
Certification Authorities Software Team
(CAST)

Position Paper

CAST-26

VERIFICATION INDEPENDENCE

COMPLETED January 2006

(Rev 0)

NOTE: This position paper has been coordinated
among the software specialists of certification
authorities from North and South America, and
Europe. However, it does not constitute official
policy or guidance from any of the authorities.
This document is provided for educational and
informational purposes only and should be
discussed with the appropriate certification
authority when considering for actual projects.

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

1

Verification Independence

1) Purpose
Misunderstanding exists on what compliance with DO-178B/ED-12B guidance
for verification independence means by applicants, system software developers
and certification authorities. This has resulted in inconsistent application by
certification authorities, and confusion as to what certification applicants and
airborne system developers should do to ensure compliance for their software
developments. This paper presents some background, discussion, and a CAST
position for what verification independence means and what applicants and their
developers should do to ensure they achieve verification independence for their
certification projects.

2) Background
RTCA document DO-178B and EUROCAE document ED-12B, “Software
Considerations in Airborne Systems and Equipment Certification,” dated
December 1, 1992 proposes verification independence as a means of achieving
additional assurance for the quality and safety of software installed in airborne
systems and equipment. Specifically, DO-178B/ED-12B recommends verification
independence for the following objectives (as indicated in Annex A Tables A-3,
A-4, A-5, A-6, and A-7 for Levels A and B software applications):

TABLE 1

DO-178B/ED-12B Verification Independence Objectives
Table Reference Summary Level(s)
A-3 6.3.1a “Software high-level requirements comply with system

requirements.”
A and B

A-3 6.3.1b “High-level requirements are accurate and consistent.” A and B
A-3 6.3.1g “Algorithms are accurate.” A and B
A-4 6.3.2a “Low-level requirements comply with high-level

requirements.”
A and B

A-4 6.3.2b “Low-level requirements are accurate and consistent.” A and B
A-4 6.3.2g “Algorithms are accurate.” A and B
A-4 6.3.3a “Software architecture is compatible with high-level

requirements.”
A

A-4 6.3.3b “Software architecture is consistent.” A
A-4 6.3.3f “Software partitioning integrity is confirmed.” A
A-5 6.3.4a “Source code complies with low-level requirements.” A and B
A-5 6.3.4b “Source code complies with software architecture.” A
A-5 6.3.4f “Source code is accurate and consistent.” A
A-6 6.4.2.1, “Executable object code complies with low-level

requirements.”
A and B

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

2

Table Reference Summary Level(s)
6.4.3

A-6 6.4.2.2,
6.4.3

“Executable object code is robust with low-level
requirements.”

A

A-7 6.3.6b “Test procedures are correct.” A
A-7 6.3.6c “Test results are correct and discrepancies explained.” A
A-7 6.4.4.1 “Test coverage of high-level requirements is achieved.” A
A-7 6.4.4.1 “Test coverage of low-level requirements is achieved.” A
A-7 6.4.4.2 “Test coverage of software structure (modified

condition/decision) is achieved.”
A

A-7 6.4.4.2a, b “Test coverage of software structure (decision) is
achieved.”

A and B

A-7 6.4.4.2a, b “Test coverage of software structure (statement
coverage) is achieved.”

A and B

A-7 6.4.4.2c “Test coverage of software structure (data coupling and
control coupling) is achieved.”

A and B

Note: The text for each objective in the DO-178B/ED-12B Annex A tables is a
summarized form of the actual objective’s wording, and the referenced
sections should be read for the full text of each objective.

Furthermore, in Annex B, the DO-178B/ED-12B glossary, a definition of
independence is provided which states:

“Independence – Separation of responsibilities which ensures the
accomplishment of objective evaluation. (1) For software verification process
activities, independence is achieved when the verification activity is
performed by a person(s) other than the developer of the item being verified,
and a tool(s) may be used to achieve an equivalence to the human verification
activity. …”

Typically, compliance with the referenced objectives is achieved with the use of
humans manually reviewing the subject data, using a standard and/or checklist,
and is a very labor intensive activity. The results of these reviews are usually
captured by completing review checklists, keeping review notes of errors or
deficiencies found or questions, marking (red-lining) the data noting corrections
to be made, or other means; and then ensuring that corrections are implemented in
a subsequent version of the data artifact, using either a formal problem reporting
and resolution process, or an informal actions listing. Software quality assurance
(SQA) personnel usually attend at least some of these reviews to ensure that the
engineers are applying the relevant plans, standards, checklists, etc. Other terms
used for review include inspection, evaluation, walkthrough, audit, etc.

More recently, applicants have proposed to use tools to attempt to automate
certain aspects of these reviews or enforce their criteria. Probably the most
common tools proposed are “structural coverage” analysis tools which make

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

3

various claims for satisfying the structural coverage objectives of section 6.4.4.2
and Table A-7, objectives 5 through 8. Other tools commonly used are traceability
tools (such as relational databases, and hyperlinks in documents) to trace between
data elements (such as between high-level requirements and low-level
requirements, between low-level requirements and source code components, and
between requirements and the test cases and procedures which verify the
requirements), and to identify any missing elements or untraceable data items in
the development.

Development activities, their corresponding verification activities, and typical
means of achieving verification independence for those activities include those in
Table 2.

TABLE 2

DO-178B/ED-12B Development Activities, Verification

Activities and How Verification Independence is Typically Achieved
Development Activity Verification Activity Independence

• Develop high-level
requirements (HLR)
(A2-1, 5.1, 5.1.1a, 5.1.2)
• Develop derived high-
level requirements
(A2-2, 5.1, 5.1.1b, 5.1.2)

• Usually verified by high-level
requirements review using a
system/software requirements review
checklist. (A3)
• This review usually would include
other disciplines, such as systems
engineers, QA, hardware engineers, etc.

• Typically, independence is achieved
by having someone other than the
developer of the high-level software
requirements (or section(s) being
verified) be the independent reviewer,
and/or by having a team review. (A3-
1,2,7)

• Develop software
architecture (A2-3, 5.2,
5.2.1a, 5.2.2, 5.2.3)
• Develop low-level
requirements (LLR) (A2-4,
5.2, 5.2.1a, 5.2.2, 5.2.3)
• Develop derived low-
level requirements (A2-5,
5.2, 5.2.1b, 5.2.2, 5.2.3)

• Usually verified by software
architecture review, software requirements
or detailed design review using a software
design/ requirements review checklist.
(A4)

• Typically, independence achieved
by having someone other than the
developer of the software architecture
structures and low-level software
requirements (or section(s) being
verified) be the independent reviewer,
and/or by having a team review.
(A4-1,2,7,8,9,13)

• Develop source code
(A2-6, 5.3, 5.3.1b, 5.3.2),

• Usually verified by source code
review, walkthrough or inspection,
sometimes tools are used to enforce
coding standards. (A5-1 to 6)

• Typically, independence achieved
by having someone other than the
developer of the source code (or
module(s) being verified) be the
independent reviewer, and/or by having a
team review. (A5-1,2,6)

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

4

Development Activity Verification Activity Independence
• Develop and establish
traceability (between System
Requirements and high-level
Software Requirements
(5.5a), between HLR and
low-level requirements
(5.5b), and between LLR
and source code (5.5c),
Source code to object code
(6.4.4.2b, Level A)

• Usually verified as part of the
requirements, design and code reviews,
often using a matrix format or tool to track
traceability to identify missing traces. (A3-
6, A4-6, A5-5)
• Source to object code tracing may be
a separate review or analysis using a tool.
(A7-5,6,7)

• Independence not required for
traceability objectives but could be
achieved by using a tool, having
someone other than the developer of the
traceability mapping be the independent
reviewer, and/or having a team review.

• Develop linking and
loading data and generate
object code and integrate
object code (and/or burn)
into target hardware (A2-7,
5.4, 5.4.1a, 5.4.2, 5.4.3) to
produce executable object
code (EOC).

• Usually verified by integration review,
review of linking and loading data and
"load map", and “debugging” activity and
informal testing.
• Tools (compiler, linker, loader, read-
only memory (ROM) burner, checksum
and cyclic redundancy check (CRC)
generators and checkers, etc.) may be
heavily relied on, especially tools
previously used by the developer. (A5-7,
6.3.5)

• Independence not required for
integration objectives but verifying the
embedded load typically involves tool’s
specialists and target computer and
system expertise. Incorrect integration
could adversely impact achieving Table
A-6 objectives, including those for which
independence is needed.

• Traceability of high-
level requirements to test
cases and procedures (6.4a.
and c., A7-3, 6.4.3a.,
6.4.4.1a.)
• Traceability of low-level
requirements to test cases
and procedures (6.4a. and
c., A7-4, 6.4.3b., 6.4.4.1)

• Traceability from requirements to test
cases and procedures may be part of
requirements reviews but is usually a later
test case and procedure (test coverage)
review or analysis, usually using a tool
and/or matrix. (A7-3, 4)

• Although, not explicitly required,
traceability between requirements and
tests supports many of the verification
objectives of A6 and A7. Typically,
independence achieved by using a tool,
independent reviewer, or team review of
mapping.

• Develop test cases and
procedures (TC&P) for:
Requirements-based tests
(A7-1, 6.3.6b.)
• Normal Range, and
Robustness (A6-1 thru 5
(6.4.2.1, 6.4.2.2, 6.4.3)

• Usually verified by TC&P reviews, the
entire test suite conducted will determine
how well the EOC complies with and is
robust with the requirements, and the test
coverage achieved. (A6-1, 2, 3, 4, A7-1, 3,
4)

• Typically, independence is achieved
by having someone other than the
developer of the related requirements or
code be the developer of the TC&P for
those requirements/code, and
independent review of the TC&P by
having someone other than the
developer of the tests be the independent
reviewer, and/or having a team review.
(A6-3, 4, A7-1, 3, 4)

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

5

Development Activity Verification Activity Independence
• Execute test cases and
procedures (A6-1, 2, 3, 4, 5;
6.3.6c., 6.4a., b.; 6.4.1,
6.4.3)
• Measure and perform
requirements-based test
coverage analysis (A7-2, 3,
4; 6.4c., 6.4.4.1, 6.4.4.3)
• Measure and perform
structural coverage analysis
(A7-5, 6, 7, 8; 6.4d., 6.4.4.2,
6.4.4.3)

Usually verified by:
• Test witnessing and review of test
results comparing actual results to
expected results. (A7-2)
• Coverage of R-BT and structural
coverage usually by review of test
traceability and test results, and R-BT and
structural coverage analyses, often
assisted by tools. (A7-3, 4, 5, 6, 7, 8)
• May be partially conducted on host
computer initially and then coupled with
system testing in target environment.
(6.4.1, 6.4.3a., A6-5)
• May be assisted by informal test
process used to debug code and tests and
measure initial coverage (6.4.1, 6.4.3a.)

• Typically, independence is achieved
by having someone other than the
developer of the TC&P execute the tests
and perform the coverage analyses. Test
results are typically reviewed by
someone other than the test executor, by
having someone other than the
developer of the tests be the independent
reviewer, by the use of tools, and/or by
having a team review. (A6-3, 4, A7-2, 3,
4, 5, 6, 7, 8)

Perform:
• Worst-case timing
analysis of CPU and other
resource usage (A7-2,
6.3.6c., 6.4.2.1, 6.4.2.2,
6.4.3a.),
• Worst-case memory
usage for all types of
memory used (RAM, ROM,
stack usage, I/O buffers,
etc.) (A7-2, 6.3.6c., 6.4.2.1,
6.4.2.2, 6.4.3a., b.),
• Data coupling analysis
(DCA) and control coupling
analysis (CCA) of all
software components and
databases (A7-2, 8; 6.3.6c.,
6.4.2.1, 6.4.2.2, 6.4.3a., b.)

• Timing and CPU, target resource and
memory usage are usually verified by
evaluation of requirements-based test
results, and/or by tools and equipment
designed to measure usage of these
hardware devices.
• DCA and CCA usually verified by
combination of design review, TC& P
review, test results review, call tree
analysis, and other means

• Typically independence is achieved
by having someone other than the test
developers conduct the analyses, by
using tools, and/or by having a team
review. Systems and hardware engineers
may be involved in timing and target
environment resource usage analyses.
(A7-2, 8)

• Resolve structural
coverage deficiencies
(6.4.4.3)

• Add requirements and/or TC&,
remove dead code, test deactivation
mechanisms. Usually verified by test
results review and coverage analyses

• Independence typically achieved by
having someone other than the
developer of the requirements, TC&P,
etc. resolve and verify fixes, and/or a
team review. (A7-5, 6, 7, 8)

As mentioned before, some of these activities, both development and verification,
can be assisted or replaced by the use of qualified tools, and according to the DO-
178B/ED-12B definition for independence “…a tool(s) may be used to achieve an
equivalence to the human verification activity. …” For example, tools can be
used to establish and maintain traceability, identify “holes” (perform analysis),
and detect incomplete traceability. Tools can be used to enforce design and
coding standards (e.g., detect prohibited constructs, size and complexity
restrictions, measure central processing unit (CPU) timing, throughput and

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

6

memory usage, etc.). There are tools used as a host computer or emulator during
development or used as a simulator of external interfaces and devices during test
development and informal “dry runs” of test execution. Tools are used to measure
requirements-based test coverage and structural coverage, and to identify “holes”
in that coverage. Some tools are used to automate test execution (batch runs), etc.
Tools can automatically generate source code or object code from formal
requirements specification languages or from graphical depictions of
requirements. Test cases or vectors can also be automatically generated from
these same languages and graphics.

However, many of the verification activities still require human intelligence and
engineering expertise to evaluate the software life cycle development data, and
determine compliance to the developer’s plans, standards, policy and guidance of
DO-178B/ED-12B.

3) Three Perspectives
There are at least three perspectives with regard to what verification independence
means and what an applicant or their system/software development organization
would have to do to comply with DO-178B/ED-12B guidance.

1. Organizational Verification Independence Perspective – This perspective
proposes that to truly achieve independence, the personnel performing the
verification activity (i.e., review) should actually be in a different
organization (or company) than the organization which developed the data
being reviewed/verified. This perspective proposes that, in order to have a
truly “objective evaluation,” the personnel involved in the development
and in the verification should have an organizational independence. It also
proposes that the developer of data could not be “objective” or impartial
enough (because of their sense of “ownership” of the data) to provide an
objective evaluation. Furthermore, the developers could make the same
erroneous assumptions in reviewing the data as they did while they were
developing it.

Note: While this approach may be good, it goes beyond the DO-

178B/ED-12B objectives’ intent.

2. Chief Programmer Perspective – This perspective proposes that only the
developer of the data to be reviewed has the background and experience to
truly understand the data and perform a meaningful review. It may
propose that review by those not involved in the development of the data
is somewhat meaningless for a number of reasons, such as:

a. They may not have the technical expertise to assess the data,

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

7

b. “Filling out the checklist” is just a formality to provide some evidence
that the review was conducted, and

c. Those performing these reviews really only identify editorial and
typographical types of errors, and don’t fulfill a value-added role.

It may also suggest that, unless highly qualified individuals are involved in
a review, requiring someone other than the developer to review the data
would not provide a relevant evaluation.

Note: This approach is generally not seen as acceptable to meet the DO-

178B/ED-12B objectives.

3. No Sole Perspective – This perspective proposes that that there is value in
having someone other than the developer of the data review the data, and
that it satisfies the criteria for having an “objective evaluation” without
requiring organizational independence. In fact, this perspective
recommends that there is additional benefit in having multiple other
persons involved in each review from different disciplines (such as
systems engineers, safety specialists, test engineers, human factors
specialists, technical writers, etc.). Also, by having other disciplines
involved in the review, one could potentially be getting the greatest
possible “objective evaluation” of the data. Independent reviews help
prevent a biased perspective since it may be difficult to impartially review
one’s own work.

Additionally, the value of having an independent reviewer involved in the
software engineering discipline is supported by extensive research and
application.1 It is also intuitive and reasonable that having people other
than the author or developer of an artifact, review (inspect) that artifact
from their different perspectives, disciplines, and experiences will provide
for higher quality, safer, easier to maintain, and less expensive (in the long
run) products.

Potential benefits also exist in having a different person involved in
developing the test cases and procedures (TC&P) than the person who
developed the low level requirements or the person who developed the
code to be verified by those TC&P. This suggests an “authorship”
independence, supported by Objectives 3 and 4 of Annex A Table A-6.

1 References include: Watts Humphrey’s book “Managing the Software Process,” chapter 10,
1989 (Addison-Wesley), Michael Fagan’s Inspections process, (IBM Systems Journal 1976 and
1985); Freedman and Weinberg’s book “Handbook of Walkthroughs, Inspections and Technical
Reviews” (Little Brown), and Tom Gilb’s “Principles of Software Engineering Management,”
1988 (Addison-Wesley).

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

8

One could interpret the independence of those two objectives in several
different ways:

 That the person evaluating that the objectives are satisfied
cannot be the same person who developed the R-BT for normal
range and robustness TC&P used to verify the EOC (which
may be addressed by Table A-7, objectives 1 and 4 with
independence); or

 That the person evaluating that the objectives are satisfied
cannot be the same person who developed the low-level
requirements being verified; or

 That the person evaluating that the objectives are satisfied
cannot be the same person who developed the code being
verified; or

 That the person evaluating that the objectives are satisfied
cannot be the same person who developed the code nor the
TC&P used to verify the EOC, nor is it the same person who
executed the tests.

This “No Sole Perspective” is more aligned with the DO-178B/ED-12B
definition of independence and will be elaborated upon in the next section.

4) Certification Authorities Software Team (CAST) Position
The CAST supports and expands on the “No Sole Perspective,” and proposes the
following guidelines for interpretation and satisfaction of the DO-178B/ED-12B
verification independence:

a. General Position: To achieve verification independence, the person
performing or responsible for the verification activity should not be the
same person who developed the data being verified. This is relevant to all
DO-178B/ED-12B objectives needing verification independence.

b. Tool Qualification: If a tool is used to eliminate, reduce or automate the
activities associated with a DO-178B/ED-12B objective needing
verification independence and that tool’s output will not be completely
verified with independence, then that tool should be qualified. Reference
DO-178B/ED-12B Section 12.2.

c. Test Case and Procedure Development: The test cases and procedures
should not be developed by the same person who developed the low-level
requirements or source code to be verified by those test cases and
procedures. This is relevant to Annex A Table A-6 objectives 3 and 4 and
Table A-7 objective 1.

d. Test Case and Procedure Review: The person responsible for performing
the test cases and procedures review should not be the same person who

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

9

developed the test cases and procedures to be verified. This is relevant to
Annex A Table A-7 objective 1.

e. Test Execution: The person responsible for executing the tests should not
be the same person who developed the requirements or code being verified
by the tests, nor the developer of the test cases and procedures being
executed. This is relevant to Annex A Table A-6 objectives 3 and 4 and
Table A-7 objective 1. If the test execution is fully automated (e.g.,
scripted “batch” run with no need for human intervention or observation),
then this guideline would not apply. However, that test “tool” may need to
be qualified and the developer of the testing tool (that person setting up
the automated test execution and environment) should not be the same
person who developed the test cases and procedures.

f. Test Results Review and Coverage Analyses: The person responsible for
performing the test results review or test coverage analyses should not be
the same person who developed the test cases and procedures, nor the
same person who executed the tests. This is relevant to Annex A Table A-
7 objectives 2 through 8.

CAST Recommendations:

g. A developer may be a member of the verification team performing the
“independence” activity (i.e., review) but that developer should not be the
“sole”, responsible reviewer of the data. That is, some person other than
the developer should be the “independent verifier” who is responsible for
and the “owner” of the verification activity and results.

h. It is recommended that the developer also not be the review team leader,
moderator, nor scribe for the verification activity of their data.

i. It is recommended that “qualified” personnel are the primary
“independent” reviewers in the activity, and that novices (those new to the
development or lacking sufficient experience or expertise) may be
reviewers but only under supervised conditions and not as the
“independent,” responsible reviewer.

j. To provide evidence of verification independence, the applicants,
designated engineering representatives (DERs), and system/software
developers should ensure that the verification results (review records)
include: identification of the data being reviewed, identification of the
developer of the data, and identification of the “independent” reviewer; as
well as the other typical data contained in the review record such as the
standards, criteria, checklists being applied during the review, review
results, action items or problem reports generated, etc.

k. Applicant should describe their approach to independence in their
Software Verification Plan (see Section 11.3.b of DO-178B/ED-12B) and
get agreement with the certification authorities early in the program.

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

10

l. If a tool is used to automate an activity where verification independence is
needed, the tool may need to be qualified and the verifier of the tool (for
the tool qualification) should not be the same person who developed the
tool.

Table 3 illustrates an example of the developers and verifiers that would need to
be involved in a software development project to satisfy the verification
independence. Columns 1 and 3 identify the developer and independent verifier
roles with reference to the CAST position guidelines (e.g., Guideline a.) from the
above list. The middle column provides the DO-178B/ED-12B Annex A table
objectives and independence references.

NOTE: This position paper has been coordinated among the software specialists of
certification authorities from North and South America, and Europe. However, it does not
constitute official policy or guidance from any of the authorities. This document is provided
for educational and informational purposes only and should be discussed with the
appropriate certification authority when considering for actual projects.

11

TABLE 3

CAST Guidelines

Example in Satisfying Verification Independence Objectives of DO-178B
Life Cycle Data Developer Independence? Independent Verifier
High-Level Requirements (HLR)
Developer

Yes for A3-1, 2, 7

HLR Verifier
(not HLR Developer per
Guideline a.)

Low-Level Requirements (LLR) /
Architecture Developer

Yes for A4-1, 2, 7,
8, 9, 13

LLR/Arch. Verifier
(not LLR/Arch.
Developer per Guideline
a.)

Source Code Developer Yes for A5-1, 2, 6

Source Code Verifier
(not Code Developer per
Guideline a.)

Executable Object Code (EOC)
/Linking and Loading Procedures
(LLP) Developer/Integrator

No independence
needed for
A5-7, 6.3.5

Integrated EOC/hardware
No independence needed

Test Cases and Procedures (TC&P)
Developer (not LLR Developer nor
Source Code Developer per
Guideline c.)

Yes for A6-3, 4;
A7-1

TC&P Verifier
(not TC&P Developer per
Guideline d.)

Test Executor
(not LLR Developer nor Source
Code Developer nor TC&P
Developer per Guideline e.)
See Note 1

Yes for A6-3, 4;
A7-1, 2

Test Results Verifier (not
TC&P Developer nor Test
Executor per Guideline f.)

Test Coverage Analyses Developer
(not TC&P Developer nor Test
Executor per Guideline f.)
See Note 2

Yes for A7-3, 4, 5,
6, 7, 8

R-BT and Structural
Coverage Analyses
Results Verifier (not Test
Coverage Analyses
Developer per Guideline
a.)

Note 1: If the test execution is fully automated and requires no human intervention or
observation, then this guideline may not be applicable. However, the test tool may need
to be qualified and the developer of the test tool should not be the same person who
developed the TC&P. If the tool is qualified, the verifier of the tool should not be the
same person who developed the tool.

Note 2: If the requirements-based test coverage analyses and/or structural coverage
analyses are fully performed and documented by one or more tools, those tools may need
to be qualified and the tool developer should not be the verifier of the coverage analyses.
If a tool is qualified, the verifier of the tool (for the tool qualification) should not be the
same person who developed the tool.

	CAST-26
	Verification Independence
	1) Purpose
	2) Background
	Reference
	Summary

	Level(s)

