
Certification Authorities Software Team
(CAST)

Position Paper

CAST-8

Use of the C++ Programming Language

Completed January, 2002

NOTE: This position paper has been coordinated
among the software specialists of certification
authorities from the United States, Europe, and
Canada. However, it does not constitute official
policy or guidance from any of the authorities.
This document is provided for educational and
informational purposes only and should be
discussed with the appropriate certification
authority when considering for actual projects.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

2

Use of the C++ Programming Language

1. BACKGROUND

The C++ language has several features that, if not controlled properly, can lead to
unknown configurations of object code and unverified code. These issues can be
divided into two categories: (1) compile-time issues and (2) run-time issues.
There may be some overlap between these categories.

Issues addressed in this paper may also be applicable to other languages.
Additionally, other languages may have other issues not addressed in this paper.
The issues documented in this paper may not be all-inclusive (i.e., there may be
other C++ issues that need to be addressed).

2. COMPILE-TIME ISSUES

The compile-time issues that should be addressed by the applicant are:

2.1 Dead/Deactivated Code: Several variations of this can occur in object-oriented

systems. A few are: (a) classes in a library not used; (b) methods (functions) of a
class not called in a particular application; (c) methods (functions) of a class
overridden in all subclasses; or (d) attributes of a class not accessed in a particular
application. This can result in substantial dead code and deactivated code, and can
substantially complicate traceability (especially for Level A software) and
verification (especially for unintended function and structural coverage analysis).

2.2 Encapsulation: Separation of the external (public) and internal (private) aspects

of a class and its objects. Generally, the external aspects are known as the
interface, while the internal aspects are known as the implementation. Clients of
a class may only have access to the interface of the objects of that class and not to
the internal aspects (also known as data hiding, information hiding). The
concerns of encapsulation in airborne systems are:

a) The programmer may not be aware of unintended functionality of the class, if

class features, potential side effects, pre-conditions, and post-conditions are
not well-documented;

b) Traceability and configuration control of classes may become difficult to
manage; and

c) Structural coverage may be difficult to accomplish.

2.3 Inheritance: A mechanism whereby a class is defined in terms of others (its

parents), adding the features of its parents to its own. A class may have a single
parent (single inheritance) or multiple parents (multiple inheritance). Either the

Comment [d1]: This issue of the
paper simplifies the problems
classification, change the wording
from KP to OPR. I did not trace the
modification through the revision
marks, but you can ask for the
previous version if you want.
I had the comments that this should
not be the only way to process OPR
but good practices. Perhaps the
author of the comment can propose a
“disclaimer” to add in the Scope
section.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

3

interface, or the interface and implementation can be inherited. Where multiple
inheritance is allowed, repeated inheritance is a possibility (two or more parents
have a common ancestor in the class hierarchy). Multiple inheritance is
particularly a concern in airborne systems. It can lead to overly complex and
potentially unpredictable interactions between classes. It can also complicate
traceability and verification.

2.4 Overloading: Overloading is a feature where operators, multiple functions (or

methods) have the identical name or symbol but are differentiated (e.g., different
number and type of arguments). The matching of calls to the correct methods at
compile time may be difficult to determine.

3. RUN-TIME ISSUES

The run-time issues that should be addressed by the applicant are:

3.1 Dynamic Binding/Dispatch: The matching of calls to methods (functions) at run-

time as opposed to compile-time or link-time. This results from a polymorphic
call. There are a number of concerns regarding the use of dynamic
binding/dispatch in airborne software:

a) It complicates the flow analysis (e.g., data coupling and control coupling)

and structural coverage analysis;
b) It can lead to complex and error-prone code;
c) It can complicate source code to object code traceability;
d) The matching of calls to methods can be difficult, if implicit type conversion

is used; and
e) The behavior of the execution of the compiler-generated code may not meet

what the programmer expected.

3.2 Polymorphism: The ability of a name in software text to denote, at run-time, one

or more possible entities, such as a function, a variable or an operator. For
example, given the text: f(x), which f() to call may be dependent on which class x
belongs to, and x may belong to multiple classes, depending on the run-time state
of the system. Polymorphism is generally supported by dynamic
binding/dispatch. The concern with polymorphism in airborne systems is the
potential for ambiguity, which might lead to coding errors, traceability
complexity, and verification difficulty.

4. CAST POSITION

Many C++ features, if not properly controlled and verified, can result in software
code that is non-deterministic, unused, or difficult to verify, and whose
configuration can change depending on the run-time state of the system.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

4

Applicants who use C++ in their airborne systems should address:
• each of the above issues,
• any other issues related to the use of the C++ programming language

identified during the specific certification project, and
• any issues related to the use of compiler-provided library functions.

The applicant should provide substantiating software plans, standards, and
verification data to show that each of these issues, as well as any other identified
issues, will be controlled and to ensure that an appropriate level of assurance is
achieved for each.

	Use of the C++ Programming Language
	Use of the C++ Programming Language
	1. BACKGROUND
	2. COMPILE-TIME ISSUES
	3. RUN-TIME ISSUES
	4. CAST POSITION

