation System</td>
</tr>
<tr>
<td>NFDC</td>
<td>National Flight Data Center</td>
</tr>
<tr>
<td>NFPO</td>
<td>National Flight Procedures Office</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Mile</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NO A/G</td>
<td>No Air-to-Ground Communication</td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice to Airman</td>
</tr>
<tr>
<td>NoPT</td>
<td>No Procedure Turn</td>
</tr>
<tr>
<td>NPA</td>
<td>Non-Precision Approach</td>
</tr>
<tr>
<td>NTAP</td>
<td>Notices to Airman Publication</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>OBS</td>
<td>Omni Bearing Selector</td>
</tr>
<tr>
<td>OCA</td>
<td>Ocean Control Area</td>
</tr>
<tr>
<td>OCS</td>
<td>Obstacle Clearance Surface</td>
</tr>
<tr>
<td>ODP</td>
<td>Obstacle Departure Procedure</td>
</tr>
<tr>
<td>OM</td>
<td>Outer Marker</td>
</tr>
<tr>
<td>OROCA</td>
<td>Off Route Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>PA</td>
<td>Precision Approach</td>
</tr>
<tr>
<td>PAR</td>
<td>Precision Approach Radar</td>
</tr>
<tr>
<td>PBN</td>
<td>Performance-Based Navigation</td>
</tr>
<tr>
<td>PRM</td>
<td>Precision Runway Monitor</td>
</tr>
<tr>
<td>PT</td>
<td>Procedure Turn</td>
</tr>
<tr>
<td>PTP</td>
<td>Point-to-Point</td>
</tr>
<tr>
<td>Pvt</td>
<td>Private</td>
</tr>
</tbody>
</table>
R
- Radial
- Receive
- Restricted Area (Special Use Airspace)
- Remote Communications Outlet
- Radius-to-Fix
- Area Navigation
- Required Navigation Performance
- Required Navigation Performance Authorization
- Required Obstacle Clearance
- Right Pattern
- Runway Visual Range
- Reduced Vertical Separation Minimum
- Runway

S
- South
- Special Aircraft and Aircrew Authorization Required
- Special Aircraft and Aircrew Requirements
- Satellite Navigation
- Simplified Directional Facility
- Start End of Runway
- Special Flight Rules Area
- Surface
- Special Flight Rules Area
- Standard Instrument Approach Procedures
- Standard Instrument Departure
- Statute Mile
- Special Military Activity Routes
- Surface Movement Guidance and Control System
- Simultaneous Offset Instrument Approaches
- Standard Service Volume
- Standard Terminal Arrival Procedure
- Special Use Airspace
- Special Visual Flight Rules

T
- Transmit
- Travel Advisory
- Terminal Arrival Area
- Terminal Area Chart
- Tactical Air Navigation
- True Air Speed
- Terminal Control Areas (Canada)
- Threshold Crossing Height
- Touchdown Zone
- Touchdown Zone Elevation
- Touchdown Zone Lights
- Touchdown Zone/Centerline Lights
- U.S. Standard for Terminal Instrument Procedures
- Temporary Flight Restriction
- Telephone Information Briefing Service
- Traffic Information Service - Broadcast
- Top of Climb
- Top of Descent
- Takeoff Distance Available
- Takeoff/Go Around
- Takeoff Runway Available
- Terminal Procedures Publication
- Terminal Radar Service Area
- Tower

U
- Under Construction
- Ultra High Frequency
- Upper Information Region
- Universal Communications
- United States
- United States Army
- United States Air Force
- United State Coast Guard
- Upper Control Area

V
- Visual Climb Over Airport / Airfield
- Vertical Descent Angle
- Visual Decent Point
- Visual Flight Rules
- Visual Glide Slope Indicator
- Very High Frequency
- Visual Meteorological Conditions
- Vertical Navigation
- VHF Omnidirectional Radio Range
- VHF Omnidirectional Radio Range/Tactical Air Navigation
- Vertical Path Angle
- Visual Route (Military)

W
- Warning Area (Special Use Airspace)
- West
- Wide-Area Augmentation System
- World Aeronautical Chart
- Waypoint
- Weather Camera (Alaska)