What is EIM?

- **Enterprise Information Management (EIM)** is a critical business initiative at the FAA, endorsed by executive leadership.
- It is a **business discipline** that applies management best practices and governance techniques to effectively and efficiently deliver information as a service.
- While EIM is **not a singular technology, system or an IT project**, by tapping into existing and new enterprise resources in the agency, it will make available needed enterprise data and information capabilities.
Information Centric

By Transforming FAA into an Information-Centric Enterprise we can:

• **Support and enhance LOB/SO capabilities** to manage and deliver data and information assets

• **Discover, access, and utilize** the potential of FAA data and information

• Create a partnership of **information and governance best practices**

• Discover and share **operational best practices** across the Agency

• Utilize **enterprise-wide shared enabling resources** (technology platforms & services)
Semantic Components

To make FAA Information-Centric, we need central principles:

- Identifying **Cross-cutting information domains**
- Enabling **extensive tagging and metadata enrichment**
- Navigating across **concepts and information domains**
- **Converging information around the user**
An Example

SAFETY ANALYSIS TODAY

I spend time on process.

Resolve the data manually

CCMIS RSTS Incident Reporting

Analytic A Analytic B Analytic C

Analyze manually in different systems

DATE
?
Answer in Hours or Days

OARS EIM TOMORROW

I spend time making decisions.

OARS Portal:
I ask for the information and analytics I need, in the format I want to do my analysis

Shared Services handle data pulls, integration, and analytical loading

Information Data Analytics

Answer in Minutes
A Holistic Approach

• New initiatives involving process or technology are often “silos”, very system-centric, and struggle as a result

• To be successful, this had to be an “integrated” effort, including:
 – Business Information Driven
 – Forward looking Governance
 – User Needs Discovery
 – Technology Demonstration
How To Implement

• Governance
 – FAA Steering Committee - prioritization
 – Information and Data Advisory Board – enterprise policy
 – COI’s – information domain layer
 – COP’s – data subject layer, data infrastructure

• Needs Discovery
 – Process for understand business need

• Technology Demonstration
 – Data Management
 – Advanced Analytics
 – **Semantic Enrichment and Search** (Specific Example: Dynamic Regulatory System (DRS))
DRS Architecture

Search
- REST API
- Library Services REST API
- Start page
- DRS UX
- Librarian UX

Analytics
- Elasticsearch
- MapReduce
- R
- Stanza/GP
- MongoDB
- Thrids
- Noods

Infrastructure
- FAA Doc Repo
- DRS Boundary
- SOR Doc Retrieval
- Data
- Messaging

Data
- SORs
- MongoDB
- ACs
- ADs
- E-CFIs
- TBD

Extract Transform and Load Process
- Ingest Processing
 - Concept Extraction
 - Transform
 - Normalize
 - Load

Implementation status:
- Implemented
- Not implemented
DRS Use Design

1. **End User**
 - Request specific document
 - Search query

2. **Web UI**
 - Extract concepts
 - Search results
 - Doc by ID
 - Document

3. **REST API (JSON)**
 - Find related concepts and documents
 - Get concept results, snippets, and facets

4. **Elasticsearch**
 - Get full document

5. **Graph DB**

6. **Data Store (MongoDB)**

Air Transportation Information Exchange Conference - Global Information Management
DRS Ontologies

• Ontologies Integrated
 – Aircraft-List.rdf
 – CFR_91.rdf
 – CFR_129.rdf
 – DRS-Aircraft.rdf
 – DRS-AirOperator.rdf
 – DRS-Atmosphere-Airspace.rdf
 – DRS-Document.rdf
 – DRS-GeneralFlightRules.rdf
 – DRS-MaintenanceRepair.rdf
 – DRS-OperationsForeignCarrier.rdf
 – DRS-PilotCertificate.rdf
 – Manufacturer-List.rdf
DRS Technologies

- Technologies Used:
 - mongDB
 - Titan
 - REST APIs
 - TTL/SKOS Ontologies
 - TopBraid, Protégé
 - Elasticsearch
 - Regular Expression
 - Stanford NLP
 - Elasticsearch
 - Cytoscape
 - JAX
 - Gremlin
Search Principles

- Three Methods for Driving Relevance, Recall, and Precision
 - Semantic Traverse (Gremlin/Titan)
 - Keyword tuning (use of sets in Elasticsearch)
 - Scoring (use of basic relevance scoring functions in Elastic Search)
Semantic Traverses

• Specific to Titan, use the ontology to retrieve and / or prioritize relevant semantic concepts
 – Focus on traversing the ontology
 • Add vertices that are 1 degree from search concepts to broaden recall
 • Identification of common concepts and using this to specify an intersection narrows precision
 • Traverse up or down the ontology branch to broaden or narrow the search
• Use the concepts to provide an intelligent interactive user interface to “specify” the search
Direct User Benefit

• **Provide Relevant, Trusted Information in an Actionable Format to Enable Agile Decision-Making**
 – Semantic Search means more **relevant, information-driven results**
 • See across repositories
 • See documents you weren’t seeing before
 • Improve relevancy
 – Graph interface means better understanding which leads to rule rationalization (IG report) and **better decisions**
 • Document and rule cross-linking to allow users “complete” view of domain

• **Guide Organizational Culture to Embrace an Information-Centric Enterprise**
 – **Improves effectiveness** of personnel in day-to-day work
 – Moving from **document to knowledge discovery**