
Certification Authorities Software Team
(CAST)

Position Paper

CAST-25

CONSIDERATIONS WHEN USING A QUALIFIABLE
DEVELOPMENT ENVIRONMENT (QDE) IN

CERTIFICATION PROJECTS

COMPLETED SEPTEMBER 2005

(Rev 0)

NOTE: This position paper has been coordinated among certification/
regulatory authority representatives from North and South America,
Europe, and Canada. However, it does not constitute official policy or
guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed
with the appropriate certification/regulatory authority when
considering for actual projects.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

2

Considerations When Using a Qualifiable Development Environment
(QDE) in Certification Projects

Executive Summary

Some applicants are proposing the use of Qualifiable Development Environments (QDE)
to improve development efficiency and quality. These QDEs are software tools that
support activities to satisfy DO-178B/ED-12B objectives [1]1. This paper presents
certification concerns when a QDE is used to develop airborne software to comply with
DO-178B/ED-12B objectives. To more easily identify and highlight these concerns, a
generic QDE2 is used in this paper as an example to illustrate QDE tool use. This generic
QDE uses a graphical modeling technique to describe the software requirements and
generates source code from this description using a Qualifiable Code Generator (QCG).
Use of this example QDE3 is examined and certification concerns identified.

The main purpose of this paper is to highlight certification concerns. At a very high level,
these concerns may be summarized as follows:
• Use of a QDE must be well planned and documented. All planning documents should

be submitted to the certification authority for approval early in the project.
• Applicants and certification authorities must fully understand the QDE model and its

limitations.
• The qualification of the QDE tool itself including the code generator must be

evaluated in the context of a specific project. In addition, a QDE is usually used with
a symbol library and/or other source code developed outside the QDE. As such, credit
claimed for complying with a DO-178B/ED/12B objective(s) will vary from project
to project. That is, any claim for “Full” or “Partial” credit should be evaluated on a
case-by-case basis.

• Use of a QDE does not relieve the applicant of complying with applicable DO-
178B/ED-12B objectives and other software guidance applicable to a specific project.

A more detailed list of concerns appears in the Conclusion of this paper. Since the use of
a QDE, including the code generator, is qualifiable on a project-specific basis only, even
a detailed list cannot be assumed to be exhaustive and the airborne software must still be
shown to satisfy all applicable DO178B/ED-12B objectives and other guidance, as
applicable.

1 Compliance to DO-178B objectives is discussed in this paper, however, the software approval basis for a
specific project or program may include other guidance as well, such as Certification Review Items
(CRI’s), Issue Papers, etc. that impact the use and acceptance of QDE.
2 Although this QDE is generic and is based on a real-world product, it is not intended to be representative
of all QDE products.
3 For the remainder of this paper, the term QDE encompasses the tool’s full capability including, for
example, the QCG.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

3

A secondary purpose of this paper is to show that the need to verify the output of the
coding process (DO-178B/ED-12B Table A-5) for the requirements implemented using
the example QDE and its associated QCG may be reduced. However, all other source
code, i.e., code not generated by the model including symbol libraries, should still be
verified, and objectives for which “Full” credit is not received will still have to be met.
Additionally, traceability of the generated source code from the example QCG to the
object code should be assessed for Level A software, and testing and analyses must be
performed (software integration testing, hardware/software integration testing, robustness
testing, and system level testing, requirements coverage analyses, structural coverage
analyses, scheduling and timing analyses, memory and stack usage analyses, etc.).

This paper addresses certification concerns with respect to compliance of the airborne
software to DO-178B/ED-12B objectives. It assumes that the QDE is a qualifiable
software development tool. Consequently, qualification of the tool itself is not considered
in this paper. Additional information on qualification of automatic code generation tools
[8] can be found in CAST-13 entitled “Automatic Code Generation Tools Development
Assurance”. The purpose of CAST-13 is to clarify DO-178B/ED-12B section 12.2.1.b.
regarding the software level assigned to development tools and to discuss potential
reduction of that software level [i.e., consider elimination/reduction of some objectives
not applicable to ground-based, non-real time, non-critical software] relative to the
airborne software.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

4

1.0 Introduction

1.1 Model Based Development

Model-Based Development (MBD) is recognized by some in industry as an efficient and
cost-effective way to develop safety-related embedded software. In the MBD
environment, the software development process begins with the capture of software
requirements using graphical tools that are “domain dependent” and graphical notations
commonly used in the engineering community. In this paradigm, the model is defined by
the software requirements described in a graphical notation. In order to fully benefit from
this approach, automatic code generators are used to produce source code that will be
compiled and linked with other manually written code. Some claim that this process is
cost effective when the software must satisfy the objectives of DO-178B/ED-12B [1] for
software Levels A and B and, especially, when a QCG is used to transform software
requirements into source code.

Although mentioned in DO-178B/ED-12B (Section 12), the use of development tools
(e.g., an automatic code generator) is just beginning to be commonly used and
understood by many applicants in the context of DO-178B/ED-12B. Several aircraft
manufacturers have obtained certification credit up to Level A when using such tools,
both commercial (e.g., SCADE-KCG from Esterel Technologies) and proprietary (e.g.,
GALA from THALES Avionics) [5]. The objective of this paper is to highlight
certification concerns when a generic QDE and its QCG are used to develop airborne
software that complies with DO-178B/ED-12B objectives. This paper is intended to
establish a common understanding of some typical issues when using a QDE and to
provide information to certification authorities and industry about the use of such tools.
Since this paper discusses use of a generic QDE and resulting issues, use of any QDE
product should be evaluated on a project-by-project basis with the understanding that any
benefits or limitations of using any specific QDE may differ from those described for this
generic QDE.

1.2 Organization of Paper

The remainder of this paper presents an example of a generic QDE that relies on a
graphical modeling technique and includes a QCG. The paper discusses how the QDE
may be used in an example project to satisfy DO-178B/ED-12B objectives and how
reduction of some verification activities may be claimed.

The approach for satisfying the objectives of DO-178B/ED-12B (and any other
certification guidance) for all software in the airborne application should be established
and coordinated with the appropriate certification authority(ies) early in the development
life cycle. The applicant should specify the strategy for accomplishing compliance in the
Plan for Software Aspects of Certification and other plans and standards. Each

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

5

Finally, some “derived” software high-level requirements that are not directly obtained
by refinement of a system requirement may also exist.

application must be evaluated on a case-by-case basis to ensure that all design assurance
issues are addressed.

This paper is organized as follows:
• Section 2 presents the software development processes when an example QDE

(including a QCG) is used. Certification concerns regarding the development
processes are also highlighted in this section.

• Section 3 presents the software verification processes and potential claims that may
be made by the applicant when an example QDE is used. Certification concerns
regarding the verification processes are also highlighted in this section.

• Section 4 presents conclusions of this paper and summarizes certification concerns.
• Section 5 presents the references used throughout the paper.

2.0 Software Development Processes

This section considers the development processes and characteristics of an example
QDE. The example QDE is intended to be sufficiently generic to provide general
guidelines but specific enough for those guidelines to be relevant and applicable in real-
world scenarios.

2.1 Software Development Processes in DO-178B/ED-12B

To begin, systems requirements are allocated to software (SR1, …, SRn). These
requirements include the functional requirements of the software, its performance
requirements, and its safety-related requirements. This is followed by the software
requirements, design, and coding and integration processes.

2.1.1 Software Requirements Process

Within the software requirements process, system requirements allocated to software may
be manually translated to software high-level requirements and described in the graphical
notation of the example QDE. Other system requirements may be translated to software
high-level requirements using natural language or some other notation. That is, they
follow the typical requirements definition process. These latter requirements are not
described using the graphical notation of the example QDE.

In addition, a system requirement (SRi) may be refined into several software high-level
requirements (HLRi), as is the case with SR3 in Figure 1 that is refined into HLR2 and
HLR3. Furthermore, a given software high-level requirement may be the result of the
refinement of several system requirements, as is the case of HLR3 with SR3 and SR4.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

6

tware high-level requirements that were described in
e graphical notation of the example QDE do not need to be further refined since source

n

ion

.1.3 Software Coding and Integration Processes

…SR1 SR2 SR4SR3 SR5 SRn

2.1.2 Software Design Process

Within the design process, the sof
th
code will be generated by the QCG directly from this notation. [In this case, these high-
level requirements are also considered to be low-level requirements and the guidelines
for low-level requirements also apply.] Only those high-level requirements that were not
described in the example QDE need to be further developed during the design process.
The latter may be manually translated to software low-level requirements expressed in
the graphical notation of the example QDE. Or, some software requirements expressed i
the form of textual requirements, pseudo-code, or another kind of description may
remain, e.g., requirements for a low-level executive functions that interface with the
target hardware. It is through refinement of software requirements and their express
either in the QDE’s graphical notation or other forms that the software architecture is
developed.

2

System
Requirements
Allocated to
Software

High-Level
Requirements …HLR1 HLR2 HLR4HLR3 HLRm

Low-Level
Requirements

…LLR2LLR1 LLRp

Described in graphical notation of QDE

Described in graphical notation of QDE

captured with QDE tool
not captured
with QDE tool

captured
with QDE tool

…SR1 SR2 SR4SR3 SR5 SRn
System
Requirements
Allocated to
Software

…HLR1 HLR2 HLR4HLR3 HLRm

Low-Level
Requirements

High-Level
Requirements

…LLR2LLR1 LLRp

Described in graphical notation of QDE

Described in graphical notation of QDE

captured with QDE tool
not captured
with QDE tool

captured
with QDE tool

Figure 1: Software Requirements Levels when using a QDE

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

7

ode can be automatically generated
r both the software high-level and low-level requirements that are expressed in the

l, as is

ibrary must also
e considered. Basically, a QDE uses a library of symbols (which may be qualified or

ng a QDE is as shown in Figure 2.

bject code are used with the linking and loading data to generate executable object code

y

Once the software requirements are defined, source c
fo
graphical notation of the example QDE. As a qualified development tool, the example
QDE can be considered to generate a one-to-one relationship between software
requirements and code. As a result of this one-to-one relationship, structural coverage
analysis may be met at the software requirements level instead of at the code leve
the usual case, by ensuring that no unintended functionality exists in the implemented
model, e.g., detecting dead symbols in the model (see section 3.2.5.3).

Another difference exists when using a QDE since the use of a symbol l
b
not) and a procedure to call these symbols.

The software development process when usi

 QDE

Editor/Simulato

When using a QDE, the source code (both automatically and manually generated) and
o
that is then loaded into the target computer. Since not all system requirements allocated
to software may be described in the notation of the example QDE, the executable code
may implement both software requirements generated by the QCG and requirements
manually coded from natural language or some other notation. This includes symbol
library requirements. Consequently, credit claimed for executable object code will var

Library funcs
Executives

Manual SW Coding process

r

Automatic SW Coding process
QCG
Code generator

Source code (created manually), object code (compiler), and executable code (linker) must be shown
to be correct

Correct by construction

Source
code

Object Code
Complete chain compilation

Pre-compiler Compiler, linker & builder

SW Development process

Source
code

rchitecture A
LLR &

Integrated
executable

Figure

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

8

t for the QDE to call each needed symbol during the
ftware coding and integration processes:

in includes all “needed” symbol code during

ead

ii)
 needed or not) in the source library. The

ble object

iii) he
ked

e

ection
rt of

.2 Characteristics of the Example QDE

from project to project. That is, any claim for “Full” or “Partial” credit should be
evaluated on a case-by-case basis.

Currently, three different ways exis
so
i) The QDE source code output is a call to each needed elementary symbol source

code. The complete compilation cha
pre-compilation (expansion) and then compiles, links and builds the executable
object code. The “needed” symbol code is that code “called” by another source
code component. Depending on some QDE generation options, source code may
be an expanded one (as many copies of the code as instances of the ”calls”) or an
optimized one (a single copy of the symbol code “shared” by the multiple
“callers”). If the source code from the source library contains decisions, there may
be some coverage issues (i.e., generated unreachable, deactivated code or d
source code). This way helps ensure that only “used” code is included in the
build, and facilitates coverage analyses, requirements to code traceability and
source code to object code traceability.
During the source code generation, the QDE includes all symbol code
(irrespective of whether the code will be
complete compilation chain then compiles, links and builds the executa
code. This way may introduce much “unused” code in the build and make
coverage analyses and traceability analysis more difficult to demonstrate.
Each individual symbol is compiled, linked and built into executable code. T
QDE source code, containing the calls to each symbol is also compiled, lin
and built. Each elementary symbol’s object code is loaded into random access
memory (RAM) and the executable object code can then call any executable
symbol code. If only the “called” symbols are included in RAM, “unused” cod
is kept to a minimum, and coverage analyses and traceability analysis are
simplified. However, if the symbols in RAM are “shared” among partition
components or functions of different software levels, then partitioning prot
may be difficult to verify. If all library symbols are stored in RAM (e.g., pa
the airborne software), then there is the potential for much unused code, and
concerns relative to partitioning, coverage analyses and traceability analysis
should be resolved.

2

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

9

or purposes of discussion in this paper, an example QDE, including its QCG, is

A) The QDE accepts system requirements allocated to software that are described in

on hierarchical block diagrams and/or state

B) The QDE has a graphical editor that allows the user to input the requirements,

C) hecker that allows verification of user input to the model

s f the notation definition
.g., when an input is connected

c. d semantic rules are project
be

D) The QD

E) de (e.g., C or

 simple, verifiable, and traceable to the requirements.
nly

c. teristics. In particular,

nt.

F
characterized in the following way4:

a graphical notation with the following properties:
a. Notation is rigorously defined.
b. Notation is deterministic.
c. Notation is typically based

machines5.

i.e., develop the model.
The QDE comes with a c
for conformance to:

a. Syntactic rule o
b. Semantic rules of the notation definition (e

to a variable, it must have the same type)
User-defined rules. While the syntactic an
independent and are imposed by the tool chain, user-specific rules can
added, e.g., context-specific naming rules, architecture constraints, etc.
E comes with a simulator that allows the user to execute test cases

generated manually by the user from language-based requirements.
The QDE comes with a QCG that automatically generates source co
Ada code) from the graphical description. The generated code exhibits the
following properties:

a. Source code is
b. Source code complexity is limited, e.g., consists of linear constructs o

(conditions are not allowed6), forbids conditional compilation and calls to
another elementary symbol inside a symbol, etc.
Source code exhibits behaviors with safety charac

i. Code exhibits deterministic behavior.
ii. Code performs safe memory manageme

4 The characteristics identified for this example QDE may not necessarily reflect characteristics applicable
to all QDEs. Each QDE must be evaluated on a project-specific basis for applicable characteristics and
resulting benefits and limitations.
5 This seems to cover the most widely used notations for the high-level description of embedded systems
requirements. SAO, SCADE, Simulink, Stateflow, SDL etc. fall into this category.
6 An applicant must discuss use of conditions with the tool manufacturer to understand how the model
would work and potential impact on credit in satisfying DO-178B objectives.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

10

iii. Code can be considered a safe subset of the language, e.g.
Ravenscar Ada, Misra C.

d. Moreover, the execution time of the generated code is bounded and
predictable.

F) The QDE, including QCG and simulator, is qualifiable on a per-project basis
following the process described in Section 12.2 of DO-178B/ED-12B for
software development tools and further clarified in [3]. As stated in DO-
178B/ED-12B Section 12.2.1 and clarified in [3], the software development
process for the QDE should satisfy the same objectives as for the development
processes of the airborne software itself. For information on potential reduction of
the software level, see CAST-13 [8]. For the remainder of this paper, the example
QCG is assumed to be qualifiable as a development tool at Level A.

Note that, in order to avoid reviewing the source code generated by QCG, the model must
be reviewed to ensure that the model accurately represents the language-based system
requirements that were manually translated and described in the graphical notation of
QDE.

2.3 Development Objectives and the QDE

When using a QDE to claim credit for the development processes, the objectives of Table
A-2 of DO-178B/ED-12B should be evaluated on a project-specific basis. Potential
compliance claims and certification concerns for the example QDE are documented
below.

2.3.1 Table A-2 Compliance Claims:

Table A-2 below summarizes potential claims of using a formalized, graphical notation
associated with the QDE for the software development processes. Note that the table
addresses only the requirements described in QDE.

Table A-2
Objective

QDE
Credit

Claims when using QDE

1 High-level requirements
are developed

Partial7 High-level requirements are described in the graphical notation of
QDE which, when using the QCG, generates a one-to-one relationship
between software requirements and code.

2 Derived high-level
requirements are defined

Partial Although some derived requirements may be described in the
graphical notation of QDE, many derived requirements may be
defined outside of the model, for which case, no credit may be given.

3 Software architecture is Full8 Architecture is defined by the graphical notation of QDE.

7 By “Partial”, we mean that using a QDE may facilitate a given development activity. However, this
development activity still has to be completed in context of a specific project to gain full credit for the
objective. Any claim for “Partial” credit should be evaluated on a case-by-case basis.

developed
4 Partial Low-level requirements are described in the graphical notation of

QDE which, using the QCG, generates a one-to-one relationship
between software requirement and code.

Low-level requirements
are developed

5 Partial Although some derived requirements may be described in the
graphical notation of QDE, many derived requirements may be
defined outside of the model for which case, no credit may be given..

Derived low-level
requirements are defined

6 Source Code is
developed

Full Benefit of QCG which automatically generates source code for
requirements expressed in the graphical notation of QDE. However,
since a QDE is usually used with a symbol library and/or other source
code developed outside the QDE, any claim for “Full” or “Partial”
credit should be evaluated on a case-by-case basis.

7 Partial Benefit of a QCG when compiler and linker are part of QCG. Since
not all system requirements may be described in the notation of the
example QDE, the executable code may implement both system
requirements generated by the QCG and requirements coded manually
from natural language or some other notation. This includes symbol
library requirements. Consequently, credit claimed for executable
object code will vary from project to project. That is, any claim for
“Full” or “Partial” credit should be evaluated on a case-by-case basis.

Executable Object Code
is produced and
integrated in the target
computer

Table A-2: Software Development Process

2.3.2 Table A-2 Compliance Concerns:

The following certification concerns, at a minimum, should be addressed when using a
QDE to satisfy Table A-2 objectives:

• Target environment should be fully understood so that the model developed using

QDE reflects the software to be implemented (see Figure 2) and discrepancies
identified.

• Tool limitations, e.g., constraints allowed, should be understood and their impact on
satisfying the objectives determined.

• Derived requirements should still be provided to the system safety assessment
process.

• When an applicant uses a QDE to partially satisfy an objective(s), the applicant
should identify the means beyond QDE used to fully satisfy the objective(s).

• Code generators may generate complex code which makes the verification process
and maintenance activities difficult.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

11

8 By “Full”, we mean that using a QDE will allow elimination of the given development activity only for
the software whose requirements are described in the graphical notation of QDE. Since a QDE is usually
used with a symbol library and/or other source code developed outside the QDE, any claim for “Full”
credit should be evaluated on a case-by-case basis.

• The architecture defined by the QDE notation should be combined with any
manually-defined architecture to develop the full software architecture.

• Source code being developed or generated should comply with the project’s coding
standards.

• Credit claimed for executable object code will vary, depending on whether the
compiler, its settings, and linker are considered part of the QDE or not. In addition, a
QDE is usually used with a symbol library and/or other source code developed
outside the QDE. As such, credit claimed for executable object code will vary from
project to project. That is, any claim for “Full” or “Partial” credit should be evaluated
on a case-by-case basis.

Other concerns may exist based on the specific QDE/QCG used and resulting model
limitations. These should be addressed on a project-by-project basis.

3.0 Software Verification Process

3.1 Software Verification Process in DO-178B/ED-12B

SW
Requirements-Based

Test Generation

Low-Level
Tests

SW
Integration Tests

HW/SW
Integration Tests

SW Requirements
Coverage Analysis

SW Structure
Coverage AnalysisAdditional

Verification

SW
Requirements-Based

Test Generation

Low-Level
Tests

SW
Integration Tests

HW/SW
Integration Tests

SW Requirements
Coverage Analysis

SW Structure
Coverage AnalysisAdditional

Verification

Figure 3: Software Testing Process (DO-178B/ED-12B; Fig. 6-1)

The software verification process provides a technical assessment of the results of both
the software development process as it was described above and of the software
verification process itself. The verification process objectives are satisfied through a
combination of reviews, analyses and tests.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

12

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

13

Figure 3 exhibits three types of testing activities:
1. Low-level testing to verify that software low-level requirements (and high-level

requirements if source code is generated directly from high-level requirements) are
correctly implemented.

2. Software integration testing to verify the interrelationships between software
requirements and components, and to verify the implementation of the software
requirements and software components within the software architecture.

3. Hardware/Software integration testing to verify correct operation of the software in
the target computer environment.

DO-178B/ED-12B emphasizes the development of requirements-based tests, including
normal ranges tests cases and robustness (abnormal range) test cases. DO-178B/ED-12B
proposes structural coverage analysis as a way to determine what software structures
were not exercised and to evaluate the completeness of the requirements-based testing.

3.2 Verification Activities when an Example QDE is Used

In this section of the paper, claims are proposed for establishing elimination, reduction or
automation of verification activities when the example QDE is used.

Verification is the area where QDEs can provide the most potential for satisfying DO-
178B/ED-12B objectives. In the following subsections, each verification objective is
presented in table format with potential credit that may be claimed when using the
example QDE. Comments and assumptions about claims for each objective are described
in the table although other concerns beyond those identified may exist based on the
specific QDE/QCG used and resulting model limitations. These should be addressed on a
project-by-project basis. Each table is followed by a summary of certification concerns
for the specific table.

3.2.1 Verification of High-Level requirements (Table A-3)

3.2.1.1 Table A-3 Compliance Claims:

Table A-3 summarizes potential claims when using the formalized graphical notation of a
QDE for the verification of the high-level requirements. Note that the table addresses
only the requirements described in QDE.

Table A-3 QDE Claims when using QDE

Objective Credit
1 Software high-level

requirements comply
with system requirements

Partial9 May be facilitated by QDE graphical notation (rigorously defined and
rule-based) to express software high-level requirements.

2 High-level requirements
are accurate & consistent

Partial Benefit of the QDE graphical notation, syntax and semantics
verification.
QDE tools may also help in checking the accuracy and consistency of
the requirements and in checking that these requirements comply to
other standards.

3 High-level requirements
are compatible with
target computer

Partial Benefit of QDE model but depends on how valid the model simulator
is relative to the target computer. Performance analysis (WCET10)
may be easier to perform than on manually developed source code
since the code generated by QCG may have some desirable properties,
e.g., predictable execution time and bounded memory usage.

4 High-level requirements
are verifiable

Full11 Benefit of the QDE precise notation.
Since the QDE notation is rigorous and not subject to interpretation,
every requirement of the model can be unambiguously verified.

5 High-level requirements
conform to standards

Full Benefit of QDE graphical notation rules (syntax and semantics).
QDE tools may also help in checking the accuracy and consistency of
the requirements and in checking that these requirements comply to
other standards.

6 High-level requirements
are traceable to system
requirements

Partial Facilitated by QDE notation and proximity to requirements notations
although this may be difficult since ‘requirements tags’ cannot
sometimes be expressed on graphical models.

7 Algorithms are accurate Partial Benefit of QDE graphical notation. Although verification of the
accuracy of the algorithms may be facilitated by the graphical
notation, assessment of the algorithms (accuracy and behavior) is
typically beyond the QDE’s scope.

Table A-3: Verification of Outputs of Software Requirements Process

3.2.1.2 Table A-3 Compliance Concerns:

The following certification concerns, at a minimum, should be addressed when using a
QDE to satisfy Table A-3 objectives:

• Applicant should understand under what assumptions the tool operates, e.g.,

constraints allowed, rules and standards enforced, etc. so that the model reflects the
software to be implemented and any discrepancies are identified.

9 By “Partial”, we mean that using a QDE will facilitate a given verification activity. However, this
verification activity still has to be completed in context of a specific project to gain full credit for the
objective. Any claim for “Partial” credit should be evaluated on a case-by-case basis.
10 WCET = Worst Case Execution Time.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

14

11 By “Full”, we mean that using a QDE will allow elimination of the given verification activity only for
the software whose requirements are described in the graphical notation of QDE. However, any claim for
“Full” credit should be evaluated on a case-by-case basis.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

15

• When an applicant uses a QDE to partially satisfy an objective(s), the applicant
should identify the means beyond QDE used to fully satisfy the objective(s).

• If full credit for an objective is claimed, this should be evaluated on a case-by-case
basis in context of the project.

• HLRs, including derived HLRs, not described by QDE should be shown to fully
comply with applicable objective(s).

• The QDE should provide traceability between the requirements levels.
• The QDE standards should be established and addressed as part of the project.
• Accuracy of algorithms can rarely be verified by the QDE. The QDE may be able to

implement the algorithm requirements but an assessment of the algorithm accuracy is
typically beyond the QDE’s scope. That is, credit for objective 7 of table A-3 may be
very limited.

Other concerns may exist based on the specific QDE used and resulting model
limitations. These should be addressed on a project-by-project basis.

3.2.2 Verification of low-level requirements (Table A-4)

3.2.2.1 Table A-4 Compliance Claims:

Table A-4 summarizes potential claims of using the example QDE for the verification of
the outputs of the software design process, mainly the low-level requirements and the
software architecture of the application. Note that the table addresses only the
requirements described in QDE.

Table A-4
Objective

QDE
Credit

Claims when using QDE

1 Low-level requirements
comply with high-level
requirements

Partial12 May be facilitated by QDE graphical notation (rigorously defined and
rule-based) to express software low-level requirements.

2 Low-level requirements
are accurate and
consistent

Partial Benefit of the QDE graphical notation, syntax and semantics
verification.
QDE tools may also help in checking the accuracy and consistency of
the requirements and in checking that these requirements comply to
other standards.

3 Low-level requirements
are compatible with
target computer

Partial Benefit of QDE model but depends on how valid the model simulator
is relative to the target computer. Performance analysis (WCET13)
may be easier to perform than on manually developed source code
since the code generated by QCG has some desirable properties, e.g.,
predictable execution time and bounded memory usage.

12 By “Partial”, we mean that using a QDE will facilitate a given verification activity. However, this
verification activity still has to be completed in context of a specific project to gain full credit for the
objective. Any claim for “Partial” credit should be evaluated on a case-by-case basis.
13 WCET = Worst Case Execution Time.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

16

4 Low-level requirements
are verifiable

Full14 Benefit of the QDE precise notation.
Since the QDE notation is rigorous and not subject to interpretation,
every requirement of the model can be unambiguously verified.

5 Low-level requirements
conform to standards

Full Benefit of QDE graphical notation rules (syntax and semantics).
QDE tools may also help in checking the accuracy and consistency of
the requirements and in checking that these requirements comply to
other standards.

6 Low-level requirements
are traceable to high-
level requirements

Partial Facilitated by QDE notation and similarity to requirements notations.
Two cases have to be considered when a QDE is used:
1) Source code is generated directly from high-level requirements. In
that case, there are no corresponding low-level requirements.15

2) Some high-level requirements were not described in the graphical
notation of QDE but were refined into one or more low-level
requirements that were described in the graphical notation of QDE. In
that case, traceability has to established between the low-level
requirement(s) and the associated high-level requirement(s).

7 Algorithms are accurate Partial Benefit of QDE graphical notation. Although verification of the
accuracy of the algorithms may be facilitated by the graphical
notation, assessment of the algorithm (accuracy and behavior) is
typically beyond the QDE’s scope.

8 Software architecture is
compatible with high-
level requirements

Partial Benefit of QDE for the software architecture described in a
(hierarchical) graphical notation.

9 Software architecture is
consistent

Partial Benefit of QDE for the software architecture described in a
(hierarchical) graphical notation.

10 Software architecture is
compatible with target
computer

Partial Benefit of QDE model. Performance analysis may be easier to perform
than on manually developed source code since the code generated by
QCG has some desirable properties, e.g., predictable execution time
and bounded memory usage.

11 Software architecture is
verifiable

Full Benefit of the QDE precise notation. Since the QDE notation is
rigorous and not subject to interpretation, every element of the model
can be unambiguously verified for that part of the architecture
expressed in the model.

12 Software architecture
conforms to standards

Partial Benefit of QDE graphical notation rules (syntax and semantics) for the
software architecture described in a (hierarchical) graphical notation.

13 Software partitioning
integrity is confirmed

No
Credit16

None

Table A-4: Verification of Outputs of Software Design Process

14 By “Full”, we mean that using a QDE will allow elimination of the given verification activity only for
the software whose requirements are described in the graphical notation of QDE. However, any claim for
“Full” credit should be evaluated on a case-by-case basis.
15 HLRs that are already in the graphical notation of QDE will also be considered as low-level
requirements so that the corresponding objectives of Table A-4 have been satisfied for them as well.
16 By “No Credit”, we mean that using a QDE will not facilitate, in any way, a given verification activity.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

17

3.2.2.2 Table A-4 Compliance Concerns:

The following certification concerns, at a minimum, should be addressed when using a
QDE to satisfy Table A-4 objectives:

• Applicant should understand under what assumptions the tool operates, e.g.

conditions allowed, rules and standards enforced, etc. so that the model reflects the
software to be implemented and any discrepancies are identified.

• When an applicant uses a QDE to partially satisfy an objective(s), the applicant
should identify the means beyond QDE used to fully satisfy the objective(s).

• LLRs not described by QDE should be shown to fully comply with applicable
objective(s).

• For LLRs, including any derived LLRs, not described by QDE, the software
architecture should be shown to be compatible with the corresponding HLRs.

• The QDE should provide traceability between HL requirements and LLR.
• Partitioning integrity should still be confirmed.
• Accuracy of algorithms can rarely be verified by the QDE. The QDE may be able to

implement the algorithm requirements but an assessment of the algorithm accuracy is
typically beyond the QDE’s scope. That is, credit for objective 7 of table A-4 may be
very limited.

Other concerns may exist based on the specific QDE/QCG used and resulting model
limitations. These should be addressed on a project-by-project basis.

3.2.3 Verification of the Source Code (Table A-5)

3.2.3.1 Table A-5 Compliance Claims:

The source code implements the high-level and low-level requirements that are expressed
in the graphical notation of QDE. Since we assume in this paper that the example QCG is
qualifiable to Level A (i.e., the QCG satisfies all Level A objectives), the generated
source code is “correct by construction”. That is, the source code generated by the QCG
implements the requirements expressed in the graphical notation of QDE correctly and
implements those requirements only. Therefore, no further activities are needed to verify
that this source code is correct, accurate and complete

However, since a QDE is usually used with a symbol library and/or other source code
developed outside the QDE, actual credit claimed for all code generated will vary from
project to project depending on the method(s) used to include the non-QCG-generated
code. As such, credit claimed for source code will vary. That is, any claim for “Full” or
“Partial” credit should be evaluated on a case-by-case basis. Details of the three ways
that currently exist for a QDE to call each needed symbol are listed in section 2.1.

Table A-5 summarizes potential claims of using the example QCG for the verification of
the outputs of the software coding and integration processes. Note that the table addresses
only the requirements described in QDE and code generated by the example QCG.

Table A-5 QDE
Credit

Claims when using QDE
Objective

Full171 Requirements are described in the graphical notation of QDE which,
by qualification of QCG, generates a one-to-one relationship between
software requirements and code.

Source Code complies
with low-level
requirements

2 Full Benefit of graphical notation of QDE which is rigorous, deterministic,
and typically based on hierarchical diagrams and/or state machines.

Source Code complies
with software
architecture

Benefit of the QDE precise notation. Since the QDE notation is
rigorous and not subject to interpretation, every element of the model
can be unambiguously verified.

3 Full Source Code is verifiable

Benefit of QDE graphical notation rules (syntax and semantics). 4 Full Source Code conforms to
standards
Source Code is traceable
to low-level requirements

Facilitated by QDE functional notation and similarity to requirements
notations.

5 Full

Two cases have to be considered when a QDE is used:
1) Source code is generated directly from high-level requirements. In
that case, there are no corresponding low-level requirements.18

2) Some high-level requirements were not described in the graphical
notation of QDE but were refined into one or more low-level
requirements that were described in the graphical notation of QDE. In
that case, traceability has to be established between the low-level
requirement(s) and the associated source code.

6 Full Benefit of QCG which automatically generates source code for
requirements expressed in graphical notation of QDE.

Source Code is accurate
and consistent

No credit19 None Output of software
integration process is
complete and correct

7

Table A-5: Verification of Outputs of Software Coding & Software Integration Processes

3.2.3.2 Table A-5 Compliance Concerns:

The following certification concerns, at a minimum, should be addressed when using a
QDE to satisfy Table A-5 objectives:

17 By “Full”, we mean that using a QDE will allow elimination of the given verification activity only for
the software whose requirements are described in the graphical notation of QDE. However, any claim for
“Full” credit should be evaluated on a case-by-case basis.
18 HLR’s that are already in the graphical notation of QDE will also be considered as low-level
requirements so that the applicable objectives of Table A-5 have been satisfied for them as well.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

18
19 By “No Credit”, we mean that using a QDE will not facilitate, in any way, a given verification activity.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

19

• Objectives 1 – 6 of Table A-5 should be shown to be satisfied for those LLRs not

expressed in the graphical notation of a QDE.
• Results of the integration process should still be shown to be complete and correct.
• Since a QDE is usually used with a symbol library and/or other source code

developed outside the QDE, credit claimed for code generated will vary from project
to project depending on the method(s) used to include such code. As such, credit
claimed for source code will vary. That is, any claim for “Full” or “Partial” credit
should be evaluated on a case-by-case basis.

• Code generators may generate complex code which makes the verification process
and maintenance activities difficult.

• The qualification of the QCG should be evaluated in the context of the project being
implemented to ensure limitations and constraints are met and the proper
configuration is implemented.

• Applicant/developer should understand under what assumptions the tool operates,
e.g., constraints allowed, rules and standards enforced, etc.

Other concerns may exist based on the specific QDE/QCG used and resulting model
limitations. These should be addressed on a project-by-project basis.

3.2.4 Testing of Outputs of the Integration Process (Table A-6)

3.2.4.1 Problems

As seen in the previous section, the source code for the high-level and low-level
requirements expressed in the graphical notation of QDE is “correct by construction”.
That is, it fully implements the requirements and only the requirements, for those
requirements expressed in the model.

However, when testing the outputs of the integration process, other factors should be
addressed:
i) The applicant should define specific rules and procedures to verify the calls to

each needed library symbol during the software coding and integration processes (see
section 2.1.3).

ii) The applicant should assess the correspondence between the source code
generated by the example QCG and object code per DO-178B/ED-12B Section 6.4.4.2
for Level A software.

iii) Use of the library symbols or the entire library may allow ‘unused’, deactivated,
‘unreachable’ or dead code into the executable object code (EOC), and thereby
produce ‘holes’ in the structural coverage of the software. The applicant should assess
each instance (hole) introduced, and ensure it will result in no anomalous behavior or
unintended function.

Production of the executable code when a QCG is used is illustrated by Figure 4 (which
is the same as Figure 2).

Figure

Library funcs
Executives

Manual SW Coding process

QDE
Editor/Simulator

Automatic SW Coding process
QCG
Code generator

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

20

3.2.4.2 The Combined Testing Process

An approach similar to that presented in CAST-12 [4] is taken:
• For the requirements that are manually coded in the source code language (e.g.,

library functions, executives, etc.):
o The applicant performs the typical verification activities (including normal and

robustness testing of high-level and low level requirements and structural code
coverage analysis).

o The compiler (including any pre-compiler) used to generate the object code is the
same version using the same options (no optimization) in the same execution
environment as is used to compile source code obtained from the example QCG.

o Analysis of the object code is performed according to CAST -12 [4] to
demonstrate that any object code not directly traceable to source code is correct.

• For the source code automatically generated by the example QCG:
o By specification, the QCG uses only a small subset of the general purpose source

code language, with a low level of complexity (mostly expressions with
comparisons, +; -, etc) and generates a safe subset of the language used, e.g.,
Misra C.

o The applicant performs normal testing activities on generated source code that
comprises all source code programming constructs specified in the coding

Source code (created manually), object code (compiler), and executable code (linker) must be shown
to be correct

Correct by construction

Source
code

Object Code
Complete chain compilation

Pre-compiler Compiler, linker & builder

SW Development process

Source
code

Integrated
executable

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

21

standards in order to demonstrate that the object code generated from this source
code is correct and does not introduce erroneous code that is not traceable at the
source code level (as in CAST -12 [4]).

o Also, it is now possible to execute manually developed, requirements-based test
cases in simulation using a QDE simulator and to collect the results of this
simulation. The QDE simulator allows the user to follow the values of data as
execution of the test case progresses. Comparison of the actual output values with
the expected output values can be made at any step in the simulation. However, if
credit is expected from simulation of the formalized requirements, requirements-
based test coverage analysis of the high level specification description should be
performed.

o The applicant should perform robustness testing of both high and low level
requirements unless design standards enforce inclusion of robustness
requirements in system requirements.

o The applicant should limit source code complexity (e.g., forbid conditional
compilation, forbid conditions in an elementary symbol, disallow calling another
elementary symbol inside a symbol, etc.).

• For the whole application:
o The applicant performs extensive system requirements-based software and

hardware/software integration testing.

The combination of all the above activities should give confidence that the compiler
(including any pre-compiler) does not introduce any undetected errors in the code
generated by the example QCG for the source code programming constructs used.

3.2.4.3 Table A-6 Compliance Claims:

The user should manually develop system requirements-based test cases for the system
requirements allocated to software and generated in a QDE. These test cases can then be
executed in the QDE using the simulator provided.

Table A-6 below summarizes potential claims of using the example QDE for the
verification of the outputs of the integration process. Note that the table reflects only the
requirements described in the example QDE. However, since a QDE is usually used with
a symbol library and/or other source code developed outside the QDE and, since the
compiler and linker may not be part of the QCG, the likelihood of receiving any credit for
the outputs of the integration process is minimal.

Table A-6
Objective

QDE
Credit

Claims when using QDE

1 Executable Object Code
complies with high-level
requirements

Partial20 Benefits from QDE and the combined testing process described above.
However, since a QDE is usually used with a symbol library and/or
other source code developed outside the QDE, and since the compiler
may not be part of the QCG, the likelihood of receiving any credit is
minimal. Any claim for “Full” or “Partial” credit should be evaluated
on a case-by-case basis.

Executable Object Code
is robust with high-level
requirements

No credit21 None, but may be enforced by appropriate design and coding rules 2

3 Executable Object Code
complies with low-level
requirements

Partial Benefits of QDE and the combined testing process described above.
However, since a QDE is usually used with a symbol library and/or
other source code developed outside the QDE, and since the compiler
may not be part of the QCG, the likelihood of receiving any credit is
minimal. Any claim for “Full” or “Partial” credit should be evaluated
on a case-by-case basis.

4 Executable Object Code
is robust with low-level
requirements

No Credit None, but may be enforced by appropriate design and coding rules.

5 Executable Object Code
is compatible with target
computer

Partial Benefit of QDE model when the compiler and linker are part of QCG.
Code generated by QCG has some desirable properties, e.g., execution
time is deterministic. Also, since not all system requirements may be
described in the notation of the example QDE, the executable code
may implement both system requirements generated by the QCG and
requirements coded outside the QDE. This includes symbol library
requirements. Consequently, credit claimed for executable object code
will vary from project to project. That is, any claim for “Full” or
“Partial” credit should be evaluated on a case-by-case basis.

3.2.4.4 Table A-6 Compliance Concerns:

The following certification concerns, at a minimum, should be addressed when using a
QDE to satisfy Table A-6 objectives:
• Normal and robustness test cases should be developed by the user for all high-level

and low-level requirements.

Table A-6: Verification of Outputs of Integration Process

• Requirements-based integration test cases should still be developed.
• Approach to assess correspondence between source and object code should be

repeated when a different compiler or different compiler options are used.
• When an applicant uses a QDE to partially satisfy an objective(s), the applicant

should identify the means beyond QDE used to fully satisfy the objective(s).

20 By “Partial”, we mean that using a QDE will facilitate a given verification activity. However, this
verification activity still has to be completed in context of a specific project to gain full credit for the
objective. Any claim for “Partial” credit should be evaluated on a case-by-case basis.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

22
21 By “No Credit”, we mean that using a QDE will not facilitate a given verification activity.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

23

• Credit claimed for executable object code will vary, depending on whether the
compiler, its settings, and the linker are considered part of the QDE or not. In
addition, a QDE is usually used with a symbol library and/or other source code
developed outside the QDE. As such, credit claimed for executable object code will
vary from project to project. That is, any claim for “Full” or “Partial” credit should be
evaluated on a case-by-case basis.

• If credit is expected from simulation of the formalized requirements, requirements-
based test coverage analysis of the high level specification description should be
performed.

Other concerns may exist based on the specific QDE/QCG used and resulting model
limitations. These should be addressed on a project-by-project basis.

3.2.5 Verification of the Verification process (Table A-7)

Outputs of the verification processes are verified with concentration in three areas:
i) test procedures and results
ii) test coverage of system requirements allocated to software
iii) test coverage of the software structure (structural coverage analysis).

3.2.5.1 Test Procedures and Results

The objective of this review/analysis is to ensure that testing of the code was developed,
and performed accurately and completely. Use of a QDE does not provide additional
credit for satisfying objectives in this area. As noted in Section 3.2.4.3, the user should
manually develop system requirements-based test cases for the system requirements
allocated to software and generated in the example QDE. Some of these test cases may be
executed in the example QDE using the simulator provided.

3.2.5.2 Test coverage analysis of the software requirements

a) Typical activities
The objective of this review/analysis is to determine how well the requirements-based
testing verified the implementation of the system requirements allocated to software. This
analysis may reveal the need for additional requirements-based tests. The requirements-
based test coverage analysis should show that:

o Test cases exist for each system requirement allocated to software.
o Test cases satisfy the criteria of normal and robustness testing as defined in

Section 6.4.2 of DO-178B/ED-12B.

b) Additional verification

Using the example QDE simulator, a user may execute system requirements-based test
cases as shown in Figure 5 and coverage of requirements may be approached in a more
formal way.

 1 2 3 4 5 6 7

WatchedInput:real 1 10 11 100 101 -12 56
ReferenceInput:real 0 0 0 0 0 0 56

LowThresh:real 10 10 10 10 10 10 10
HighThresh:real 100 100 100 100 100 100 100

Expected
Outputs

Color:LightColors 0 1 1 1 2 1 0

Simulated
Outputs

Color:LightColors 0 1 1 1 2 1 0

OK Status OK OK OK OK OK OK OK

Step

Inputs

Hidden
inputs

R
em

ar
k

C
ol

um
n

Figure 5: Software requirements verification with a QDE

For example, in the block diagram notation shown in Figure 5, it is possible to extend the
MC/DC criterion that normally applies to source code to these block diagrams, as this is
explained in [6]. The set of tests may be characterized in the following manner:

o Cases 1, 3 and 5 cover the block diagram from strictly a MC/DC criterion.
o Cases 2 and 4 are added for checking the accuracy of the comparator.
o Cases 6 and 7 are added to show correctness of absolute value function and

are beyond the coverage analysis of the current block diagram.

3.2.5.3 Structural coverage analysis (MC/DC, decision, statement)

The objective of structural coverage analysis is to determine which code structure was
not exercised by requirements-based tests. Section 6.4.4.3 of DO-178B/ED-12B
explicitly states that structural coverage analysis may reveal code structures not exercised
during testing that may be the result of:

o Shortcomings in requirements-based test cases or procedures
o Inadequacies in software requirements
o Dead code

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

24

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

25

o Deactivated code

Shortcomings in requirements-based test cases or procedures:
Since only partial credit is given to use of the example QDE for requirements-based
testing, shortcomings in the tests cases or procedures may exist and must be identified. In
particular, robustness test cases must be manually developed for all requirements as well
as normal test cases for those requirements not expressed in the example QDE.

Inadequacies in software requirements:
Problems with the software requirements may be exhibited using the testing activity
described in the previous section for code both generated by the example QCG and for
manually developed code.

Dead code:
Since the example QCG is qualified as development tool, dead code cannot be introduced
by the QCG unless a problem exists at the software requirements level. If structural
coverage analysis identifies dead code, then the associated requirements problem needs
to be addressed. Dead code may exist, however, for requirements that are manually
coded, i.e., not generated in the QDE. This is addressed by structural coverage of the
manually developed code.

Deactivated code:
Deactivated code may be introduced by the example QCG if a requirement(s) is
applicable only to certain configurations of the software or an entire symbol library is
linked into the EOC or loaded into target computer, including “unused” library functions.

3.2.5.4 Structural coverage analysis (data and control coupling)

The objective of this analysis is to confirm the data and control coupling between the
components of the code. Use of the example QDE does not guarantee additional credit
for satisfying the objective in this area. In addition, the analysis of the coupling between
the QCG generated code and the manually generated code may be more complicated
since each may use different notations that are not compatible. Any claim for credit
should be evaluated on a case-by-case basis in the context of the project.

3.2.5.5 Table A-7 Compliance Claims

Table A-7 below summarizes potential claims of using the example QDE for the
verification of the verification process results. Note that the table addresses only the
requirements described in QDE.

Table A-7 QDE
Credit

Claims when using QDE
Objective

1 No
Credit

None Test procedures are
correct 22

2 No Credit None Test results are correct
and discrepancies
explained

233 Partial QDE notation may benefit testing and test coverage analysis of
software high-level requirements

Test coverage of high-
level requirements is
achieved

4 Partial QDE notation may benefit testing and test coverage analysis of
software low-level requirements

Test coverage of low-
level requirements is
achieved

5 Partial QDE notation may benefit analyses at the software requirements level,
e.g., when using the simulator. However, this should be evaluated on a
case-by-case basis in the context of the project and the user should
demonstrate the required level of traceability.

Test coverage of software
structure (modified
condition/decision
coverage) is achieved
Test coverage of software
structure (decision
coverage) is achieved

Partial QDE notation may benefit analyses at the software requirements level,
e.g., when using the simulator. However, this should be evaluated on a
case-by-case basis in the context of the project and the user must
demonstrate the required level of traceability.

6

Test coverage of software
structure (statement
coverage) is achieved

Partial QDE notation may benefit analyses at the software requirements level,
e.g., when using the simulator. However, this should be evaluated on a
case-by-case basis in the context of the project and the user must
demonstrate the required level of traceability.

7

Table A-7: Verification of Verification Process Results

Test coverage of software
structure (data coupling
and control coupling) is
achieved

Partial 8 QDE notation may permit analyses at the software requirements level
but a case-by-case analysis is required.

22 By “No Credit”, we mean that using a QDE will not facilitate, in any way, a given verification activity.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

26

23 By “Partial”, we mean that using a QDE will facilitate a given verification activity. However, this
verification activity still has to be completed in context of a specific project to gain full credit for the
objective. Any claim for “Partial” credit should be evaluated on a case-by-case basis.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

27

3.2.5.6 Table A-7 Compliance Concerns:

The following certification concerns, at a minimum, should be addressed when using the
example QDE to satisfy Table A-7 objectives:

• Test procedures and results should still be shown to be correct or discrepancies

explained.
• Requirements-based test coverage of both high-level and low-level requirements not

expressed in the QDE should be shown to have been achieved.
• Requirements-based test coverage of both high-level and low-level requirements

expressed in the QDE should be evaluated for shortcomings in test cases or
procedures, inadequacies in software requirements, dead code, and deactivated code.

• Claims for test coverage of the software structure should be considered on a case-by-
case basis in the context of the project (i.e., objectives 5 through 8 should be
evaluated in the context of the project).

Other concerns may exist based on the specific QDE/QGC used and resulting model
limitations. These should be addressed on a project-by-project basis.

4.0 Conclusion

The purpose of this paper is to highlight certification concerns when a generic QDE and
its QCG are used to develop airborne software to comply with DO-178B/ED-12B
objectives. While some concerns were identified throughout this paper, other concerns
may exist on a project-specific basis depending on the specific QDE/QCG used and
resulting model limitations. This paper proposes a potential way to address DO-
178B/ED-12B objectives when using an example QDE which includes a QCG. It
emphasizes that such a process is not just a matter of qualification of the code generator
itself. The notation used for the software requirements should be formal (rigorously
defined, verifiable, and deterministic), and the requirements of the code generator should
include properties such that the generated code exhibits behaviors with safety
characteristics, e.g., determinism, and is simple, verifiable, and traceable to the
requirements. Additionally, use of a QDE should be addressed in a project-specific
context and the airborne software should still be shown to satisfy all applicable
DO178B/ED-12B objectives.

A secondary, but important, purpose of this paper is to show that the need to verify the
output of the coding process (Table A-5) for the requirements implemented using the
example QDE and its associated QCG may be reduced. However, all other source code,
i.e., code not generated by the model including symbol libraries, should still be verified.
Additionally, traceability of the generated source code from the example QCG to the

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

28

object code should be assessed for Level A software and testing should be performed
(software integration testing, hardware/software integration testing, robustness testing,
and system level testing).

A summary of the concerns identified in this paper follows. Note, however, that this may
not be an exhaustive list for all QDEs since QDE characteristics may vary and
considerations should be made on a project-by-project basis:

• Use of a QDE should be well planned and documented in the Plan for Software

Aspects of Certification (PSAC), Tool Qualification Plan, and other planning
documents, as appropriate. The PSAC, Tool Qualification Plan, and other software
planning documents should be submitted to the certification authority for approval
early in the project.

• Applicants, developers, and certification authorities should fully understand the QDE
model, the QDE tool suite, and their limitations.

• The qualification of the QCG should be evaluated in the context of the project being
implemented to ensure limitations and constraints are enforced, and the proper
configuration is implemented. In addition, a QDE is usually used with a symbol
library and/or other source code developed outside the QDE. As such, credit claimed
for executable object code will vary from project to project. That is, any claim for
“Full” or “Partial” credit should be evaluated on a case-by-case basis.

• Use of a QDE does not relieve the applicant of complying with applicable DO-
178B/ED-12B objectives. When an applicant uses a QDE to partially satisfy an
objective(s), the applicant should identify the means beyond the QDE to fully satisfy
the objective(s).

• Code generators may generate complex code which makes the verification process
and maintenance activities difficult. If a QCG generates object code directly, i.e.,
source code is not produced, these actions may be infinitely more difficult,
approaching the impossible.

• Source code generation should be a desired output of the QCG versus generation of
object code only.

• Source code generated should comply with the project’s coding standards.
• The target environment should be fully understood so that the model developed by

the QDE reflects the software to be implemented and any discrepancies identified.
• Credit claimed for executable object code will vary, depending on whether the

compiler and its settings are considered part of the QDE or not.
• HLRs, including derived HLRs, not described by QDE should be shown to fully

comply with applicable objective(s). Likewise, LLRs not described by QDE should
be shown to fully comply with applicable objective(s).

• The QDE should provide traceability between the requirements levels.
• QDE should provide traceability between requirements and code.
• The QDE standards should be established and addressed as part of the project.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

29

• Results of the integration process should still be shown to be complete and correct.
• Robustness test cases should be developed and executed for both high-level and low-

level requirements.
• Normal test cases should be developed and executed for both high-level and low-level

requirements, including those of the symbol libraries, that are not expressed in the
QDE.

• Derived requirements should be tested and provided to the system safety assessment
process.

• Requirements-based integration test cases should be developed.
• Approach to assess correspondence between source and object code should be

repeated when a different compiler or different compiler options are used.
• Appropriate complexity limitations should be set depending on the way the source

code is generated.
• Test procedures and results should be shown to be correct or discrepancies explained.
• Requirements-based test coverage of both high-level and low-level requirements not

expressed in the QDE should be shown to have been achieved.
• Requirements-based test coverage of both high-level and low-level requirements

expressed in the QDE should be evaluated for shortcomings in test cases and
procedures, inadequacies in software requirements, dead code, and deactivated code.

• Claims for coverage of the software structure should be addressed on a case-by-case
basis in the context of the project (i.e., objectives 5 through 8 of Table A-7 should be
evaluated in the context of the project).

• Although the QDE may be able to implement the algorithm requirements, verification
of the algorithm accuracy is typically beyond the QDE’s scope.

• If credit is expected from simulation of the formalized requirements, requirements-
based coverage analysis of the high level specification should be performed.

5.0 References

1. RTCA/DO-178B (EUROCAE/ED/12B), “Software Considerations in Airborne

Systems and Equipment Certification,” December 1992.

2. SAE/ARP-4754, “Certification Considerations for Highly-Integrated or Complex

Aircraft Systems,” October 1996.

3. “Guidelines for the Qualification of Software Tools using RTCA/DO-178B,” FAA

Order 8110.49, Chapter 9, June 3, 2003.

4. CAST-12, “Guidelines for Approving Source Code to Object Code Traceability,”

December 2002.

NOTE: This position paper has been coordinated among certification/regulatory authority
representatives from North and South America, Europe, and Canada. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided for
educational and informational purposes only and should be discussed with the appropriate
certification/regulatory authority when considering for actual projects.

30

5. “Cost Effectiveness of Formal Methods on the Development of Avionics Systems at
Aerospatiale,” François Pilarski (Airbus), 17th Digital Avionics Systems Conference,
November 1st 1998, Seattle.

6. “A Practical Tutorial on Modified Condition/Decision Coverage,” Kelly J. Hayhurst

(NASA), Dan S. Veerhusen (Rockwell Collins), John J. Chilenski (Boeing), Leanna
K. Rierson (FAA).

7. EUROCAE/ED-79 (see SAE ARP4754), “Certification Considerations for Highly

Integrated or Complex Aircraft Systems,” April 1997.

8. CAST-13, “Automatic Code Generation Tools Development Assurance,” June 2002.

	Executive Summary
	1.0 Introduction
	1.1 Model Based Development
	1.2 Organization of Paper

	2.0 Software Development Processes
	2.1 Software Development Processes in DO-178B/ED-12B
	2.1.3 Software Coding and Integration Processes

	2.2 Characteristics of the Example QDE
	2.3 Development Objectives and the QDE
	2.3.1 Table A-2 Compliance Claims:
	2.3.2 Table A-2 Compliance Concerns:

	3.0 Software Verification Process
	3.1 Software Verification Process in DO-178B/ED-12B
	3.2 Verification Activities when an Example QDE is Used
	3.2.1 Verification of High-Level requirements (Table A-3)
	3.2.1.1 Table A-3 Compliance Claims:
	3.2.1.2 Table A-3 Compliance Concerns:

	The following certification concerns, at a minimum, should be addressed when using a QDE to satisfy Table A-3 objectives:
	3.2.2 Verification of low-level requirements (Table A-4)
	3.2.2.1 Table A-4 Compliance Claims:
	3.2.2.2 Table A-4 Compliance Concerns:

	3.2.3 Verification of the Source Code (Table A-5)
	3.2.3.1 Table A-5 Compliance Claims:
	3.2.3.2 Table A-5 Compliance Concerns:

	The following certification concerns, at a minimum, should be addressed when using a QDE to satisfy Table A-5 objectives:
	3.2.4 Testing of Outputs of the Integration Process (Table A-6)
	3.2.4.1 Problems
	3.2.4.2 The Combined Testing Process
	3.2.4.3 Table A-6 Compliance Claims:

	3.2.5 Verification of the Verification process (Table A-7)
	3.2.5.1 Test Procedures and Results
	3.2.5.2 Test coverage analysis of the software requirements

	3.2.5.3 Structural coverage analysis (MC/DC, decision, statement)
	3.2.5.4 Structural coverage analysis (data and control coupling)

	3.2.5.5 Table A-7 Compliance Claims
	3.2.5.6 Table A-7 Compliance Concerns:

	The following certification concerns, at a minimum, should be addressed when using the example QDE to satisfy Table A-7 objectives:

	4.0 Conclusion

