Certification Authorities Software Team (CAST)

Position Paper

CAST-26

VERIFICATION INDEPENDENCE

COMPLETED January 2006

(Rev 0)

Verification Independence
1) Purpose

Misunderstanding exists on what compliance with DO-178B/ED-12B guidance for verification independence means by applicants, system software developers and certification authorities. This has resulted in inconsistent application by certification authorities, and confusion as to what certification applicants and airborne system developers should do to ensure compliance for their software developments. This paper presents some background, discussion, and a CAST position for what verification independence means and what applicants and their developers should do to ensure they achieve verification independence for their certification projects.

2) Background

RTCA document DO-178B and EUROCAE document ED-12B, “Software Considerations in Airborne Systems and Equipment Certification,” dated December 1, 1992 proposes verification independence as a means of achieving additional assurance for the quality and safety of software installed in airborne systems and equipment. Specifically, DO-178B/ED-12B recommends verification independence for the following objectives (as indicated in Annex A Tables A-3, A-4, A-5, A-6, and A-7 for Levels A and B software applications):

TABLE 1

DO-178B/ED-12B Verification Independence Objectives
	Table
	Reference
	Summary
	Level(s)

	A-3
	6.3.1a
	“Software high-level requirements comply with system requirements.”
	A and B

	A-3
	6.3.1b
	“High-level requirements are accurate and consistent.”
	A and B

	A-3
	6.3.1g
	“Algorithms are accurate.”
	A and B

	A-4
	6.3.2a
	“Low-level requirements comply with high-level requirements.”
	A and B

	A-4
	6.3.2b
	“Low-level requirements are accurate and consistent.”
	A and B

	A-4
	6.3.2g
	“Algorithms are accurate.”
	A and B

	A-4
	6.3.3a
	“Software architecture is compatible with high-level requirements.”
	A

	A-4
	6.3.3b
	“Software architecture is consistent.”
	A

	A-4
	6.3.3f
	“Software partitioning integrity is confirmed.”
	A

	A-5
	6.3.4a
	“Source code complies with low-level requirements.”
	A and B

	A-5
	6.3.4b
	“Source code complies with software architecture.”
	A

	A-5
	6.3.4f
	“Source code is accurate and consistent.”
	A

	A-6
	6.4.2.1, 6.4.3
	“Executable object code complies with low-level requirements.”
	A and B

	A-6
	6.4.2.2, 6.4.3
	“Executable object code is robust with low-level requirements.”
	A

	A-7
	6.3.6b
	“Test procedures are correct.”
	A

	A-7
	6.3.6c
	“Test results are correct and discrepancies explained.”
	A

	A-7
	6.4.4.1
	“Test coverage of high-level requirements is achieved.”
	A

	A-7
	6.4.4.1
	“Test coverage of low-level requirements is achieved.”
	A

	A-7
	6.4.4.2
	“Test coverage of software structure (modified condition/decision) is achieved.”
	A

	A-7
	6.4.4.2a, b
	“Test coverage of software structure (decision) is achieved.”
	A and B

	A-7
	6.4.4.2a, b
	“Test coverage of software structure (statement coverage) is achieved.”
	A and B

	A-7
	6.4.4.2c
	“Test coverage of software structure (data coupling and control coupling) is achieved.”
	A and B

Note:
The text for each objective in the DO-178B/ED-12B Annex A tables is a summarized form of the actual objective’s wording, and the referenced sections should be read for the full text of each objective.

Furthermore, in Annex B, the DO-178B/ED-12B glossary, a definition of independence is provided which states:

“Independence – Separation of responsibilities which ensures the accomplishment of objective evaluation. (1) For software verification process activities, independence is achieved when the verification activity is performed by a person(s) other than the developer of the item being verified, and a tool(s) may be used to achieve an equivalence to the human verification activity. …”

Typically, compliance with the referenced objectives is achieved with the use of humans manually reviewing the subject data, using a standard and/or checklist, and is a very labor intensive activity. The results of these reviews are usually captured by completing review checklists, keeping review notes of errors or deficiencies found or questions, marking (red-lining) the data noting corrections to be made, or other means; and then ensuring that corrections are implemented in a subsequent version of the data artifact, using either a formal problem reporting and resolution process, or an informal actions listing. Software quality assurance (SQA) personnel usually attend at least some of these reviews to ensure that the engineers are applying the relevant plans, standards, checklists, etc. Other terms used for review include inspection, evaluation, walkthrough, audit, etc.

More recently, applicants have proposed to use tools to attempt to automate certain aspects of these reviews or enforce their criteria. Probably the most common tools proposed are “structural coverage” analysis tools which make various claims for satisfying the structural coverage objectives of section 6.4.4.2 and Table A-7, objectives 5 through 8. Other tools commonly used are traceability tools (such as relational databases, and hyperlinks in documents) to trace between data elements (such as between high-level requirements and low-level requirements, between low-level requirements and source code components, and between requirements and the test cases and procedures which verify the requirements), and to identify any missing elements or untraceable data items in the development.

Development activities, their corresponding verification activities, and typical means of achieving verification independence for those activities include those in Table 2.

TABLE 2

DO-178B/ED-12B Development Activities, Verification Activities and How Verification Independence is Typically Achieved
	Development Activity
	Verification Activity
	Independence

	· Develop high-level requirements (HLR)
(A2-1, 5.1, 5.1.1a, 5.1.2)

· Develop derived high-level requirements
(A2-2, 5.1, 5.1.1b, 5.1.2)
	· Usually verified by high-level requirements review using a system/software requirements review checklist. (A3)

· This review usually would include other disciplines, such as systems engineers, QA, hardware engineers, etc.
	· Typically, independence is achieved by having someone other than the developer of the high-level software requirements (or section(s) being verified) be the independent reviewer, and/or by having a team review. (A3-1,2,7)

	· Develop software architecture (A2-3, 5.2, 5.2.1a, 5.2.2, 5.2.3)

· Develop low-level requirements (LLR) (A2-4, 5.2, 5.2.1a, 5.2.2, 5.2.3)

· Develop derived low-level requirements (A2-5, 5.2, 5.2.1b, 5.2.2, 5.2.3)
	· Usually verified by software architecture review, software requirements or detailed design review using a software design/ requirements review checklist. (A4)
	· Typically, independence achieved by having someone other than the developer of the software architecture structures and low-level software requirements (or section(s) being verified) be the independent reviewer, and/or by having a team review.
(A4-1,2,7,8,9,13)

	· Develop source code (A2-6, 5.3, 5.3.1b, 5.3.2),
	· Usually verified by source code review, walkthrough or inspection, sometimes tools are used to enforce coding standards. (A5-1 to 6)
	· Typically, independence achieved by having someone other than the developer of the source code (or module(s) being verified) be the independent reviewer, and/or by having a team review. (A5-1,2,6)

	· Develop and establish traceability (between System Requirements and high-level Software Requirements (5.5a), between HLR and low-level requirements (5.5b), and between LLR and source code (5.5c), Source code to object code (6.4.4.2b, Level A)
	· Usually verified as part of the requirements, design and code reviews, often using a matrix format or tool to track traceability to identify missing traces. (A3-6, A4-6, A5-5)

· Source to object code tracing may be a separate review or analysis using a tool. (A7-5,6,7)
	· Independence not required for traceability objectives but could be achieved by using a tool, having someone other than the developer of the traceability mapping be the independent reviewer, and/or having a team review.

	· Develop linking and loading data and generate object code and integrate object code (and/or burn) into target hardware (A2-7, 5.4, 5.4.1a, 5.4.2, 5.4.3) to produce executable object code (EOC).
	· Usually verified by integration review, review of linking and loading data and "load map", and “debugging” activity and informal testing.

· Tools (compiler, linker, loader, read-only memory (ROM) burner, checksum and cyclic redundancy check (CRC) generators and checkers, etc.) may be heavily relied on, especially tools previously used by the developer. (A5-7, 6.3.5)
	· Independence not required for integration objectives but verifying the embedded load typically involves tool’s specialists and target computer and system expertise. Incorrect integration could adversely impact achieving Table A-6 objectives, including those for which independence is needed.

	· Traceability of high-level requirements to test cases and procedures (6.4a. and c., A7-3, 6.4.3a., 6.4.4.1a.)
· Traceability of low-level requirements to test cases and procedures (6.4a. and c., A7-4, 6.4.3b., 6.4.4.1)
	· Traceability from requirements to test cases and procedures may be part of requirements reviews but is usually a later test case and procedure (test coverage) review or analysis, usually using a tool and/or matrix. (A7-3, 4)
	· Although, not explicitly required, traceability between requirements and tests supports many of the verification objectives of A6 and A7. Typically, independence achieved by using a tool, independent reviewer, or team review of mapping.

	· Develop test cases and procedures (TC&P) for:
Requirements-based tests (A7-1, 6.3.6b.)

· Normal Range, and Robustness (A6-1 thru 5 (6.4.2.1, 6.4.2.2, 6.4.3)

	· Usually verified by TC&P reviews, the entire test suite conducted will determine how well the EOC complies with and is robust with the requirements, and the test coverage achieved. (A6-1, 2, 3, 4, A7-1, 3, 4)
	· Typically, independence is achieved by having someone other than the developer of the related requirements or code be the developer of the TC&P for those requirements/code, and independent review of the TC&P by having someone other than the developer of the tests be the independent reviewer, and/or having a team review. (A6-3, 4, A7-1, 3, 4)

	· Execute test cases and procedures (A6-1, 2, 3, 4, 5; 6.3.6c., 6.4a., b.; 6.4.1, 6.4.3)

· Measure and perform requirements-based test coverage analysis (A7-2, 3, 4; 6.4c., 6.4.4.1, 6.4.4.3)

· Measure and perform structural coverage analysis (A7-5, 6, 7, 8; 6.4d., 6.4.4.2, 6.4.4.3)

	Usually verified by:

· Test witnessing and review of test results comparing actual results to expected results. (A7-2)

· Coverage of R-BT and structural coverage usually by review of test traceability and test results, and R-BT and structural coverage analyses, often assisted by tools. (A7-3, 4, 5, 6, 7, 8)

· May be partially conducted on host computer initially and then coupled with system testing in target environment. (6.4.1, 6.4.3a., A6-5)

· May be assisted by informal test process used to debug code and tests and measure initial coverage (6.4.1, 6.4.3a.)
	· Typically, independence is achieved by having someone other than the developer of the TC&P execute the tests and perform the coverage analyses. Test results are typically reviewed by someone other than the test executor, by having someone other than the developer of the tests be the independent reviewer, by the use of tools, and/or by having a team review. (A6-3, 4, A7-2, 3, 4, 5, 6, 7, 8)

	Perform:

· Worst-case timing analysis of CPU and other resource usage (A7-2, 6.3.6c., 6.4.2.1, 6.4.2.2, 6.4.3a.),

· Worst-case memory usage for all types of memory used (RAM, ROM, stack usage, I/O buffers, etc.) (A7-2, 6.3.6c., 6.4.2.1, 6.4.2.2, 6.4.3a., b.),

· Data coupling analysis (DCA) and control coupling analysis (CCA) of all software components and databases (A7-2, 8; 6.3.6c., 6.4.2.1, 6.4.2.2, 6.4.3a., b.)
	· Timing and CPU, target resource and memory usage are usually verified by evaluation of requirements-based test results, and/or by tools and equipment designed to measure usage of these hardware devices.

· DCA and CCA usually verified by combination of design review, TC& P review, test results review, call tree analysis, and other means
	· Typically independence is achieved by having someone other than the test developers conduct the analyses, by using tools, and/or by having a team review. Systems and hardware engineers may be involved in timing and target environment resource usage analyses. (A7-2, 8)

	· Resolve structural coverage deficiencies (6.4.4.3)
	· Add requirements and/or TC&, remove dead code, test deactivation mechanisms. Usually verified by test results review and coverage analyses
	· Independence typically achieved by having someone other than the developer of the requirements, TC&P, etc. resolve and verify fixes, and/or a team review. (A7-5, 6, 7, 8)

As mentioned before, some of these activities, both development and verification, can be assisted or replaced by the use of qualified tools, and according to the DO-178B/ED-12B definition for independence “…a tool(s) may be used to achieve an equivalence to the human verification activity. …” For example, tools can be used to establish and maintain traceability, identify “holes” (perform analysis), and detect incomplete traceability. Tools can be used to enforce design and coding standards (e.g., detect prohibited constructs, size and complexity restrictions, measure central processing unit (CPU) timing, throughput and memory usage, etc.). There are tools used as a host computer or emulator during development or used as a simulator of external interfaces and devices during test development and informal “dry runs” of test execution. Tools are used to measure requirements-based test coverage and structural coverage, and to identify “holes” in that coverage. Some tools are used to automate test execution (batch runs), etc. Tools can automatically generate source code or object code from formal requirements specification languages or from graphical depictions of requirements. Test cases or vectors can also be automatically generated from these same languages and graphics.

However, many of the verification activities still require human intelligence and engineering expertise to evaluate the software life cycle development data, and determine compliance to the developer’s plans, standards, policy and guidance of DO-178B/ED-12B.

3) Three Perspectives

There are at least three perspectives with regard to what verification independence means and what an applicant or their system/software development organization would have to do to comply with DO-178B/ED-12B guidance.

1. Organizational Verification Independence Perspective – This perspective proposes that to truly achieve independence, the personnel performing the verification activity (i.e., review) should actually be in a different organization (or company) than the organization which developed the data being reviewed/verified. This perspective proposes that, in order to have a truly “objective evaluation,” the personnel involved in the development and in the verification should have an organizational independence. It also proposes that the developer of data could not be “objective” or impartial enough (because of their sense of “ownership” of the data) to provide an objective evaluation. Furthermore, the developers could make the same erroneous assumptions in reviewing the data as they did while they were developing it.

Note: While this approach may be good, it goes beyond the DO-178B/ED-12B objectives’ intent.

2. Chief Programmer Perspective – This perspective proposes that only the developer of the data to be reviewed has the background and experience to truly understand the data and perform a meaningful review. It may propose that review by those not involved in the development of the data is somewhat meaningless for a number of reasons, such as:

a. They may not have the technical expertise to assess the data,

b. “Filling out the checklist” is just a formality to provide some evidence that the review was conducted, and

c. Those performing these reviews really only identify editorial and typographical types of errors, and don’t fulfill a value-added role.

It may also suggest that, unless highly qualified individuals are involved in a review, requiring someone other than the developer to review the data would not provide a relevant evaluation.

Note: This approach is generally not seen as acceptable to meet the DO-178B/ED-12B objectives.

3. No Sole Perspective – This perspective proposes that that there is value in having someone other than the developer of the data review the data, and that it satisfies the criteria for having an “objective evaluation” without requiring organizational independence. In fact, this perspective recommends that there is additional benefit in having multiple other persons involved in each review from different disciplines (such as systems engineers, safety specialists, test engineers, human factors specialists, technical writers, etc.). Also, by having other disciplines involved in the review, one could potentially be getting the greatest possible “objective evaluation” of the data. Independent reviews help prevent a biased perspective since it may be difficult to impartially review one’s own work.

Additionally, the value of having an independent reviewer involved in the software engineering discipline is supported by extensive research and application.
 It is also intuitive and reasonable that having people other than the author or developer of an artifact, review (inspect) that artifact from their different perspectives, disciplines, and experiences will provide for higher quality, safer, easier to maintain, and less expensive (in the long run) products.

Potential benefits also exist in having a different person involved in developing the test cases and procedures (TC&P) than the person who developed the low level requirements or the person who developed the code to be verified by those TC&P. This suggests an “authorship” independence, supported by Objectives 3 and 4 of Annex A Table A-6. One could interpret the independence of those two objectives in several different ways:

· That the person evaluating that the objectives are satisfied cannot be the same person who developed the R-BT for normal range and robustness TC&P used to verify the EOC (which may be addressed by Table A-7, objectives 1 and 4 with independence); or

· That the person evaluating that the objectives are satisfied cannot be the same person who developed the low-level requirements being verified; or

· That the person evaluating that the objectives are satisfied cannot be the same person who developed the code being verified; or

· That the person evaluating that the objectives are satisfied cannot be the same person who developed the code nor the TC&P used to verify the EOC, nor is it the same person who executed the tests.

This “No Sole Perspective” is more aligned with the DO-178B/ED-12B definition of independence and will be elaborated upon in the next section.

4) Certification Authorities Software Team (CAST) Position

The CAST supports and expands on the “No Sole Perspective,” and proposes the following guidelines for interpretation and satisfaction of the DO-178B/ED-12B verification independence:

a. General Position: To achieve verification independence, the person performing or responsible for the verification activity should not be the same person who developed the data being verified. This is relevant to all DO-178B/ED-12B objectives needing verification independence.

b. Tool Qualification: If a tool is used to eliminate, reduce or automate the activities associated with a DO-178B/ED-12B objective needing verification independence and that tool’s output will not be completely verified with independence, then that tool should be qualified. Reference DO-178B/ED-12B Section 12.2.

c. Test Case and Procedure Development: The test cases and procedures should not be developed by the same person who developed the low-level requirements or source code to be verified by those test cases and procedures. This is relevant to Annex A Table A-6 objectives 3 and 4 and Table A-7 objective 1.

d. Test Case and Procedure Review: The person responsible for performing the test cases and procedures review should not be the same person who developed the test cases and procedures to be verified. This is relevant to Annex A Table A-7 objective 1.

e. Test Execution: The person responsible for executing the tests should not be the same person who developed the requirements or code being verified by the tests, nor the developer of the test cases and procedures being executed. This is relevant to Annex A Table A-6 objectives 3 and 4 and Table A-7 objective 1. If the test execution is fully automated (e.g., scripted “batch” run with no need for human intervention or observation), then this guideline would not apply. However, that test “tool” may need to be qualified and the developer of the testing tool (that person setting up the automated test execution and environment) should not be the same person who developed the test cases and procedures.

f. Test Results Review and Coverage Analyses: The person responsible for performing the test results review or test coverage analyses should not be the same person who developed the test cases and procedures, nor the same person who executed the tests. This is relevant to Annex A Table A-7 objectives 2 through 8.

CAST Recommendations:

g. A developer may be a member of the verification team performing the “independence” activity (i.e., review) but that developer should not be the “sole”, responsible reviewer of the data. That is, some person other than the developer should be the “independent verifier” who is responsible for and the “owner” of the verification activity and results.

h. It is recommended that the developer also not be the review team leader, moderator, nor scribe for the verification activity of their data.

i. It is recommended that “qualified” personnel are the primary “independent” reviewers in the activity, and that novices (those new to the development or lacking sufficient experience or expertise) may be reviewers but only under supervised conditions and not as the “independent,” responsible reviewer.

j. To provide evidence of verification independence, the applicants, designated engineering representatives (DERs), and system/software developers should ensure that the verification results (review records) include: identification of the data being reviewed, identification of the developer of the data, and identification of the “independent” reviewer; as well as the other typical data contained in the review record such as the standards, criteria, checklists being applied during the review, review results, action items or problem reports generated, etc.

k. Applicant should describe their approach to independence in their Software Verification Plan (see Section 11.3.b of DO-178B/ED-12B) and get agreement with the certification authorities early in the program.

l. If a tool is used to automate an activity where verification independence is needed, the tool may need to be qualified and the verifier of the tool (for the tool qualification) should not be the same person who developed the tool.

Table 3 illustrates an example of the developers and verifiers that would need to be involved in a software development project to satisfy the verification independence. Columns 1 and 3 identify the developer and independent verifier roles with reference to the CAST position guidelines (e.g., Guideline a.) from the above list. The middle column provides the DO-178B/ED-12B Annex A table objectives and independence references.

TABLE 3

CAST Guidelines
Example in Satisfying Verification Independence Objectives of DO-178B

	Life Cycle Data Developer
	Independence?
	Independent Verifier

	High-Level Requirements (HLR) Developer
	Yes for A3-1, 2, 7

	HLR Verifier

(not HLR Developer per Guideline a.)

	Low-Level Requirements (LLR) / Architecture Developer
	Yes for A4-1, 2, 7, 8, 9, 13

	LLR/Arch. Verifier
(not LLR/Arch. Developer per Guideline a.)

	Source Code Developer
	Yes for A5-1, 2, 6

	Source Code Verifier

(not Code Developer per Guideline a.)

	Executable Object Code (EOC) /Linking and Loading Procedures (LLP) Developer/Integrator
	No independence needed for

A5-7, 6.3.5
	Integrated EOC/hardware

No independence needed

	Test Cases and Procedures (TC&P)

Developer (not LLR Developer nor Source Code Developer per Guideline c.)
	Yes for A6-3, 4; A7-1

	TC&P Verifier

(not TC&P Developer per Guideline d.)

	Test Executor

(not LLR Developer nor Source Code Developer nor TC&P Developer per Guideline e.)

See Note 1
	Yes for A6-3, 4; A7-1, 2

	Test Results Verifier (not TC&P Developer nor Test Executor per Guideline f.)

	Test Coverage Analyses Developer (not TC&P Developer nor Test Executor per Guideline f.)

See Note 2
	Yes for A7-3, 4, 5, 6, 7, 8

	R-BT and Structural Coverage Analyses Results Verifier (not Test Coverage Analyses Developer per Guideline a.)

Note 1: If the test execution is fully automated and requires no human intervention or observation, then this guideline may not be applicable. However, the test tool may need to be qualified and the developer of the test tool should not be the same person who developed the TC&P. If the tool is qualified, the verifier of the tool should not be the same person who developed the tool.

Note 2: If the requirements-based test coverage analyses and/or structural coverage analyses are fully performed and documented by one or more tools, those tools may need to be qualified and the tool developer should not be the verifier of the coverage analyses. If a tool is qualified, the verifier of the tool (for the tool qualification) should not be the same person who developed the tool.
NOTE: This position paper has been coordinated among the software specialists of certification authorities from North and South America, and Europe. However, it does not constitute official policy or guidance from any of the authorities. This document is provided for educational and informational purposes only and should be discussed with the appropriate certification authority when considering for actual projects.

� References include: Watts Humphrey’s book “Managing the Software Process,” chapter 10, 1989 (Addison-Wesley), Michael Fagan’s Inspections process, (IBM Systems Journal 1976 and 1985); Freedman and Weinberg’s book “Handbook of Walkthroughs, Inspections and Technical Reviews” (Little Brown), and Tom Gilb’s “Principles of Software Engineering Management,” 1988 (Addison-Wesley).

