Certification Authorities Software Team (CAST)

Position Paper

CAST-8

Use of the C++ Programming Language
Completed January, 2002

Use of the C++ Programming Language

1.
BACKGROUND

The C++ language has several features that, if not controlled properly, can lead to unknown configurations of object code and unverified code. These issues can be divided into two categories: (1) compile-time issues and (2) run-time issues. There may be some overlap between these categories.

Issues addressed in this paper may also be applicable to other languages. Additionally, other languages may have other issues not addressed in this paper. The issues documented in this paper may not be all-inclusive (i.e., there may be other C++ issues that need to be addressed).

2.
COMPILE-TIME ISSUES

The compile-time issues that should be addressed by the applicant are:

2.1
Dead/Deactivated Code: Several variations of this can occur in object-oriented systems. A few are: (a) classes in a library not used; (b) methods (functions) of a class not called in a particular application; (c) methods (functions) of a class overridden in all subclasses; or (d) attributes of a class not accessed in a particular application. This can result in substantial dead code and deactivated code, and can substantially complicate traceability (especially for Level A software) and verification (especially for unintended function and structural coverage analysis).

2.2
Encapsulation: Separation of the external (public) and internal (private) aspects of a class and its objects. Generally, the external aspects are known as the interface, while the internal aspects are known as the implementation. Clients of a class may only have access to the interface of the objects of that class and not to the internal aspects (also known as data hiding, information hiding). The concerns of encapsulation in airborne systems are:

a) The programmer may not be aware of unintended functionality of the class, if class features, potential side effects, pre-conditions, and post-conditions are not well-documented;

b) Traceability and configuration control of classes may become difficult to manage; and

c) Structural coverage may be difficult to accomplish.

2.3
Inheritance: A mechanism whereby a class is defined in terms of others (its parents), adding the features of its parents to its own. A class may have a single parent (single inheritance) or multiple parents (multiple inheritance). Either the interface, or the interface and implementation can be inherited. Where multiple inheritance is allowed, repeated inheritance is a possibility (two or more parents have a common ancestor in the class hierarchy). Multiple inheritance is particularly a concern in airborne systems. It can lead to overly complex and potentially unpredictable interactions between classes. It can also complicate traceability and verification.
2.4
Overloading: Overloading is a feature where operators, multiple functions (or methods) have the identical name or symbol but are differentiated (e.g., different number and type of arguments). The matching of calls to the correct methods at compile time may be difficult to determine.

3.
RUN-TIME ISSUES

The run-time issues that should be addressed by the applicant are:

3.1
Dynamic Binding/Dispatch: The matching of calls to methods (functions) at run-time as opposed to compile-time or link-time. This results from a polymorphic call. There are a number of concerns regarding the use of dynamic binding/dispatch in airborne software:

a) It complicates the flow analysis (e.g., data coupling and control coupling) and structural coverage analysis;

b) It can lead to complex and error-prone code;

c) It can complicate source code to object code traceability;

d) The matching of calls to methods can be difficult, if implicit type conversion is used; and

e) The behavior of the execution of the compiler-generated code may not meet what the programmer expected.

3.2
 Polymorphism: The ability of a name in software text to denote, at run-time, one or more possible entities, such as a function, a variable or an operator. For example, given the text: f(x), which f() to call may be dependent on which class x belongs to, and x may belong to multiple classes, depending on the run-time state of the system. Polymorphism is generally supported by dynamic binding/dispatch. The concern with polymorphism in airborne systems is the potential for ambiguity, which might lead to coding errors, traceability complexity, and verification difficulty.
4.
CAST POSITION

Many C++ features, if not properly controlled and verified, can result in software code that is non-deterministic, unused, or difficult to verify, and whose configuration can change depending on the run-time state of the system.

Applicants who use C++ in their airborne systems should address:

· each of the above issues,

· any other issues related to the use of the C++ programming language identified during the specific certification project, and

· any issues related to the use of compiler-provided library functions.

The applicant should provide substantiating software plans, standards, and verification data to show that each of these issues, as well as any other identified issues, will be controlled and to ensure that an appropriate level of assurance is achieved for each.

NOTE: This position paper has been coordinated among the software specialists of certification authorities from the United States, Europe, and Canada. However, it does not constitute official policy or guidance from any of the authorities. This document is provided for educational and informational purposes only and should be discussed with the appropriate certification authority when considering for actual projects.

�PAGE \# "'PAGE: '#'�'" ��This issue of the paper simplifies the problems classification, change the wording from KP to OPR. I did not trace the modification through the revision marks, but you can ask for the previous version if you want.

I had the comments that this should not be the only way to process OPR but good practices. Perhaps the author of the comment can propose a “disclaimer” to add in the Scope section.

