
Certification Authorities Software Team
(CAST)

Position Paper

CAST-9

Considerations for Evaluating Safety Engineering
Approaches to Software Assurance

Completed January, 2002

NOTE: This position paper has been coordinated
among the software specialists of certification
authorities from the United States, Europe, and
Canada. However, it does not constitute official
policy or guidance from any of the authorities.
This document is provided for educational and
informational purposes only and should be
discussed with the appropriate certification
authority when considering for actual projects.

Considerations for Evaluating Safety Engineering
Approaches to Software Assurance

1. Introduction.

Safety engineering approaches for software assurance (SEASA) can be applied to
software with the purpose of satisfying the requirements that are mandated by aviation
regulations for equipment and systems installed on aircraft. However, policy to guide
certification authority engineers in their assessment of SEASA proposals as a means of
compliance for the software has been limited to issue papers applied to specific projects.
The purpose of this position paper is to propose guidelines for certification authorities to
consider when evaluating the acceptability of SEASA and for industry organizations
considering such an approach as a method for providing safety, system and software
compliance assurance. It should be noted that safety engineering approaches in general
are not a replacement in total for the guidelines of DO-178B/ED-12B (reference a.).
Rather, safety engineering approaches can be used in conjunction with DO-178B,
supplementing and/or replacing some criteria of DO-178B for some software
components, using all criteria of DO-178B for some other software components, and
perhaps validating software assurance criteria for yet other components. The following
sections of this paper will discuss some safety engineering approaches. It also indicates
which assurance objectives are always common between SEASA and DO-178B, and
which DO-178B objectives can potentially be supplemented, reduced or replaced by
using a SEASA.

Note: Safety engineering approaches are variously called “safety directed development
(SDD),” “systems safety engineering techniques (SSET),” and “safety engineering
techniques for software (SETS).” For this paper, all will be referred to by the acronym
“SEASA” – safety engineering approaches for software assurance.

2. Reference Documents.

a. RTCA, Inc. document DO-178B and EUROCAE document ED-12B, “Software
Considerations in Airborne Systems and Equipment Certification”, dated
December 1, 1992.

b. FAA Advisory Circular (AC) 20-115B, “RTCA, Inc., Document RTCA/DO-
178B”, dated January 11, 1993.

c. FAA AC 23.1309-1C, “Equipment, Systems, and Installations in Part 23
Airplanes”, dated March 12, 1999.

d. FAA AC 25.1309-1A, “System Design and Analysis”, dated June 21, 1988.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

2

e. JAA Advisory Material-Joint (AMJ) 25.1309, “System Design and Analysis”,
dated May 11, 1990.

f. JAA Temporary Guidance Leaflet (TGL) #4, “Software Guidance”, dated 1
October 1996

g. Society of Automotive Engineers (SAE) Aerospace Recommended Practice
(ARP) 4754 and EUROCAE document ED-79, “Certification Considerations for
Highly-Integrated or Complex Aircraft Systems,” dated November 1996.

h. SAE ARP 4761, “Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment”, dated
December 1996.

i. RTCA, Inc. document DO-254 and EUROCAE document ED-80, “Design
Assurance Guidance for Airborne Electronic Hardware,” dated 19 April 2000.

j. RTCA, Inc. document DO-248B and EUROCAE document ED-94B, “Final
Report for Clarification of DO-178B(/ED-12B) ‘Software Considerations In
Airborne Systems and Equipment Certification’”, 2001

k. CAST Position Paper CAST-5, “Alternate Means”
l. “Capability Maturity Model for Software, Version 1.1”, dated February, 1993.
m. IEEE/EIA 12207, “Software Life Cycle Processes”, dated March, 1998.

3. Background.

Reference a. is recognized by the certification authorities directly by references b. and f.,
and indirectly by references c. through e. as providing an acceptable means of
compliance for the software aspects of certification to aviation regulations when software
is installed as part of an airborne system. Software aspects are usually associated
primarily with FAR and JAR XX.1301, XX.1309 (XX = 23, 25, etc.) and 33.28 (engine
control systems). In fact, FAR 33.28 is the only regulation that specifically uses the term
“software.”

Reference a. provides guidance for a structured, rigorous development and verification
process. This rigor is based on the failure condition classification of the system functions
in which the software is used. A software level is assigned, based on the worst-case
failure condition category to which anomalous behavior of the software could cause or
contribute. It provides software process assurance objectives and criteria for software
planning, development, verification, configuration management, quality assurance and
certification liaison. Verification in reference a. consists of reviews, analyses and testing
conducted throughout the development process. Reviews and analyses are performed on
the software data throughout the development to ensure that errors and deficiencies are
not propagated from one development process to a subsequent process. Testing consists
of requirements-based testing for normal range and abnormal range (robustness) at the
software module level, integrated software module level and integrated hardware and
software level, combined with requirements-based test coverage analysis and code

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

3

structural coverage analysis. The reference a. software verification objectives and criteria
were developed to ensure that the software functions as specified and to reduce the
likelihood that the software will contain errors or exhibit anomalous behavior that could
effect safety. The amount of structure and rigor of the software verification process is
dependent on the software level as specified in reference a. for software levels A through
E. The software level for a specific software application is based upon a system safety
assessment process, such as that described in reference h. This determines the worst-case
failure conditions of the system that could result from software anomalous behaviors
caused by errors. Reference g. also provides guidance for types of safety and system
engineering analyses, methods and techniques that could be performed to ensure the
safety of the system, satisfy the “fail safe design techniques” of references c. through e.,
and comply with the regulations.

Because of the complex nature of many software applications, there are inherent
difficulties in implementing and showing independence between those software
components that could contribute to a failure condition affecting safety and those that
could not. This is particularly the case when the software application is large, and if the
code is not structured primarily for the compartmentalization of safety related elements.
It may also be inherently difficult in such applications to identify a strict correspondence
(traceability) between system safety requirements and the discrete components of the
software application. With increasing size and complexity, safety analysis of the
software becomes increasingly problematic for applications that are mainly constructed
around performance and functional requirements rather than safety requirements.
Therefore, aircraft certification programs have traditionally relied on software process
assurance combined with a specified level of software verification to reduce the potential
errors and anomalous behavior of the software. This approach has been accepted as the
practical minimum requirement for showing compliance of the software components of a
system, without directly addressing those safety elements inherently difficult to address
in software. Industry and regulatory authorities have jointly formalized specific criteria
for implementing this approach in reference a.

Note: The reader should recognize that software process assurance and verification is
only one aspect, and perhaps a small part, of the overall development, verification and
validation of the system and of the system installed on the aircraft. Other significant
activities include: system safety assessment, system design, hardware design, hardware
environmental qualification testing, system validation and verification, aircraft
architecture design, laboratory bench testing, aircraft installation testing, simulation,
aircraft ground testing, and aircraft flight testing.

The process assurance and verification criteria of reference a. do not provide safety
assurance in and of themselves. They provide assurance that the software application
adheres to the software requirements, including safety-related, functional, performance,
etc. requirements. They also provide a relative measure of how much the code and its

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

4

structure have been exercised, considering the assigned software level of the application.
However, software requirements may or may not be focused on safety or system failure
conditions that can lead to aircraft hazards, and code can be exercised with no knowledge
of the system failure conditions and aircraft hazards. Rather, aircraft hazard and system
failure elimination, minimization, and control have typically been addressed at the
aircraft level and the system level, respectively. Thus, error reduction of the software
through process assurance and verification must be combined with analysis and
validation at the aircraft and system levels and recognized as minimum requirements for
showing that the safety objectives for the system (and the aircraft) have been met. While
this approach is recognized as good practice, it is an indirect approach to the safety
aspects of the software.

Other software standards and guidance have proposed “qualification” of software
developers’ process or organization as ensuring that the process or organization will
produce “high quality” products. Examples of these are the Carnegie Mellon University
(CMU) Software Engineering Institute’s (SEI) Capability Maturity Model (CMM), the
International Standards Organization’s (ISO) 9001, part 3; and Institute of Electrical and
Electronics Engineers (IEEE), Inc.’s various software standards and guidance material
(e.g., IEEE/EIA 12207). While all of these standards and guidance materials have merit
and are useful for many applications, reference a. has become the de facto standard
guidance for process assurance of airborne systems and equipment using digital
computers and software intended for application on commercial aircraft.

Some applicants have asserted that they prefer a more direct approach of tracing potential
aircraft hazards and system failures to discrete software components, and then
eliminating, minimizing, or controlling specific hazards and failure conditions to which
the software could contribute, or providing protective mechanisms around susceptible
software components, and thus directly assuring the safety of the software.

Applicants have proposed that the development of a “software safety program” integrated
with the system safety program offers a direct assurance of total system safety. Such an
integrated safety program would use analysis techniques derived from system safety
assessment methods, combined with complete safety related software requirements, and
use safety-focused software design, coding, and verification. Applicants have also
proposed that this approach of using an integrated software and system safety program
may justifiably allow some relief from the criteria of reference a., the structural coverage
criteria and, in some cases, perhaps a lowering or reduction of other assurance criteria or
software levels from current reference a. criteria.

When evaluating an applicant’s or software developer’s proposal for a safety program for
software or other alternative methods, other “industry” standards and certainly other “best
engineering practices” could be considered as criteria for determining the acceptability of
the proposal. However, for practical purposes, such as certification authority’s familiarity

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

5

with reference a.; and to expedite the certification process and to provide standardized
and harmonized criteria and thus a level playing field for applicants, reference a. is most
often used as the benchmark for determining the acceptability of alternative proposals for
software assurance. See also reference k., the CAST paper on “Alternate Means.”

Reference g. recognizes the use of a “Safety Directed Development Concept” as “an
alternative to the system development assurance methods” of that document, without
further specifying what a safety directed development concept is, what its criteria are, or
why it is an acceptable alternative.

Recently published hardware development assurance guidance (reference i.) also
recognizes a “Safety-Specific Analysis” as an “advanced verification method,” which can
be used in combination with a “functional failure path analysis” (FFPA), for providing
electronic hardware design assurance for Levels A and B hardware functions in addition
to the normative process and hardware data guidance of the document. According to
reference i., safety-specific analysis “focuses on exposing and correcting the design
errors that could adversely affect the hardware outputs from a system safety perspective.”
Appendix B of reference i. provides some clarification of this method and mentions some
hardware process and data needed to use this analysis method, in addition to the
normative hardware process and data guidelines provided in reference i., sections 2
through 11 and Appendix A.

In the past, a specific safety approach of an airborne system developer was accepted for
showing software compliance on certain systems installed during the course of specific
aircraft system certification programs. The original approach was approved as a
supplement to DO-178[], not as an alternate. However, these specific criteria have been
confined to issue papers applicable only to these specific systems on specific programs
and reviewed on a project-by-project basis. Credit granted by the certification authority
allowed some reduction in the software structural coverage analysis criteria for some
systems.

Some applicants and developers would like to see their proposed alternative safety
approach accepted on a general basis, usable at their discretion and “pre-approved” for
use on any of their projects and products. This has not yet been allowed by the
certification authorities, except on a case-by-case basis.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

6

4. Discussion.

The application of a safety engineering approach for software assurance (SEASA) is
intended to directly address system failure conditions and aircraft hazards related to the
system’s software. In its essentials, SEASA is the practice of applying common systems’
safety assessment, analysis and design techniques to software. It is a practice of
continuing the system safety assessment into the software components, and assuring that
the software meets the regulations (i.e., §§ 23.1309, 25.1309, 27.1309, 29.1309,
33.28(e)). Some commonly used system safety assessment and analysis methods are
documented in references g. and h. Fail-safe design techniques are documented in
references c. through e. There is much commonality and consistency between these
references for methods and techniques.

Safety design techniques propose to identify all safety requirements for the aircraft, the
system and its components, including hardware and software. SEASA proposes to
identify all safety requirements for the software and all safety effects of the software.
Then, by a method of iterative analysis and design, combined with safety-focused
verification, SEASA proposes to show that those unacceptable hazards, failure conditions
and anomalous behavior are prevented, mitigated or isolated and controlled, using
various architectural constraints, monitors and design techniques (e.g., multiple,
independent, dissimilar components performing the same function). Aircraft hazards and
system failure conditions are traced through analysis to the software. Software
requirements (“safety objectives” and “safety-related requirements” in the reference a.
vernacular) addressing the hazards and failure conditions are specified and verified for
safety related completeness criteria. Code is analyzed, with hazards and failure conditions
traced to the code itself. Code is designed for risk reduction, including the prevention,
mitigation, isolation and/or control of specific failure conditions. Verification is focused
on the safety related code, “critical code.” Like any other software development process,
this SEASA process is iterative in nature with attendant feedback and refinement.

It should be noted that the specific SEASA evaluated to-date is not a complete alternative
for the criteria of reference a. In fact, the majority of reference a. criteria remain criteria
for this or any SEASA as well. The process assurance objectives and criteria of reference
a. are simply “best industry practice,” with additions for specific guidance for the aircraft
certification and airborne systems domains, for assuring that the developed software is
the specified software through the use of disciplined, rigorous processes and complete,
correct data. This is needed for a SEASA approach in the same manner that it is needed
for other software development approaches. Plans, procedures, standards, as well as
processes for requirements, design, coding, integration, configuration management,
quality assurance, and verification are all needed for a SEASA. Requirements-based
testing and test coverage analysis are obviously critical to SEASA. Requirements
completeness and assurance of safety related requirements are key elements of the

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

7

SEASA proposal. In fact, even by the admission of a specific airborne system developer,
their specific SEASA requires more resources and effort than a program that just
followed the guidance of reference a. for software assurance. Again, the main area that
the specific SEASA was given “credit” and allowed to reduce the reference a. criteria
was in the area of structural coverage. The rationale for allowing that reduction is,
however, not documented, nor is the actual amount of “credit” granted known.

Structural coverage analysis is a verification activity designed to assure that the software
code has been adequately exercised in order to detect otherwise hidden software errors
not revealed by requirements-based (functional) testing, and to reveal unreachable code
in the software application. However, structural coverage can be achieved by testing in a
technically correct, but perhaps inappropriate, manner: “structural testing.” Structural
testing is testing the software, mostly at the software component level, using test
procedures and cases developed on the basis of the code component itself, without
necessarily being conscious of safety issues, system issues, integration considerations, or
even requirements issues. Unless the software requirements, design and code have been
developed very rigorously, this can lead to very non-value-added and inappropriate
testing. See also related discussion paper 4.3 and frequently asked question (FAQ) 3.44 in
reference i.

The focus of reference a. is to conduct requirements-based testing of the software,
including safety-related requirements, high-level requirements, low-level requirements,
and derived requirements, at the highest level possible, measure the structural coverage
achieved, and then supplement that testing by conducting lower level requirements-based
tests until the structural coverage appropriate for the software level is achieved.

Testing under SEASA is focused on safety related code, while code shown to be benign
(i.e., non-safety related code) may not be exercised to the appropriate software level to
satisfy the structural coverage criteria of reference a.

It is unclear what other relaxation of reference a. assurance criteria may have been
granted in the past or what may be possible using a SEASA. As a SEASA is used to
identify and logically separate safety related code components from non-safety related
code components (i.e., partitioning), it may be possible to reduce the reference a. criteria
for the benign code components, as long as failures and anomalous behavior of those
components cannot affect safety-related code components nor system availability or
integrity, and it can be assured that any reduction will not lead to an undesirable safety
affect. A SEASA proposal will likely include a partitioning strategy for using protective
mechanisms for specific components and/or software operations.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

8

5. Guidelines for evaluating a safety engineering approach for software assurance
(SEASA).

The following guidelines are intended to help determine the acceptability of an aircraft
system applicant’s or developer’s proposal to use a SEASA for software assurance,
software approvals and compliance to aircraft regulations:

 a. Integrated system, hardware and SEASA safety program. The applicant
(or airborne system manufacturer or software developer) should develop and implement a
safety program which is specific to the airborne product, and which combines and closely
integrates the safety program and development processes for the product system, its
hardware components and its software components. As any safety program for software
relies on the identification and tracing of all aircraft hazards and all system failure
conditions through the system requirements and architecture, hardware components,
software requirements, software design and code, and the elimination or control of these
hazards and failure conditions, it is imperative that the safety program be developed and
implemented jointly by system developers, hardware developers and software developers.
Safety assessment and elimination, minimization, and control of hazards and failure
conditions should be a seamless process through the system development, hardware
development and software development processes. The software developers must be
informed of the system safety aspects of hardware failures and hardware and software
behaviors, and the system developers must be informed of the potential hardware and
software contributions to system failure conditions and aircraft hazards. Safety related
system components should be identified to the software developers. Successful use of a
SEASA relies on an approach where software developers are familiar with, and kept
current on, safety aspects of the system. For example, software developers should be
knowledgeable about system variables, such as input and output signals, which have
potential safety consequences for the aircraft. This knowledge should then influence the
manner in which software developers design the processing of these signals as well as the
verification procedures for ensuring they are processed correctly, including handling
signals and inputs that may be outside the normal “tested” ranges. Similarly, the
hardware developers should be informed and knowledgeable about system variables that
are processed by hardware. System developers should be knowledgeable about the safety
aspects of the software and the hardware. This knowledge should influence how system
requirements, architecture, design, constraints, and system level verification and
validation procedures are specified. The integrated safety program should be designed to
assure that safety-related information (i.e., requirements, design decisions, assumptions,
constraints, problem reports, change impact analysis, etc.) is provided and used
effectively between the system developers, hardware developers and software developers,
and those responsible for validating and verifying the system, its hardware and its
software.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

9

 b. Plans, procedures, and standards. All reference a. software planning and
procedural data needed for compliance are also needed for compliance using a SEASA.
In addition, system, hardware and software plans and procedures should define the
integrated safety program, with safety related activities and data clearly specified.
Standards should also be written to reflect safety-related requirements and constraints on
development formats, methods, and practices. For example, software development
standards should contain requirements and constraints on architectural elements related to
isolation, partitioning, separation, monitoring, cohesion, and coupling of safety-related
software components and parameters. Standards should also drive system, hardware and
software designs towards simplification and verifiability. Design simplification and
verifiability will provide better assurance that all safety related software aspects have
been correctly implemented.

 c. Safety related software requirements, design, and code. All aircraft hazards,
system failure conditions and safety-related requirements should be traced to the
software-hardware interface, and software requirements specific to the hazards and
failure conditions should be developed. Constraints on software behavior and software
related system behavior should be specified. System states and state transitions should be
completely specified. Each state should have a transition to a safe state specified. All
states should be reachable and default transitions should be fully specified. Transitions to
unsafe states should be identified by the safety assessment process and eliminated by
specification of a replacement transition to a safe state. The system and software should
always start in a safe state. All variables should be initialized correctly on system startup
or initialization. All software components that perform safety related operations should
be identified. These safety-related software components and the resources (i.e.,
processor, memory, clock, input/output devices, buses, etc.) should be isolated and
protected from other non-safety-related components. The software architecture should be
designed so that safety related components are highly cohesive and loosely coupled.
Safety-related signal and data handling should be minimized. Hazard reduction design
strategies and fail safe design techniques should be used to: eliminate hazards and failure
conditions, minimize hazards and failure conditions, control the effects of hazards and
failure conditions, or minimize the effects of hazards and failure conditions (listed by
most desirable to least). Hazard reduction strategies for software-based systems include,
for example:

(1) Isolation and containment (partitioning) of safety-related software and
hardware components,

(2) Addition of protective features, such as safety monitoring software or
hardware,

(3) Recovery schemes from hardware failures and hardware or software
anomalous behavior,

(4) Addition of barriers, such as interlocks, lockouts, and lock-ins,
(5) Functional cohesion, isolation, and decoupling (partitioning),

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

10

(6) Exposure reduction,
(7) Simplification of design for increased verification and validation certainty.

 d. Traceability and verifiability. Aircraft hazards and system failure conditions
to which software can contribute, or which are controlled by software, should be
traceable to related software requirements, architecture, design components and
constraints. These, in turn, should be traceable to the code, and to the verification
procedures and cases that verify them under normal and abnormal conditions.
Traceability should be shown from the hazards and failure conditions to the source code,
and verification should be conducted to the same software level criteria as stated by
reference a. criteria for the same software level. It is preferred that all safety-related
software requirements-based testing be performed on the target executable code loaded
on the target computer in the target environment. Testing on a high fidelity simulated
environment can be acceptable if evidence exists to support the validity of the
environment for the specific tests. A high fidelity simulated environment is one that
provides identical or similar computing resources, peripherals, interfaces and inputs and
outputs such that tests conducted on the simulated environment would result in identical,
valid results to tests conducted in the actual operational environment. Qualification of
the simulated environment as a verification tool may be needed. For a SEASA program,
it is preferred that all safety-related requirements be verified on the executable object
code integrated into the target computer and environment, or high fidelity simulated
environment if applicable. If identical equipment cannot be used for technical reasons,
deviations from the identical equipment must be presented to and accepted by the
certification authority.

 e. Verification. A combination of both static and dynamic analyses should be
specified by the applicant/developer and applied to the software. As with reference a.,
the emphasis of software verification should be focused on safety-related components
and potential failure conditions of the software. Software reviews of requirements,
design, architecture, code, integration, verification cases and procedures, and coverage
analysis that would be expected under reference a., are applicable to SEASA as well. In
addition, system safety analysis methods and fail-safe design techniques should be
applied to the software to determine safety-related components and the safety effects of
the software logic. Verification should be performed at the same level of rigor as
specified by reference a. verification criteria for the same software level. Therefore, for a
SEASA application, safety related requirements should be verified on the executable
object code integrated into the target computer and environment. If safety related
software components are properly isolated, partitioned, protected and decoupled from
other software components, then structural coverage criteria of reference a. may be
reduced for the non-safety related components, as is allowed by reference a. Software
testing should concentrate on showing that the safety-related components perform
according to the software safety requirements and that safety-related components are not

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

11

adversely affected by other, non-safety-related components (verifying the integrity of the
partitioning).

 f. Software configuration management and software quality assurance. The
configuration management and quality assurance criteria for a SEASA program are
identical to those of reference a. and should include QA evaluation and oversight of
SEASA processes as well as configuration management of all SEASA specific data
items.

 g. Data items. All software life cycle data items of reference a. should be
produced for a SEASA program, with the exception of items that the certification
authority has allowed a reduction or replacement to the reference a. criteria. SEASA will
likely result in additional SEASA-specific data items which replace reference a.-specified
data items. Examples could be: system safety assessment results for software,
justification of SEASA criteria as acceptable for satisfying one or more reference a.
objectives, reference a. compliance matrix, structural coverage analysis of non-safety
related components. In addition, all software data items needed to support the
applicant's/developer’s SEASA process are needed. This includes those needed to support
the integrated safety for system, hardware and software program. Additions to the
content of reference a. software data items will be needed to support a SEASA
application.

h. Software levels. Software levels are determined by the severity of the aircraft
hazards and system failure conditions to which either the software could contribute, or is
intended to control. Software levels should be determined consistent with system
assurance level guidance in reference a. first and then reference g. If there is any
difference in the determination of the software level as determined by references a. and
g., the software level determination should be discussed and agreed-to by the specific
project’s certification authority. Any area of software to which SEASA will not be
applied should comply with reference a. for the appropriate software level, as determined
by the system safety assessment (SSA).

 i. Protective mechanisms and protected components. Where protective
mechanisms are applied, the assignment of software level for a protected, safety-related
software component should be determined by the worst case failure condition of that
component, assuming the protective mechanism(s) are operable. The software level
assigned to each protective mechanism should be based on the worst-case failure
conditions that would result from a failure of that protective mechanism in combination
with the failure of the protected software component. This assignment should consider:

 (1) The failure condition which could result from the failure or
anomalous behavior of the protective mechanism to properly deploy and the failure or
anomalous behavior of the protected component, and

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

12

 (2) The worst case failure condition of an inadvertent deployment of the
protective mechanism.

 j. Software level exceptions. Exceptions to i(2) may occur where application of
SEASA results in mitigation of the effect of the inadvertent deployment.

k. Reference a. criteria exceptions. Once the software level is assigned, all
objectives of reference a. should be satisfied for the assigned software level; except
where the applicant or developer has negotiated and obtained concurrence from the
certification authority that their SEASA criteria, activity or data represents an equivalent
means of satisfying the objective. Exceptions and equivalent means to reference a.
criteria should be justified, documented, and agreed-to early in the product development
with the certification authority. Analysis from the actual application of their SEASA may,
in some cases, determine that additional verification is needed to augment the SEASA
method. In these cases, the applicant or developer should provide appropriate
verification results.

l. Software Reviews. Software reviews should be conducted by the certification

authority (and designees, if delegated) in the same manner and to the same criteria as
with a reference a. review. The approval of SEASA processes and data should not
require any extraordinary compliance monitoring beyond that required for a “standard”
reference a. program. However, the reviewers should be familiar with the application of
system safety assessment methods and fail-safe design techniques.

m. SEASA proposals. An applicant or developer should present their SEASA
proposal to the certification authority and gain their approval of the proposal early in the
aircraft program or system life cycle to reduce the risk to the aircraft program or system
project associated with non-concurrence by the certification authority. The proposal
should include a reference a. compliance matrix showing which objectives will be
satisfied by their SEASA criteria, activities and data, including independence and data
control categories, which will be partially satisfied by their SEASA criteria, activities and
data, and which will not be satisfied by their SEASA criteria, activities and data. The
proposal should include a justification for any objectives that will not be fully satisfied by
the SEASA proposal. Failure of the applicant or developer to submit the compliance
matrix and justification would be grounds to disallow the SEASA proposal immediately.

n. SEASA evaluations. The certification authority should make every
reasonable effort to evaluate the applicant’s or developer’s SEASA proposal in a timely
manner, and accept the proposal, accept the proposal with conditions, or reject the
proposal with rationale for its unacceptability. It is in the best interests of the certification
authority, the aircraft manufacturer, the applicant, the system developer and the software

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

13

developer to resolve and come to agreement on SEASA proposals early in the
certification program.

6. Conclusion.

This paper presents some considerations and guidelines for certification authorities to use
when evaluating applicants’ proposals to use system safety assessment and engineering
methods and techniques to providing software assurance for airborne systems and
equipment. Although alternate approaches were considered, they must still be carefully
evaluated on a case-by-case basis. The use of these approaches may be acceptable, but
should be combined with a “total” system safety program and current “best-practice”
software guidelines. Applicants should prepare and provide descriptions of their proposed
approach and rationale for its acceptability for software assurance, which can then be
evaluated by the certification authorities to determine the acceptability of their proposed
alternative approach.

NOTE: This position paper has been coordinated among the software specialists of certification
authorities from the United States, Europe, and Canada. However, it does not constitute official
policy or guidance from any of the authorities. This document is provided for educational and
informational purposes only and should be discussed with the appropriate certification authority
when considering for actual projects.

14

	Considerations for Evaluating Safety Engineering Approaches to Software Assurance
	Considerations for Evaluating Safety Engineering Approaches to Software Assurance

