Aircraft Geometric Height Measurement Element (AGHME) Constellations

Presented by Louis Delemarre
Lead Engineer of the Concepts & Systems Integration Branch
AGHME Constellation
Multi-lateration Functionality

- Timestamp difference of arrival time of common signal from airframe
- Algorithm to produce “matched set” of timestamps to input into geometric height model
- Geometric heights converted into pressure altitudes via Tech Center developed process
- Compute final “ASE” of airframe
Total System Flow

AGHME CONSTELLATION

AGHME ELEMENT 1
AGHME ELEMENT 2
AGHME ELEMENT 3
AGHME ELEMENT 4
AGHME ELEMENT 5

LCN

Geometric Height Model

ASE Generator
AGHME Constellation

- Proven system design
- Running in the field 24/7 operation
- Rugged and reliable
- Perfect in-field laboratory to monitor and experiment with ADS-B issues
Time Standard

- Standards Provide 10 MHz Reference
- GPS Receiver Timing Solution
 - Real-Time Solution
 - Better fits a large scale model
- Unique solution
 - Use WAAS geosync satellite for timing solution
 - Live implementation of Commonview solution
AGHME Time Specifications

- 2 nanosecond resolution
- 5 nanosecond accuracy
Receipt Time Analysis

• Highly accurate timestamp tool
 ✦ Point on rising edge of P1 (Shotgun blast)
 • 3 db down from pulse average amplitude

• Software that analyzes .5 Gbytes of data for 1 sec
 ✦ Classic
 • Detect preamble (8 usec 4 pulse set)
 • Decode Mode S message by chip analysis
 • Mode S Reception time is rising edge of P1
 ✦ Known time relationship between P1, P2, P3, and P4 of preamble
 ✦ Allows normalizing pulses and take average of 4 pulses
Bench Test Setup

- GPS Receiver
- 10 MHz Ref
- ARB
- Attenuator
- 1090 Mhz Receiver
- High Speed Digitizer
- Host PC
Mode S Format

Preamble 8 usecs

DATA BLOCK
56 or 112 usecs

BIT 1 BIT 2 BIT 3 BIT 4 *** *** BIT N-1 BIT N
1 0 1 0 1 0 1 0 1 0 1 0 1 0

500 Clocks
1750 Clocks
2250 Clocks
4000 Clocks

500 Clocks
1750 Clocks
2250 Clocks
4000 Clocks
Receipt Time Analysis

Classic Procedure db0
P1 3db down on rising edge from pulse amplitude
P1-P4 Average of 4 preamble pulses
Pulse amplitude 207 – 238 DS500 counts
Yield: 11,625
Receipt Time Analysis

Classic Procedure db3
P1 3db down on rising edge from pulse amplitude
P1-P4 Average of 4 preamble pulses
Pulse amplitude 186 – 215 DS500 counts
Yield: 11611, 14 missed preambles
Receipt Time Analysis

Classic Procedure db6
P1 3db down on rising edge from pulse amplitude
P1-P4 Average of 4 preamble pulses
Pulse amplitude 154 – 178 DS500 counts
Yield: 11575, 50 missed preambles
Classic Procedure db9
P1 3db down on rising edge from pulse amplitude
P1-P4 Average of 4 preamble pulses
Pulse amplitude 120 – 140 DS500 counts
Yield: 10320, 1305 missed preambles
Receipt Time Analysis

New Procedure: Average of all pulses in Mode S message
Uses Inter pulse timing rule sets
Yield: 11,625