
DOT/FAA/AR-11/5

Air Traffic Organization
NextGen & Operations Planning
Office of Research and
Technology Development
Washington, DC 20591

Microprocessor Evaluations for
Safety-Critical, Real-Time
Applications: Authority for
Expenditure No. 43 Phase 5 Report

May 2011

Final Report

This document is available to the U.S. public
through the National Technical Information
Services (NTIS), Springfield, Virginia 22161.

This document is also available from the
Federal Aviation Administration William J. Hughes
Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
United States Government assumes no liability for the contents or use
thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. The
findings and conclusions in this report are those of the author(s) and do
not necessarily represent the views of the funding agency. This document
does not constitute FAA policy. Consult the FAA sponsoring organization
listed on the Technical Documentation page as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page
1. Report No.

DOT/FAA/AR-11/5

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

MICROPROCESSOR EVALUATIONS FOR SAFETY-CRITICAL, REAL-TIME
APPLICATIONS: AUTHORITY FOR EXPENDITURE NO. 43 PHASE 5
REPORT

5. Report Date

May 2011

 6. Performing Organization Code

7. Author(s)

Rabi N. Mahapatra, Jason Lee, Nikhil Gupta, and Bob Manners*

8. Performing Organization Report No.

9. Performing Organization Name and Address

Aerospace Vehicle Systems Institute * Lumark Technologies, Inc.
Texas Engineering Experiment Station 11320 Random Hills Road
Texas A&M University Fairfax, VA 22030

10. Work Unit No. (TRAIS)

Department of Computer Science
College Station, TX 77843-3141

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
Air Traffic Organization NextGen & Operations Planning
Office of Research and Technology Development
Washington, DC 20591

13. Type of Report and Period Covered

Final Report
April 2009 – March 2010

 14. Sponsoring Agency Code
 AIR-120

15. Supplementary Notes

The Federal Aviation Administration Airport and Aircraft Safety R&D Division COTR was Charles Kilgore.
16. Abstract

This report documents the results of Phase 5 of the Aerospace Vehicle Systems Institute Authority for Expenditure (AFE) 43
Microprocessor Evaluations Project that provides research information intended to help aerospace system developers, integrators,
and regulatory agency personnel in the selection and evaluation of commercial off-the-shelf microprocessors for use in aircraft
systems.

This report describes the cooperative research accomplished by contributing members of the aerospace industry and the Federal
Aviation Administration (FAA). The project objectives included (1) identifying common risks of using a system-on-a-chip (SoC)
and mitigation techniques to provide evidence that they satisfy regulatory requirements and (2) evaluating existing regulatory
policy and guidelines against the emerging characteristics of complex, nondeterministic microprocessors and SoCs to support the
certification of aircraft and qualification of systems using these devices.

Complex aircraft system development requires more robust consideration of system failure and anomaly detection, correction,
and recovery. The safety net approach identified in this report provides a means to address the lack of design assurance for
highly integrated, complex, nondeterministic airborne electronic hardware within aircraft systems. Airworthiness assurance of
these SoCs by safety net techniques may help to contain the labor burden and costs of compliance to FAA regulations while
maintaining safety requirements as SoCs continue to become more complex and more widely used in aircraft systems. The safety
net approach is consistent with, and does not replace, current FAA policy and guidelines.
17. Key Words

Microprocessor, System-on-a-chip, Avionics, Safety net,
Aircraft certification, System qualification, Airborne
electronic hardware, Aircraft safety, System architecture,
Simulation, Operational level error detection and recovery,
Integrated circuits, Avionics safety, Architecture patterns

18. Distribution Statement

This document is available to the U.S. public through the
National Technical Information Service (NTIS), Springfield,
Virginia 22161. This document is also available from the
Federal Aviation Administration William J. Hughes Technical
Center at actlibrary.tc.faa.gov.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 58

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY ix

1. INTRODUCTION 1

2. HANDBOOK FOR THE SELECTION AND EVALUATION OF
MICROPROCESSORS FOR AIRBORNE SYSTEMS 2

2.1 Handbook Executive Summary 3
2.2 Handbook Objectives 4
2.3 Handbook Characteristics 4
2.4 Safety Net Approach 4

3. THE COTS MICROPROCESSOR RISK AREAS 5

3.1 Visibility and Debug 7
3.2 Configuration-Related Issues 7
3.3 Resource-Sharing Considerations 10

4. THE COTS MICROPROCESSOR EVALUATION PLATFORM 12

4.1 Physical Freescale MPC8572DS Platform 12
4.2 Board Support Package 14
4.3 Simics MPC8472DS Model 16
4.4 Analysis of Physical and Simulation Platforms 17

5. CONFIGURATION-RELATED ISSUES 18

5.1 Experiments and Results 18
5.2 Test Setup 19
5.3 Experiments 19
5.4 Results 19
5.5 Interpretation of Results 20
5.6 A Simple Safety Net Implementation for Configuration-Related Issues 20
5.7 Test Setup 21
5.8 Timer Setup 21
5.9 Experiments 21
5.10 Test Results 22

6. RESOURCE-SHARING CONSIDERATIONS 23

iii

iv

6.1 Experiments, Test Setup, and Results 23

6.1.1 Test Setup 23
6.1.2 Experiments 24
6.1.3 Test Results 24

6.2 Summary 27

7. SAFETY NETS 27

7.1 System Start-Up Behavior Considerations to Address in Designing
Safety Nets 30

7.2 Critical Condition Determination Considerations for Safety Net Design 32

8. RECOMMENDATIONS FOR FUTURE RESEARCH 33

8.1 The Emergence of Virtualization in COTS Microprocessors 34
8.2 The COTS Microprocessor Security Research 35

9. SUMMARY 36

10. REFERENCES 37

APPENDIX A—EXPERIMENTAL PLATFORM TEST CODE

LIST OF FIGURES

Figure Page

1 Freescale MPC8572 Device Disable Register 8
2 Freescale MPC8572E Block Diagram 10
3 System Diagram of Physical MPC8572DS 13
4 The MPC8572 UART Configuration Registers 19
5 The timerInt Function 21
6 Corruption Interval = 100 ms 22
7 Corruption Period = 200 ms 22
8 Corruption Period = 300 ms 23
9 Effect of Contention on Execution Time 24
10 Base Matrix Size = 200 25
11 Base Matrix Size = 300 25
12 Base Matrix Size = 400 26
13 Base Matrix Size = 500 26
14 Base Matrix Size = 600 26

v

vi

LIST OF TABLES

Table Page

1 Results of Experiment 20

LIST OF ACRONYMS

AEH Airborne Electronic Hardware
AFE43 Authority for Expenditure No. 43
AMP Asymmetric multiprocessing
ASCII American Standard Code for Information Interchange
ATA Advanced technology attachment
ATX Advanced technology extended
AUD Audio
CCB Core complex bus
CCSRBAR Configuration, Control, and Status Registers Base Address Register
COTS Commercial off-the-shelf
D1 Disable control bit for DDR controller 1
D-Cache Level 1 data cache
DDR Device Disable Register
DEC Decrementer
DIMM Dual in-line memory module
DLAB Divisor latch access bit
DMA Direct memory access
DoS Denial of service
DPFP Double precision floating point
DUART Dual universal asynchronous receiver transmitter
ECC Error correction code
eLBC Enhanced local bus controller
eTSEC Enhanced three-speed Ethernet controller
FAA Federal Aviation Administration
FEC Fast Ethernet controller
FIFO First-In First-Out
FPGA Field-programmable gate array
FSRAM Fast Static Random Access Memory
GB Gigabytes
GNU “GNU’s Not Unix!”—Unix-like computer operating system developed by the GNU Project
HDD Hard disk drive
I-Cache Level 1 instruction cache
I2C Inter-integrated circuit
I/O Input/output
ID Identification
IDE Integrated development environment
INTx Interrupt
IPsec Internet Protocol Security
ISA Instruction set architecture
Kbyte Kilobyte
L2 Level 2 Cache
LBC Local bus controller
LPC Low pin count

vii

LTIB Linux Target Image Builder
MSI Message signaled interrupt
NAND Not AND
NOR Not OR
OS Operating system
PATA Parallel ATA
PBIT Periodic built-in test
PCI Peripheral component interconnect
PCIe PCI-Express
PEX PCI-Express
PHY Physical transceiver
PIC Programmable Interrupt Controller
PME Pattern Matching Engine
POST Power-on self-test
PS/2 Personal System/2
R Read
R/W Read/Write
RAM Random access memory
SATA Serial ATA
SDRAM Synchronous dynamic RAM
SEC Security engine
SER Serial
SerDes Serializer/Deserializer
SGMII Serial Gigabit Media Independent Interface
SIO Super I/O
SMP Symmetric multiprocessing
SoC System-on-a-chip
SPFP Single precision floating point
SRIO Serial RapidIO
TBn Time base
TCP/IP Transmission Control Protocol/Internet Protocol
TLU Table lookup unit
TPM Trusted platform module
TSEC Triple-speed Ethernet controller
UART Universal Asynchronous Receiver/Transmitter
UFCR UART FIFO Control Register
ULCR UART Line Control Register
ULi ULi Electronics, Inc.
URBR UART receiver buffer register
USB Universal serial bus
UTHR UART Transmitter Holding Register
VTT Voltage termination
W Write
WCET Worst-case execution time
XOR Exclusive Or

viii

EXECUTIVE SUMMARY

The Authority for Expenditure No. 43 (AFE43) Microprocessor Evaluations Project (Phases 1 to
5) focused on the escalating difficulties in evaluating modern, state-of-the-art, and highly
integrated commercial off-the-shelf (COTS) microprocessors that (1) may not provide adequate
visibility and debug features to reveal internal functionality, (2) are less predictable due to the
interaction of advanced features, (3) have programmable configuration capabilities available to
application software, and (4) share resources across multiple cores and devices. These COTS
microprocessors exhibit nondeterministic characteristics and are consequently becoming more
challenging to test and to determine that they satisfy applicable functional and safety-related
requirements.

The research addressed the use of COTS microprocessors and systems-on-a-chip (SoC) in
complex and safety-critical avionics. The project objectives included (1) Identify common risks
of using SoCs and mitigation techniques to provide evidence that they satisfy regulatory
requirements; and (2) Evaluate existing regulatory policy and guidelines against the emerging
characteristics of complex, nondeterministic microprocessors and SoCs to support the
certification of aircraft and qualification of systems using these devices.

The objectives of the AFE43 Project included researching an alternative method of ensuring
aircraft safety when it becomes too difficult or impossible to perform design assurance on
systems that use COTS microprocessors and SoCs. The AFE43 Project developed the concept of
safety nets to monitor system operations, detect anomalous conditions and recover system
operations adequate to meet safety and availability requirements.

A safety net is defined as the employment of mitigations and protections at a level above the
functional elements containing the microprocessor(s) and/or SoCs of aircraft and system design
to help ensure continuous safe flight and landing. The safety net methodology focuses on the
assumption that a microprocessor will misbehave. The safety net would be deployed in the
operational environment as a safety device within the aircraft. A safety net provides the ability
to protect against unexpected behavior, damage, injury, and instability over the service life of the
microprocessor(s) or SoCs outside, or at a level above the device itself, is necessary as
appropriate for the design assurance level.

Subject matter experts from the FAA and the six industry participants of AFE43 first identified
common microprocessor risks and an approach to resolve the growing issues with design
assurance and certification; Phase 5 related these risks with mitigation methods associated with
the multilevel safety net approach. Phase 5 developed the concepts of a multilevel safety net that
established an approach to system design, including mechanisms to detect, analyze, and respond
to SoC anomalous behavior at higher system levels.

The primary deliverable of the entire 5-phase AFE43 Project was a Handbook for the Selection
and Evaluation of Microprocessors for Airborne Systems, and is, therefore, an important subject
for this Phase 5 Report. The Phase 4 Report and this Phase 5 Report specify the research results
that support the Handbook. The Handbook advocates a major shift in ensuring the safe use of

ix

COTS microprocessors in airborne systems. Most complex hardware, including COTS
microprocessors, goes through a process of demonstrating safety through the complete
verification of the hardware design. The AFE43 Project has shown that this process is infeasible
for some complex, nondeterministic COTS microprocessors. These microprocessors should be
assumed as potentially unsafe, and system-level approaches for risk mitigation should be
considered as a safety net.

Current FAA policy and guidance do not directly address the use of COTS microprocessors and
SoCs in aircraft systems. However, the existing policy and guidance can be used as a basis from
which the Handbook may help provide an applicant with additional information in demonstrating
that their system meets the applicable airworthiness requirements.

x

1. INTRODUCTION.

Microprocessors and systems-on-a-chip (SoC) have become extremely complex, highly
integrated, nondeterministic, and densely packaged. Recent changes in commercial off-the-shelf
(COTS) microprocessors can be characterized as both physical and functional changes.
Physically, transistor density has continued its exponential increase, allowing for hundreds of
millions to billions of transistors to be placed on a single device. As of 2010, 65- and 45-nm
devices were common in the COTS marketplace, and 32-nm and smaller devices were beginning
to enter the marketplace. In addition to the decrease in device size, the functional capability of
COTS devices has expanded. It is no longer necessary for different system components to be
implemented as discrete devices. Instead, a single COTS SoC may contain multiple
microprocessor cores, input/output devices, memory controllers, and other functionality. As a
result, deterministic performance is difficult or impossible to predict in some cases. These
devices require additional evaluation methods beyond that identified in current regulatory
requirements to achieve the resilience required to meet safety and reliability requirements. The
aircraft systems containing these COTS devices may require multilevel safety nets to be
designed into them.

This report summarizes the experiments, findings, and activities of Phase 5 of the Aerospace
Vehicle Systems Institute Authority for Expenditure No. 43 (AFE43): Microprocessor
Evaluations Project. Phase 5 is the final phase of this project, and the primary deliverable is the
“Handbook for the Selection and Evaluation of Microprocessors for Airborne Systems” [1].
Because of the Handbook’s importance, it will be described in more detail in section 2. The
Handbook serves as a means for system designers and regulatory personnel to have a common
understanding of

 current Federal Aviation Administration (FAA) regulations and guidance regarding

COTS airborne electronic hardware (initially focusing on microprocessors).

 the risks of using COTS microprocessors and SoC in airborne systems.

 safety nets—a system-level means for mitigating these risks.

In addition to describing the outcome of Phase 5 of the AFE43 Project, this report is also a
source of supplemental information for the Handbook. The experimental platforms and data that
assisted in forming the conclusions stated in the Handbook are detailed in this report. Also,
other useful information that did not fit the theme of the Handbook can be found here.

For readers interested in understanding the development and progress of the entire project, each
of the previous phases of the AFE43 Project are documented in a separate technical reports [2-5].
Phase 1 and 2 evaluated the FAA guidance and direction for the selection, design assurance, and
qualification of airborne systems using COTS microprocessors and SoCs to support the
certification of aircraft. These two phases attempted to find a technical solution of testing COTS
microprocessors and SoCs at the component level and found that the evolving problem set was
becoming unworkable.

1

Phase 3 included an intentional change of approach to make the AFE43 Project an industry-
driven project to find an approach to solve the problem issues related to complex, modern,
indeterminate, COTS microprocessors that are required to meet FAA regulations and specific
safety requirements.

Phases 4 and 5 comprised a 2-year effort to develop a solution that may require additional
considerations of augmenting the FAA regulations and new approaches beyond testing
microprocessors and SoCs at the device level. Phase 4 identified common risk areas in complex
SoCs that made testing at the component level problematic. Physical and simulated evaluation
platforms were acquired during Phase 5 to determine the severity of the identified common risk
areas and to determine the differences between using physical and simulated platforms. Phase 5
also developed the multilevel safety net that established an approach to system design, including
mechanisms to detect, analyze, and respond to SoC anomalous behavior at higher system levels.

The Handbook was developed during Phase 5, but also received inputs from Phase 4. The
Handbook advocates a major shift in ensuring the safe use of COTS microprocessors in airborne
systems. Most complex hardware, excluding COTS microprocessors, goes through a process of
demonstrating safety through the complete verification of the hardware design, as specified by
guidance, such as Advisory Circular (AC) 20-125 and RTCA DO-254 [6 and 7]. AFE43 has
shown that this process is infeasible for some complex, nondeterministic COTS microprocessors.
These microprocessors should be assumed potentially unsafe, and system-level approaches for
risk mitigation should be considered. This research project terms these system-level approaches
as safety nets. COTS microprocessors are expected to be managed per Section 11.2 of DO-254.

2. HANDBOOK FOR THE SELECTION AND EVALUATION OF MICROPROCESSORS
FOR AIRBORNE SYSTEMS.

The primary focus for the AFE43 Project Phase 5 was the development of the Handbook for the
Selection and Evaluation of Microprocessors for Airborne Systems [1]. This report
acknowledges the Handbook as having precedence in the definition and description of safety
nets and their application.

The Handbook discusses three major topics:

 Regulatory considerations for microprocessor-based airborne applications—the FAA

adoption and scoping of DO-254 to certain types of airborne electronic hardware, and
current FAA policy regarding COTS microprocessors.

 COTS microprocessor and SoC risks—an identification and detailed description of three

major, common risk areas present in modern COTS microprocessors and SoCs, are
described in section 3 of this report.

 Safety nets—a definition and description of system-level safety net approaches, COTS
microprocessor selection considerations, and examples of possible safety net designs.

2

Considering the growing complexity of microprocessors, the research revealed the increasing
impracticality of ensuring safety at the device level alone. The combination of growing
complexity of both software and hardware will drive the need to evaluate large complex systems
at multiple levels, including the operational system level. The rate of change and growing
complexity is accelerating, and the time between new generations of hardware and software is
decreasing. The complexity of many COTS components has grown and continues to grow
beyond the capabilities of DO-178B and DO-254 processes to evaluate them. The overlapping
phases of development, certification, deployment, and life cycle maintenance together with
COTS obsolescence accentuate the need for rapid and evolving methodologies. FAA policy,
guidelines, and practices may need to be updated to accept these methodologies.

Complex aircraft system development requires more robust consideration of system failure and
anomaly detection, correction, and recovery. The safety net approach identified in this report
provides a means to address the lack of design assurance for highly integrated, complex,
nondeterministic airborne electronic hardware (AEH) within aircraft systems. This may help to
contain the labor burden and costs of compliance to FAA regulations as SOCs continue to
become more complex and more widely used in aircraft systems.

2.1 HANDBOOK EXECUTIVE SUMMARY.

The Executive Summary of the Handbook describes its function and driving resolutions as
follows:

“This Handbook provides research information intended to help aerospace system
developers and integrators and regulatory agency personnel in the selection and
evaluation of commercial off-the-shelf (COTS) microprocessors for use in aircraft
systems. AEH includes modern state-of-the-art and highly integrated COTS
microprocessors that (1) may not provide adequate visibility and debug features
to reveal internal functionality, (2) are less predictable due to the interaction of
advanced features, (3) have programmable configuration capabilities available to
application software, and (4) share resources across multiple cores and devices.
These highly complex COTS microprocessors are becoming more challenging to
test and to determine that they satisfy applicable functional and safety-related
requirements.

Resolutions to certification process challenges should offer the possibility of
establishing and maintaining standards that support the continual change and
growth of technologies and operations. Such resolutions can include

 establishing qualitative as well as quantitative methods to certifying

aircraft with embedded nondeterminate complex/critical applications.

 establishing accepted standards of architectural patterns for critical,

complex systems and methods for validation and design assurance.

3

 establishing industrywide accepted methods for design assurance of COTS
microprocessor and microprocessor-based systems.

 streamlining the certification process.”

2.2 HANDBOOK OBJECTIVES.

The objectives of the Handbook are to

 document common areas of concerns regarding the use of COTS microprocessors in

complex and/or safety critical systems.

 provide approaches, information, and examples for mitigating the concerns through a
safety net.

 provide access to the research on which the content of this Handbook is based.

 provide example approaches to resilient systems through methods defined in this
Handbook under the overarching term safety nets.

 reveal how existing regulatory policy and guidance may be augmented to support the
creation of resilient systems through safety net approaches safeguarding the use of
microprocessor technologies in complex and/or safety critical systems.

2.3 HANDBOOK CHARACTERISTICS.

The Handbook was written for experienced system designers and regulatory personnel and
intentionally not prescriptive in nature. It was intended to support the development of new
approaches to the design assurance and safety evaluation leading to the approval of airborne
systems. The design of an airborne system, the selection of AEH (e.g., microprocessor) devices
within the system, and the architecture of the system will be unique for each application. The
potential sources of nondeterminism and the challenges of design assurance of AEH devices
must be determined for each system. The Handbook does not attempt to identify sources of
microprocessor nondeterminism because they will be unique for each system and will proliferate
in the future. System designers have to evaluate the risks associated with the candidate
microprocessors and design the system architecture and the safety nets to mitigate these risks.

The Handbook does not constitute FAA policy or guidance; rather, it is the result of
FAA/industry-funded research and may contribute to future policy or guidance.

2.4 SAFETY NET APPROACH.

A safety net is defined as the employment of mitigations and protections at the appropriate level
of aircraft and system design to help ensure continuous safe flight and landing. The safety net
methodology focuses on the assumption that a microprocessor will misbehave. The ability to
protect against unexpected behavior, damage, injury, and instability over the service life outside,
or at a level above the device itself, is necessary as appropriate for the design assurance level.

4

The safety net approach is a means to mitigate the risks associated with COTS microprocessors
via both passive and active methods designed into aircraft systems. If it is not feasible to show
that complex aircraft systems are sufficiently free of anomalous behavior by evaluating system
components and system design, the safety net approach can mitigate unforeseen or undesirable
COTS microprocessor operation by detecting and recovering from anomalous behavior at the
operational system level. This approach requires the safety net to be designed as a function
within the aircraft system. The safety net can include passive monitoring functions, active fault
avoidance functions, and control functions for recovery of system operations. System
architecture and control and recovery functions should be designed to facilitate effective system
recovery from anomalous events. Safety nets should show that systems are sufficiently
impervious to anomalous behavior by ensuring continuous functional availability and reliability,
satisfying applicable regulations, and meeting airworthiness requirements. This includes
verifying any disabled functionality from the COTS will remain inactive in the specific
application.

A multilevel safety net approach is required for complex and critical applications in systems that
cannot be fully assured at the component level and is significantly linked to the assigned design
assurance level required by regulation, contractual obligation, and the integrated complexity at
the device level. Safety net design, in general, is becoming a complex, application specific
approach that will be required to detect, resolve, and validate recovery in a run-time environment
to the required levels of availability and safety. The safety net approach is consistent with
current FAA policy and guidelines. Refer to the Handbook [1] for a more complete discussion
of safety nets.

3. THE COTS MICROPROCESSOR RISK AREAS.

This section provides an overview of COTS microprocessor trends and the risks presented by
their deployment in aerospace systems.

 Recent changes in COTS microprocessors can be characterized as both physical and functional
changes. The physical size of transistors has been shrinking rapidly, allowing for hundreds of
millions to billions of transistors to be placed on a single device. As of 2010, 65- and 45-nm
devices were common in the COTS marketplace, and 32-nm and smaller devices are beginning
to enter the marketplace.

 The rapid reduction in transistor size has expanded the functional capability of single COTS
devices. It is no longer necessary for different system components to be implemented as discrete
devices. Instead, a single COTS SoC may contain one or more microprocessor cores,
input/output (I/O) devices, memory controllers, and other functionality.

 The result of this functional integration is reduced visibility and control of the COTS SoC and its
devices. Unless the manufacturer explicitly provides mechanisms to inspect the behavior of the
SoC, it is exceedingly difficult to understand how devices within the SoC operate and interact.

5

Additionally, the configuration of the many devices within COTS SoC is typically controlled by
software settings. This reduces the confidence that the system configuration will remain stable
during operation.

Ultimately, these trends in COTS SoCs provide for very high-performance systems with less
power and reduced cost for the same area size. Complex interaction with new ground support
systems, more capable human interfacing, and other new system functionality will eventually
require the use of COTS SoCs. However, unless system designers and approval agents
understand the risks of using these new devices in airborne systems and agree on adequate
means to demonstrate their safe use, these economic and capability advantages will be offset by
regulatory costs. This will preclude the wide adoption of COTS SoCs in airborne systems,
despite their technological superiority over current solutions.

It is important to distinguish between discrete COTS microprocessors and SoCs when discussing
certain elements of risk and safety analysis. The task of ascertaining safety considerations is
more complicated for SoCs due to the broad variety in SoC designs. Unlike the case of discrete
COTS microprocessors, where the majority of features of interest are similar across most
microprocessors, SoC components tend to vary significantly based on the product selected,
making safety analysis more complicated. Not only are the safety concerns due to the features of
individual IP cores an issue, but interaction among them presents a verification challenge to
system designers. Additionally, certain systems using SoCs may not require particular on-chip
cores and would require the disabling of those cores for safety reasons.

Resources used by safety nets are expected to change as the underlying technology of the system
being protected (or implemented within the safety net itself) evolves. An example of this occurs
when configuration register changes (the addition of new, removal of old, and exposure of
hidden/reserved registers) caused when separate, discrete microprocessors, system controllers,
and other components are replaced with a single SoC. The safety net design must be examined
and perhaps adjusted when such technology changes are implemented or when the device must
be approved within a new application. The discussion above needs to be considered while
formulating a safety net.

After reviewing the designs of a variety of modern COTS microprocessors across a group of
manufacturers, product families, and technology generations, three areas of risk were identified
as common to all these devices [4]:

 Visibility and Debug—The inability to observe the internal operation of the device

during system use and development (see section 3.1)

 Configuration-Related Issues—Software accessibility to device configuration during

system operation (see section 3.2)
 Shared Resources Effects—Performance unpredictability due to multiple on-chip shared

resources (see section 3.3)

6

3.1 VISIBILITY AND DEBUG.

During the background research, a physical target computer environment and a simulated target
computer environment were setup to perform experiments. Setting up these environments
exposed visibility and debug challenges that may arise during typical airborne system
development and analysis; some of these challenges are described in the Handbook [1]. The
system developer should document the configuration of the test environment and identify any
differences, limitations, and constraints of the simulated environment, if used, in relation to the
physical environment.

3.2 CONFIGURATION-RELATED ISSUES.

Configuration register changes are a growing concern for avionic microprocessor applications
since continued device integration has allowed an increasing proportion of the entire system to
be configured through software. If a microprocessor is not configured properly, erroneous
behavior, including improper data processing, stack overflows, erroneous interrupts, machine
checks, data loss, data corruption, or inadequate throughput, may occur.

Over time, the number of configuration registers per microprocessor has grown significantly.
For example, the Freescale™ MPC8572 SoC has more than 500 software-accessible
configuration registers that control basic functionality of the processing cores and on-chip
devices [8]. In addition to these configuration registers, various device functions may be set
externally via pullup/pulldown pins that are sampled shortly after a hardware reset or internally
via software. Incorrect settings or inadvertent changes are both areas of concern that must be
addressed.

In general, the capabilities of most microprocessors exceed what is required by typical
applications. Care should be taken to provide assurance that unused capabilities are properly
disabled. In legacy avionics with many discrete system devices, this concern was addressed
through physical disconnection of the unused devices from power sources and the rest of the
system. However, COTS SoCs have removed the physical separation between the devices and
processors and gave control of device configuration to software. Therefore, the deactivation of
unused features has become an additional consideration within the set of configuration-related
issues. In addition to proper deactivation of unused features and devices, system designers
should be able to assure that those features and devices cannot be reactivated through erroneous
software or environmental effects. Inadvertent activation of an unused device may cause
unintended and undesirable operation, such as erroneous interrupts, data loss, data corruption,
machine check cycles, and stack overflow, among others.

As an example of how the deactivation of unused features has changed for modern COTS
microprocessors, figure 1 shows the Freescale MPC8572 device disable register (DDR).

7

Figure 1. Freescale MPC8572 Device Disable Register [8]

This register is used by the system to determine whether each of the system’s major on-chip
devices should be enabled or disabled by setting particular register fields to 0 (enabled) or 1
(disabled). This configuration register contains 24 single-bit readable and writeable fields that
are associated with the 24 on-chip devices of the SoC. For example, bits 16 and 18 control the
two e500 processing cores [9], bits 2, 5, and 6 control the three PCI-Express (PCIe) controllers,
and bits 24 through 27 control the four triple-speed Ethernet controllers. A single bit flip in this
register can disable a critical on-chip device or one of the processors, and the experiments have
demonstrated that erroneous writes to this register can render the system inoperable. Therefore,
system designers should be aware of the risks of unexpected modifications to the system
configuration space.

Several microprocessor devices also offer the user the flexibility of locating the configuration
registers in external memory space, which makes them more vulnerable to corruption. This
capability also makes the system susceptible to losing all configuration data if the pointers to the
external memory locations are corrupted.

Configuration registers may inadvertently be changed by software errors (inadvertent writes),
single-event upsets, hardware defects, hardware faults (such as a noisy power supply core
voltage, signal integrity issues, and ground bounce), or electromagnetic interference.

In light of the risks identified with the current technology and trends and the criticality of proper
microprocessor configuration register settings, the risks associated with incorrect configuration
register settings should be understood. Each register should be assessed for:

 Intended setting for each register bit within the system being implemented and the reason

for the selected setting.

 Identification of each operational phase at which each register is being set (i.e., initial
power up, power on reset, built-in test, exception processing)

 Identification of disabled functions

8

 Impact to system if the state of the bit is unintentionally changed

- It is recommended that the impact of an inadvertent change to critical registers or
registers of questionable impact is verified through simulation, if possible.

- The simulation environment should implement an algorithm that has the ability to

randomly change configuration settings.

 Rate of impact to system of unintentionally changed bit, if known (i.e., inadvertently
enabling a communication bus may have no impact for a major frame)

 Errata information

Additional consideration is recommended for determining the effect of configuration register
default values. Vendor default values for configuration register settings are usually selected to
simplify the process of getting a system “up and running” with minimal effort. These do not
necessarily provide the needed configuration for the performance or exception detection needed
by the intended application. Evidence that supports the assertion by the integrator that the
settings are correct for the intended application should be provided. Examples include the
following:

 Registers that are used to enable utilized interfaces and disable unutilized interfaces.
 Registers that are used to allocate access to shared resources (arbiters).

Beyond the general assessment recommended for all configuration registers described above,
industry members have identified the following types of registers for special consideration.
These registers may be helpful in constructing a safety net:

 Interrupt Mask Registers—These registers allow hardware exceptions to either generate

an interrupt signal or inhibit the generation of the interrupt.

 Interrupt Cause Registers—These registers allow the apparent cause of hardware
exception to be visible to software. Often, the cause is separate from the
generation/masking process so that the implementer may poll the cause register. Usually,
provisions exist internally to capture only one occurrence of a set of causes at a time.
Therefore, the system implementer must take additional measures in the interrupt handler
to capture subsequent occurrences if this is required.

 Error Counters—These registers allow accumulated error events to be visible to software.

Examples of these include the error correction code (ECC) single-bit error counters and
ECC double-bit error counters on memory bus interfaces.

Once this analysis has been completed, safety net methodologies can be employed to mitigate the
identified risks.

9

3.3 RESOURCE-SHARING CONSIDERATIONS.

Modern microprocessors differ from previous technology in that many processing, memory, and
I/O components reside within a single device, and many of these components are designed to be
shared to optimize system performance. The multiple processing components compete to initiate
requests to their memory and I/O targets. Additionally, the I/O components can initiate requests
to memory targets through direct memory access. Whether initiated by a processor or I/O
controller, requests travel over shared on-chip interconnects, typically a single on-chip bus. The
Handbook defines shared resources as any on-chip or off-chip components that are accessible to
multiple initiators. Examples of shared resources include on-chip memory controllers, hardware
accelerators, level 2 (L2) and/or level 3 caches, on-chip busses, and on-chip Ethernet controllers.

Modern microprocessors feature a number of shared resources. As shown in figure 2, the two
e500 cores of the Freescale MPC8572E share a single L2 cache [8]. Additionally, the two
processing cores share a single on-chip bus to access the other major components of the system,
including the various I/O controllers and memory controllers.

Figure 2. Freescale MPC8572E Block Diagram [8]

It is highly recommended that the system designer analyze the access protocol for these shared
resources and the run-time behavior of all programs that share a given resource. Based on this
analysis, the designer should ensure that even with the sharing of resources, the system will
continue to run in a predictable manner (continuous operation). In some conditions, hard
shutdowns can be an acceptable safety protection mechanism.

Sharing resources is a major contributor to nondeterminism and worst-case execution time
(WCET) analysis challenges in modern COTS microprocessors. Nondeterminism arises because
the availability of a shared resource becomes largely dependent on the run-time behavior of other
processes sharing the same resource. In many cases, the run-time behavior of programs is data-
dependent and cannot be predicted offline. WCET analysis depends on understanding all

10

conditions that lead to timing delays and then bounding for worst-case conditions. Multiple
shared resources on a single device complicate this analysis due to the increase in the number of
delay conditions.

Pellizoni, et al. [10], describe the challenges in predicting the WCET in a multitasking system.
They show that due to the interference between cache-fetching activities and I/O peripheral
transactions, tasks can suffer computation time variance of up to 46% in a typical embedded
system.

To further assess the timing delays and nondeterminism caused by resource sharing, additional
experiments were performed using a simple matrix multiplication program on the Freescale
MPC8572 platform considering the L2 cache as the shared resource, as described in section 6.
Each processing core executed its own copy of a matrix multiplication program that required the
use of the shared L2 cache, due to the program size. The experiments showed that the execution
time of the matrix multiplication program can increase by as much as 17% as L2 cache
interference increases.

Moscibroda, et al. [11], describe that in a multicore system, multiple programs running on
different cores can interfere with each other’s memory access requests, thereby adversely
affecting performance [11]. They show that a competing program running on one processing
core can result in a denial of service (DoS) on the other processing core, due to the inherent
unfairness in memory controller access policy. The performance of a blocked application can be
reduced by as much as 2.9 times in a typical dual-core system. Moscibroda, et al., identify the
memory access scheduling algorithm as the main source of inequality in memory access,
allowing the DoS to occur. Shared resource access policy and scheduling is addressed below.

Industry trends indicate that the ratio of processing cores to various shared resources in COTS
SoCs will increase over time. Instead of two processing cores sharing a common cache, memory
controllers, and I/O devices, there will be four, eight, or more processing cores sharing these
resources. This will increase the competition for shared resources among processing cores,
worsening potential unpredictability issues.

In addition to the contention of shared resources being an area of risk for microprocessors, it is
also important to consider the sharing of interfaces for the purpose of data transfer and exception
signaling. Exception condition signaling mechanisms should be considered because they impact
both the ability to deliver exception notifications as well as the latency of exception event
notification. Examples from various forms of peripheral component interconnect (PCI)
interfaces, include:

 Mechanisms that use the same channel as the one that is being monitored—Message

signaled interrupts (MSI) on PCIe links that are communicated as unique bit patterns
within the same channel used for bus commands, addresses, and data. If the channel is
disrupted, then the notification method is disrupted as well. Also, due to the serialized
nature of this mechanism notification is delayed until the traffic in front of it has been
transferred. Note that the parity error and system error signals of conventional PCI buses

11

also fall into this category because they are generated along with the bus transaction
cycles they represent and are transferred along with the transaction results.

 Mechanisms that use a different channel than the one being monitored—The

conventional PCI interrupt mechanism uses discrete lines to the interrupt controller
devices outside the lines that transfer bus commands, addresses, and data, though it also
appears on the same connector when implemented as an external interface. Due to the
nonserialized nature of this mechanism, notification is not delayed by traffic on the bus.
If the address/data bus portion is disrupted, then the interrupt notification mechanism
may still be intact.

4. THE COTS MICROPROCESSOR EVALUATION PLATFORM.

This section describes the target platforms that were established to perform experiments and
evaluate the criticality of the above mentioned risk areas. Two different platforms were used for
experimentation in this research:

 Physical—Freescale MPC8572DS platform
 Simulated—Simics® MPC8572DS model

Having the Simics simulated model for the MPC8572DS hardware allowed the researchers to
easily perform tasks, such as fault injection and performance monitoring, which would have been
more difficult to perform on the hardware platform.

4.1 PHYSICAL FREESCALE MPC8572DS PLATFORM.

The MPC8572E is a dual-core PowerPC e500v2 microprocessor that includes high-speed
interconnect technology to balance processor performance with I/O throughput. In addition, the
MPC8572E offers the following: a double-precision, floating-point auxiliary processing unit;
1024 Kbytes of L2 cache; four integrated 10/100/1GB-enhanced, three-speed Ethernet
controllers (eTSEC) with transmission control protocol (TCP/IP) acceleration, classification
capabilities, and SGMII interface capabilities; a 10/100 fast Ethernet controller (FEC)
maintenance port; two table lookup units (TLU); two DDR2/DDR3 SDRAM memory
controllers; a multiprocessor programmable interrupt controller; inter-integrated circuit two (I2C)
controllers; two four-channel direct memory access (DMA) controllers; an integrated security
engine (SEC) with XOR acceleration; an enhanced local bus controller (eLBC); a pattern
matching engine (PME) with Deflate (lossless data compression algorithm that uses a
combination of the LZ77 algorithm and Huffman coding) capabilities; a general-purpose I/O
port; and dual universal asynchronous receiver/transmitters (DUART). For high-speed
interconnect, the MPC8572E provides a set of multiplexed pins that support two high-speed
interface standards: 1x/4x serial RapidIO (with message unit) and up to x8 PCIe (with the
capability to offer three independent PCIe links). The high-level integration in the MPC8572E
helps simplify board design and offers significant bandwidth and performance. Figure 3 shows
the physical MPC8572DS development system used for experiments.

12

KB = Keyboard

Figure 3. System Diagram of Physical MPC8572DS [12]

Key features of the MPC8572E device include:

 Two PowerPC e500v2 cores with 36-bit physical addressing [9]

 1024-Kbyte L2 cache

 Integrated security engine (SEC) with XOR acceleration

 Four integrated 10/100/1GB-enhanced three-speed Ethernet controllers (eTSEC) with
TCP/IP acceleration, classification capabilities, and SGMII interface capabilities

 10/100 Fast Ethernet controller (FEC) maintenance interface

 Two DDR2/DDR3 SDRAM memory controllers

- High-speed interfaces:
- Three PCIe controllers

 One serial RapidIO (SRIO) controller with RapidIO messaging unit

13

 Pattern matching engine (PME) with DEFLATE engine

 Two table lookup units (TLU)

 Programmable interrupt controller (PIC)

 Two, four-channel DMA controllers

 Two I2C controllers

 DUART

 Enhanced local bus controller (eLBC)

 Eight general-purpose I/O signals

 Power management (power saving modes: doze, nap, and sleep)

 System performance monitor

 System access port

 IEEE Std 1149.1™ compatible, Joint Test Action Group boundary scan

 1023 FC-PBGA package

The MPC8572DS features memory-mapped configuration, control, and status registers for the
integrated peripherals starting at an offset defined by the configuration, control, and status
registers base address register (CCSRBAR). No address translation is done, so there are no
associated translation address registers. The configuration, control, and status window is always
enabled with a fixed size of 1 megabyte.

4.2 BOARD SUPPORT PACKAGE.

The board support package features the Linux 2.6.27.6 kernel and provides the following tools,
device drivers, and additional features needed for an embedded Linux project:

 Targeting Freescale MPC8572DS board Linux 2.6.27.6 kernel supporting e500v2 core

 Supports symmetric multiprocessing (SMP) Linux on both cores

 Supports asymmetric multiprocessing (AMP) Linux on each core

 eTSEC driver to support four eTSECs on 10M/100M/1000M Ethernet function

 e500 hardware floating-point exception handler patches to support the scalar single-
precision floating point (SPFP), vector SPFP, and double-precision floating point (DPFP)

14

 DUART driver support 115200 baud without flow control

 32-bit PCI host driver for 33 MHz to support Intel e100, 3Com 3C905, Intel Pro1000

 82545EM Ethernet adaptors

 PCIe host driver to support the onboard ULi (Uli Electronics, Inc.) M1575 bridge and 2x
mode driver to support Intel Pro 1000 network interface card for two slots

 Both INTx and MSI are supported on PCIe 2/3.

 Serial ATA (SATA) driver in kernel to support the SATA (Advanced technology
attachment, where advanced technology derived from the IBM PC/AT naming of
personal computers, and attachment AT is an interface standard for the connection of
storage devices such as hard disks, solid-state drives, floppy drives, and optical drives in
computers) module of ULi M1575 with hard disk utilities. Hard disk can be mounted
manually.

 Support for ATI RADEON X800XL and X700 video card

 Pattern matching engine driver

 TLU Unit driver

 Linux kernel booting from network, flash, or hard disk drive (HDD), with ULi M1575
SATA HDD as default boot

 Support for LAMP (Linux 05, Apache HTTP Server, MySQL (database software), and
Perl/PHP/Python, which form principle/components to build a viable general-purpose
web server)

 Socket buffer recycling patch for eTSEC included

 Support for SEC 3.0 mainline Internet Protocol Security (IPsec) stack and mainline
Talitos driver. SEC low-level driver is included.

 I2C driver

 Real-time clock driver

 Support for ULi parallel ATA (PATA) controller

 ULi universal serial bus (USB) controller supports keyboard, mouse, and U-disk

 Memory technology device driver supports both not OR (NOR) and not AND (NAND)
flash

15

 Dynamic power management driver

 Watchdog driver

 Support for JFFS2 file system

 Support for the user space device management (udev) file system

 Support for CodeWarrior debug in both SMP and AMP mode

 Linux Target Image Builder (LTIB) root file system on SATA HDD automatically
mounted, including native “GNU’s Not Unix!”—Unix-like computer operating system
developed by the GNU Project (GNU) toolchains and application packages

 SATA hard disk ghost image

 TCP/IP stack

 File transfer program client and server

 Telnet client and server

 Support for both the network file system and random access memory (RAM) disk file
systems

4.3 SIMICS MPC8472DS MODEL.

The simulation platform used in Phase 5 was the Virtutech Simics model of the Freescale
MPC8572DS. Research was performed using Virtutech Simics 4.0 and Virtutech Model Library
MPC8572 4.0.10 [13]. As done with building software for a physical MPC8572DS, the
Freescale LTIB package was used to configure and compile the system bootloader and operating
system for the simulation platform. The bootloader used for the simulation platform was U-Boot
2008.10, and the operating system used was Linux 2.6.27.6.

There are several important differences between the physical and simulation platforms; however,
most of these differences had no effect on most normal software execution. These differences
did result in functional discrepancies between the physical and simulation platforms during
extended configuration register testing, as described in section 5.

The simulated model of the MPC8572DS is a partial simulation of the hardware and is composed
of the following:

 Freescale MPC8572 SoC
 RAM
 NOR Flash
 PromJet

16

 Pixis field-programmable gate array (FPGA)
 Ethernet PHYs

The most notable difference between the physical and simulation MPC8572DS is the absence of
the ULi M1575 South Bridge chip from the simulation model. This chip provides interfaces for
USB devices, audio devices, and legacy PCI devices, among others. The South Bridge chip is
connected to the MPC8572 SoC via a PCIe link in the physical platform.

4.4 ANALYSIS OF PHYSICAL AND SIMULATION PLATFORMS.

Hardware and software considerations were identified for system designers in evaluating the
physical and simulation MPC8572DS platforms. The following hardware considerations apply
for physical evaluation platforms:

 Limited visibility into the device’s internal operation—Manufacturer documentation is

intended to support the use of the device based on the capabilities described in the User’s
Manual and on the device characteristics documented in the data sheet/errata. Internal
operation is frequently proprietary information. For example, the User’s Manual may
document how to configure the use of cache memory, but the cache algorithm being used
internally by the device may be proprietary.

 Performance monitoring—Hardware performance monitors may be provided by the

manufacturer to provide insight into the internal operation of a microprocessor. These
monitors allow system designers to track various system activities and performance
statistics during application development and execution. Hardware performance
monitors are typically used to gather L1 and L2 cache statistics and measure cycle counts
to estimate application execution times. Performance monitors may also allow a system
designer to observe the activity of functions resident on the microprocessor, including
memory controllers, PCIe and Ethernet controllers, and DMA engines. These
performance monitors are uniquely designed for each COTS microprocessor, and access
to the performance monitors typically requires custom software and is not fully supported
by COTS operating systems.

 Fault insertion—The ability to insert faults internal to the microprocessor may be limited

or not achievable. An applicant may not be able to demonstrate that faults are correctly
detected if the faults cannot be injected. The safety net methodology can then mitigate
these types of faults.

The simulation evaluation platform is capable of running most of the same software as the
physical platform; however, limitations do exist for custom or specialized software. System
designers should not expect that every configuration register for every system component is
functional. Instead, the configuration registers required for a standard bootloader and operating
system (e.g., Linux) are modeled. If a custom bootloader or operating system is used, additional
system modeling may be required.

17

The following software and hardware considerations were identified for simulation platforms:

 Software considerations:

- Applicants should be aware that the primary focus of microprocessor simulation
is on application software development. Typically, hardware evaluation is a
secondary concern, if addressed at all.

- Modeling configuration and internal registers—The simulated computer

environment typically models the minimum set of configuration and internal
registers to support software execution. The differences between the simulated
computer environment and the target computer should be documented by the
system developer as part of the test environment. Evaluating the system response
in a simulated environment requires accurate modeling of all configuration
registers.

 Hardware considerations:

- Limited modeling of hardware—Hardware interfaces and modeling of
microprocessor functions may be limited to those items required for application
software development.

- Timing and cycle accuracy of the simulated target computer should be assessed.

If the target computer model is not cycle accurate, functions which are timing
sensitive should be verified in the target computer environment.

- Modeling device performance—Internal microprocessor performance monitors

may not be modeled in the simulator.

- Microprocessor models focus on the simulation of core central processing units;
modeling of other microprocessor resident functionality may be limited.

5. CONFIGURATION-RELATED ISSUES.

This section details the experiments and their results that were performed on the hardware
platform to assess the severity of issues related to unexpected modifications to configuration
registers.

5.1 EXPERIMENTS AND RESULTS.

An experiment was designed to test the effects of bit changes in configuration registers. In this
experiment, register bits in the universal asynchronous receiver/transmitters (UART)
configuration space were changed. The CCSRBAR register holds the base address of all the
memory-mapped configuration registers on the MPC8572E. The UART configuration registers
are located at an offset of 0x4500 from CCSRBAR. Figure 4 shows all the configuration
registers for UART0. The registers for UART1 are similarly located, starting at 0x4600.

18

Figure 4. The MPC8572 UART Configuration Registers [8]

5.2 TEST SETUP.

The program was run through the CodeWarrior™ integrated development environment by
loading it into the memory of the hardware platform. The program used to change the register
bits was also used to test the UART functions. This was done by printing the register and bit
number each time a register bit was changed.

5.3 EXPERIMENTS.

The register bits were changed by XORing them with a mask in a walking one pattern. After
printing the register and bit numbers, the bit was reset to its original value before changing the
next bit.

5.4 RESULTS.

Table 1 shows the results of the experiment. The table only shows the bit and register numbers
for which there was a deviation from the normal execution.

19

Table 1. Results of Experiment

Seria
l

No.
Register

No. Bit No.
Register
Name Bit Description Effects

1 0 3 UTHR0 Data Newline character(s) deleted

2 0 5 UTHR0 Data Extraneous space character inserted

3 0 6 UTHR0 Data Extraneous @ character inserted

4 2 1 UFCR0 Receiver
trigger level

Extra character repeated

5 2 2 UFCR0 Reserved Extra character repeated

6 2 7 UFCR0 FIFO enable Extra non-ASCII characters on reset

7 3 1 ULCR0 Set break Some characters get translated to
non-ACSII characters

8 3 6 ULCR0 Word length Test hangs

9 3 7 ULCR0 Word length Test hangs

It should be noted that, in each case, the program returned to the normal mode of operation after
resetting the changed bit. The results can be classified based on their degree of criticality:

 Change in output data: The data output on the console was different from normal output.

(For example, serial numbers 1-7)

 Change in program execution (Serial numbers 8 and 9)

 Crash: None in this experiment.

5.5 INTERPRETATION OF RESULTS.

For serial numbers 8 and 9 in table 1, a special diagnostic was required since the program did not
execute normally. Using CodeWarrior debugger, it was observed that, for serial number 8, the
execution did not come out of the MPCDUARTReadPool() function. The program did not
exactly stop executing, but it seemed to be stuck in the function. The set break forced logic 0 to
be on the serial out line and did not affect the UART buffers. In such a situation, the UART
buffers get filled up, and hence, the call to printf() in the test program does not return.

5.6 A SIMPLE SAFETY NET IMPLEMENTATION FOR CONFIGURATION-RELATED
ISSUES.

In this experiment, a safety net design was tested for the configuration-related issues. In an
earlier test, it was observed that some UART configuration registers can lead to unwanted effects
when their values are changed. It was also observed that the correct values of these registers are
known for a particular use case. In this experiment, the UART configuration registers were
periodically overwritten with their correct values. It was observed that unwanted effects still

20

exist when overwriting with correct values. The period at which the system was able to perform
correctly was observed, even when the register values changed.

5.7 TEST SETUP.

The test was performed inside the CodeWarrior debug environment on the hardware platform. A
UART0 line control register was used to corrupt and repair. The register was corrupted by
changing its lowest bit, which changes the data to be transmitted on the UART. This data
translation led to the output of non-ASCII characters on the serial port. To repair the corrupted
register, the default correct value of 0x03 was written onto the register. To detect errors, the
value of the register was confirmed to be 0x03. The corruption, repair, and usage were all run
within a single thread on one core.

5.8 TIMER SETUP.

The decrementer (DEC) counter in the e500 cores was used to set up a 1-ms timer. The DEC
counter is decremented every 8 core complex bus (CCB) clocks. In the default setup, the CCB
runs at a 600-MHz frequency, so the DEC was loaded with a value of 750,000. The interrupt
handler for the timer calls the timerInt function where the register corruption, repair, and usage
are performed. The pseudo code for the timerInt function is shown in figure 5.

time++

if (time % usage_period == 0)

if(register value incorrect)
 repairs++
if (time % repair_period == 0)

 repair register()

if (time == next_error_time)

 corrupt register()
 update next_error_time

Figure 5. The timerInt Function

5.9 EXPERIMENTS.

Three different periods were used for using, corrupting, and repairing the register value. The
usage period and corruption period are estimates on how frequently the register is expected to be
used and corrupted, respectively. Experiments were conducted for different values of the repair
period to observe the number of errors. For each repair period, the test was run for 10 seconds.

21

5.10 TEST RESULTS.

This section discusses the results from the experiments performed for this test plan. Figures 6
through 8 show the number of errors for different values of repair, usage, and corruption periods.
In all three results, no errors were detected if the repair period was less than 5 ms. At the same
time, for certain values of the repair period, there was a spike in the number of errors. This
happened because the interleaving of usage, repair, and corruption periods allowed the register to
be used just after it is corrupted for the given corruption period. The usage period was kept
constant at 15 ms.

Figure 6. Corruption Interval = 100 ms

Figure 7. Corruption Period = 200 ms

22

Figure 8. Corruption Period = 300 ms

Through these experiments, it was found that the number of detected errors depends greatly on
the usage, corruption, and repair periods. However, these validation experiments indicate that if
the configuration registers are repaired at a sufficiently high rate, the failure impact can be
significantly reduced. The effectiveness of this reduction in impact can be affected by the
corruption period, the specific configuration register change(s), and the design of the affected
functions.

6. RESOURCE-SHARING CONSIDERATIONS.

This sections details the experiments and results performed to gain insight into the effects of
resource sharing in a COTS microprocessor system.

6.1 EXPERIMENTS, TEST SETUP, AND RESULTS.

In this experiment, the timing delays, which were due to the contention by cores on L2 cache,
were determined. First, a simple matrix multiplication program was used to determine its
execution time by running it on only one core. This execution time was the baseline timing
requirement. To test the effect of contention, the other core was activated and run another matrix
multiplication program, which stressed the shared L2 cache. The delays incurred by this
contention on the execution time of the matrix multiplication program were observed and
measured.

6.1.1 Test Setup.

The test was performed inside the Linux operating system environment from the board support
package for the hardware platform MPC8572DS development system. The taskset utility from
the DENX ELDK software package was used to restrict the programs to run on a single core
[14]. The execution time of the programs was obtained by reading the real-time clock device set

23

to a frequency of 8 MHz. The specific details about reading the real-time clock and running the
programs can be obtained from the documentation in the code package for the one page test plan
(Resource-Sharing Effect on Timing One Page Test Plan). Two versions of the matrix
multiplication program were implemented. The first, matmult_timer, prints out the execution
time whenever it is run. The second, matmult, is used for the L2 cache-stressing purposes and
does not print out the execution time.

6.1.2 Experiments.

In the following sections, the timed and untimed versions of the matrix multiplication program
are referred to as base matrix and contention matrix, respectively. Two different experiments
were performed to test the results of contention. In the first experiment, the contention matrix
size was kept constant at 10,000, while the base matrix size was varied from 20 to 700. In the
second set of experiments, the base matrix size was kept constant, while the contention matrix
sizes were varied.

6.1.3 Test Results.

Figure 9 shows the execution times for the first experiment where the base matrix size was
varied. It is clear that the execution times in the presence of contention are greater than those
without contention. The trend of the execution times is a bit unexpected though. As shown in
figure 9, spikes trend at matrix sizes of 510, 590, and 670. The cause(s) of these spikes are
probably the dynamic management of cache by the operating system (OS) and needs more
investigation.

Figure 9. Effect of Contention on Execution Time

Figures 10 through 14 show the execution times for the second experiment where the base matrix
sizes were kept constant. Five different base matrix sizes (200 to 600) were used for the
experiment. For each case, the contention matrix size was varied from a low number (around

24

20) to a size roughly equal to double the size of the base matrix. The reason for choosing this
range is that a small size contention matrix would provide very little stress on the L2 cache, and
the execution time with contention would be roughly the same as without contention. This is
clearly visible in the results. A contention matrix size of double the base matrix size ensures
there is some contention on the L2 cache. As the contention matrix size is gradually increased
beyond a certain value, the execution time with contention may suffer a significant increase, as
shown in figures 10 through 14. But as the contention matrix size continues to increase, the
execution time does not continue to increase. This again might be a result of the Linux OS
performing intelligent reconfiguration of the cache that masks the effect of increase in
contention.

Figure 10. Base Matrix Size = 200

Figure 11. Base Matrix Size = 300

25

Figure 12. Base Matrix Size = 400

Figure 13. Base Matrix Size = 500

Figure 14. Base Matrix Size = 600

26

6.2 SUMMARY.

This experiment shows that resource sharing may lead to variation in task execution times. At
the same time, the OS may perform intelligent dynamic management, which can reduce the
effect of such contention. The effects of contention due to resource sharing are highly dependent
on the system setup, and each system setup must be individually evaluated for the effects of
resource sharing.

7. SAFETY NETS.

This section discusses safety net considerations that are not present in the Handbook [1]. It is
recommended that readers first consult the Handbook for the primary considerations in
understanding and building safety nets before reading this section. The following
supplementary considerations are addressed here:

 The role of safety nets in ensuring predictable degraded system performance during

failure

 System start-up behavior considerations when designing safety nets

 Distinguishing appropriate safety net actions, depending on aircraft conditions

To ensure a comprehensive safety net design, the following activities are needed:

 Identification of the critical functions within the system

 Identification of the components within the system that are used either directly or

indirectly by the critical functions

 Identification of operational constraints for use of these components

 Evaluation of the impact to system behavior if the system is subjected to operation

outside the constraints. (This includes, but is not limited to, the possible failure modes of
the devices used to construct the system.)

 Identification of interfaces that can be connected to those components, both intentionally,

and as a result of component failure modes, temporal or logical errors, and operation
outside the constraints

 Identification of mechanisms for detecting, classifying (according to criticality of hosted
functions, severity of degradation, and other factors), and responding to (recording,
reporting, or taking actions) system degradation when it is detected

27

 Identification of the latency requirements for the response, based upon the classification
of the severity of the degradation, the impact it has on critical functions, and the effect
the passage of time has to either exacerbate or mediate the effects of the
degradation/failure or enhance or dilute the effects of the subsequent remedial actions

Also, the following activities are needed for system design:

 Minimize the probability of undetected degradation/failure of components in critical

paths.

 Minimize the probability of incorrect classification of the degradation/failure severity
present in those paths.

 Minimize probability of incorrect response to detected degradations/failures present.

 Ensure that the appropriate amount of resources are allocated to mediate the effects of the
degradation/failure and enhance the effects of the subsequent remedial actions in critical
functions.

 Test to ensure the mediation allows the aircraft to function with the failure inserted (when
possible).

The remainder of this section describes the general logic behind a safety net design and a
detailed analysis of the different system conditions a designer should consider following that
general logic.

The basic logic begins with the system operating within the originally conceived design
constraints. The system either experiences an event that subjects it to an environment it was not
designed to withstand, or the system sustains an internal failure in one (single fault) or more
(cascade failure) components that are either frequently or infrequently used by the system. At
this point, portions of the system may exhibit behavior ranging from being totally operational
(no degradation) to being totally degraded (failed). The degradations or failure behaviors may
be detectable immediately or they may only be detectible when a certain function or combination
of conditions is exercised (latent). The kinds of behavior the system produces as a result of the
event and degradation can range from inputs or outputs not being present when required, to
inputs or outputs being present when not required. Multiple threads of these behaviors may exist
within portions of the system that can be expressed as above. The logic can be applied to
components in the path of critical functions as well as in the path of noncritical functions.

A safety net may perform a combination of periodic built-in test (PBIT) and software
monitoring to detect the occurrence of a subset of possible constraint violations and internal
failures. As stated previously, the capabilities of PBIT and software monitoring depend on the
specific microprocessor capabilities.

28

Upon occurrence of an internal failure or design constraint violation, the system may transition
to one of the following states that must be accounted for in the safety net design:

 The system may continue to operate normally.

 The system may totally fail to operate (go offline).

 The system may enter one of the following partially operational, but functionally

degraded, states:

- One or more critical functions are lost before conditions exist that require the
operation of any of the lost or affected critical functions. One or more observable
effects are produced when the state is entered.

- One or more critical functions are lost during or after the conditions exist for

which the operation of the affected critical function is required. One or more
observable effects are produced when the state is entered.

The observed effects for the above cases are due to either the loss of observable critical or
noncritical functions or injections of unintended operational conditions into observable critical or
noncritical functions that are apparent upon state entry.

There are two cases where functionality is lost but no observable effects occur:

 One or more noncritical functions are lost before conditions exist that require the

operation of any of the affected noncritical functions. No observable effects are
produced when the state is entered.

 One or more critical functions are lost before conditions exist that require the operation
of any of the affected critical functions. No observable effects are produced when the
state is entered.

The presence of degraded operation with the lack of observed effects for these two cases is due
to either the loss of unexercised functions or injections of unintended operational conditions into
unexercised functions that are not apparent upon state entry. The loss or losses for the above two
cases become apparent when one of the affected functions is required.

The observed effects for the following four cases are due to injections of unintended operational
conditions into observable critical or noncritical functions that are apparent upon state entry:

 Injection of one or more unintended operational conditions into one or more critical

functions before conditions exist that require the operation of any of the affected critical
functions. One or more observable effects are produced when the state is entered.

29

 Injection of one or more unintended operational conditions into one or more critical
functions during or after conditions exist that require the operation of any of the affected
critical functions. One or more observable effects are produced when the state is entered.

 Injection of one or more unintended operational conditions into one or more noncritical

functions before conditions exist that require the operation of any of the affected
noncritical functions. One or more observable effects are produced when the state is
entered.

 Injection of one or more unintended operational conditions into one or more noncritical

functions during or after conditions exist that require the operation of any of the affected
noncritical functions. One or more observable effects are produced when the state is
entered.

The presence of degraded operation with the lack of observed effects for the following two cases
is due to the injection of unintended operational conditions into unexercised functions that are
not apparent upon state entry. The loss or losses for the above two cases become apparent when
one of the affected functions is required.

 Injection of one or more unintended operational conditions into one or more critical

functions before conditions exist that require the operation of any of the affected critical
functions. No observable effects are produced when the state is entered.

 Injection of one or more unintended operational conditions into one or more noncritical

functions. No observable effects are produced when the state is entered.

7.1 SYSTEM START-UP BEHAVIOR CONSIDERATIONS TO ADDRESS IN DESIGNING
SAFETY NETS.

The actions performed during power application depend on the operational state of the system,
the hardware and software architecture, and other factors. The following are representative
examples of conditions and operations that should be considered when designing safety nets.

Maintenance start-up on ground includes the following operations:

 Maximum coverage power-on self-test (POST)

 Maximum initialization of processing hardware

 Complete initialization and test of memory subsystems. As memory is added to a system,

the time needed to verify its integrity is increased. The execution speed of the processor
is not the constraining factor for these tests.

30

 Initialization of discrete and networked I/O. As I/O is added to a system, the time needed
to verify its integrity is increased. The execution speed of the processor is probably not
the constraining factor for these tests.

 Run-time executive load and execution (including PBIT)

 Application software load and execution (including application software monitors)

 Ground-start event detection, processing, and optional notification

 Preparation and execution of additional diagnostic testing with attached test equipment

Normal start-up on ground consists of the following operations:

 Normal coverage POST
 Initialization of processing hardware
 Complete initialization and test of memory subsystems
 Initialization of discrete and networked I/O
 Run-time executive load and execution (including PBIT)
 Application software load and execution (including application software monitors)
 Ground-start event detection, processing, and optional notification

Ground-restart consists of the following operations:

 Normal coverage POST
 Initialization of processing hardware
 Complete initialization and test of memory subsystems
 Initialization of discrete and networked I/O
 Run-time executive load and execution (including PBIT)
 Application software load and execution (including application software monitors)
 Ground-start event detection, processing, and optional notification

Air-restart consists of the following operations:

 Time-constrained abbreviated POST

 Time-constrained abbreviated initialization of processing hardware, possibly using last

applicable configuration data if it is available

 Time constrained, minimally disruptive initialization and test of memory subsystems

 Time-constrained abbreviated Initialization of discrete and networked I/O possibly using

last applicable configuration data if it is available

 Time-constrained abbreviated run-time executive load

31

 Time-constrained abbreviated application software load

 Time-constrained application software execution in-air-restart event detection,

processing, and notification

 Air-start event detection, processing, and optional notification

7.2 CRITICAL CONDITION DETERMINATION CONSIDERATIONS FOR SAFETY NET
DESIGN.

Detection of critical conditions is usually accomplished by reading discrete inputs of the
processing system, just after the power-up initialization and critical self-test functions have
completed.

A pair of critical conditions is associated with application and removal of power. These rely on
a reserve amount of power present in the system to accomplish the storage of data from the
system during power interruptions, and subsequent retrieval of that data to resume operation
once power has been restored. The following are examples of critical conditions and the
associated design considerations that could change based on the system functions, system
architecture, aircraft power sources, and aircraft interfaces.

 Example 1: Power Down Imminent Conditions

Power down imminent indicates that the power conditions needed to maintain system
operation will soon be lost, and that critical data and state information needed to resume
operation when power is subsequently reapplied need to be saved. The amount of
information saved may be a function of the state the system is in when this condition was
entered.

 Example 2: Power Up Conditions

Power up indicates that the power conditions needed to establish and maintain system
operation now exist, and previously saved critical data and state information need to be
restored, if they exist. The amount of information restored may be a function of the state
the system was in when the power down imminent condition was entered.

The next pair of critical conditions are associated with the determination of on-ground versus
airborne conditions.

 Example 3: On-Ground Conditions

The presence of an on-ground condition is indicated by the presence of the weight on
wheels discrete.

32

It inhibits the operation of signals and software execution for avionics and release
systems during tests that would be hazardous to aircrews, ground crews, or others; unless
intentionally overridden to exercise those signals as part of the test.

It enables the operation of signals and software execution (such as special fault isolation
software) that would not be permitted in an airborne environment because they consume
an excessive amount of computational resources needed to maintain safe flight or
otherwise present a hazard to aircrew or others.

Detection of this condition after power-up indirectly indicates an on-ground power cycle.

Absolute determination of the on-ground condition requires additional input from other
sources, such as the presence of the landing gear down and locked input. This condition
cannot be achieved while in the air, except in the event of landing or through failure that
asserts the required discrete inputs.

 Example 4: Airborne Condition

The absence of an on-ground condition is indicated by the absence of the weight-on-
wheels discrete.

It enables the operation of signals and software execution for avionics and release
systems during tests that would be hazardous to aircrews, ground crews, or others if they
were indiscriminately executed on the ground.

It inhibits the operation of signals and software execution (such as special fault isolation
software) that would not be permitted in an airborne environment because they consume
an excessive amount of computational resources needed to maintain safe flight or
otherwise present a hazard to aircrew or others.

Detection of airborne condition after power-up indirectly indicates an in-air power cycle.
Absolute determination of the condition requires additional input from other sources,
such as the absence of the landing gear down and locked input. This condition can be
achieved on the ground, either intentionally as described above, in the event of take-off,
or through failure that removes the required discrete inputs.

8. RECOMMENDATIONS FOR FUTURE RESEARCH.

The FAA has suggested a follow-on Aerospace Vehicle System Institute project to evaluate
other AEH beyond COTS microprocessors and an update to the Handbook to reflect the results
of the follow-on project. AEH considered in the follow-on project are expected to include
FPGA-based SoCs.

Additionally, the follow-on project proposes to guide one or more pilot projects in the use of
safety nets for microprocessor-based aircraft systems. Pilot projects in the continuing
development, application, and refinement of the safety net approach could provide additional

33

content and definition to the Handbook in the form of examples and real-world analyses of the
effectiveness of safety net approaches.

It is the FAA’s intention to assess the use of safety nets in future microprocessor-based aircraft
systems. The use of the safety net approach resulting in certification of aircraft containing
systems with safety nets can lead to enhancements in FAA policy and guidance to formally
accept, implement, and provide guidance for the continued use of safety nets.

Additional research should

 investigate additional functionality that can be accomplished within safety nets.

 investigate new trends in microprocessor design that may aid or hinder the

implementation of safety nets.

 investigate architectural and functional requirements for the safety net monitoring itself.

 investigate the implementation of the architectural safety net examples identified in

section 7.2.

The initial use of safety nets will be based on a tradeoff between the cost, difficulty, and
feasibility of testing and validating the safety of complex nondeterministic SoCs versus the
development of the innovative multilevel safety net approach to ensuring system safety
characteristics within the operational environment. Both sides of this tradeoff will be very
difficult to determine and quantify in advance. It may well be the development of additional
uses for safety nets that justify their initial development.

The following sections give a brief description of specific research directions that may be
valuable for future designs and regulatory focus. The first research direction, the study of
virtualization in future airborne electronic hardware, covers a new trend in microprocessor
design that is expected to become prevalent in a broad variety of embedded systems. The second
research direction, COTS microprocessor security, is a complementary aspect of the AFE43
research, since safety and security issues typically originate from a common set of device
vulnerabilities or risks.

8.1 THE EMERGENCE OF VIRTUALIZATION IN COTS MICROPROCESSORS.

The rise of virtualization features is an emerging trend in embedded COTS microprocessors and
SoCs. In this context, virtualization is defined as the ability to separate an operating system from
the hardware resources it manages. Instead of giving an operating system direct access to
hardware, the operating system communicates with another piece of software, called a
hypervisor, which is responsible for hardware management. By doing this, it is possible to run
multiple, and possibly different, operating systems on a single processor, and it is also possible
to strongly partition multicore resources within an SoC between operating systems.
Virtualization is not a new technology, and it has seen widespread use in the enterprise market

34

due to performance and efficiency benefits. However, virtualization is still a relatively new
trend in the embedded market.

Major instruction set architectures (ISA) have adopted virtualization extensions, including Intel’s
VT-x ISA and the Power ISA currently used by Freescale multicore SoC [15 and 16]. These
ISA extensions incorporate hardware support for virtualization for both high performance and
system dependability. Hardware support includes the addition of virtualization registers,
extended page tables, and I/O memory management units [15, 16, and 17].

Virtualization in airborne systems provides some potential benefits that warrant further study,
including

 the ability to run legacy and proprietary operating systems alongside newer or industry-

standard operating systems within a single system, reducing the cost of application
development or modification due to operating system or library dependencies.

 increased system stability and security [17].

 more hardware support for spacial and temporal separation of applications.

8.2 THE COTS MICROPROCESSOR SECURITY RESEARCH.

COTS microprocessor and SoC security issues are another largely open area of research that has
not been covered by this project. While evaluating the three common risk areas of COTS
microprocessors and SoCs, safety and security issues often overlapped; however, the security
aspect of risk was outside the scope of the Handbook [1].

The most obvious security issues arise from the architectural trend of COTS SoCs to contain
many shared resources within a single device. Specifically, some COTS SoCs may lack the
resource controls necessary to ensure that different applications share a resource, such as an
Ethernet controller, fairly. The virtualization trend, as described in the previous section, can
provide possible solutions to these shared resource security issues.

As an example of security issues that arise from shared resources, Moscibroda, et al. [11],
describe that in a multicore system, multiple programs running on different cores can interfere
with each other’s memory access requests, thereby adversely affecting performance. They show
that a malicious program running on one core of an SoC can be written to exploit the access
policy of the system’s DDR memory controller. This malicious program can create a DoS attack
on applications running on other cores, due to the inherent unfairness in memory controller
access policy. This DoS attack essentially starves other applications of access to the memory
controller, and the performance of a starved application can be reduced by as much as 2.9 times
in a typical dual-core system.

35

Possible research in this area can include:

 the discovery and analysis of other shared resources that can lead to security risks

 temperature-based attacks that are worsened by continued technology shrinking [18]

 the development of security reports and papers that can lead to comprehensive policy and

guidance on COTS microprocessor security considerations

9. SUMMARY.

Microprocessors and SoCs have become extremely complex, highly integrated, nondeterministic,
and densely packaged. Recent changes in COTS microprocessors can be characterized as both
physical and functional changes. Physically, transistor density has continued its exponential
increase, allowing for hundreds of millions to billions of transistors to be placed on a single
device. As of 2010, 65- and 45-nm devices were common in the COTS marketplace, and 32-nm
and smaller devices are beginning to enter the marketplace. In addition to the decrease in device
size, the functional capability of COTS devices has expanded. It is no longer necessary for
different system components to be implemented as discrete devices. Instead, a single COTS SoC
may contain multiple microprocessor cores, I/O devices, memory controllers, and other
functionality. As a result, deterministic performance is difficult or impossible to predict in some
cases. These devices require additional evaluation methods beyond that identified in current
regulatory requirements to achieve the resilience required to meet safety and reliability
requirements. The aircraft systems containing these COTS devices may require multilevel safety
nets to be designed into them.

Subject matter experts from the FAA and the six industry participants of AFE43 first identified
common microprocessor risks and an approach to resolve the growing issues with design
assurance and certification; Phase 5 related these risks with mitigation methods associated with
the multilevel safety net approach. Phase 5 developed the concepts of a multilevel safety net that
established an approach to system design including mechanisms to detect, analyze, and respond
to SoC anomalous behavior at higher system levels.

The primary deliverable of the entire 5-phase AFE43 Microprocessor Evaluations Project was a
Handbook for the Selection and Evaluation of Microprocessors for Airborne Systems. The
Phase 4 Report and this Phase 5 Report specify the research results that support the Handbook.
The Handbook advocates a major shift in ensuring the safe use of COTS microprocessors in
airborne systems. Most complex hardware, including COTS microprocessors, goes through a
process of demonstrating safety through the complete verification of the hardware design.
AFE43 has shown that this process is infeasible for some complex, nondeterministic COTS
microprocessors. These microprocessors should be assumed as potentially unsafe, and system-
level approaches for risk mitigation should be considered such as a safety net.

Current FAA policy and guidance do not directly address the use of COTS microprocessors and
SoCs in aircraft systems. However, the existing policy and guidance can be used as a basis from
which the Handbook may help provide an applicant with additional information in demonstrating

36

that their system meets the applicable airworthiness requirements. The purpose of the Handbook
is to:

 Document common areas of concerns regarding the use of COTS microprocessors in

complex and/or safety critical systems.

 Provide approaches, information, and examples for mitigating the concerns through a

safety net

 Extend the research accomplished in AFE43 to example approaches to resilient systems

through methods defined in this Handbook under the overarching term safety nets

 Reveal how existing regulatory policy and guidance may be augmented to support the

creation of resilient systems through safety net approaches safeguarding the use of
microprocessor technologies in complex and/or safety critical systems.

Acceptable implementation of safety nets as a design assurance mechanism and airworthiness
determinant will result in the development of procedures, standards, and guidance for the use of
safety nets in the certification of aircraft containing avionics systems with embedded complex
COTS microprocessors or SoCs such as those described in this report.

10. REFERENCES.

1. Green, B., et al., “Handbook for the Selection and Evaluation of Microprocessors for
Airborne Systems,” FAA report DOT/FAA/AR-11/2, February 2011.

2. Mahapatra, R.N. and Ahmed, S., “Microprocessor Evaluations for Safety-Critical, Real-
Time Applications: Authority for Expenditure No. 43 Phase 1 Report,” FAA report
DOT/FAA/AR-06/34, December 2006.

3. Mahapatra, R.N., Bhojwani, P.S., and Lee, J.D., “Microprocessor Evaluations for Safety-
Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 2 Report,”
FAA report DOT/FAA/AR-08/14, June 2008.

4. Mahapatra, R.N., Bhojwani, P.S., and Lee, J.D., “Microprocessor Evaluations for Safety-
Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 3 Report,”
FAA report DOT/FAA/AR-08/55, February 2009.

5. Mahapatra, R.N., Lee, J.D., Gupta, N., and Manners, B., “Microprocessor Evaluations for
Safety-Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 4
Report,” FAA report DOT/FAA/AR-10/21, September 2010.

6. AC 20-152, “RTCA, Inc., Document RTCA/DO-254, Design Assurance Guidance for
Airborne Electronic Hardware,” Federal Aviation Administration AIR-100, 2005.

7. DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” RTCA, Inc.,
2000.

37

38

8. “MPC8572E PowerQUICC III Integrated Host Processor Family Reference Manual,”
Freescale Semiconductor, Rev. 2, May 2008.

9. “PowerPC e500 Core Family Reference Manual,” Freescale Semiconductor, Rev. 1,
2005.

10. Pellizoni, R. and Caccamo, M., “Impact of Peripheral-Processor Interference on WCET
Analysis of Real-Time Embedded Systems,” IEEE Transactions on Computers, Vol. 59,
Issue 3, pp. 400-415.

11. Moscibroda, T. and Multu, O., “Memory Performance Attacks: Denial of Memory
Service in Multi-Core Systems,” Proceedings of the 16th USENIX Security Symposium,
2007, pp. 257-274.

12. “MPC8572 Development System User’s Guide,” Freescale Semiconductor, Rev. 0,
November 2007.

13. Virtutech Simics, http://www.virtutech.com, last visited 9/15/10.

14. DENX ELDK, http://www.denx.de/wiki/DULG/ELDK, last visited 9/15/10.

15. Neiger, Gil, et al., “Intel Virtualization Technology: Hardware Support for Efficient
Processor Virtualization,” Intel Technology Journal, Vol. 10, Issue 3, 2006.

16. “Power ISA Version 2.06,” IBM, 2009.

17. “Hardware and Software Assist in Virtualization,” Freescale Semiconductor, Rev. 0,
2009.

18. Joonho, Kong, et al., “On the Thermal Attack in Instruction Caches,” IEEE Transactions
on Dependable and Secure Computing, Vol. 7, No. 2, April-June 2010, pp. 217-223.

APPENDIX A—EXPERIMENTAL PLATFORM TEST CODE

This appendix includes the test code written to generate the data reported in sections 5 and 6 of
this report. This code was executed on both the physical and simulated platforms described in
section 4.

A.1 CONFIGURATION-RELATED ISSUES TEST.

This test flips each individual bit of a set of configuration registers that control the Universal
Asynchronous Receiver/Transmitter (UART). The registers modified by this test are listed in
figure 4 of this report. Before and after each bit flip, the test prints out a statement so that the
user can observe if there is any visible effect to the console due to a UART behavior change.
After each bit is flipped, it is restored to its original value before the test modifies a subsequent
bit.

#include <stdio.h>

#define UART0OFFSET 0x04500
#define CCSRBAR 0xe0000000
#define UARTREG(x) (*(volatile char *)(CCSRBAR + UART0OFFSET +(x)))
#define NCHECKED 2
typedef void (IntHndlr)(long);

extern void InterruptHandler(long cause);
asm void system_call();
int checkRegBit(int j, int i);

asm void system_call()
{
 nofralloc
 sc
 blr
}

/* changing of some configuration register bits can cause this program
to stop. Hence we have this function to skip checking of bit
"bitNum" in register number "reg"
 */
int checkRegBit(int bitNum, int reg)
{
 int i;
 int checked[NCHECKED][2] =
 {
 {6,3},
 {7,3}
 };

 return 0;

A-1

 for(i=0; i<NCHECKED; i++)
 {
 if((bit==checked[i][0]) && (reg == checked[i][1]))
 return 1;
 }
 return 0;

}

//Main function

void main()
{
 int i=0,j;
 char mask;
 /*
 Because interrupt handlers contain shared code, each core needs
to register its own
 InterruptHandler routine
 */
 register IntHndlr* isr = InterruptHandler;
 asm
 {
 mtspr SPRG0, isr
 }

 printf("OPTP-1\r\n");
 for (i=0x00; i<=0x10; i++)
 {
 mask = 1;
 for (j=0; j<8; j++)
 {
 if(checkRegBit(j,i) == 1)
 continue;
 printf("Changing bit %d of register %x. Current
register value = %x\r\n",j,i, UARTREG(i));
 UARTREG(i) = UARTREG(i) ^ mask;
 printf("Changed bit %d of register %x. New register
value = %x\r\n",j,i,UARTREG(i));
 UARTREG(i) = UARTREG(i) ^ mask;
 printf("reset bit %d of register %x\r\n",j,i);
 mask = mask << 1;
 }
 }

 system_call(); // generate a system call exception to demonstrate
the ISR

 while (1) { i++; } // loop forever
}

A-2

A.2 CONFIGURATION REGISTER SAFETY NET TEST.

This test corrupts and repairs configuration registers, and it determines how many errors
occurred between corruption and repair.

#include <stdio.h>
#include <stdlib.h>

#define PICGCR 0xE0041020
#define UART0OFFSET 0x04500
#define CCSRBAR 0xe0000000
#define UARTREG(x) (*(volatile char *)(CCSRBAR + UART0OFFSET +(x)))
#define NCHECKED 2

typedef void (IntHndlr)(long);

extern void InterruptHandler(long cause);

void timerInt();

int time=0;
char mask=1;
int errors=0;
int regNo=3, bitNo=0;
int repair_period=1;
int read_period = 15;
int corruption_interval=300;
int next_error_time=10;
int repair_errors=0;

//Main function

void main()
{
 int i=0;

 register unsigned int period = 7500;
 register int tmpval = 0x04400000;
 /*
 Because interrupt handlers contain shared code, each core needs
to register its own
 InterruptHandeler routine
 */
 register IntHndlr* isr = InterruptHandler;
 asm
 {
 mtspr SPRG0, isr
 }

 (*(volatile int *)(PICGCR)) = 0x20000000;
 asm
 {

A-3

 mtspr DECAR, period
 mtspr DEC, period
 mtspr TCR, tmpval
 wrteei 0x1;
 }

 srand(1);
 printf("Core 0 time = %d\r\n",time);
 UARTREG(regNo) = 0x03;
 while (1)
 {
 i++;
 } // loop forever
}

//This function gets called on the timer interrupt.

void timerInt()
{
 time++;

 if(time == 10000)
 {
 UARTREG(regNo) = 0x03;
 printf("repair period = %d, Number of errors =
%d\r\n",repair_period, errors);
 repair_period++;
 if(repair_period <= 40)
 {
 time = 0;
 next_error_time=10;
 srand(1);
 UARTREG(regNo) = 0x03;
 }
 errors=0;
 return;
 }
 if(time > 10000)
 {
 return;
 }

 if(time % read_period == 0)
 {
 if(UARTREG(regNo) != 0x03)
 {
 //printf("Error at time = %d\r\n",time);
 errors++;
 }
 }

 if((time % repair_period == 0) && (repair_errors == 1))
 {

A-4

 if(UARTREG(regNo) != 0x03)
 {
 UARTREG(regNo) = 0x03;
 //printf("Repairing at time = %d, Number of errors =
%d\r\n", time, errors);
 }
 }

 if(time == next_error_time)
 {
 //printf("Corrupting at time = %d\r\n",time);
 UARTREG(regNo) = UARTREG(regNo) ^ mask;
 next_error_time += 1 + (corruption_interval
*(rand()/(RAND_MAX+1.0)));

 }
}

A.3 RESOURCE SHARING TEST.

This test performed matrix multiplication to generate the data reported in section 6. Before and
after the matrix multiplication, the MPC8572 system-on-a-chip performance monitors were used
to measure several dimensions of program execution, including:

 Level 2 cache misses
 Double data rate memory controller accesses
 Level 2 cache address collisions
 Level 2 cache line victimizations

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

#define CCSRBAR 0xFFE00000
#define SIZE 1024*1024

void printMat(int **mat, int dim1, int dim2)
{
 int i, j;
 for(i = 0; i < dim1; i++){
 for(j = 0; j < dim2; j++){
 printf("%d ",mat[i][j]);
 }
 printf("\n");
 }

A-5

}

int main(int argc, char **argv)
{
 int i, j, k, dim1, dim2, dim3, temp1, temp2, temp3, sum;
 int **mat1, **mat2, **matR;

 int fd;
 char *map;
 unsigned int mask, perfreg;

 fd = open("/dev/mem", O_RDWR);
 map = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
CCSRBAR);

 if(map == MAP_FAILED)
 {
 perror("Mapping failed\n");
 return 0;
 }
 else
 printf("MAP SUCCESS\n");

// Set up counting
// set FAC = 1
// for each counter
// set FC = 1
// set EVENT
// set FC = 0
// set FAC = 0

 //Show initial state of PM Global Config
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000);
 printf("PMGC0 = %x\n", perfreg);

 // Set FAC = 1
 printf("Setting PMGC0[FAC] = 1\n");
 *(unsigned int *) ((unsigned int) map + 0xE1000) = 0x80000000;

 //Show modified state of PM Global Config
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000);
 printf("PMGC0 = %x\n", perfreg);

 // Set up Counter 2: Instruction fetch -> L2 miss
 // Counter 2: PMLCA2 = 0xE_1030, PMLCB2 = 0xE_1034, PMC2 =
0xE_1038
 *(unsigned int *) ((unsigned int) map + 0xE1038) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE1030) = 0x007B0000;

 // Set up Counter 3: Instruction fetch -> L2 miss
 *(unsigned int *) ((unsigned int) map + 0xE1048) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE1040) = 0x007A0000;

 // Set up Counter 4: Data Req -> L2 miss

A-6

 // Counter 4: PMLCA4 = 0xE_1050, PMLCB2 = 0xE_1054, PMC2 =
0xE_1058
 *(unsigned int *) ((unsigned int) map + 0xE1058) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE1050) = 0x00790000;

 // Set up Counter 5: Instruction fetch -> L2 miss
 *(unsigned int *) ((unsigned int) map + 0xE1068) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE1060) = 0x00740000;

 // Set up Counter 6: Instruction fetch -> L2 miss
 *(unsigned int *) ((unsigned int) map + 0xE1078) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE1070) = 0x00790000;

 // Set up Counter 7: Instruction Fetch -> L2 hit
 *(unsigned int *) ((unsigned int) map + 0xE1088) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE1080) = 0x00160000;

 // Set up Counter 8: Data Request -> L2 hit
 *(unsigned int *) ((unsigned int) map + 0xE1098) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE1090) = 0x00170000;

 // Set up Counter 9: Data Request -> L2 hit
 *(unsigned int *) ((unsigned int) map + 0xE10A8) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE10A0) = 0x00190000;

 // Set up Counter 9: Data Request -> L2 hit
 *(unsigned int *) ((unsigned int) map + 0xE10B8) = 0x0;
 *(unsigned int *) ((unsigned int) map + 0xE10B0) = 0x000D0000;

 // Set FAC = 0
 printf("Setting PMGC0[FAC] = 0\n");
 *(unsigned int *) ((unsigned int) map + 0xE1000) = 0x0;

 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000);
 printf("PMGC0 = %x\n", perfreg);

 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1030);
 printf("PMLCA2 = %x\n", perfreg);

 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1050);
 printf("PMLCA4 = %x\n", perfreg);

 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1080);
 printf("PMLCA7 = %x\n", perfreg);

 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1090);
 printf("PMLCA8 = %x\n", perfreg);

 if(argc != 4){
 printf("Usage: ./a.out dim1 dim2 dim3\n");
 exit(1);
 }

 srand(time(NULL));

A-7

A-8

 dim1 = atoi(argv[1]);
 dim2 = atoi(argv[2]);
 dim3 = atoi(argv[3]);

 printf("dim1 = %d, dim2 = %d, dim3 = %d\n", dim1, dim2, dim3);

 mat1 = (int **) malloc(dim1 * sizeof (int *));
 mat2 = (int **) malloc(dim2 * sizeof (int *));
 matR = (int **) malloc(dim1 * sizeof (int *));

 for (temp1 = 0; temp1 < dim1; temp1++){
 mat1[temp1] = (int *) malloc(dim2 * sizeof(int));
 for (temp2 = 0; temp2 < dim2; temp2++){
 mat1[temp1][temp2] = rand()%100;
 }
 }

 for (temp1 = 0; temp1 < dim2; temp1++){
 mat2[temp1] = (int *) malloc(dim3 * sizeof(int));
 for (temp2 = 0; temp2 < dim3; temp2++){
 mat2[temp1][temp2] = rand()%100;
 }
 }

 for (temp1 = 0; temp1 < dim1; temp1++){
 matR[temp1] = (int *) malloc(dim3 * sizeof(int));
 }

 for (temp1 = 0; temp1 < dim1; temp1++){
 for (temp2 = 0; temp2 < dim3; temp2++){
 sum = 0;
 for(temp3 = 0; temp3 < dim2; temp3++){
 sum+= mat1[temp1][temp3] * mat2[temp3][temp2];
 }
 matR[temp1][temp2] = sum;
 }
 }

 printf("Matrix Result:\n");
// printMat(matR, dim1, dim3);

// Stop, read and clear counters

 // Set FAC = 1
 *(unsigned int *) ((unsigned int) map + 0xE1000) = 0x80000000;
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1000);
 printf("PMGC0 = %x\n", perfreg);

 printf("Reading Counter 2: I -> L2 miss\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1038);
 printf("PMC2 = %d\n", perfreg);

 printf("Reading Counter 3: L2 addr collision\n");

 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1048);
 printf("PMC3 = %d\n", perfreg);

 printf("Reading Counter 4: D -> L2 miss\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1058);
 printf("PMC4 = %d\n", perfreg);

 printf("Reading Counter 5: L2 victimize\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1068);
 printf("PMC5 = %d\n", perfreg);

 printf("Reading Counter 6: L2 invalidation\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1078);
 printf("PMC6 = %d\n", perfreg);

 printf("Reading Counter 7: I -> L2 hit\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1088);
 printf("PMC7 = %d\n", perfreg);

 printf("Reading Counter 8: D -> L2 hit\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE1098);
 printf("PMC8 = %d\n", perfreg);

 printf("Reading Counter 9: L2 alloc\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE10A8);
 printf("PMC9 = %d\n", perfreg);

 printf("Reading Counter 10: DDR R/W from core\n");
 perfreg = *(unsigned int *) ((unsigned int) map + 0xE10B8);
 printf("PMC10 = %d\n", perfreg);

 return 0;
}

A-9/A-10

	Abstract
	Key Words
	Table of Contents
	List of Figures
	List of Tables

