
Certification Authorities Software Team
(CAST)

Position Paper

CAST-18

Reverse Engineering in Certification Projects

Completed June 2003

(Rev 1)

NOTE: This position paper has been coordinated
among the software specialists of certification
authorities from the United States, Europe, and
Canada. However, it does not constitute official
policy or guidance from any of the authorities.
This document is provided for educational and
informational purposes only and should be
discussed with the appropriate certification
authority when considering for actual projects.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

1

Reverse Engineering in Certification Projects

1.0 Introduction

Some applicants, developers, and commercial-off-the-shelf (COTS) software vendors have
proposed reverse engineering as an approach for satisfying DO-178B/ED-12B objectives.
DO-178B/ED-12B defines “reverse engineering” as: The method of extracting software
design information from the source code [1]. Section 12.1.4 of DO-178B/ED-12B
addresses “Upgrading a Development Baseline,” which may be implemented using reverse
engineering. Additionally, paragraphs 12.1.4.d and 12.1.4.f of DO-178B/ED-12B provide
guidance particularly relevant to reverse engineering.

Paragraph 12.1.4.d states: Reverse engineering may be used to regenerate software life
cycle data that is inadequate or missing in satisfying the objectives of this document. In
addition to producing the software product, additional activities may need to be performed
to satisfy the software verification process objectives [1].

Paragraph 12.1.4.f states: The applicant should specify the strategy for accomplishing
compliance with this document in the Plan for Software Aspects of Certification [1].

This paper will attempt to answer some of the common questions about reverse engineering
by exploring:

• What is reverse engineering?
• What motivates use of reverse engineering?
• What are certification concerns regarding reverse engineering?

This paper also summarizes the certification authorities’ position regarding reverse
engineering.

Those who read or use this paper should consider the following notes:

• There are other approaches to addressing previously developed software, such as
service history (see DO-178B/ED-12B, section 12.3.5, and DO-248B/ED-94B,
section 4.5 [4]); however, this paper focuses only on reverse engineering. In some
cases reverse engineering may be used in conjunction with other alternate methods,
such as product service history.

• The purpose of this paper is not to encourage reverse engineering – reverse
engineering should only be used in well-justified cases.

• Reverse engineering requires more than just producing the software life cycle data
and may be incompatible with “building the quality into” the software product.
That is, any reverse engineering approach proposed to certification authorities must
demonstrate that it is addressing design assurance and not just creating software
life cycle data.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

2

2.0 What is Reverse Engineering?

As discussed above, DO-178B/ED-12B defines “reverse engineering” as: The method of
extracting software design information from the source code [1].

Roger Pressman defines reverse engineering for software as the process of analyzing a
program in an effort to create a representation of the program at a higher level of abstraction
than source code. Reverse engineering is a process of design recovery [2].

From a certification authority perspective, reverse engineering is an approach to generating
software life cycle data that did not originally exist, cannot be found, is inadequate, or is not
available in order to satisfy the applicable DO-178B/ED-12B objectives. However, it is not
just the generation of the relevant software life cycle data, but a process of assuring that the
data is correct, the software functionality is understood and documented, and the software
functions (performs) as intended and required by the system. It involves recovery of
requirements and design, as well as conducting the relevant verification activities to the
appropriate level to ensure the integrity of the software, to ensure all software life cycle data is
available and correct, and that an appropriate level of design assurance is achieved.

3.0 What Motivates Use of Reverse Engineering?

A number of applicants, developers, and software vendors (including commercial off-the-shelf
(COTS) software vendors) desire to implement reverse engineering in order to use previously
developed software (PDS) in their airborne applications. This PDS is often developed outside
of the aviation environment and its applicable guidance. In some cases, only the source code
exists. However, in some cases other software life cycle data may exist but is incomplete or
inadequate to satisfy the DO-178B/ED-12B guidance. If properly applied, a reverse
engineering approach may allow an applicant to gain the necessary design assurance for
airborne software, complete any missing and/or improve inadequate software life cycle data,
obtain an appropriate level of design assurance for its intended use, and establish a baseline for
future use and products.

Software that is typically suitable for reverse engineering:

• has a mature and stable version that has been used in a number of applications;
• has shown itself to be of high integrity (e.g., it has minimal problem reports over a

long period of time, a robust error tracking system, …); and
• may have been developed to other standards (e.g., military standards or ISO standards)

or no standards or guidance and doesn’t satisfy the DO-178B/ED-12B objectives and
other airborne software guidance.

Some of the potential advantages that motivate applicants to pursue reverse engineering are:

• It may be more cost and schedule effective to use already existing software than to
develop new software.

• It may be an investment in the future projects of the company (i.e., once the reverse
engineering project is completed, the data package can be reused and built upon).

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

3

4.0 What Are The Certification Concerns Regarding Reverse Engineering?

Throughout the past few years, certification authorities have been presented with several
reverse engineering projects. The Real-Time Operating System (RTOS), in particular, has
been a software component that many applicants, developers and vendors desire to reverse
engineer (see draft AC 20-RSC [3] for further information on software components).
Applicants often desire to use existing RTOSs that were not developed to DO-178B/ED-12B
guidance and produce a version of their product that “complies with DO-178B/ED-12B”.
Using an existing RTOS can utilize a “proven” component and reduce the need for an airborne
system developer to hire many operating system experts and develop their own new RTOS.

Several reverse engineering projects have been reviewed by certification authorities and have
raised some concerns. This section lists and briefly explains each concern. Applicants should
be proactive in addressing these concerns in their projects.

4.1 Lack of A Well-Planned Process.

A key to a successful reverse engineering approach is a well-defined reverse engineering
process. Performing the assurance activities and generating the necessary and appropriate
software life cycle data doesn’t just happen – it must be planned, like any other software
development effort. A common downfall of reverse engineering projects seen to date has been
poor or non-existent planning data.

Reverse engineering may be considered a life cycle model, going from code to design to
requirements. The processes and activities in that life cycle and the transition criteria between
those processes and activities should be well-defined in the software plans (i.e., the Plan for
Software Aspects of Certification, Software Development Plan, Software Configuration
Management Plan, Software Quality Assurance Plan, and Software Verification Plan),
software standards (Requirements, Design and Coding Standards), and verification procedures.
The plans and standards should clearly define how the DO-178B/ED-12B objectives will be
satisfied through the reverse engineering effort.

Before beginning a reverse engineering project, the upgrading/development organization
should propose their approach to the certification authorities and get agreement to reduce their
project risk. The plans, standards, and procedures should be followed.

4.2 Poor Justification for Reverse Engineering

Some applicants, developers, and vendors have proposed reverse engineering projects without
adequate justification for how safety objectives will be met. Certification authorities have
observed some of the following problems:

• Use of reverse engineering as a recovery plan for an out-of-control or poorly planned
project.

• Use of reverse engineering to save money without a technical basis.
• Failure to satisfy many DO-178B/ED-12B objectives and aviation software policy in

the reverse engineering effort.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

4

• Using reverse engineering just to satisfy a list of data items, rather than to ensure the
design assurance and quality of the product and its appropriateness for an airborne
application.

Reverse engineering should be used cautiously and only in well-justified cases (i.e., for a
project that has been used in a number of applications and has shown itself to be of high
integrity). The use of reverse engineering in new software development is strongly
discouraged by the certification authorities (i.e., it shouldn’t be used to compensate for a poor
development approach).

4.3 Lack of Access to Experts and Original Developers

Developing the design, requirements, and test cases for a complex software component, such
as an operating system, can be nearly impossible without some access to the original
developers. Without expertise in the domain being reverse engineered, the ability to
accurately determine what the software was meant to do is questionable and can be difficult to
determine.

The most successful reverse engineering efforts have been those where developers contacted
the original developers in order to gain a thorough understanding of the software functionality,
particularly in difficult or ambiguous areas.

Every effort should be made to gain access to the original developers or to hire people with
expertise in the specific domain area (e.g., operating system experts for an RTOS upgrading
project).

4.4 Complex and Poorly Documented Source Code

Many reverse engineering efforts start with source code that is complex and poorly
documented. The code may contain numerous pointers and complex data structures. The code
may also not contain commentary statements, which can make it difficult to understand.

Applicants should consider the condition of the code before starting a reverse engineering
effort. Overly complex or poorly documented code may make satisfying the DO-178B/ED-
12B objectives and aviation software policy difficult or impossible. Poorly documented or
overly complex code will make it difficult for the reverse engineering team to assess what the
code was intended to do and to develop requirements and design data, and determine how to
verify the software. The verification effort will also be difficult to complete with poorly
documented or overly complex code.

A thorough understanding of the code is essential to successful reverse engineering. Poorly
documented or overly complex code is not a good candidate for reverse engineering.

4.5 Abstraction and Traceability Difficulties

Pressman writes: Reverse engineering can extract design information from source code, but
the abstraction level, the completeness of the documentation, the degree to which tools and

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

5

human analyst work together, and the directionality of the process are highly variable …
Ideally, the abstraction level should be as high as possible. That is, the reverse engineering
process should be capable of deriving procedure design representations (a low level of
abstraction); program and data structure information (a somewhat higher level of
abstraction); data and control flow models (a relatively high level of abstraction); and entity-
relationship models (a high level of abstraction).

Pressman goes on to say that the completeness of a reverse engineering process refers to the
level of detail that is provided at an abstraction level. In most cases, the completeness
decreases as the abstraction level increases.

The problem is a balance between completeness and abstraction level. In DO-178B/ED-12B
terminology, formulating the higher-level abstraction of low-level requirements and derived
requirements to high-level requirements can be extremely difficult.

In reviewing reverse engineering projects, certification authorities frequently find the
following abstraction and traceability problems:
• Airborne system requirements cannot be correlated to the reverse engineered product’s

high-level software requirements.
• High-level requirements are written like low-level requirements (i.e., the abstraction

level is too low) (this makes testing of both high-level and low-level requirements
difficult).

• Lack of traceability from high-level requirements to low-level requirements to code and
test cases and procedures (i.e., the forward traceability (and often the backward
traceability) is not established).

• Performing a combined bottom-up and top-down approach for requirements generation
rarely works (i.e., the requirements don’t meet in the middle).

• Establishing traceability and compliance to system-level and safety requirements is
difficult in a reverse engineering effort. Many times the organization upgrading the
software is not the applicant, system developer, or software integrator. Instead, a third or
fourth party company is used, and they may not have an understanding of how their
product will be used in the airborne system and may not understand what compliance
with DO-178B/ED-12B and other airborne software guidance means.

• Upgraders attempt to put off the traceability effort until the end (which can result in code
that doesn’t trace to requirements or requirements that aren’t fully implemented).

• Upgraders attempt to merge requirements and testing into a single level for very complex
software (i.e., they try to omit either the high-level requirements or the low-level
requirements) (this makes satisfying DO-178B/ED-12B objectives difficult).

• Inaccurate traceability can make it difficult to determine whether code not able to be
traced to is dead or deactivated.

• Traceability to and compliance with system-level requirements is difficult or missing or
inadequate.

• Derived requirements should be very sparse in a reverse engineering effort, when the
effort starts with the source code. When derived requirements do exist, they must be
handled very carefully and evaluated by the system safety experts.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

6

• Many times vendors may have no idea of what system their product will be used in and
do not know what impact any features or problems with their product may have on the
safety of the system in which it will be used.

• Unwanted functionality and unused features may be identified in the code and must be
addressed (e.g., a subset of the entire reverse engineered product may need to be
generated to address issues found during the effort).

4.6 Interface and Integration Problems

Inadequate or missing interface and integration data has been observed in a number of
projects. This leads to misunderstandings and misinterpretations by the users/applicants.
Some of the specific problems observed by certification authorities are:

• Missing, incomplete, or out-of-date interface data,
• Missing, incomplete, or out-of-date user’s guides, and
• Missing, incomplete, or out-of-date integration data (e.g., porting guidelines).

Additionally, when non-aviation manufacturers attempt to reverse engineer a software
component, they often lack the necessary understanding of DO-178B/ED-12B objectives and
the certification process necessary to effectively communicate with the applicant and
certification authorities.

4.7 Certification Liaison Process Problems

Many reverse engineering efforts do not perform the certification liaison process well. The
following problems often exist:

• Designees or certification authorities are not informed or involved early in the reverse
engineering process.

• Applicants often hire sub-contractors or suppliers to reverse engineer a component.
However, the sub-contractors do not have a communication avenue with the
certification authorities or designees, nor an understanding of DO-178B/ED-12B and
other aviation software guidance.

• There is often a lack of communication and understanding between the multiple
stakeholders (e.g., certification authorities, applicant(s), integrator(s), and vendor(s)).

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

7

5.0 Certification Authorities Position

The position of the certification authorities regarding reverse engineering can be summarized
as follows:

• Reverse engineering should be used cautiously and only in well-justified cases (i.e.,
for a project that has been used in a number of applications and has shown itself to be
of high integrity). The use of reverse engineering in new software development is
strongly discouraged by the certification authorities. Additionally, a justification of
cost savings without technical and safety merit is not acceptable to the certification
authorities.

• An applicant should make a case for why reverse engineering is feasible and how it
will satisfy the objectives of DO-178B/ED-12B, other airborne software guidance, and
the overall safety objectives of the regulations, for their particular project. The
following objectives may be particularly difficult to satisfy and require special
attention: Objectives 1 through 7 of Table A-1; Objectives 5 & 6 of Table A-3;
Objectives 5, 6 & 12 of Table A-4; Objectives 4 & 5 of Table A-5; Objectives 1 & 2
of Table A-9; and Objective 2 of Table A-10.

• Reverse engineering processes should be well-defined and well-planned. The
approach should be planned into life cycle processes and activities, with transition
criteria, and should be documented in the plans and standards. The plans and
standards should be followed.

• Reverse engineering projects should be coordinated with the appropriate certification
authorities. Since there are a number of concerns regarding reverse engineering, any
projects using it should be coordinated with the certification authorities as early as
possible. Certification authorities may perform software reviews to ensure that the
developer followed their plans and standards, the software life cycle data produced is
complete and correct, and that all applicable DO-178B/ED-12B objectives are
satisfied.

• The concerns documented in section 4 of this paper should be addressed by the
applicant and/or integrator, as well as any other project-specific concerns identified
by certification authorities or their designees.

6.0 References

[1] RTCA/DO-178B, “Software Considerations in Airborne Systems and Equipment
Certification”, dated December 1, 1992.

[2] Pressman, Roger S. Software Engineering: A Practitioner’s Approach, McGraw Hill, 1997.

[3] Draft AC 20-RSC, Reusable Software Components, draft 9.2, dated 24 September 2003.

[4] RTCA/DO-248B, Final Report for Clarification of DO-178B Software Considerations in
Airborne Systems and Equipment Certification, dated October 12, 2001.

	Reverse Engineering in Certification Projects
	1.0 Introduction
	2.0 What is Reverse Engineering?
	3.0 What Motivates Use of Reverse Engineering?
	4.0 What Are The Certification Concerns Regarding Reverse Engineering?
	4.1 Lack of A Well-Planned Process.
	4.2 Poor Justification for Reverse Engineering
	4.3 Lack of Access to Experts and Original Developers
	4.4 Complex and Poorly Documented Source Code
	4.5 Abstraction and Traceability Difficulties
	4.6 Interface and Integration Problems
	4.7 Certification Liaison Process Problems

	5.0 Certification Authorities Position
	6.0 References

