Certification Authorities Software Team (CAST)

Position Paper

CAST-7

Open Problem Report (OPR) Management for Certification
Completed August, 2001

Open Problem Report (OPR) Management for Certification
1.
SCOPE

This paper discusses issues related to open problem report management and expands on DO-178B/ED-12B, section 11.20j, for software status reporting. Many software development teams do not distinguish between problem reports and change requests (e.g., they use a tool to address both at the same time). This discussion paper focuses only on problem reports, as addressed in ED-12B/DO-178B guidelines.

1.1

Background

ED-12B/DO-178B is an assurance standard; therefore, software developed to be compliant with ED-12B/DO-178B objectives has a better assurance of behaving as intended (i.e., specified) and having minimal unintended behaviour (i.e., deviation from specification or unspecified behaviour). In ED-12B/DO-178B, software specification is contained in the High-Level Requirements (HLR).

However, most software baselines have known problems (referred to as Open Problem Reports or OPR’s), which affect strict compliance to specification. (Note: These problems can come from a lack in the specification or HLR themselves).

There can be many types of OPR’s on a particular software baseline. Such OPR’s can identify deviation from the requirements for the baseline. Such software may not behave as intended and can even show some unintended/adverse side effects. This could make it difficult or impossible to comply with JAR/FAR xx.1301 and xx.1309.

This paper gives some recommendations for applicants to deal with OPR’s and still meet JAR/FAR objectives and to satisfy the objectives of ED-12B/DO-178B.

1.2

Objectives

This paper has two objectives:

1. To clarify the role of the aircraft manufacturer and the equipment supplier in the assessment of limitations of a piece of equipment embedding software because of known problems at the time of certification.

2. To help the certification authority in its assessment of the piece of equipment by requiring inclusion of OPR’s in the Software Accomplishment Summary.

2.
GLOSSARY

Text in italic is extracted from ED12B/DO178B glossary.

Error: With respect to software, a mistake in requirements, design or code.
Defect: an “error” in executable code. Under specific conditions, the SOFTWARE is not performing as needed.

Fault: A manifestation of an error in software. A fault, if it occurs, may cause a failure.
Failure: The inability of a system or system component to perform a required function within specified limits. A failure may be produced when a fault is encountered.

Failure condition: The effect on the aircraft and its occupants both direct and consequential, caused or contributed to by one or more failures, considering relevant adverse operational and environmental conditions. A failure condition is classified according to the severity of its effect as defined in FAA AC 25.1309-1A or JAA AMJ 25.1309.

The usual chain of events is Error (Defect (Fault (Failure (Failure condition.

The term defect is added to highlight the difference between errors in written requirements and error in the executable code.

3.
OPR Management Principles

3.1

Principles

The two principles below establish the foundation of this position paper.

1. Possible effects of OPR’s should be analyzed to specify operational limitations and to ensure safety of the system (i.e., compliance to JAR/FAR).

2. If not addressed, OPR’s may lead to deterioration of software quality (i.e., safe behaviour) when people are faced with software modification. This is typical of complex systems.

3.2

Recommendations

From these two principles, the following recommendations can be derived:

1. All OPR’s should be analysed so that deviation from the specification (HLR) can be determined. An OPR with multiple root causes (i.e., with multiple errors/defects implicated) may be split into different related OPR’s in order to conduct the safety effect analysis.
An OPR should be evaluated again in the new baseline in order to claim credit from previous acceptance.

2. All OPR’s should be included in the Software Accomplishment Summary (see ED12B/DO178B, Section 11.20).

3. All deviations from HLR should be analyzed to determine the potential affect on aircraft safety, operations, and/or crew workload.
4. Even if the equipment manufacturer has the sufficient knowledge to explain the functional effect on the equipment/item for an OPR, only the aircraft manufacturer can assess or confirm the potential operational effect.

4.
Recommendations on OPR assessment

4.1

Types of OPR’s

This section classifies OPR’s into different types. The different types determine the expectation of certification authorities on OPR assessment.

An OPR logged when developing a software build with a methodology compliant to ED12B/DO178B can be classified depending on the origin of the problem report as:

1. Known deviation from methodology (plans), which can lower the assurance for the software but not necessarily induce errors or defects into the software.

2. A failed test case due to a incorrect test case or an actual software error.

3. Error in a requirement or development standard

Note: If the software is not behaving properly; this is the evidence of a defect. This kind of error can be raised through any kind of execution of the software. It is then considered a type 2 error.

4.2

Guidelines on the analysis of an OPR

This section details the recommendations to evaluate the PR depending on its origin.

4.2.1
Plans/methodology (type 1)

In this case the assurance has been compromised. The equipment supplier should show that the possibility for a software defect to be introduced or not detected is mitigated by another activity or a new specific activity in order to restore equivalent assurance.

This should be stated in the Software Accomplishment Summary for coordination with the certification authority.

Note that for a problem on a process itself DO-248B/ED-94B FAQ #17
applies and provides further explanations.

4.2.2
Failed test (type 2)

Tests include all possible execution of the software. This includes flights (either by aircraft manufacturer or airline) so that an ISP (In Service Problem) can lead to a software OPR.

4.2.2.1
Error in the test

If the test is incorrect, the functionality (i.e., software requirement) may be verified by another way (including analysis, bench testing, flight-testing) or by correcting the test. Any possibility of inconsistencies in the requirements should be investigated and analysed for possible effects.

4.2.2.2
Error in the requirement

This is a type 3 error, see 4.2.3 below.

4.2.2.3
Defect evidence (error in the executable code)
The root cause of the software failure should be determined (a root cause analysis should be conducted in order to determine software defects).

Software defect effects should be analysed to determine all potential software failures.

Software failure should be given to the Safety Assessment Process in order to assess software compliance to safety/regulatory requirements.

4.2.3
Deviation from standards (design, coding…) or requirement documents (type 3)

In this case, the possible software defects can be induced directly from the design.

Software deviation should be analysed for all potential impact on the software.

Impacts on software should be given to the Safety Assessment Process in order to assess software compliance to safety/regulatory requirements.

Such an OPR should be corrected as soon as possible (and at least when modifying the applicable Configuration Item). The Configuration Item affected should be traceable to the OPR. (See ED-12B/DO-178B Section 7.)

5.
Proposed presentation of OPR’s in the Software Accomplishment Summary

The minimal problem report information that should be included in the Software Accomplishment Summary is defined in DO-178B/ED-12B as:

1. Identification of the OPR (configuration management number)

2. Short description of the OPR (one or two sentences), including system/safety effect

3. Mitigation for certification acceptability (justification, why this OPR can be left open)

4. OPR interrelationships (if needed)

Below is an example of a table that could be included in the Software Accomplishment Summary.
	Date
	OPR Number
	Title
	Description
	Severity
	Justification
	OPR relationship
	Status

	Date when the OPR was opened
	Configuration management Number
	
	Possibly including other OPR’s related to this one
	Categorization to be defined depending on the system effect
	Why the equipment could be embedded with this OPR
	Other OPR’s related
	New/Old (version)

NOTE: This position paper has been coordinated among the software specialists of certification authorities from the United States, Europe, and Canada. However, it does not constitute official policy or guidance from any of the authorities. This document is provided for educational and informational purposes only and should be discussed with the appropriate certification authority when considering for actual projects.

�PAGE \# "'PAGE: '#'�'" ��This issue of the paper simplifies the problems classification, change the wording from KP to OPR. I did not trace the modification through the revision marks, but you can ask for the previous version if you want.

I had the comments that this should not be the only way to process OPR but good practices. Perhaps the author of the comment can propose a “disclaimer” to add in the Scope section.

�PAGE \# "'PAGE: '#'�'" ��The reference has to be verified toward the final issue of the document.

