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EXECUTIVE SUMMARY 
 
The Authority for Expenditure No. 43 (AFE43) Microprocessor Evaluations Project (Phases 1 to 
5) focused on the escalating difficulties in evaluating modern, state-of-the-art, and highly 
integrated commercial off-the-shelf (COTS) microprocessors that (1) may not provide adequate 
visibility and debug features to reveal internal functionality, (2) are less predictable due to the 
interaction of advanced features, (3) have programmable configuration capabilities available to 
application software, and (4) share resources across multiple cores and devices.  These COTS 
microprocessors exhibit nondeterministic characteristics and are consequently becoming more 
challenging to test and to determine that they satisfy applicable functional and safety-related 
requirements. 
 
The research addressed the use of COTS microprocessors and systems-on-a-chip (SoC) in 
complex and safety-critical avionics.  The project objectives included (1) Identify common risks 
of using SoCs and mitigation techniques to provide evidence that they satisfy regulatory 
requirements; and (2) Evaluate existing regulatory policy and guidelines against the emerging 
characteristics of complex, nondeterministic microprocessors and SoCs to support the 
certification of aircraft and qualification of systems using these devices.   
 
The objectives of the AFE43 Project included researching an alternative method of ensuring 
aircraft safety when it becomes too difficult or impossible to perform design assurance on 
systems that use COTS microprocessors and SoCs.  The AFE43 Project developed the concept of 
safety nets to monitor system operations, detect anomalous conditions and recover system 
operations adequate to meet safety and availability requirements. 
 
A safety net is defined as the employment of mitigations and protections at a level above the 
functional elements containing the microprocessor(s) and/or SoCs of aircraft and system design 
to help ensure continuous safe flight and landing.  The safety net methodology focuses on the 
assumption that a microprocessor will misbehave.  The safety net would be deployed in the 
operational environment as a safety device within the aircraft.  A safety net provides the ability 
to protect against unexpected behavior, damage, injury, and instability over the service life of the 
microprocessor(s) or SoCs outside, or at a level above the device itself, is necessary as 
appropriate for the design assurance level.   
 
Subject matter experts from the FAA and the six industry participants of AFE43 first identified 
common microprocessor risks and an approach to resolve the growing issues with design 
assurance and certification; Phase 5 related these risks with mitigation methods associated with 
the multilevel safety net approach.  Phase 5 developed the concepts of a multilevel safety net that 
established an approach to system design, including mechanisms to detect, analyze, and respond 
to SoC anomalous behavior at higher system levels.   
 
The primary deliverable of the entire 5-phase AFE43 Project was a Handbook for the Selection 
and Evaluation of Microprocessors for Airborne Systems, and is, therefore, an important subject 
for this Phase 5 Report.  The Phase 4 Report and this Phase 5 Report specify the research results 
that support the Handbook.  The Handbook advocates a major shift in ensuring the safe use of 
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COTS microprocessors in airborne systems.  Most complex hardware, including COTS 
microprocessors, goes through a process of demonstrating safety through the complete 
verification of the hardware design.  The AFE43 Project has shown that this process is infeasible 
for some complex, nondeterministic COTS microprocessors.  These microprocessors should be 
assumed as potentially unsafe, and system-level approaches for risk mitigation should be 
considered as a safety net. 
 
Current FAA policy and guidance do not directly address the use of COTS microprocessors and 
SoCs in aircraft systems. However, the existing policy and guidance can be used as a basis from 
which the Handbook may help provide an applicant with additional information in demonstrating 
that their system meets the applicable airworthiness requirements.   
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1.  INTRODUCTION. 

Microprocessors and systems-on-a-chip (SoC) have become extremely complex, highly 
integrated, nondeterministic, and densely packaged.  Recent changes in commercial off-the-shelf 
(COTS) microprocessors can be characterized as both physical and functional changes.  
Physically, transistor density has continued its exponential increase, allowing for hundreds of 
millions to billions of transistors to be placed on a single device.  As of 2010, 65- and 45-nm 
devices were common in the COTS marketplace, and 32-nm and smaller devices were beginning 
to enter the marketplace.  In addition to the decrease in device size, the functional capability of 
COTS devices has expanded.  It is no longer necessary for different system components to be 
implemented as discrete devices.  Instead, a single COTS SoC may contain multiple 
microprocessor cores, input/output devices, memory controllers, and other functionality. As a 
result, deterministic performance is difficult or impossible to predict in some cases.  These 
devices require additional evaluation methods beyond that identified in current regulatory 
requirements to achieve the resilience required to meet safety and reliability requirements.  The 
aircraft systems containing these COTS devices may require multilevel safety nets to be 
designed into them. 
 
This report summarizes the experiments, findings, and activities of Phase 5 of the Aerospace 
Vehicle Systems Institute Authority for Expenditure No. 43 (AFE43):  Microprocessor 
Evaluations Project.  Phase 5 is the final phase of this project, and the primary deliverable is the 
“Handbook for the Selection and Evaluation of Microprocessors for Airborne Systems” [1].  
Because of the Handbook’s importance, it will be described in more detail in section 2.  The 
Handbook serves as a means for system designers and regulatory personnel to have a common 
understanding of 
 
 current Federal Aviation Administration (FAA) regulations and guidance regarding 

COTS airborne electronic hardware (initially focusing on microprocessors). 
 
 the risks of using COTS microprocessors and SoC in airborne systems. 
 
 safety nets—a system-level means for mitigating these risks. 
 
In addition to describing the outcome of Phase 5 of the AFE43 Project, this report is also a 
source of supplemental information for the Handbook.  The experimental platforms and data that 
assisted in forming the conclusions stated in the Handbook are detailed in this report.  Also, 
other useful information that did not fit the theme of the Handbook can be found here.   
 
For readers interested in understanding the development and progress of the entire project, each 
of the previous phases of the AFE43 Project are documented in a separate technical reports [2-5].  
Phase 1 and 2 evaluated the FAA guidance and direction for the selection, design assurance, and 
qualification of airborne systems using COTS microprocessors and SoCs to support the 
certification of aircraft.  These two phases attempted to find a technical solution of testing COTS 
microprocessors and SoCs at the component level and found that the evolving problem set was 
becoming unworkable.   
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Phase 3 included an intentional change of approach to make the AFE43 Project an industry-
driven project to find an approach to solve the problem issues related to complex, modern, 
indeterminate, COTS microprocessors that are required to meet FAA regulations and specific 
safety requirements. 
 
Phases 4 and 5 comprised a 2-year effort to develop a solution that may require additional 
considerations of augmenting the FAA regulations and new approaches beyond testing 
microprocessors and SoCs at the device level.  Phase 4 identified common risk areas in complex 
SoCs that made testing at the component level problematic.  Physical and simulated evaluation 
platforms were acquired during Phase 5 to determine the severity of the identified common risk 
areas and to determine the differences between using physical and simulated platforms.  Phase 5 
also developed the multilevel safety net that established an approach to system design, including 
mechanisms to detect, analyze, and respond to SoC anomalous behavior at higher system levels.   
 
The Handbook was developed during Phase 5, but also received inputs from Phase 4.  The 
Handbook advocates a major shift in ensuring the safe use of COTS microprocessors in airborne 
systems.  Most complex hardware, excluding COTS microprocessors, goes through a process of 
demonstrating safety through the complete verification of the hardware design, as specified by 
guidance, such as Advisory Circular (AC) 20-125 and RTCA DO-254 [6 and 7].  AFE43 has 
shown that this process is infeasible for some complex, nondeterministic COTS microprocessors.  
These microprocessors should be assumed potentially unsafe, and system-level approaches for 
risk mitigation should be considered.  This research project terms these system-level approaches 
as safety nets.  COTS microprocessors are expected to be managed per Section 11.2 of DO-254.   
 
2.  HANDBOOK FOR THE SELECTION AND EVALUATION OF MICROPROCESSORS 
FOR AIRBORNE SYSTEMS. 

The primary focus for the AFE43 Project Phase 5 was the development of the Handbook for the 
Selection and Evaluation of Microprocessors for Airborne Systems [1].  This report 
acknowledges the Handbook as having precedence in the definition and description of safety 
nets and their application. 
 
The Handbook discusses three major topics: 
 
 Regulatory considerations for microprocessor-based airborne applications—the FAA 

adoption and scoping of DO-254 to certain types of airborne electronic hardware, and 
current FAA policy regarding COTS microprocessors. 

 
 COTS microprocessor and SoC risks—an identification and detailed description of three 

major, common risk areas present in modern COTS microprocessors and SoCs, are 
described in section 3 of this report. 
 

 Safety nets—a definition and description of system-level safety net approaches, COTS 
microprocessor selection considerations, and examples of possible safety net designs. 
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Considering the growing complexity of microprocessors, the research revealed the increasing 
impracticality of ensuring safety at the device level alone.  The combination of growing 
complexity of both software and hardware will drive the need to evaluate large complex systems 
at multiple levels, including the operational system level.  The rate of change and growing 
complexity is accelerating, and the time between new generations of hardware and software is 
decreasing.  The complexity of many COTS components has grown and continues to grow 
beyond the capabilities of DO-178B and DO-254 processes to evaluate them.  The overlapping 
phases of development, certification, deployment, and life cycle maintenance together with 
COTS obsolescence accentuate the need for rapid and evolving methodologies.  FAA policy, 
guidelines, and practices may need to be updated to accept these methodologies. 
 
Complex aircraft system development requires more robust consideration of system failure and 
anomaly detection, correction, and recovery.  The safety net approach identified in this report 
provides a means to address the lack of design assurance for highly integrated, complex, 
nondeterministic airborne electronic hardware (AEH) within aircraft systems.  This may help to 
contain the labor burden and costs of compliance to FAA regulations as SOCs continue to 
become more complex and more widely used in aircraft systems.   
 
2.1  HANDBOOK EXECUTIVE SUMMARY. 

The Executive Summary of the Handbook describes its function and driving resolutions as 
follows: 
 

“This Handbook provides research information intended to help aerospace system 
developers and integrators and regulatory agency personnel in the selection and 
evaluation of commercial off-the-shelf (COTS) microprocessors for use in aircraft 
systems.  AEH includes modern state-of-the-art and highly integrated COTS 
microprocessors that (1) may not provide adequate visibility and debug features 
to reveal internal functionality, (2) are less predictable due to the interaction of 
advanced features, (3) have programmable configuration capabilities available to 
application software, and (4) share resources across multiple cores and devices.  
These highly complex COTS microprocessors are becoming more challenging to 
test and to determine that they satisfy applicable functional and safety-related 
requirements. 
 
Resolutions to certification process challenges should offer the possibility of 
establishing and maintaining standards that support the continual change and 
growth of technologies and operations.  Such resolutions can include 
 
 establishing qualitative as well as quantitative methods to certifying 

aircraft with embedded nondeterminate complex/critical applications. 
 
 establishing accepted standards of architectural patterns for critical, 

complex systems and methods for validation and design assurance. 
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 establishing industrywide accepted methods for design assurance of COTS 
microprocessor and microprocessor-based systems. 

 
 streamlining the certification process.” 

 
2.2  HANDBOOK OBJECTIVES. 

The objectives of the Handbook are to 
 
 document common areas of concerns regarding the use of COTS microprocessors in 

complex and/or safety critical systems. 

 provide approaches, information, and examples for mitigating the concerns through a 
safety net. 

 provide access to the research on which the content of this Handbook is based. 

 provide example approaches to resilient systems through methods defined in this 
Handbook under the overarching  term safety nets. 

 reveal how existing regulatory policy and guidance may be augmented to support the 
creation of resilient systems through safety net approaches safeguarding the use of 
microprocessor  technologies in complex and/or safety critical systems. 

2.3  HANDBOOK CHARACTERISTICS. 

The Handbook was written for experienced system designers and regulatory personnel and 
intentionally not prescriptive in nature.  It was intended to support the development of new 
approaches to the design assurance and safety evaluation leading to the approval of airborne 
systems.  The design of an airborne system, the selection of AEH (e.g., microprocessor) devices 
within the system, and the architecture of the system will be unique for each application.  The 
potential sources of nondeterminism and the challenges of design assurance of AEH devices 
must be determined for each system.  The Handbook does not attempt to identify sources of 
microprocessor nondeterminism because they will be unique for each system and will proliferate 
in the future.  System designers have to evaluate the risks associated with the candidate 
microprocessors and design the system architecture and the safety nets to mitigate these risks.   
 
The Handbook does not constitute FAA policy or guidance; rather, it is the result of 
FAA/industry-funded research and may contribute to future policy or guidance.   
 
2.4  SAFETY NET APPROACH. 

A safety net is defined as the employment of mitigations and protections at the appropriate level 
of aircraft and system design to help ensure continuous safe flight and landing.  The safety net 
methodology focuses on the assumption that a microprocessor will misbehave.  The ability to 
protect against unexpected behavior, damage, injury, and instability over the service life outside, 
or at a level above the device itself, is necessary as appropriate for the design assurance level.   
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The safety net approach is a means to mitigate the risks associated with COTS microprocessors 
via both passive and active methods designed into aircraft systems.  If it is not feasible to show 
that complex aircraft systems are sufficiently free of anomalous behavior by evaluating system 
components and system design, the safety net approach can mitigate unforeseen or undesirable 
COTS microprocessor operation by detecting and recovering from anomalous behavior at the 
operational system level.  This approach requires the safety net to be designed as a function 
within the aircraft system.  The safety net can include passive monitoring functions, active fault 
avoidance functions, and control functions for recovery of system operations.  System 
architecture and control and recovery functions should be designed to facilitate effective system 
recovery from anomalous events.  Safety nets should show that systems are sufficiently 
impervious to anomalous behavior by ensuring continuous functional availability and reliability, 
satisfying applicable regulations, and meeting airworthiness requirements.  This includes 
verifying any disabled functionality from the COTS will remain inactive in the specific 
application. 
 
A multilevel safety net approach is required for complex and critical applications in systems that 
cannot be fully assured at the component level and is significantly linked to the assigned design 
assurance level required by regulation, contractual obligation, and the integrated complexity at 
the device level.  Safety net design, in general, is becoming a complex, application specific 
approach that will be required to detect, resolve, and validate recovery in a run-time environment 
to the required levels of availability and safety.  The safety net approach is consistent with 
current FAA policy and guidelines.  Refer to the Handbook [1] for a more complete discussion 
of safety nets. 
 
3.  THE COTS MICROPROCESSOR RISK AREAS. 

This section provides an overview of COTS microprocessor trends and the risks presented by 
their deployment in aerospace systems. 

 Recent changes in COTS microprocessors can be characterized as both physical and functional 
changes.  The physical size of transistors has been shrinking rapidly, allowing for hundreds of 
millions to billions of transistors to be placed on a single device.  As of 2010, 65- and 45-nm 
devices were common in the COTS marketplace, and 32-nm and smaller devices are beginning 
to enter the marketplace. 

 The rapid reduction in transistor size has expanded the functional capability of single COTS 
devices.  It is no longer necessary for different system components to be implemented as discrete 
devices.  Instead, a single COTS SoC may contain one or more microprocessor cores, 
input/output (I/O) devices, memory controllers, and other functionality. 

 The result of this functional integration is reduced visibility and control of the COTS SoC and its 
devices.  Unless the manufacturer explicitly provides mechanisms to inspect the behavior of the 
SoC, it is exceedingly difficult to understand how devices within the SoC operate and interact.   
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Additionally, the configuration of the many devices within COTS SoC is typically controlled by 
software settings.  This reduces the confidence that the system configuration will remain stable 
during operation. 
 
Ultimately, these trends in COTS SoCs provide for very high-performance systems with less 
power and reduced cost for the same area size.  Complex interaction with new ground support 
systems, more capable human interfacing, and other new system functionality will eventually 
require the use of COTS SoCs.  However, unless system designers and approval agents 
understand the risks of using these new devices in airborne systems and agree on adequate 
means to demonstrate their safe use, these economic and capability advantages will be offset by 
regulatory costs.  This will preclude the wide adoption of COTS SoCs in airborne systems, 
despite their technological superiority over current solutions. 
 
It is important to distinguish between discrete COTS microprocessors and SoCs when discussing 
certain elements of risk and safety analysis.  The task of ascertaining safety considerations is 
more complicated for SoCs due to the broad variety in SoC designs.  Unlike the case of discrete 
COTS microprocessors, where the majority of features of interest are similar across most 
microprocessors, SoC components tend to vary significantly based on the product selected, 
making safety analysis more complicated.  Not only are the safety concerns due to the features of 
individual IP cores an issue, but interaction among them presents a verification challenge to 
system designers.  Additionally, certain systems using SoCs may not require particular on-chip 
cores and would require the disabling of those cores for safety reasons.   
 
Resources used by safety nets are expected to change as the underlying technology of the system 
being protected (or implemented within the safety net itself) evolves.  An example of this occurs 
when configuration register changes (the addition of new, removal of old, and exposure of 
hidden/reserved registers) caused when separate, discrete microprocessors, system controllers, 
and other components are replaced with a single SoC.  The safety net design must be examined 
and perhaps adjusted when such technology changes are implemented or when the device must 
be approved within a new application.  The discussion above needs to be considered while 
formulating a safety net. 
 
After reviewing the designs of a variety of modern COTS microprocessors across a group of 
manufacturers, product families, and technology generations, three areas of risk were identified 
as common to all these devices [4]: 
 
 Visibility and Debug—The inability to observe the internal operation of the device 

during system use and development (see section 3.1) 
 
 Configuration-Related Issues—Software accessibility to device configuration during 

system operation (see section 3.2) 
 Shared Resources Effects—Performance unpredictability due to multiple on-chip shared 

resources (see section 3.3) 
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3.1  VISIBILITY AND DEBUG. 

During the background research, a physical target computer environment and a simulated target 
computer environment were setup to perform experiments.  Setting up these environments 
exposed visibility and debug challenges that may arise during typical airborne system 
development and analysis; some of these challenges are described in the Handbook [1].  The 
system developer should document the configuration of the test environment and identify any 
differences, limitations, and constraints of the simulated environment, if used, in relation to the 
physical environment.   
 
3.2  CONFIGURATION-RELATED ISSUES. 

Configuration register changes are a growing concern for avionic microprocessor applications 
since continued device integration has allowed an increasing proportion of the entire system to 
be configured through software.  If a microprocessor is not configured properly, erroneous 
behavior, including improper data processing, stack overflows, erroneous interrupts, machine 
checks, data loss, data corruption, or inadequate throughput, may occur. 
 
Over time, the number of configuration registers per microprocessor has grown significantly.  
For example, the Freescale™ MPC8572 SoC has more than 500 software-accessible 
configuration registers that control basic functionality of the processing cores and on-chip 
devices [8].  In addition to these configuration registers, various device functions may be set 
externally via pullup/pulldown pins that are sampled shortly after a hardware reset or internally 
via software.  Incorrect settings or inadvertent changes are both areas of concern that must be 
addressed.   
 
In general, the capabilities of most microprocessors exceed what is required by typical 
applications.  Care should be taken to provide assurance that unused capabilities are properly 
disabled.  In legacy avionics with many discrete system devices, this concern was addressed 
through physical disconnection of the unused devices from power sources and the rest of the 
system.  However, COTS SoCs have removed the physical separation between the devices and 
processors and gave control of device configuration to software.  Therefore, the deactivation of 
unused features has become an additional consideration within the set of configuration-related 
issues.  In addition to proper deactivation of unused features and devices, system designers 
should be able to assure that those features and devices cannot be reactivated through erroneous 
software or environmental effects.  Inadvertent activation of an unused device may cause 
unintended and undesirable operation, such as erroneous interrupts, data loss, data corruption, 
machine check cycles, and stack overflow, among others. 
 
As an example of how the deactivation of unused features has changed for modern COTS 
microprocessors, figure 1 shows the Freescale MPC8572 device disable register (DDR). 
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Figure 1.  Freescale MPC8572 Device Disable Register [8] 

This register is used by the system to determine whether each of the system’s major on-chip 
devices should be enabled or disabled by setting particular register fields to 0 (enabled) or 1 
(disabled).  This configuration register contains 24 single-bit readable and writeable fields that 
are associated with the 24 on-chip devices of the SoC.  For example, bits 16 and 18 control the 
two e500 processing cores [9], bits 2, 5, and 6 control the three PCI-Express (PCIe) controllers, 
and bits 24 through 27 control the four triple-speed Ethernet controllers.  A single bit flip in this 
register can disable a critical on-chip device or one of the processors, and the experiments have 
demonstrated that erroneous writes to this register can render the system inoperable.  Therefore, 
system designers should be aware of the risks of unexpected modifications to the system 
configuration space. 
 
Several microprocessor devices also offer the user the flexibility of locating the configuration 
registers in external memory space, which makes them more vulnerable to corruption.  This 
capability also makes the system susceptible to losing all configuration data if the pointers to the 
external memory locations are corrupted. 
 
Configuration registers may inadvertently be changed by software errors (inadvertent writes), 
single-event upsets, hardware defects, hardware faults (such as a noisy power supply core 
voltage, signal integrity issues, and ground bounce), or electromagnetic interference.   
 
In light of the risks identified with the current technology and trends and the criticality of proper 
microprocessor configuration register settings, the risks associated with incorrect configuration 
register settings should be understood.  Each register should be assessed for: 
 
 Intended setting for each register bit within the system being implemented and the reason 

for the selected setting. 
 

 Identification of each operational phase at which each register is being set (i.e., initial 
power up, power on reset, built-in test, exception processing) 

 
 Identification of disabled functions 
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 Impact to system if the state of the bit is unintentionally changed 
 

- It is recommended that the impact of an inadvertent change to critical registers or 
registers of questionable impact is verified through simulation, if possible. 

 
- The simulation environment should implement an algorithm that has the ability to 

randomly change configuration settings. 
 

 Rate of impact to system of unintentionally changed bit, if known (i.e., inadvertently 
enabling a communication bus may have no impact for a major frame) 

 
 Errata information 
 
Additional consideration is recommended for determining the effect of configuration register 
default values.  Vendor default values for configuration register settings are usually selected to 
simplify the process of getting a system “up and running” with minimal effort.  These do not 
necessarily provide the needed configuration for the performance or exception detection needed 
by the intended application.  Evidence that supports the assertion by the integrator that the 
settings are correct for the intended application should be provided.  Examples include the 
following:   
 
 Registers that are used to enable utilized interfaces and disable unutilized interfaces. 
 Registers that are used to allocate access to shared resources (arbiters). 

 
Beyond the general assessment recommended for all configuration registers described above, 
industry members have identified the following types of registers for special consideration.  
These registers may be helpful in constructing a safety net: 
 
 Interrupt Mask Registers—These registers allow hardware exceptions to either generate 

an interrupt signal or inhibit the generation of the interrupt. 
 

 Interrupt Cause Registers—These registers allow the apparent cause of hardware 
exception to be visible to software.  Often, the cause is separate from the 
generation/masking process so that the implementer may poll the cause register.  Usually, 
provisions exist internally to capture only one occurrence of a set of causes at a time.  
Therefore, the system implementer must take additional measures in the interrupt handler 
to capture subsequent occurrences if this is required. 

 
 Error Counters—These registers allow accumulated error events to be visible to software.  

Examples of these include the error correction code (ECC) single-bit error counters and 
ECC double-bit error counters on memory bus interfaces. 

 
Once this analysis has been completed, safety net methodologies can be employed to mitigate the 
identified risks. 
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3.3  RESOURCE-SHARING CONSIDERATIONS. 

Modern microprocessors differ from previous technology in that many processing, memory, and 
I/O components reside within a single device, and many of these components are designed to be 
shared to optimize system performance.  The multiple processing components compete to initiate 
requests to their memory and I/O targets.  Additionally, the I/O components can initiate requests 
to memory targets through direct memory access.  Whether initiated by a processor or I/O 
controller, requests travel over shared on-chip interconnects, typically a single on-chip bus.  The 
Handbook defines shared resources as any on-chip or off-chip components that are accessible to 
multiple initiators.  Examples of shared resources include on-chip memory controllers, hardware 
accelerators, level 2 (L2) and/or level 3 caches, on-chip busses, and on-chip Ethernet controllers. 
 
Modern microprocessors feature a number of shared resources.  As shown in figure 2, the two 
e500 cores of the Freescale MPC8572E share a single L2 cache [8].  Additionally, the two 
processing cores share a single on-chip bus to access the other major components of the system, 
including the various I/O controllers and memory controllers.   
 

 

Figure 2.  Freescale MPC8572E Block Diagram [8] 

It is highly recommended that the system designer analyze the access protocol for these shared 
resources and the run-time behavior of all programs that share a given resource.  Based on this 
analysis, the designer should ensure that even with the sharing of resources, the system will 
continue to run in a predictable manner (continuous operation).  In some conditions, hard 
shutdowns can be an acceptable safety protection mechanism. 
 
Sharing resources is a major contributor to nondeterminism and worst-case execution time 
(WCET) analysis challenges in modern COTS microprocessors.  Nondeterminism arises because 
the availability of a shared resource becomes largely dependent on the run-time behavior of other 
processes sharing the same resource.  In many cases, the run-time behavior of programs is data-
dependent and cannot be predicted offline.  WCET analysis depends on understanding all 
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conditions that lead to timing delays and then bounding for worst-case conditions.  Multiple 
shared resources on a single device complicate this analysis due to the increase in the number of 
delay conditions. 
 
Pellizoni, et al. [10], describe the challenges in predicting the WCET in a multitasking system.  
They show that due to the interference between cache-fetching activities and I/O peripheral 
transactions, tasks can suffer computation time variance of up to 46% in a typical embedded 
system.   
 
To further assess the timing delays and nondeterminism caused by resource sharing, additional 
experiments were performed using a simple matrix multiplication program on the Freescale 
MPC8572 platform considering the L2 cache as the shared resource, as described in section 6.  
Each processing core executed its own copy of a matrix multiplication program that required the 
use of the shared L2 cache, due to the program size.  The experiments showed that the execution 
time of the matrix multiplication program can increase by as much as 17% as L2 cache 
interference increases. 
 
Moscibroda, et al. [11], describe that in a multicore system, multiple programs running on 
different cores can interfere with each other’s memory access requests, thereby adversely 
affecting performance [11].  They show that a competing program running on one processing 
core can result in a denial of service (DoS) on the other processing core, due to the inherent 
unfairness in memory controller access policy.  The performance of a blocked application can be 
reduced by as much as 2.9 times in a typical dual-core system.  Moscibroda, et al., identify the 
memory access scheduling algorithm as the main source of inequality in memory access, 
allowing the DoS to occur.  Shared resource access policy and scheduling is addressed below. 
 
Industry trends indicate that the ratio of processing cores to various shared resources in COTS 
SoCs will increase over time.  Instead of two processing cores sharing a common cache, memory 
controllers, and I/O devices, there will be four, eight, or more processing cores sharing these 
resources.  This will increase the competition for shared resources among processing cores, 
worsening potential unpredictability issues. 
 
In addition to the contention of shared resources being an area of risk for microprocessors, it is 
also important to consider the sharing of interfaces for the purpose of data transfer and exception 
signaling.  Exception condition signaling mechanisms should be considered because they impact 
both the ability to deliver exception notifications as well as the latency of exception event 
notification.  Examples from various forms of peripheral component interconnect (PCI) 
interfaces, include: 
 
 Mechanisms that use the same channel as the one that is being monitored—Message 

signaled interrupts (MSI) on PCIe links that are communicated as unique bit patterns 
within the same channel used for bus commands, addresses, and data.  If the channel is 
disrupted, then the notification method is disrupted as well.  Also, due to the serialized 
nature of this mechanism notification is delayed until the traffic in front of it has been 
transferred.  Note that the parity error and system error signals of conventional PCI buses 
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also fall into this category because they are generated along with the bus transaction 
cycles they represent and are transferred along with the transaction results. 

 
 Mechanisms that use a different channel than the one being monitored—The 

conventional PCI interrupt mechanism uses discrete lines to the interrupt controller 
devices outside the lines that transfer bus commands, addresses, and data, though it also 
appears on the same connector when implemented as an external interface.  Due to the 
nonserialized nature of this mechanism, notification is not delayed by traffic on the bus.  
If the address/data bus portion is disrupted, then the interrupt notification mechanism 
may still be intact. 

 
4.  THE COTS MICROPROCESSOR EVALUATION PLATFORM. 

This section describes the target platforms that were established to perform experiments and 
evaluate the criticality of the above mentioned risk areas.  Two different platforms were used for 
experimentation in this research: 
 
 Physical—Freescale MPC8572DS platform 
 Simulated—Simics® MPC8572DS model 
 
Having the Simics simulated model for the MPC8572DS hardware allowed the researchers to 
easily perform tasks, such as fault injection and performance monitoring, which would have been 
more difficult to perform on the hardware platform. 
 
4.1  PHYSICAL FREESCALE MPC8572DS PLATFORM. 

The MPC8572E is a dual-core PowerPC e500v2 microprocessor that includes high-speed 
interconnect technology to balance processor performance with I/O throughput.  In addition, the 
MPC8572E offers the following:  a double-precision, floating-point auxiliary processing unit; 
1024 Kbytes of L2 cache; four integrated 10/100/1GB-enhanced, three-speed Ethernet 
controllers (eTSEC) with transmission control protocol (TCP/IP) acceleration, classification 
capabilities, and SGMII interface capabilities; a 10/100 fast Ethernet controller (FEC) 
maintenance port; two table lookup units (TLU); two DDR2/DDR3 SDRAM memory 
controllers; a multiprocessor programmable interrupt controller; inter-integrated circuit two (I2C) 
controllers; two four-channel direct memory access (DMA) controllers; an integrated security 
engine (SEC) with XOR acceleration; an enhanced local bus controller (eLBC); a pattern 
matching engine (PME) with Deflate (lossless data compression algorithm that uses a 
combination of the LZ77 algorithm and Huffman coding) capabilities; a general-purpose I/O 
port; and dual universal asynchronous receiver/transmitters (DUART).  For high-speed 
interconnect, the MPC8572E provides a set of multiplexed pins that support two high-speed 
interface standards:  1x/4x serial RapidIO (with message unit) and up to x8 PCIe (with the 
capability to offer three independent PCIe links).  The high-level integration in the MPC8572E 
helps simplify board design and offers significant bandwidth and performance.  Figure 3 shows 
the physical MPC8572DS development system used for experiments. 
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KB = Keyboard 

Figure 3.  System Diagram of Physical MPC8572DS [12] 

Key features of the MPC8572E device include: 
 
 Two PowerPC e500v2 cores with 36-bit physical addressing [9] 

 1024-Kbyte L2 cache 

 Integrated security engine (SEC) with XOR acceleration 

 Four integrated 10/100/1GB-enhanced three-speed Ethernet controllers (eTSEC) with 
TCP/IP acceleration, classification capabilities, and SGMII interface capabilities 

 10/100 Fast Ethernet controller (FEC) maintenance interface 

 Two DDR2/DDR3 SDRAM memory controllers 

- High-speed interfaces: 
- Three PCIe controllers 

 One serial RapidIO (SRIO) controller with RapidIO messaging unit 

13 



 

 Pattern matching engine (PME) with DEFLATE engine 

 Two table lookup units (TLU) 

 Programmable interrupt controller (PIC) 

 Two, four-channel DMA controllers 

 Two I2C controllers 

 DUART 

 Enhanced local bus controller (eLBC) 

 Eight general-purpose I/O signals 

 Power management (power saving modes:  doze, nap, and sleep) 

 System performance monitor  

 System access port 

 IEEE Std 1149.1™ compatible, Joint Test Action Group boundary scan 

 1023 FC-PBGA package 

The MPC8572DS features memory-mapped configuration, control, and status registers for the 
integrated peripherals starting at an offset defined by the configuration, control, and status 
registers base address register (CCSRBAR).  No address translation is done, so there are no 
associated translation address registers.  The configuration, control, and status window is always 
enabled with a fixed size of 1 megabyte.   
 
4.2  BOARD SUPPORT PACKAGE. 

The board support package features the Linux 2.6.27.6 kernel and provides the following tools, 
device drivers, and additional features needed for an embedded Linux project: 
 
 Targeting Freescale MPC8572DS board Linux 2.6.27.6 kernel supporting e500v2 core  

 Supports symmetric multiprocessing (SMP) Linux on both cores  

 Supports asymmetric multiprocessing (AMP) Linux on each core  

 eTSEC driver to support four eTSECs on 10M/100M/1000M Ethernet function 

 e500 hardware floating-point exception handler patches to support the scalar single-
precision floating point (SPFP), vector SPFP, and double-precision floating point (DPFP)  
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 DUART driver support 115200 baud without flow control  

 32-bit PCI host driver for 33 MHz to support Intel e100, 3Com 3C905, Intel Pro1000  

 82545EM Ethernet adaptors  

 PCIe host driver to support the onboard ULi (Uli Electronics, Inc.) M1575 bridge and 2x 
mode driver to support Intel Pro 1000 network interface card for two slots 

 Both INTx and MSI are supported on PCIe 2/3.   

 Serial ATA (SATA) driver in kernel to support the SATA (Advanced technology 
attachment, where advanced technology derived from the IBM PC/AT naming of 
personal computers, and attachment AT is an interface standard for the connection of 
storage devices such as hard disks, solid-state drives, floppy drives, and optical drives in 
computers) module of ULi M1575 with hard disk utilities.  Hard disk can be mounted 
manually. 

 Support for ATI RADEON X800XL and X700 video card  

 Pattern matching engine driver  

 TLU Unit driver  

 Linux kernel booting from network, flash, or hard disk drive (HDD), with ULi M1575 
SATA HDD as default boot  

 Support for LAMP (Linux 05, Apache HTTP Server, MySQL (database software), and 
Perl/PHP/Python, which form principle/components to build a viable general-purpose 
web server) 

 Socket buffer recycling patch for eTSEC included  

 Support for SEC 3.0 mainline Internet Protocol Security (IPsec) stack and mainline 
Talitos driver.  SEC low-level driver is included.   

 I2C driver  

 Real-time clock driver  

 Support for ULi parallel ATA (PATA) controller 

 ULi universal serial bus (USB) controller supports keyboard, mouse, and U-disk  

 Memory technology device driver supports both not OR (NOR) and not AND (NAND) 
flash  
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 Dynamic power management driver  

 Watchdog driver  

 Support for JFFS2 file system  

 Support for the user space device management (udev) file system  

 Support for CodeWarrior debug in both SMP and AMP mode  

 Linux Target Image Builder (LTIB) root file system on SATA HDD automatically 
mounted, including native “GNU’s Not Unix!”—Unix-like computer operating system 
developed by the GNU Project (GNU) toolchains and application packages 

 SATA hard disk ghost image  

 TCP/IP stack  

 File transfer program client and server  

 Telnet client and server  

 Support for both the network file system and random access memory (RAM) disk file 
systems 

4.3  SIMICS MPC8472DS MODEL. 

The simulation platform used in Phase 5 was the Virtutech Simics model of the Freescale 
MPC8572DS.  Research was performed using Virtutech Simics 4.0 and Virtutech Model Library 
MPC8572 4.0.10 [13].  As done with building software for a physical MPC8572DS, the 
Freescale LTIB package was used to configure and compile the system bootloader and operating 
system for the simulation platform.  The bootloader used for the simulation platform was U-Boot 
2008.10, and the operating system used was Linux 2.6.27.6. 
 
There are several important differences between the physical and simulation platforms; however, 
most of these differences had no effect on most normal software execution.  These differences 
did result in functional discrepancies between the physical and simulation platforms during 
extended configuration register testing, as described in section 5. 
 
The simulated model of the MPC8572DS is a partial simulation of the hardware and is composed 
of the following: 
 
 Freescale MPC8572 SoC 
 RAM 
 NOR Flash 
 PromJet 
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 Pixis field-programmable gate array (FPGA) 
 Ethernet PHYs 
 
The most notable difference between the physical and simulation MPC8572DS is the absence of 
the ULi M1575 South Bridge chip from the simulation model.  This chip provides interfaces for 
USB devices, audio devices, and legacy PCI devices, among others.  The South Bridge chip is 
connected to the MPC8572 SoC via a PCIe link in the physical platform. 
 
4.4  ANALYSIS OF PHYSICAL AND SIMULATION PLATFORMS. 

Hardware and software considerations were identified for system designers in evaluating the 
physical and simulation MPC8572DS platforms.  The following hardware considerations apply 
for physical evaluation platforms: 
 
 Limited visibility into the device’s internal operation—Manufacturer documentation is 

intended to support the use of the device based on the capabilities described in the User’s 
Manual and on the device characteristics documented in the data sheet/errata.  Internal 
operation is frequently proprietary information.  For example, the User’s Manual may 
document how to configure the use of cache memory, but the cache algorithm being used 
internally by the device may be proprietary. 

 
 Performance monitoring—Hardware performance monitors may be provided by the 

manufacturer to provide insight into the internal operation of a microprocessor.  These 
monitors allow system designers to track various system activities and performance 
statistics during application development and execution.  Hardware performance 
monitors are typically used to gather L1 and L2 cache statistics and measure cycle counts 
to estimate application execution times.  Performance monitors may also allow a system 
designer to observe the activity of functions resident on the microprocessor, including 
memory controllers, PCIe and Ethernet controllers, and DMA engines.  These 
performance monitors are uniquely designed for each COTS microprocessor, and access 
to the performance monitors typically requires custom software and is not fully supported 
by COTS operating systems.   

 
 Fault insertion—The ability to insert faults internal to the microprocessor may be limited 

or not achievable.  An applicant may not be able to demonstrate that faults are correctly 
detected if the faults cannot be injected.  The safety net methodology can then mitigate 
these types of faults. 

 
The simulation evaluation platform is capable of running most of the same software as the 
physical platform; however, limitations do exist for custom or specialized software.  System 
designers should not expect that every configuration register for every system component is 
functional.  Instead, the configuration registers required for a standard bootloader and operating 
system (e.g., Linux) are modeled.  If a custom bootloader or operating system is used, additional 
system modeling may be required.   
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The following software and hardware considerations were identified for simulation platforms: 
 
 Software considerations:   
 

- Applicants should be aware that the primary focus of microprocessor simulation 
is on application software development.  Typically, hardware evaluation is a 
secondary concern, if addressed at all.   

 
- Modeling configuration and internal registers—The simulated computer 

environment typically models the minimum set of configuration and internal 
registers to support software execution.  The differences between the simulated 
computer environment and the target computer should be documented by the 
system developer as part of the test environment.  Evaluating the system response 
in a simulated environment requires accurate modeling of all configuration 
registers.   

 
 Hardware considerations: 
 

- Limited modeling of hardware—Hardware interfaces and modeling of 
microprocessor functions may be limited to those items required for application 
software development. 

 
- Timing and cycle accuracy of the simulated target computer should be assessed.  

If the target computer model is not cycle accurate, functions which are timing 
sensitive should be verified in the target computer environment. 

 
- Modeling device performance—Internal microprocessor performance monitors 

may not be modeled in the simulator. 
 

- Microprocessor models focus on the simulation of core central processing units; 
modeling of other microprocessor resident functionality may be limited.   

 
5.  CONFIGURATION-RELATED ISSUES. 

This section details the experiments and their results that were performed on the hardware 
platform to assess the severity of issues related to unexpected modifications to configuration 
registers.   
 
5.1  EXPERIMENTS AND RESULTS. 

An experiment was designed to test the effects of bit changes in configuration registers.  In this 
experiment, register bits in the universal asynchronous receiver/transmitters (UART) 
configuration space were changed.  The CCSRBAR register holds the base address of all the 
memory-mapped configuration registers on the MPC8572E.  The UART configuration registers 
are located at an offset of 0x4500 from CCSRBAR.  Figure 4 shows all the configuration 
registers for UART0.  The registers for UART1 are similarly located, starting at 0x4600.   
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Figure 4.  The MPC8572 UART Configuration Registers [8] 

5.2  TEST SETUP. 

The program was run through the CodeWarrior™ integrated development environment by 
loading it into the memory of the hardware platform.  The program used to change the register 
bits was also used to test the UART functions.  This was done by printing the register and bit 
number each time a register bit was changed. 
 
5.3  EXPERIMENTS. 

The register bits were changed by XORing them with a mask in a walking one pattern.  After 
printing the register and bit numbers, the bit was reset to its original value before changing the 
next bit. 
 
5.4  RESULTS. 

Table 1 shows the results of the experiment.  The table only shows the bit and register numbers 
for which there was a deviation from the normal execution.   
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Table 1.  Results of Experiment 

Seria
l 

No. 
Register 

No. Bit No. 
Register 
Name Bit Description Effects 

1 0 3 UTHR0 Data Newline character(s) deleted 

2 0 5 UTHR0 Data Extraneous space character inserted 

3 0 6 UTHR0 Data Extraneous @ character inserted 

4 2 1 UFCR0 Receiver 
trigger level 

Extra character repeated 

5 2 2 UFCR0 Reserved Extra character repeated 

6 2 7 UFCR0 FIFO enable Extra non-ASCII characters on reset 

7 3 1 ULCR0 Set break Some characters get translated to  
non-ACSII characters 

8 3 6 ULCR0 Word length Test hangs 

9 3 7 ULCR0 Word length Test hangs 
 
It should be noted that, in each case, the program returned to the normal mode of operation after 
resetting the changed bit.  The results can be classified based on their degree of criticality: 
 
 Change in output data:  The data output on the console was different from normal output.  

(For example, serial numbers 1-7) 

 Change in program execution (Serial numbers 8 and 9) 

 Crash:  None in this experiment. 

5.5  INTERPRETATION OF RESULTS. 

For serial numbers 8 and 9 in table 1, a special diagnostic was required since the program did not 
execute normally.  Using CodeWarrior debugger, it was observed that, for serial number 8, the 
execution did not come out of the MPCDUARTReadPool() function.  The program did not 
exactly stop executing, but it seemed to be stuck in the function.  The set break forced logic 0 to 
be on the serial out line and did not affect the UART buffers.  In such a situation, the UART 
buffers get filled up, and hence, the call to printf() in the test program does not return. 
 
5.6  A SIMPLE SAFETY NET IMPLEMENTATION FOR CONFIGURATION-RELATED 
ISSUES. 

In this experiment, a safety net design was tested for the configuration-related issues.  In an 
earlier test, it was observed that some UART configuration registers can lead to unwanted effects 
when their values are changed.  It was also observed that the correct values of these registers are 
known for a particular use case.  In this experiment, the UART configuration registers were 
periodically overwritten with their correct values.  It was observed that unwanted effects still 
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exist when overwriting with correct values.  The period at which the system was able to perform 
correctly was observed, even when the register values changed. 
 
5.7  TEST SETUP. 

The test was performed inside the CodeWarrior debug environment on the hardware platform.  A 
UART0 line control register was used to corrupt and repair.  The register was corrupted by 
changing its lowest bit, which changes the data to be transmitted on the UART.  This data 
translation led to the output of non-ASCII characters on the serial port.  To repair the corrupted 
register, the default correct value of 0x03 was written onto the register.  To detect errors, the 
value of the register was confirmed to be 0x03.  The corruption, repair, and usage were all run 
within a single thread on one core. 
 
5.8  TIMER SETUP. 

The decrementer (DEC) counter in the e500 cores was used to set up a 1-ms timer.  The DEC 
counter is decremented every 8 core complex bus (CCB) clocks.  In the default setup, the CCB 
runs at a 600-MHz frequency, so the DEC was loaded with a value of 750,000.  The interrupt 
handler for the timer calls the timerInt function where the register corruption, repair, and usage 
are performed.  The pseudo code for the timerInt function is shown in figure 5. 
 

time++ 

if (time % usage_period == 0) 

if(register value incorrect) 
  repairs++ 
if (time % repair_period == 0) 

  repair register() 

if (time == next_error_time) 

  corrupt register() 
 update next_error_time 

Figure 5.  The timerInt Function 

5.9  EXPERIMENTS. 

Three different periods were used for using, corrupting, and repairing the register value.  The 
usage period and corruption period are estimates on how frequently the register is expected to be 
used and corrupted, respectively.  Experiments were conducted for different values of the repair 
period to observe the number of errors.  For each repair period, the test was run for 10 seconds. 
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5.10  TEST RESULTS. 

This section discusses the results from the experiments performed for this test plan.  Figures 6 
through 8 show the number of errors for different values of repair, usage, and corruption periods.  
In all three results, no errors were detected if the repair period was less than 5 ms.  At the same 
time, for certain values of the repair period, there was a spike in the number of errors.  This 
happened because the interleaving of usage, repair, and corruption periods allowed the register to 
be used just after it is corrupted for the given corruption period.  The usage period was kept 
constant at 15 ms. 
 

 

Figure 6.  Corruption Interval = 100 ms 

 

Figure 7.  Corruption Period = 200 ms 
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Figure 8.  Corruption Period = 300 ms 

Through these experiments, it was found that the number of detected errors depends greatly on 
the usage, corruption, and repair periods.  However, these validation experiments indicate that if 
the configuration registers are repaired at a sufficiently high rate, the failure impact can be 
significantly reduced.  The effectiveness of this reduction in impact can be affected by the 
corruption period, the specific configuration register change(s), and the design of the affected 
functions.   
 
6.  RESOURCE-SHARING CONSIDERATIONS. 

This sections details the experiments and results performed to gain insight into the effects of 
resource sharing in a COTS microprocessor system. 
 
6.1  EXPERIMENTS, TEST SETUP, AND RESULTS. 

In this experiment, the timing delays, which were due to the contention by cores on L2 cache, 
were determined.  First, a simple matrix multiplication program was used to determine its 
execution time by running it on only one core.  This execution time was the baseline timing 
requirement.  To test the effect of contention, the other core was activated and run another matrix 
multiplication program, which stressed the shared L2 cache.  The delays incurred by this 
contention on the execution time of the matrix multiplication program were observed and 
measured. 
 
6.1.1  Test Setup. 

The test was performed inside the Linux operating system environment from the board support 
package for the hardware platform MPC8572DS development system.  The taskset utility from 
the DENX ELDK software package was used to restrict the programs to run on a single core 
[14].  The execution time of the programs was obtained by reading the real-time clock device set 
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to a frequency of 8 MHz.  The specific details about reading the real-time clock and running the 
programs can be obtained from the documentation in the code package for the one page test plan 
(Resource-Sharing Effect on Timing One Page Test Plan).  Two versions of the matrix 
multiplication program were implemented.  The first, matmult_timer, prints out the execution 
time whenever it is run.  The second, matmult, is used for the L2 cache-stressing purposes and 
does not print out the execution time.   
 
6.1.2  Experiments. 

In the following sections, the timed and untimed versions of the matrix multiplication program 
are referred to as base matrix and contention matrix, respectively.  Two different experiments 
were performed to test the results of contention.  In the first experiment, the contention matrix 
size was kept constant at 10,000, while the base matrix size was varied from 20 to 700.  In the 
second set of experiments, the base matrix size was kept constant, while the contention matrix 
sizes were varied. 
 
6.1.3  Test Results. 

Figure 9 shows the execution times for the first experiment where the base matrix size was 
varied.  It is clear that the execution times in the presence of contention are greater than those 
without contention.  The trend of the execution times is a bit unexpected though.  As shown in 
figure 9, spikes trend at matrix sizes of 510, 590, and 670.  The cause(s) of these spikes are 
probably the dynamic management of cache by the operating system (OS) and needs more 
investigation.   
 

 

Figure 9.  Effect of Contention on Execution Time 

Figures 10 through 14 show the execution times for the second experiment where the base matrix 
sizes were kept constant.  Five different base matrix sizes (200 to 600) were used for the 
experiment.  For each case, the contention matrix size was varied from a low number (around 
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20) to a size roughly equal to double the size of the base matrix.  The reason for choosing this 
range is that a small size contention matrix would provide very little stress on the L2 cache, and 
the execution time with contention would be roughly the same as without contention.  This is 
clearly visible in the results.  A contention matrix size of double the base matrix size ensures 
there is some contention on the L2 cache.  As the contention matrix size is gradually increased 
beyond a certain value, the execution time with contention may suffer a significant increase, as 
shown in figures 10 through 14.  But as the contention matrix size continues to increase, the 
execution time does not continue to increase.  This again might be a result of the Linux OS 
performing intelligent reconfiguration of the cache that masks the effect of increase in 
contention. 
 

 

Figure 10.  Base Matrix Size = 200 

 

Figure 11.  Base Matrix Size = 300 
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Figure 12.  Base Matrix Size = 400 

 

Figure 13.  Base Matrix Size = 500 

 

Figure 14.  Base Matrix Size = 600 
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6.2  SUMMARY. 

This experiment shows that resource sharing may lead to variation in task execution times.  At 
the same time, the OS may perform intelligent dynamic management, which can reduce the 
effect of such contention.  The effects of contention due to resource sharing are highly dependent 
on the system setup, and each system setup must be individually evaluated for the effects of 
resource sharing. 
 
7.  SAFETY NETS. 

This section discusses safety net considerations that are not present in the Handbook [1].  It is 
recommended that readers first consult the Handbook for the primary considerations in 
understanding and building safety nets before reading this section.  The following 
supplementary considerations are addressed here:   
 
 The role of safety nets in ensuring predictable degraded system performance during 

failure 
 

 System start-up behavior considerations when designing safety nets 
 

 Distinguishing appropriate safety net actions, depending on aircraft conditions  
 
To ensure a comprehensive safety net design, the following activities are needed: 
 
 Identification of the critical functions within the system 

 
 Identification of the components within the system that are used either directly or 

indirectly by the critical functions 
 

 Identification of operational constraints for use of these components 
 
 Evaluation of the impact to system behavior if the system is subjected to operation 

outside the constraints.  (This includes, but is not limited to, the possible failure modes of 
the devices used to construct the system.)  

 
 Identification of interfaces that can be connected to those components, both intentionally, 

and as a result of component failure modes, temporal or logical errors, and operation 
outside the constraints 
 

 Identification of mechanisms for detecting, classifying (according to criticality of hosted 
functions, severity of degradation, and other factors), and responding to (recording, 
reporting, or taking actions) system degradation when it is detected 
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 Identification of the latency requirements for the response, based upon the classification 
of the severity of the degradation, the impact it has on critical functions, and the effect 
the passage of time has to either exacerbate or mediate the effects of the 
degradation/failure or enhance or dilute the effects of the subsequent remedial actions 

 
Also, the following activities are needed for system design: 
 
 Minimize the probability of undetected degradation/failure of components in critical 

paths. 
 

 Minimize the probability of incorrect classification of the degradation/failure severity 
present in those paths. 
 

 Minimize probability of incorrect response to detected degradations/failures present. 
 

 Ensure that the appropriate amount of resources are allocated to mediate the effects of the 
degradation/failure and enhance the effects of the subsequent remedial actions in critical 
functions. 
 

 Test to ensure the mediation allows the aircraft to function with the failure inserted (when 
possible). 

 
The remainder of this section describes the general logic behind a safety net design and a 
detailed analysis of the different system conditions a designer should consider following that 
general logic. 
 
The basic logic begins with the system operating within the originally conceived design 
constraints.  The system either experiences an event that subjects it to an environment it was not 
designed to withstand, or the system sustains an internal failure in one (single fault) or more 
(cascade failure) components that are either frequently or infrequently used by the system.  At 
this point, portions of the system may exhibit behavior ranging from being totally operational 
(no degradation) to being totally degraded (failed).  The degradations or failure behaviors may 
be detectable immediately or they may only be detectible when a certain function or combination 
of conditions is exercised (latent).  The kinds of behavior the system produces as a result of the 
event and degradation can range from inputs or outputs not being present when required, to 
inputs or outputs being present when not required.  Multiple threads of these behaviors may exist 
within portions of the system that can be expressed as above.  The logic can be applied to 
components in the path of critical functions as well as in the path of noncritical functions.   
 
A safety net may perform a combination of periodic built-in test (PBIT) and software 
monitoring to detect the occurrence of a subset of possible constraint violations and internal 
failures.  As stated previously, the capabilities of PBIT and software monitoring depend on the 
specific microprocessor capabilities. 
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Upon occurrence of an internal failure or design constraint violation, the system may transition 
to one of the following states that must be accounted for in the safety net design: 
 
 The system may continue to operate normally. 

 
 The system may totally fail to operate (go offline). 

 
 The system may enter one of the following partially operational, but functionally 

degraded, states: 
 

- One or more critical functions are lost before conditions exist that require the 
operation of any of the lost or affected critical functions.  One or more observable 
effects are produced when the state is entered. 

 
- One or more critical functions are lost during or after the conditions exist for 

which the operation of the affected critical function is required.  One or more 
observable effects are produced when the state is entered. 

 
The observed effects for the above cases are due to either the loss of observable critical or 
noncritical functions or injections of unintended operational conditions into observable critical or 
noncritical functions that are apparent upon state entry. 
 
There are two cases where functionality is lost but no observable effects occur: 
 
 One or more noncritical functions are lost before conditions exist that require the 

operation of any of the affected noncritical functions.  No observable effects are 
produced when the state is entered.   
 

 One or more critical functions are lost before conditions exist that require the operation 
of any of the affected critical functions.  No observable effects are produced when the 
state is entered.   

 
The presence of degraded operation with the lack of observed effects for these two cases is due 
to either the loss of unexercised functions or injections of unintended operational conditions into 
unexercised functions that are not apparent upon state entry.  The loss or losses for the above two 
cases become apparent when one of the affected functions is required. 
 
The observed effects for the following four cases are due to injections of unintended operational 
conditions into observable critical or noncritical functions that are apparent upon state entry: 
 
 Injection of one or more unintended operational conditions into one or more critical 

functions before conditions exist that require the operation of any of the affected critical 
functions.  One or more observable effects are produced when the state is entered. 
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 Injection of one or more unintended operational conditions into one or more critical 
functions during or after conditions exist that require the operation of any of the affected 
critical functions.  One or more observable effects are produced when the state is entered. 

 
 Injection of one or more unintended operational conditions into one or more noncritical 

functions before conditions exist that require the operation of any of the affected 
noncritical functions.  One or more observable effects are produced when the state is 
entered. 

 
 Injection of one or more unintended operational conditions into one or more noncritical 

functions during or after conditions exist that require the operation of any of the affected 
noncritical functions.  One or more observable effects are produced when the state is 
entered. 

 
The presence of degraded operation with the lack of observed effects for the following two cases 
is due to the injection of unintended operational conditions into unexercised functions that are 
not apparent upon state entry.  The loss or losses for the above two cases become apparent when 
one of the affected functions is required. 
 
 Injection of one or more unintended operational conditions into one or more critical 

functions before conditions exist that require the operation of any of the affected critical 
functions.  No observable effects are produced when the state is entered. 

 
 Injection of one or more unintended operational conditions into one or more noncritical 

functions.  No observable effects are produced when the state is entered. 
 
7.1  SYSTEM START-UP BEHAVIOR CONSIDERATIONS TO ADDRESS IN DESIGNING 
SAFETY NETS. 

The actions performed during power application depend on the operational state of the system, 
the hardware and software architecture, and other factors.  The following are representative 
examples of conditions and operations that should be considered when designing safety nets. 
 
Maintenance start-up on ground includes the following operations: 
 
 Maximum coverage power-on self-test (POST) 
 
 Maximum initialization of processing hardware 
 
 Complete initialization and test of memory subsystems.  As memory is added to a system, 

the time needed to verify its integrity is increased.  The execution speed of the processor 
is not the constraining factor for these tests.   
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 Initialization of discrete and networked I/O.  As I/O is added to a system, the time needed 
to verify its integrity is increased.  The execution speed of the processor is probably not 
the constraining factor for these tests.   

 
 Run-time executive load and execution (including PBIT) 
 
 Application software load and execution (including application software monitors) 
 
 Ground-start event detection, processing, and optional notification 
 
 Preparation and execution of additional diagnostic testing with attached test equipment 
 
Normal start-up on ground consists of the following operations: 
 
 Normal coverage POST 
 Initialization of processing hardware 
 Complete initialization and test of memory subsystems 
 Initialization of discrete and networked I/O 
 Run-time executive load and execution (including PBIT)  
 Application software load and execution (including application software monitors) 
 Ground-start event detection, processing, and optional notification 
 
Ground-restart consists of the following operations: 
 
 Normal coverage POST 
 Initialization of processing hardware 
 Complete initialization and test of memory subsystems 
 Initialization of discrete and networked I/O 
 Run-time executive load and execution (including PBIT)  
 Application software load and execution (including application software monitors) 
 Ground-start event detection, processing, and optional notification 
 
Air-restart consists of the following operations: 
 
 Time-constrained abbreviated POST 
 
 Time-constrained abbreviated initialization of processing hardware, possibly using last 

applicable configuration data if it is available 
 
 Time constrained, minimally disruptive initialization and test of memory subsystems 
 
 Time-constrained abbreviated Initialization of discrete and networked I/O possibly using 

last applicable configuration data if it is available 
 
 Time-constrained abbreviated run-time executive load 
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 Time-constrained abbreviated application software load 
 
 Time-constrained application software execution in-air-restart event detection, 

processing, and notification 
 
 Air-start event detection, processing, and optional notification 
 
7.2  CRITICAL CONDITION DETERMINATION CONSIDERATIONS FOR SAFETY NET 
DESIGN. 

Detection of critical conditions is usually accomplished by reading discrete inputs of the 
processing system, just after the power-up initialization and critical self-test functions have 
completed.   
 
A pair of critical conditions is associated with application and removal of power.  These rely on 
a reserve amount of power present in the system to accomplish the storage of data from the 
system during power interruptions, and subsequent retrieval of that data to resume operation 
once power has been restored.  The following are examples of critical conditions and the 
associated design considerations that could change based on the system functions, system 
architecture, aircraft power sources, and aircraft interfaces. 
 
 Example 1:  Power Down Imminent Conditions 

 
Power down imminent indicates that the power conditions needed to maintain system 
operation will soon be lost, and that critical data and state information needed to resume 
operation when power is subsequently reapplied need to be saved.  The amount of 
information saved may be a function of the state the system is in when this condition was 
entered. 

 
 Example 2:  Power Up Conditions 

 
Power up indicates that the power conditions needed to establish and maintain system 
operation now exist, and previously saved critical data and state information need to be 
restored, if they exist.  The amount of information restored may be a function of the state 
the system was in when the power down imminent condition was entered. 

 
The next pair of critical conditions are associated with the determination of on-ground versus 
airborne conditions. 
 
 Example 3:  On-Ground Conditions 
 

The presence of an on-ground condition is indicated by the presence of the weight on 
wheels discrete.   
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It inhibits the operation of signals and software execution for avionics and release 
systems during tests that would be hazardous to aircrews, ground crews, or others; unless 
intentionally overridden to exercise those signals as part of the test.   
 
It enables the operation of signals and software execution (such as special fault isolation 
software) that would not be permitted in an airborne environment because they consume 
an excessive amount of computational resources needed to maintain safe flight or 
otherwise present a hazard to aircrew or others. 
 
Detection of this condition after power-up indirectly indicates an on-ground power cycle. 
 
Absolute determination of the on-ground condition requires additional input from other 
sources, such as the presence of the landing gear down and locked input.  This condition 
cannot be achieved while in the air, except in the event of landing or through failure that 
asserts the required discrete inputs. 

 
 Example 4:  Airborne Condition 

 
The absence of an on-ground condition is indicated by the absence of the weight-on-
wheels discrete. 
 
It enables the operation of signals and software execution for avionics and release 
systems during tests that would be hazardous to aircrews, ground crews, or others if they 
were indiscriminately executed on the ground.   
 
It inhibits the operation of signals and software execution (such as special fault isolation 
software) that would not be permitted in an airborne environment because they consume 
an excessive amount of computational resources needed to maintain safe flight or 
otherwise present a hazard to aircrew or others. 
 
Detection of airborne condition after power-up indirectly indicates an in-air power cycle.  
Absolute determination of the condition requires additional input from other sources, 
such as the absence of the landing gear down and locked input.  This condition can be 
achieved on the ground, either intentionally as described above, in the event of take-off, 
or through failure that removes the required discrete inputs. 

 
8.  RECOMMENDATIONS FOR FUTURE RESEARCH. 

The FAA has suggested a follow-on Aerospace Vehicle System Institute project to evaluate 
other AEH beyond COTS microprocessors and an update to the Handbook to reflect the results 
of the follow-on project.  AEH considered in the follow-on project are expected to include 
FPGA-based SoCs. 
 
Additionally, the follow-on project proposes to guide one or more pilot projects in the use of 
safety nets for microprocessor-based aircraft systems.  Pilot projects in the continuing 
development, application, and refinement of the safety net approach could provide additional 
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content and definition to the Handbook in the form of examples and real-world analyses of the 
effectiveness of safety net approaches. 
 
It is the FAA’s intention to assess the use of safety nets in future microprocessor-based aircraft 
systems.  The use of the safety net approach resulting in certification of aircraft containing 
systems with safety nets can lead to enhancements in FAA policy and guidance to formally 
accept, implement, and provide guidance for the continued use of safety nets. 
 
Additional research should 
 
 investigate additional functionality that can be accomplished within safety nets. 
 
 investigate new trends in microprocessor design that may aid or hinder the 

implementation of safety nets. 
 
 investigate architectural and functional requirements for the safety net monitoring itself. 
 
 investigate the implementation of the architectural safety net examples identified in 

section 7.2. 
 
The initial use of safety nets will be based on a tradeoff between the cost, difficulty, and 
feasibility of testing and validating the safety of complex nondeterministic SoCs versus the 
development of the innovative multilevel safety net approach to ensuring system safety 
characteristics within the operational environment.  Both sides of this tradeoff will be very 
difficult to determine and quantify in advance.  It may well be the development of additional 
uses for safety nets that justify their initial development. 
 
The following sections give a brief description of specific research directions that may be 
valuable for future designs and regulatory focus.  The first research direction, the study of 
virtualization in future airborne electronic hardware, covers a new trend in microprocessor 
design that is expected to become prevalent in a broad variety of embedded systems.  The second 
research direction, COTS microprocessor security, is a complementary aspect of the AFE43 
research, since safety and security issues typically originate from a common set of device 
vulnerabilities or risks. 
 
8.1  THE EMERGENCE OF VIRTUALIZATION IN COTS MICROPROCESSORS. 

The rise of virtualization features is an emerging trend in embedded COTS microprocessors and 
SoCs.  In this context, virtualization is defined as the ability to separate an operating system from 
the hardware resources it manages.  Instead of giving an operating system direct access to 
hardware, the operating system communicates with another piece of software, called a 
hypervisor, which is responsible for hardware management.  By doing this, it is possible to run 
multiple, and possibly different, operating systems on a single processor, and it is also possible 
to strongly partition multicore resources within an SoC between operating systems.  
Virtualization is not a new technology, and it has seen widespread use in the enterprise market 
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due to performance and efficiency benefits.  However, virtualization is still a relatively new 
trend in the embedded market. 
 
Major instruction set architectures (ISA) have adopted virtualization extensions, including Intel’s 
VT-x ISA and the Power ISA currently used by Freescale multicore SoC [15 and 16].  These 
ISA extensions incorporate hardware support for virtualization for both high performance and 
system dependability.  Hardware support includes the addition of virtualization registers, 
extended page tables, and I/O memory management units [15, 16, and 17]. 
 
Virtualization in airborne systems provides some potential benefits that warrant further study, 
including 
 
 the ability to run legacy and proprietary operating systems alongside newer or industry-

standard operating systems within a single system, reducing the cost of application 
development or modification due to operating system or library dependencies. 
 

 increased system stability and security [17]. 
 

 more hardware support for spacial and temporal separation of applications. 
 
8.2  THE COTS MICROPROCESSOR SECURITY RESEARCH. 

COTS microprocessor and SoC security issues are another largely open area of research that has 
not been covered by this project.  While evaluating the three common risk areas of COTS 
microprocessors and SoCs, safety and security issues often overlapped; however, the security 
aspect of risk was outside the scope of the Handbook [1]. 
 
The most obvious security issues arise from the architectural trend of COTS SoCs to contain 
many shared resources within a single device.  Specifically, some COTS SoCs may lack the 
resource controls necessary to ensure that different applications share a resource, such as an 
Ethernet controller, fairly.  The virtualization trend, as described in the previous section, can 
provide possible solutions to these shared resource security issues. 
 
As an example of security issues that arise from shared resources, Moscibroda, et al. [11], 
describe that in a multicore system, multiple programs running on different cores can interfere 
with each other’s memory access requests, thereby adversely affecting performance.  They show 
that a malicious program running on one core of an SoC can be written to exploit the access 
policy of the system’s DDR memory controller.  This malicious program can create a DoS attack 
on applications running on other cores, due to the inherent unfairness in memory controller 
access policy.  This DoS attack essentially starves other applications of access to the memory 
controller, and the performance of a starved application can be reduced by as much as 2.9 times 
in a typical dual-core system. 
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Possible research in this area can include: 
 
 the discovery and analysis of other shared resources that can lead to security risks 
 
 temperature-based attacks that are worsened by continued technology shrinking [18] 
 
 the development of security reports and papers that can lead to comprehensive policy and 

guidance on COTS microprocessor security considerations 
 
9.  SUMMARY. 

Microprocessors and SoCs have become extremely complex, highly integrated, nondeterministic, 
and densely packaged.  Recent changes in COTS microprocessors can be characterized as both 
physical and functional changes.  Physically, transistor density has continued its exponential 
increase, allowing for hundreds of millions to billions of transistors to be placed on a single 
device.  As of 2010, 65- and 45-nm devices were common in the COTS marketplace, and 32-nm 
and smaller devices are beginning to enter the marketplace.  In addition to the decrease in device 
size, the functional capability of COTS devices has expanded.  It is no longer necessary for 
different system components to be implemented as discrete devices.  Instead, a single COTS SoC 
may contain multiple microprocessor cores, I/O devices, memory controllers, and other 
functionality.  As a result, deterministic performance is difficult or impossible to predict in some 
cases.  These devices require additional evaluation methods beyond that identified in current 
regulatory requirements to achieve the resilience required to meet safety and reliability 
requirements.  The aircraft systems containing these COTS devices may require multilevel safety 
nets to be designed into them. 
 
Subject matter experts from the FAA and the six industry participants of AFE43 first identified 
common microprocessor risks and an approach to resolve the growing issues with design 
assurance and certification; Phase 5 related these risks with mitigation methods associated with 
the multilevel safety net approach.  Phase 5 developed the concepts of a multilevel safety net that 
established an approach to system design including mechanisms to detect, analyze, and respond 
to SoC anomalous behavior at higher system levels.   
 
The primary deliverable of the entire 5-phase AFE43 Microprocessor Evaluations Project was a 
Handbook for the Selection and Evaluation of Microprocessors for Airborne Systems.  The 
Phase 4 Report and this Phase 5 Report specify the research results that support the Handbook.  
The Handbook advocates a major shift in ensuring the safe use of COTS microprocessors in 
airborne systems.  Most complex hardware, including COTS microprocessors, goes through a 
process of demonstrating safety through the complete verification of the hardware design.  
AFE43 has shown that this process is infeasible for some complex, nondeterministic COTS 
microprocessors.  These microprocessors should be assumed as potentially unsafe, and system-
level approaches for risk mitigation should be considered such as a safety net. 
 
Current FAA policy and guidance do not directly address the use of COTS microprocessors and 
SoCs in aircraft systems.  However, the existing policy and guidance can be used as a basis from 
which the Handbook may help provide an applicant with additional information in demonstrating 
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that their system meets the applicable airworthiness requirements.  The purpose of the Handbook 
is to: 
 
 Document common areas of concerns regarding the use of COTS microprocessors in 

complex and/or safety critical systems. 
 
 Provide approaches, information, and examples for mitigating the concerns through a 

safety net 
 
 Extend the research accomplished in AFE43 to example approaches to resilient systems 

through methods defined in this Handbook under the overarching  term safety nets 
 
 Reveal how existing regulatory policy and guidance may be augmented to support the 

creation of resilient systems through safety net approaches safeguarding the use of 
microprocessor  technologies in complex and/or safety critical systems. 

 
Acceptable implementation of safety nets as a design assurance mechanism and airworthiness 
determinant will result in the development of procedures, standards, and guidance for the use of 
safety nets in the certification of aircraft containing avionics systems with embedded complex 
COTS microprocessors or SoCs such as those described in this report. 
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APPENDIX A—EXPERIMENTAL PLATFORM TEST CODE 

This appendix includes the test code written to generate the data reported in sections 5 and 6 of 
this report.  This code was executed on both the physical and simulated platforms described in 
section 4. 
 
A.1  CONFIGURATION-RELATED ISSUES TEST. 
 
This test flips each individual bit of a set of configuration registers that control the Universal 
Asynchronous Receiver/Transmitter (UART).  The registers modified by this test are listed in 
figure 4 of this report.  Before and after each bit flip, the test prints out a statement so that the 
user can observe if there is any visible effect to the console due to a UART behavior change.  
After each bit is flipped, it is restored to its original value before the test modifies a subsequent 
bit. 
 
#include <stdio.h> 
 
#define UART0OFFSET 0x04500 
#define CCSRBAR 0xe0000000 
#define UARTREG(x) (*(volatile char *)(CCSRBAR + UART0OFFSET +(x))) 
#define NCHECKED 2 
typedef void (IntHndlr)(long); 
 
extern void InterruptHandler(long cause); 
asm void system_call(); 
int checkRegBit(int j,  int i); 
 
asm void system_call() 
{ 
 nofralloc 
 sc 
 blr 
} 
 
/* changing of some configuration register bits can cause this program 
to stop.  Hence we have     this function to skip checking of bit 
"bitNum" in register number "reg" 
 */  
int checkRegBit(int bitNum, int reg) 
{ 
 int i; 
 int checked[NCHECKED][2] =  
 { 
  {6,3}, 
  {7,3} 
 }; 
  
 return 0; 
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 for(i=0; i<NCHECKED; i++) 
 { 
  if((bit==checked[i][0]) && (reg == checked[i][1])) 
   return 1;  
 } 
 return 0; 
  
} 
 
//Main function 
 
void main() 
{ 
 int i=0,j; 
 char mask; 
 /* 
 Because interrupt handlers contain shared code, each core needs 
to register its own  
 InterruptHandler routine 
 */ 
 register IntHndlr* isr = InterruptHandler; 
 asm 
 { 
  mtspr SPRG0, isr 
 } 
 
 printf("OPTP-1\r\n"); 
 for (i=0x00; i<=0x10; i++) 
 { 
  mask = 1; 
  for (j=0; j<8; j++) 
  { 
   if(checkRegBit(j,i) == 1) 
    continue; 
   printf("Changing bit %d of register %x.  Current 
register value = %x\r\n",j,i, UARTREG(i)); 
   UARTREG(i) = UARTREG(i) ^ mask; 
   printf("Changed bit %d of register %x.  New register 
value = %x\r\n",j,i,UARTREG(i)); 
   UARTREG(i) = UARTREG(i) ^ mask; 
   printf("reset bit %d of register %x\r\n",j,i); 
   mask = mask << 1; 
  } 
 } 
  
 
 system_call(); // generate a system call exception to demonstrate 
the ISR 
   
 while (1) { i++; } // loop forever 
} 
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A.2  CONFIGURATION REGISTER SAFETY NET TEST. 
 
This test corrupts and repairs configuration registers, and it determines how many errors 
occurred between corruption and repair. 
 
#include <stdio.h> 
#include <stdlib.h> 
 
#define PICGCR 0xE0041020 
#define UART0OFFSET 0x04500 
#define CCSRBAR 0xe0000000 
#define UARTREG(x) (*(volatile char *)(CCSRBAR + UART0OFFSET +(x))) 
#define NCHECKED 2 
 
typedef void (IntHndlr)(long); 
 
extern void InterruptHandler(long cause); 
 
void timerInt(); 
 
int time=0; 
char mask=1; 
int errors=0; 
int regNo=3, bitNo=0; 
int repair_period=1; 
int read_period = 15; 
int corruption_interval=300; 
int next_error_time=10; 
int repair_errors=0; 
 
 
//Main function 
 
void main() 
{ 
 int i=0; 
 
 register unsigned int period = 7500; 
 register int tmpval = 0x04400000; 
 /* 
 Because interrupt handlers contain shared code, each core needs 
to register its own  
 InterruptHandeler routine 
 */ 
 register IntHndlr* isr = InterruptHandler; 
 asm 
 { 
  mtspr SPRG0, isr 
 } 
 
 (*(volatile int *)(PICGCR)) = 0x20000000; 
 asm 
 { 
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  mtspr DECAR, period 
  mtspr DEC, period 
  mtspr TCR, tmpval 
  wrteei 0x1; 
 } 
  
 srand(1); 
 printf("Core 0 time = %d\r\n",time); 
 UARTREG(regNo) = 0x03; 
 while (1)  
 {  
  i++;  
 } // loop forever 
} 
 
//This function gets called on the timer interrupt. 
 
void timerInt() 
{ 
 time++; 
 
 if(time == 10000) 
 { 
  UARTREG(regNo) = 0x03; 
  printf("repair period = %d, Number of errors = 
%d\r\n",repair_period, errors); 
  repair_period++; 
  if(repair_period <= 40) 
  { 
   time = 0; 
   next_error_time=10; 
   srand(1); 
   UARTREG(regNo) = 0x03; 
  } 
  errors=0; 
  return; 
 } 
 if(time > 10000) 
 { 
  return; 
 } 
 
 if(time % read_period == 0) 
 { 
  if(UARTREG(regNo) != 0x03) 
  { 
   //printf("Error at time = %d\r\n",time); 
   errors++; 
  } 
 } 
 
 if((time % repair_period == 0) && (repair_errors == 1)) 
 { 
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  if(UARTREG(regNo) != 0x03) 
  { 
   UARTREG(regNo) = 0x03; 
   //printf("Repairing at time = %d, Number of errors = 
%d\r\n", time, errors); 
  } 
 } 
  
  
 if(time == next_error_time ) 
 { 
  //printf("Corrupting at time = %d\r\n",time); 
  UARTREG(regNo) = UARTREG(regNo) ^ mask;  
  next_error_time += 1 + (corruption_interval 
*(rand()/(RAND_MAX+1.0))); 
 
 } 
} 
 
A.3  RESOURCE SHARING TEST. 
 
This test performed matrix multiplication to generate the data reported in section 6.  Before and 
after the matrix multiplication, the MPC8572 system-on-a-chip performance monitors were used 
to measure several dimensions of program execution, including: 
 
 Level 2 cache misses 
 Double data rate memory controller accesses 
 Level 2 cache address collisions 
 Level 2 cache line victimizations 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
#include <sys/mman.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <unistd.h> 
#include <fcntl.h> 
 
#define CCSRBAR 0xFFE00000 
#define SIZE 1024*1024 
 
void printMat(int **mat, int dim1, int dim2) 
{ 
 int i, j; 
 for(i = 0; i < dim1; i++){ 
  for(j = 0; j < dim2; j++){ 
   printf("%d ",mat[i][j]); 
  } 
  printf("\n"); 
 } 
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} 
 
int main(int argc, char **argv) 
{ 
 int i, j, k, dim1, dim2, dim3, temp1, temp2, temp3, sum; 
 int **mat1, **mat2, **matR; 
 
 int fd; 
 char *map; 
 unsigned int mask, perfreg; 
 
 fd = open("/dev/mem", O_RDWR); 
 map = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 
CCSRBAR); 
 
 if(map == MAP_FAILED) 
 { 
  perror("Mapping failed\n"); 
  return 0; 
 } 
 else 
  printf("MAP SUCCESS\n"); 
 
// Set up counting 
//   set FAC = 1 
//   for each counter 
//     set FC = 1 
//     set EVENT 
//     set FC = 0 
//   set FAC = 0 
  
 //Show initial state of PM Global Config 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000); 
 printf("PMGC0 = %x\n", perfreg); 
  
 // Set FAC = 1 
 printf("Setting PMGC0[FAC] = 1\n"); 
 *(unsigned int *) ((unsigned int) map + 0xE1000) = 0x80000000; 
  
 //Show modified state of PM Global Config 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000); 
 printf("PMGC0 = %x\n", perfreg); 
 
 // Set up Counter 2:  Instruction fetch -> L2 miss 
 // Counter 2:  PMLCA2 = 0xE_1030, PMLCB2 = 0xE_1034, PMC2 = 
0xE_1038 
 *(unsigned int *) ((unsigned int) map + 0xE1038) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE1030) = 0x007B0000; 
  
 // Set up Counter 3:  Instruction fetch -> L2 miss 
 *(unsigned int *) ((unsigned int) map + 0xE1048) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE1040) = 0x007A0000; 
  
 // Set up Counter 4:  Data Req -> L2 miss 
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 // Counter 4:  PMLCA4 = 0xE_1050, PMLCB2 = 0xE_1054, PMC2 = 
0xE_1058 
 *(unsigned int *) ((unsigned int) map + 0xE1058) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE1050) = 0x00790000; 
 
 // Set up Counter 5:  Instruction fetch -> L2 miss 
 *(unsigned int *) ((unsigned int) map + 0xE1068) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE1060) = 0x00740000; 
  
 // Set up Counter 6:  Instruction fetch -> L2 miss 
 *(unsigned int *) ((unsigned int) map + 0xE1078) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE1070) = 0x00790000; 
 
 // Set up Counter 7:  Instruction Fetch -> L2 hit 
 *(unsigned int *) ((unsigned int) map + 0xE1088) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE1080) = 0x00160000; 
 
 // Set up Counter 8:  Data Request -> L2 hit 
 *(unsigned int *) ((unsigned int) map + 0xE1098) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE1090) = 0x00170000; 
 
 // Set up Counter 9:  Data Request -> L2 hit 
 *(unsigned int *) ((unsigned int) map + 0xE10A8) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE10A0) = 0x00190000; 
  
 // Set up Counter 9:  Data Request -> L2 hit 
 *(unsigned int *) ((unsigned int) map + 0xE10B8) = 0x0; 
 *(unsigned int *) ((unsigned int) map + 0xE10B0) = 0x000D0000; 
 
 // Set FAC = 0 
 printf("Setting PMGC0[FAC] = 0\n"); 
 *(unsigned int *) ((unsigned int) map + 0xE1000) = 0x0; 
  
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000); 
 printf("PMGC0 = %x\n", perfreg); 
  
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1030); 
 printf("PMLCA2 = %x\n", perfreg); 
  
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1050); 
 printf("PMLCA4 = %x\n", perfreg); 
  
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1080); 
 printf("PMLCA7 = %x\n", perfreg); 
  
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1090); 
 printf("PMLCA8 = %x\n", perfreg); 
  
 if(argc != 4){ 
  printf("Usage:  ./a.out dim1 dim2 dim3\n"); 
  exit(1); 
 } 
 
 srand(time(NULL)); 
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 dim1 = atoi(argv[1]); 
 dim2 = atoi(argv[2]); 
 dim3 = atoi(argv[3]); 
 
 printf("dim1 = %d, dim2 = %d, dim3 = %d\n", dim1, dim2, dim3); 
 
 mat1 = (int **) malloc(dim1 * sizeof (int *)); 
 mat2 = (int **) malloc(dim2 * sizeof (int *)); 
 matR = (int **) malloc(dim1 * sizeof (int *)); 
 
 for (temp1 = 0; temp1 < dim1; temp1++){ 
  mat1[temp1] = (int *) malloc(dim2 * sizeof(int)); 
  for (temp2 = 0; temp2 < dim2; temp2++){ 
   mat1[temp1][temp2] = rand()%100; 
  } 
 } 
 
 for (temp1 = 0; temp1 < dim2; temp1++){ 
  mat2[temp1] = (int *) malloc(dim3 * sizeof(int)); 
  for (temp2 = 0; temp2 < dim3; temp2++){ 
   mat2[temp1][temp2] = rand()%100; 
  } 
 } 
 
 for (temp1 = 0; temp1 < dim1; temp1++){ 
  matR[temp1] = (int *) malloc(dim3 * sizeof(int)); 
 } 
 
 for (temp1 = 0; temp1 < dim1; temp1++){ 
  for (temp2 = 0; temp2 < dim3; temp2++){ 
   sum = 0; 
   for(temp3 = 0; temp3 < dim2; temp3++){ 
    sum+= mat1[temp1][temp3] * mat2[temp3][temp2]; 
   } 
   matR[temp1][temp2] = sum; 
  } 
 } 
 
 printf("Matrix Result:\n"); 
// printMat(matR, dim1, dim3); 
  
 
// Stop, read and clear counters 
 
 // Set FAC = 1 
 *(unsigned int *) ((unsigned int) map + 0xE1000) = 0x80000000; 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000); 
 printf("PMGC0 = %x\n", perfreg); 
 
 printf("Reading Counter 2:  I -> L2 miss\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1038); 
 printf("PMC2 = %d\n", perfreg); 
 
 printf("Reading Counter 3:  L2 addr collision\n"); 



 

 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1048); 
 printf("PMC3 = %d\n", perfreg); 
  
 printf("Reading Counter 4:  D -> L2 miss\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1058); 
 printf("PMC4 = %d\n", perfreg); 
  
 printf("Reading Counter 5:  L2 victimize\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1068); 
 printf("PMC5 = %d\n", perfreg); 
 
 printf("Reading Counter 6:  L2 invalidation\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1078); 
 printf("PMC6 = %d\n", perfreg); 
 
 printf("Reading Counter 7:  I -> L2 hit\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1088); 
 printf("PMC7 = %d\n", perfreg); 
  
 printf("Reading Counter 8:  D -> L2 hit\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1098); 
 printf("PMC8 = %d\n", perfreg); 
  
 printf("Reading Counter 9:  L2 alloc\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE10A8); 
 printf("PMC9 = %d\n", perfreg); 
 
 printf("Reading Counter 10:  DDR R/W from core\n"); 
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE10B8); 
 printf("PMC10 = %d\n", perfreg); 
 
 return 0; 
} 
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